REceiving • Installation • Maintenance

INSTRUCTIONS

"De-ion" Grid Oil Circuit Breaker

Outdoor Type G

<table>
<thead>
<tr>
<th>Type</th>
<th>Kva</th>
<th>Kv</th>
<th>Amperes</th>
</tr>
</thead>
<tbody>
<tr>
<td>144G1000</td>
<td>1,000,000</td>
<td>15</td>
<td>1200</td>
</tr>
<tr>
<td>230G500</td>
<td>500,000</td>
<td>23</td>
<td>1200</td>
</tr>
<tr>
<td>345G500</td>
<td>500,000</td>
<td>34.5</td>
<td>1200</td>
</tr>
<tr>
<td>345G1000</td>
<td>1,000,000</td>
<td>34.5</td>
<td>1200</td>
</tr>
<tr>
<td>345G1500</td>
<td>1,500,000</td>
<td>34.5</td>
<td>1200</td>
</tr>
<tr>
<td>460G500</td>
<td>500,000</td>
<td>46</td>
<td>1200</td>
</tr>
<tr>
<td>460G1500</td>
<td>1,500,000</td>
<td>46</td>
<td>1200</td>
</tr>
<tr>
<td>690G1000</td>
<td>1,000,000</td>
<td>69</td>
<td>1200</td>
</tr>
<tr>
<td>690G1500</td>
<td>1,500,000</td>
<td>69</td>
<td>1200</td>
</tr>
<tr>
<td>690G2500</td>
<td>2,500,000</td>
<td>69</td>
<td>1200</td>
</tr>
</tbody>
</table>

Westinghouse Electric Corporation

Power Circuit Breaker Department

Trafford Plant

Trafford, Pa.

Supercedes I.B. 33-750-3A and Supplement No. 1

July, 1960

Printed in U.S.A.
TABLE OF CONTENTS

Part One
RECEIVING, HANDLING AND STORING
Pages 6-8

- Receiving the Shipment .. 6
- Unpacking Parts and Accessories 6
- Handling Procedure .. 7
- Storage of Breaker and Breaker Parts 7
 - "De-ion" Grid Stacks ... 7
 - Lift Rods and Guides ... 8
 - Condenser Bushings .. 8
 - Operating Mechanism .. 8

Part Two
INSTALLATION
Pages 9-16

- Selecting the Location .. 9
- Mounting the Assembly .. 9
- Line Connections .. 10
- Grounding Connections .. 10
- Connecting Current Transformers 10
- Control Wiring .. 10
- Operating Mechanism ... 11
- Final Inspection and Tests ... 11
- Placing Oil in Service ... 12
- Typical Graphic Recorder Curves 13, 14, 15, 16

Part Three
OPERATION AND ADJUSTMENTS
Pages 17-21

- The Westinghouse "De-ion" Grid Unit 17
 - Function ... 17
 - Adjustments ... 17
 - Pole Unit Lever Mechanisms, Interpole Pull Rods and Operating Bell Crank 17
 - Bumpers ... 18
 - Condenser Bushings ... 19
 - Stationary Contacts .. 21
 - Moving Contacts .. 21
 - Final Adjustment of Breaker Contacts 21
 - Accelerating Spring .. 21

Part Four
MAINTENANCE
Pages 22-24

- Routine Inspection Procedure .. 22
- General Inspection Procedure .. 22, 23
- Care of Oil .. 23
- Condenser Bushings .. 24
- Bushing Current Transformer .. 24
- Oil Gauge .. 24
- Operating Mechanism .. 24
- Renewal Parts .. 24
TYPE G OIL CIRCUIT BREAKER

The oil circuit breaker is one of the most important units in the modern power transmission system, as the protection, stability and continuity of service of the entire system depend largely on the efficiency of its operation.

In the Type G "De-ion" Grid Oil Circuit Breakers, Westinghouse offers a complete standard line of breakers from 15 to 69 kv. Circuit interruption is effected by use of the highly efficient "De-ion" Grid interrupter which gives opening speeds of 8 cycles or less. The use of this interrupter insures the highest degree of reliability of operation with a minimum of maintenance.

This instruction book applies to breakers of 1200-ampere rating in the voltage range stated above. Each breaker consists of three individual pole units mounted on a supporting framework and connected mechanically to each other and to a common operating mechanism to provide simultaneous operation as a three-phase breaker. Each pole unit has a round steel tank bolted to a fabricated steel top which also provides support for the pole unit levers and entrance bushings. The stationary contacts and "De-ion" Grid interrupters are mounted on the lower ends of the bushings and the moving contact crossbar is carried on the lower end of a wood base Micarta® lift rod. This lift rod is in turn suspended from the main lever of the pole unit mechanism.

