TYPE GCA SIZE 6
AC CONTACTOR
2 OR 3 POLES
FRONT CONNECTED

DESCRIPTION

The main contacts are of the single break type. Both moving and stationary contacts are faced with a silver alloy, whose surfaces are kept clean by a rolling and wiping action as the contacts seal. Stainless steel compression springs in each moving contact assembly insure adequate contact force while providing resilience to allow for contact wear.

The arc box provides a mechanical stop for the moving contact assembly and maintains the proper open contact gap. In addition, the arc box contains De-Ion® arc quenchers which draw the arc away from the contacts at opening and produce a rapid and confined arc interruption. Twin kick-out springs insure positive drop-out of the armature assembly when the coil is de-energized.

INSTALLATION

Before mounting and wiring, the desired accessories such as electrical and mechanical interlocks should be mounted on the Type GCA Size 6 AC Contactor assembly.

The assembly should then be mounted with four 5/16" dia. bolts. Mounting dimensions are shown in Fig. 3.

Fig. 1
Type GCA-630 Contactor with Type L-56 Electrical Interlock.

The Type GCA Size 6 AC Contactor is completely assembled on an insulated base of molded glass-polyester. It is suitable for mounting on either steel or insulating panels. Contactors are available in 2 or 3 pole front connected assemblies. See Fig. 1.

This unit is supplied with an AC operating magnet. The operating coils are designed for continuous duty from 85% to 110% of rated voltage. The contact ratings are listed in Fig. 2.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Open</th>
<th>Enclosed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Rating</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>8-hour rating, Amperes</td>
<td>600</td>
<td>540</td>
</tr>
</tbody>
</table>

Fig. 2 – Ratings

Fig. 2 – Ratings

Fig. 3
Type GCA Size 6 AC Contactor Outline
Both line and load terminals have 17/32" dia. holes for 1/2" dia. hardware. Dual-lug pressure type terminals, when supplied, should be assembled on the front of the copper connection straps, using the mounting pattern shown in Fig. 4.

Once installed, the assembly should be checked to insure proper operation of the basic contactor mechanism and accessory devices before power is applied.

The following list and the maintenance instructions should be used as a guide:

a) The crossbar and springs must operate freely.
b) Electrical and mechanical interlocks must be properly installed and adjusted.
c) The proper operating coil must be installed and properly connected.
d) The crossbar must be in position. The contactor will not operate if the crossbar is rotated forward, out of position.
e) The arc box must be in place. The contactor must never be operated in a power circuit unless the arc box is securely bolted in place.
f) The main contacts must have overtravel and spring force and move freely.

ELECTRICAL INTERLOCKS

Description

The Type GCA Contactor will accommodate a total of two Type L-56 electrical interlock units, providing a total of 4 circuits. One L-56 interlock unit with 2 circuits is normally supplied on the left side.

The interlock unit is retained in a metal bracket by spring clips and operated by a metal operator mounted on the crossbar.

Additional interlock units are available with various contact arrangements as listed in Fig. 5. The kits include the interlock unit, mounting bracket, operator and the necessary hardware.

Installation and Checking

The metal mounting bracket is mounted on the contactor base with the hardware provided. The L-56 interlock unit can then be installed.

The metal interlock operator is then mounted on the crossbar with the hardware provided.

For proper interlock operation, when the contactor is fully closed, the interlock push rod can be manually depressed .06 (1/16 inch) further. If adjustment is necessary, the slot in the end of the operator should be opened or closed to obtain this .06 (1/16 inch).

MECHANICAL INTERLOCKS

The Type GCA Size 6 Contactor, when used in combination with other contactors, may be mechanically interlocked to protect against the closing of one, when the other is already closed. Mechanical interlock combinations, for both vertical and horizontal assemblies, are listed in Figs. 6 and 7. Complete instructions and adjustment procedures for Types M47, M48 and M51 Mechanical Interlocks are contained in the Instruction Leaflets listed.
MAINTENANCE

Contact Forces
With new contacts, the total contact forces per pole should be:

- Initial force 7.5 to 8.5 pounds (Fig. 8-A)
- Final force 9 to 10 pounds (Fig. 8-B)

After turning off the power, they may be measured by exerting a measured pull until the paper is allowed to move using the method shown in Fig. 8-A and 8-B.