Bushing type current transformers, when ordered, are supported from the underside of the pole unit top, around each bushing.

Important. Proper installation and maintenance are necessary to insure continued satisfactory operation of the circuit breaker. It should not be installed in places where it will be called upon to operate at voltages or currents greater than those given on the nameplate. The short circuit conditions to be imposed upon the breaker must not exceed those specified at the time the breaker was purchased. In addition, certain physical conditions must be carefully surveyed and planned for as outlined under "Selecting the Location", Part Two of this book.
RECEIVING, HANDLING AND STORING

RECEIVING THE SHIPMENT

All Type G breakers are assembled and given complete commercial tests at the factory, after which they are carefully inspected and prepared for shipment by workmen experienced in the proper handling and packing of electrical equipment. Breakers covered by this instruction book are normally shipped completely assembled. On the 69-kv breakers, the frame legs are shortened to permit shipment of the breakers (see Fig. 1.) without removing the condenser bushings and stationary contacts. Leg extensions are provided for each end of the breaker frame. When the breaker is installed, these extensions are fitted into place making for proper height. This split-frame construction is made rigid on installation by use of bracing members which are also utilized in shipment to strengthen the frame proper also shown in Fig. 1. Fig. 2 shows the leg extensions fitted in place.

Important. Immediately upon receipt of a circuit breaker, an examination should be made for any damage sustained while in transit. If injury is evident, or indication of rough handling is visible, claim for damage should be filed at once with the carrier (Transportation Company), and the nearest Westinghouse Sales Office notified promptly.

UNPACKING PARTS AND ACCESSORIES

The majority of the following instructions will apply only when the breaker is shipped disassembled.

Certain parts of the breaker are of insulating material and must be handled so that they are protected from moisture, dirt, and damage due to rough handling. Care should be exercised in the removal of crating and packing to prevent damage to the breaker by careless handling of crowbars or other tools.

If the breaker is to be installed immediately, the various parts should be removed from their
RECEIVING, HANDLING AND STORING

OIL CIRCUIT BREAKER

HANDLING PROCEDURE

The total weight of the breaker without oil is given on the nameplate located on the breaker frame. This information will serve as a guide to determine the lifting ability of the crane or other mechanism used to handle the breaker. Breakers may be lifted with a crane by hooking the hoist sling onto the breaker frame.

When using cable slings or chains for moving a breaker, care must be exercised to prevent such slings from striking or bearing against the condenser bushings, as any shock or strain on them may cause them to crack or break.

When transporting a breaker by car or truck, do not lash the breaker down by the condenser bushings. The skids on which the breaker is mounted for shipment should be kept under it until the breaker is installed. Care should be exercised at all times to prevent injury to the apparatus through shocks or jars due to rough handling.

Caution. These breakers have a high center of gravity and special precaution should be taken while handling to prevent them from tipping over.

STORAGE OF BREAKER AND BREAKER PARTS

After the breaker is unloaded and uncrated, immediate installation in its permanent location is recommended even though it may not be put into service for some time. If this is not practicable, it should be stored in a place where it can be protected from mechanical injury. In either case, the following precautions should be taken to prevent injury to and deterioration of the parts.

All internal insulating parts must be protected from moisture. This can best be accomplished by immediately filling the breaker tanks with insulating oil. If this cannot be done, the condenser bushings, lift rods and guides and "De-ion" Grid stacks should be removed and stored in a dry place.

Do not remove the protective covering from the insulators until the breaker has been installed in its permanent location and ready for service, all overhead work completed and all tanks filled with oil.

"De-ion" Grid Stacks. The "De-ion" Grid stacks must not be exposed to moisture at any time. The fibre in these stacks may absorb enough moisture, either from direct contact with
RECEIVING, HANDLING AND STORING

water or from a humid atmosphere, to expand and warp it out of shape. Under extreme conditions this may even result in breakage of the stack tie rods. It is expressly recommended that the "De-ion" Grid stacks be stored under Wemco "C" oil.

Lift Rods and Guides. Store lift rods and guides (especially spare parts which may not be used for a long time) on a level surface or hang them in a vertical position to minimize the possibility of warping.

Condenser Bushings. For storage of condenser bushings over a short period of time, such as that which may elapse between the time a breaker is received and is installed, it is permissible to store the bushings in a vertical position in a warm, dry place. However, when it is contemplated that bushings may be stored over a long period of time, such as in the case with spare parts, it is recommended that they be stored with their lower ends immersed in Wemco "C" oil.

Operating Mechanism. Machined parts of the operating mechanism, pinned joints, etc., should be protected against rust. This may be best accomplished for the solenoid or pneumatic operating mechanism by closing the mechanism housing and energizing the space heaters provided in it. This procedure is recommended even if it requires the use of a temporary wire circuit to the heaters. In case this is impracticable, all machined parts, including the pole unit operating mechanism, should be coated with grease or some rust inhibiting material. Additional protection may be obtained by use of silica gel, activated alumina or similar dehydrating agents. Two or three small bags of the material should be hung in the mechanism housing and several in each pole unit near the parts requiring protection. It should be remembered that complete protection may not be provided in spite of all of the above precautions and periodic inspections should be made to determine the condition of the apparatus.
SELECTING THE LOCATION

The oil circuit breaker should be located so that it will be readily accessible for cleaning and inspecting. Sufficient space must be provided for opening the mechanism housing doors and operating the hand closing device. Space should also be provided for the installation and operation of the windlass type tank lifter which is available as a breaker accessory.

The breaker foundation should be high enough to preclude the possibility of water entering the operating mechanism housing during flood conditions.

The breaker should not be installed where salt water spray, sulphur steam or other corrosive elements are in the atmosphere.

MOUNTING THE ASSEMBLY

All circuit breakers should be set reasonably level so that moving parts within the breaker can operate freely. Otherwise, friction may develop and undue strains may be imposed on the lift rods and other moving parts, leading to breakage and defective operation.

The foundation should be prepared prior to the arrival of the breaker. Consult the outline and
drilling plan supplied for necessary clearance dimensions and foundation bolt locations.

Remove the breaker from its skids and place on the permanent foundation. The precautions in handling the breaker previously described under "Handling Procedure" should be adhered to. Insert shims, if necessary, under the legs of the breaker frame to get it properly plummed and leveled before tightening the nuts on the foundation bolts. In the case of the "split frame" breakers, mount the frame extensions on the foundation and place the breaker with the frame proper on these extensions. Bolt the frame and its extensions tightly together and put the frame-bracing members securely in place. These bracing members should be in place before final leveling of the breaker and frame and before finally tightening the foundation bolts.

The sequence for assembling breakers which have been disassembled is as follows: (Refer to Part III for adjustments):

1. Check pole unit lift rod and toggle stop clearance.
2. Mount condenser bushings in breaker tops.
3. Install stationary contacts and "De-ion" Grid interrupters.
4. Install moving contacts.
5. Check and adjust moving and stationary contacts and bushing alignment to obtain proper contact travel, alignment, and contact separation.

LINE CONNECTIONS

Line connections should be sufficiently flexible to prevent undue strains on the condenser bushings. Clamp type connectors are ordinarily used between the bushing stud and the line conductor. Cable conductors should be supported so that heavy loads will not be imposed upon the bushing. If tube conductors are used, they should be shaped and supported in such a way that heavy expansion strains are not placed on the bushings. Conductor and connector should be of adequate current carrying capacity to avoid heat being transmitted into the breaker bushing. All joints must be clean, bright, and free from burrs or surface roughness.

Do not connect an aluminum conductor to a copper alloy connector unless the latter has plating or, preferably, an insert suitable for such a connection. The galvanic action resulting from a joint of aluminum to copper will in time cause considerable corrosion.

GROUNDING CONNECTIONS

A grounding pad is supplied on front left hand leg of the breaker frame. The grounding conductor should be capable of carrying the maximum line-to-ground current for the duration of the fault.

Caution. A permanent low resistance ground is essential for adequate protection. A poor ground may be worse than none, as it gives a false feeling of safety to those working around the equipment.

CONNECTING CURRENT TRANSFORMERS

Bushing type current transformers, supplied only when ordered, are mounted in cases in the top of each pole unit.

Transformers are usually of the multi-ratio type, having four or five leads to provide a wide range of ratios. These leads are carried in conduit through a gas seal into the lead channel which is an integral part of the breaker frame. From points adjacent to pole units, long conductors lead through the lead channel to terminal blocks located in the operating mechanism housing. Each lead has an identification tag indicating the transformer tap to which it is connected. This information is also lettered on the terminal block marking strips. By referring to the current transformer name plate, which is mounted on the inside of the housing door, the transformer taps used to give the desired ratio may be determined. Care must be exercised so as not to confuse the polarity of the transformers. If there is any question as to the proper method of connection to the instruments, reference should be made to the polarity, ratio and connection diagrams, see Fig. 4.