Contact Overtravel and Replacement
The initial contact overtravel, with new contacts, is 0.18 ± 0.02 inches (5/32 to 13/64 inches) and is measured with the power off as shown in Figs. 8-A and 8-B. Contact replacement is necessary when the overtravel on any pole has been reduced to 0.05 (3/64) inch. The contacts must be replaced on all poles at the same time. Contact replacement is then achieved by the following procedure with the power off:

1. Remove the arc box and gently lower the crossbar.
2. Disconnect shunts from moving contact.
3. Remove the three contact springs and their protectors. Remove the nameplate.
4. Remove the moving contacts by removing their bearing pins. (A 5/32" allen wrench is required for the #10 socket head cap screws).
5. Remove the stationary contacts. (A 1/4" allen wrench is required for the 5/16 socket head cap screws).

To install new contacts, reverse the procedure making sure all bolts and screws are tight, (the stationary contact mounting bolts must be tightened to 100-150 inch-pounds) the crossbar is raised into its proper position with the moving contacts inside the arc box, and the arc box is securely in place. Check to be sure both kickout and contact springs are properly seated and the nameplate is in place.

The moving contacts should touch the stationary contacts at the same instant within 0.06 (1/16) inches maximum error on all poles as the contactor is closed. Contact face misalignment of approximately 0.06 (1/16) inches (measured with the contactor fully closed) will not be detrimental to the operation of the contactor.

This industrial type control is designed to be installed, operated, and maintained by adequately trained workmen. These instructions do not cover all details, variations, or combinations of the equipment, its storage, delivery, installation, check-out, safe operation, or maintenance. Safe must be exercised to comply with local, state, and national regulations, as well as safety practices, for this class of equipment.

Arc Box
The arc box provides the mechanical stop for the moving contact assembly while maintaining the proper open gap for the main contacts. The molded box also supports the De-ion® type arc quenchers which are contained within the arc box. Two, front accessible, bolts hold the arc box in place. This arc box requires no maintenance except for a periodic inspection for grid damage or zircon liner burn-through by fault conditions. The contactor must never be operated in a power circuit unless the arc box is securely bolted in place.

Kickout Springs
Normally no maintenance is required for these springs other than to make sure that they are properly seated on the molded crossbar assembly. In case they are inadvertently removed from the molded base where they are captivated in a hole slightly smaller than the free spring outside diameter, they can be reinstalled readily with a needle-nose plier as shown in Fig. 8-B. Hold the front end of the spring, insert the pliers inside the spring, and rotate the offset pin end of the spring in a direction to decrease its outside diameter. Keep the spring restrained until the pin end has been inserted into the molded base.

Magnet Suspension
Both the stationary and moving magnet assemblies are flexibly mounted to assure proper sealing of the magnet for quiet operation. Both helical compression springs and flat leaf springs are in back of each magnet part. The moving armature has less spring force...
and restraint than the stiffer stationary magnet assembly. In case these magnets are ever disassembled, particular care must be used to make sure that the flat leaf springs are centered on the laminated magnet assemblies and are not jammed between the magnets and the molded guide projections. After reassembly, be sure to check that both the stationary and moving magnets can be manually depressed or rocked in their mountings. Again, the moving armature assembly can be rocked with much less force and more freedom than the stationary assembly.

Operating Coils

When installing a new coil, check the identification label for the correct style number, voltage, and frequency.

Figure 9 lists the more commonly used coils and shows the connection diagram for each voltage.

To replace an operating coil, proceed as follows:
1. Remove all power to the contactor and operating coil.
2. Remove coil leads.
3. Remove the arc box, (2 bolts) and gently lower the crossbar assembly.
4. Remove the old coil from the magnet by removing the two mounting screws.
5. Place the new coil on the contactor and replace the two mounting screws.
6. Raise the crossbar into its proper position with the moving contacts inside the arc box.
7. Replace the arc box on the contactor and securely tighten both mounting bolts. Make sure both kickout springs are properly seated.
8. Reconnect the leads to the new coil. Move crossbar by hand and make sure it moves freely with no mechanical friction.

RENEWAL PARTS

Complete renewal parts data is listed in RPD 16-100B6.

WESTINGHOUSE ELECTRIC CORP.
GENERAL CONTROL DIVISION
ASHEVILLE, N.C., U.S.A. 28813

Printed in U.S.A.
2/72