Caution. Be sure the correct transformer connections are made and a burden or short circuit placed across the terminals at the blocks before the breaker is closed on the line. Otherwise, dangerous voltages may occur across the open secondary terminals.

CONTROL WIRING

All control wires to the circuit breaker should be run in conduit when practicable. The diagram pasted on the inside of the mechanism housing door shows the proper connections for operating circuits and indicating lamps.
The control wiring should be so installed that trouble with one oil circuit breaker cannot be communicated to the control wiring on another breaker. The wire size should be selected to keep the voltage drop within reasonable limits. Excessive line drop will slow up the closing time of solenoid operated breakers and the tripping time of both solenoid and pneumatically operated breakers, thereby causing a slowing up of the interrupting time.

OPERATING MECHANISM

Read carefully the Operating Mechanism Instruction Book which is supplied in conjunction with this book. It will describe the operation of the mechanism supplied with the breaker. If lost or misplaced, Operating Mechanism I. B. number may be found on the nameplate inside the housing.

FINAL INSPECTION AND TESTS

After the breaker has been installed and all mechanical and electrical connections completed (except energizing the power line) the following inspection and tests should be made:

1. All insulation and parts within the tank including the inside surface of the tank, must be wiped carefully to remove any dirt and moisture which may have collected. Do not use cotton waste for this purpose because lint may be introduced into the oil. When furnished, tank linings should be examined for possible mechanical damage.

2. See that all bearings of the operating mechanism are free of dirt and packing materials and have been lubricated. (Excessive lubrication will pick up dirt.)

3. The latch faces should be coated with a thin film of rust inhibitor. This inhibitor should be carefully selected to be free flowing at all anticipated temperatures, should be non-hardening, and self-healing (so that it will not completely wipe off in one operation). A lubricant similar to Westinghouse 9921-4 or Beacon 325 is suggested.

4. Close the breaker slowly by hand, checking to see that the lift rods and contacts are properly adjusted for correct alignment and that proper stationary contact compression or overlap is obtained when the breaker is closed.

5. Open the breaker slowly by hand. The movement of the breaker on opening and closing should be free and without friction. See that binding does not occur in the movement of the lift rod through the guides or of the moving contact blades into the “De-ion” Grids.

6. See that the breaker is properly set up and levelled on its foundation.

7. Make a final check for tightness of hardware on stationary and moving contacts, shunts, lift rods, pole unit levers, etc.

8. Check to see that all gaskets are in place and have not been damaged. All bolts and nuts on bushing flanges, tanks and connecting fittings must be evenly tightened so that moisture cannot enter the circuit breaker through any of these gasketed joints.

9. Check all pipe fittings and tighten any that may have become loose because of vibration or shock received during handling, lifting and transportation.

10. Inspect all insulated wiring to see that no damage has resulted from the process of installation. Test the wiring for possible grounds or short circuits.

11. Check to see that all control wiring outside of the oil tanks is properly insulated in accordance with standard practice. See that all joints in the control circuits are made correctly.
12. Fill tanks with clean, dry Wemco "C" oil and check dielectric breakdown of a sample taken from the bottom of the tank. (Follow detailed instructions under "Placing Oil in Service").

13. Check electrical operation of the breaker a few times after the tanks have been filled with oil and raised. It is recommended that the opening speed be checked by means of a cycle counter or a graphic recorder. See Typical Graphic Recorder Curves, pages 13 to 16.

Note: Removing lift rod stop cap, reveals a hole in top of each tank. For operating a graphic recorder, a rod is inserted through this opening and screwed into a 10-32 tapped hole in a block on the side of the lift rod. See Fig. 5.

Opening times should not exceed 3 cycles from the time the trip coil is energized until the breaker contacts part. If this time is exceeded, it may be due to any of the following reasons:

A. Excessive line drop in control wiring to breaker.
B. Not enough accelerating spring compression,
C. Incorrect setting of pole unit lever system.

The last two conditions may be corrected by the procedure outlined under Part Three, "Operation and Adjustments."

14. Make final inspection for tightness of tank bolts.

PLACING OIL IN SERVICE

Precautions must be taken to insure absolute dryness and cleanliness of the apparatus before filling it with oil, and to prevent the entrance of water and dirt during the transfer of the oil to the apparatus.

When putting a new circuit breaker into service, see that the tank is free from moisture and foreign matter. This may be done by flushing with clean insulating oil and wiping with clean, dry cotton cloths. (Cotton waste is undesirable because of the lint which may be introduced into the oil.)

The preparation and filling of outdoor apparatus should be done preferably on a clear, dry day. If this is not feasible, protection against moisture must be provided.

Precaution should be taken against the handling of oil at a temperature different from the container into which the oil is being poured, as condensation will occur and moisture will be introduced into the oil. Extra care must be taken if oil drums are stored in locations open to the weather. Sufficient clearance from ground is essential to permit circulation of air to prevent condensation.

Oil which has been used in lightning arresters contains water and harmful chemical impurities which cannot be removed without refining, and must not be used in circuit breakers.

Fill the oil tanks to the proper level with Wemco "C" oil. Oil which has a dielectric strength of less than 22,000 volts when tested by the usual methods, should not be put into the circuit breakers. New oil may test considerably higher than this. However, unless tested under ideal conditions, the oil may appear to be worse than it really is, due to contamination of the sample when testing. (For proper methods of handling and testing the oil, see Instruction Book 44-820-1, "Wemco C Insulating Oil for Electrical Apparatus".)
TYPICAL OPERATING CURVES
FOR
TYPE G - 14.4, 23, 34.5-46 KV-1200A BREAKERS
WITH AA-7 MECHANISMS
DATE 5-26-60

TRIP OR CLOSE CIRCUIT IS ENERGIZED

FULLY CLOSED

CONTACT INDICATION

TRIP CURVE

CLOSE CURVE

CLOSE-OPEN CURVE

OPERATING SPEED RANGE
AT NORMAL PRESSURE AND VOLTAGE
A. 7.5 TO 9.5 FT./SEC. (LINE DRAWN THROUGH POINTS 1 AND 2)
B. MAX. 15.0 FT./SEC. (LINE DRAWN THROUGH POINTS 3 AND 4)
1 ON CURVE 1" FROM FULLY CLOSED
2 ON CURVE 5" FROM FULLY CLOSED
3 ON CURVE 1" FROM FULLY CLOSED
4 ON CURVE 2" FROM FULLY CLOSED

LOW SPEED - 1 DIV. = 1 CYCLE

FIG. 5. Typical Graphic Recorder Curves
TYPICAL OPERATING CURVES
FOR TYPE G·14.4, 23, 34.5·46 KV·1200 A. BREAKERS
WITH AA·7 MECHANISMS
DATE 5·26·60

-TRIP OR CLOSE CIRCUIT IS ENERGIZED

CONTACT INDICATION

RECLOSE CURVE

TIME·CYCLE 65·60·BASIS

FULLY CLOSED

FULLY OPEN

LOW SPEED - 1 DIV. = 1 CYCLE

FIG. 6. Typical Graphic Recorder Curve
TYPICAL OPERATING CURVES
FOR
TYPE G-69KV-1200A. BREAKERS
WITH AA-7 MECHANISMS DATE 5-26-60

OPERATING SPEED RANGE
AT NORMAL PRESSURE AND VOLTAGE
A. 8.0 TO 10.0 FT./SEC. (LINE DRAWN THROUGH POINTS 1 AND 2)
B. MAX. 140 FT./SEC. (LINE DRAWN THROUGH POINTS 3 AND 4)

TRIP CURVE
CLOSE CURVE
CLOSE-OPEN CURVE

1. ON CURVE 1" FROM FULLY CLOSED
2. ON CURVE 5" FROM FULLY CLOSED
3. ON CURVE 1" FROM FULLY CLOSED
4. ON CURVE 2" FROM FULLY CLOSED

≠ LOW SPEED – 1 DIV. = 1 CYCLE

FIG. 7. Typical Graphic Recorder Curve
TYPICAL OPERATING CURVES
FOR
TYPE G· 69 KV·1200A· BREAKERS
WITH AA·7 MECHANISMS ·DATE 5·26·60

---TRIP OR CLOSE CIRCUIT IS ENERGIZED

FULLY CLOSED

CONTACT INDICATION

FULLY OPEN

TRAVEL
(FOOT/CYCLE)

TIME· CYCLES· 60· BASIS

LOW SPEED · 1 DIV. = 1 CYCLE

FIG. 8. Typical Graphic Recorder Curve
PART THREE

OPERATION AND ADJUSTMENTS

In case of trouble with any part of the circuit breaker, it is advantageous to understand the construction and adjustment of the individual parts. In general, it is advisable to work only on a part which needs attention and not to disturb the rest of the apparatus. The various parts and adjustments are described in the approximate order in which they are assembled at the factory.

THE WESTINGHOUSE "DE-ION" GRID UNIT

Function. The "De-ion" Grid interrupters used in these breakers are laminated structures made up of a number of units, the number and shape of which are determined by the voltage and current to be interrupted. Each unit consists of insulating plates of various shapes designed to trap oil and direct gases from the oil through the arc in an efficient manner. Long, narrow slots in the individual plates provide, in the assembled unit, a groove through which the moving contact passes to engage the stationary contacts in the closed position. This groove is open at one side for the most part, but closed in some sections to provide more efficient use of the arc gases. One grid is assembled at the lower end of each condenser bushing below the stationary contacts.

When the breaker opens, the moving contacts move downward and an arc is formed in the grooves of the grid stacks between the moving and stationary contacts. The iron plates in the grid stack create a field which drives the arc toward the closed ends of the grooves. This movement is resisted by the oil trapped in the grooves. This movement is resisted by the heat of the arc causes the oil to disintegrate and the resulting gases pass through and around the arc in escaping through vents in the grid stacks. This gas generation is augmented by the disintegration of oil trapped in pockets which line the sides of the grooves. The efficient control of these gases results in a rapid deionization of the arc stream, especially at current zero, so that re-establishment of the arc on an ensuing half cycle is difficult. Many interruptions take place at the first current zero after parting contacts, but if the rate of rise of recovery voltage is sufficiently rapid, arcing may continue for several half cycles until contact separation is sufficient to withstand the recovery voltage.

ADJUSTMENTS

Pole Unit Lever Mechanisms, Interpole Pull Rods and Operating Bell Crank. The vertical motion (of the moving part) of the operating mechanism is translated into the vertical motion of the pole unit lift rods through (and in the following succession):

1. The vertical lift rod joining the operating mechanism and the bell crank.

2. The bell crank.

3. A horizontal pull rod which connects the bell crank to pull rod levers of the pole units.

4. The pole unit lever assemblies. These are an assembly of levers, designed to transfer horizontal motion of the pull rod into straight-line vertical motion of the lift rod. (See Fig. 9.)

The horizontal pull rod is a solid bar drilled at the proper places for connection to the pull rod levers at the pole units. Consequently there is no adjustment of this assembly, and proper operation of the lever mechanisms of the three pole units with respect to each other is obtained by positioning of the pole units on the breaker frame. The proper relationship of motion of the operating mechanism to the pole unit lift rods is obtained by adjusting the length of the vertical pull rod which connects the mechanism and the bell crank.

For this adjustment, the upper rod end is moved in and out; the final adjustment being secured by tightening a lock nut bearing against the rod end. The position of the toggles in the pole unit lever mechanisms, when the breaker is closed, is an indication of the condition of this adjustment. It should be close enough to center to lighten the contact load when closing the breaker, but not too close to center as to delay separation of the contacts during the opening stroke.

After the complete linkages have been assembled and properly adjusted, the pole unit lift rod stops are set for 1/16" clearance and locked in position.
OPERATION AND ADJUSTMENTS

This complete assembly is made, adjusted and checked by operation at the factory and should require no further adjustment. If any one or all of the stops do not show the adjustment indicated in the preceding paragraph, they should not be changed until the complete linkage has been thoroughly checked and it is determined definitely that their position has changed and is improper.

Breakers equipped with finger contacts (see Figs. 11 and 12), often will not show any clearance at the lift rod stops when closed electrically or pneumatically. This is because the friction of the finger contacts tends to hold the moving contacts and lift rod in the position of overtravel.

Bumpers. A hydraulic bumper is provided in each pole of the breaker to stop the contact travel at the end of the opening stroke, cushioning the shock resulting from this action. At the open position, the pole unit main lever of each pole should rest against its respective bumper which, in turn, should be fully depressed. These bumpers are set and locked in position at the factory. This setting is correct for the proper contact travel and to act simultaneously in the three poles. It should not require adjustment in the field. If, on inspec-
tion, it is found that one or two of the bumpers are out of adjustment and are not carrying their proper share of the load, the complete pole unit lever system including the bumpers, should be carefully checked to determine whether or not some of the parts may have been damaged or forced out of adjustment.

The bumpers depend on the presence of oil from the circuit breaker tank for their cushioning action and are, therefore, ineffective, in this respect, when the breaker is tripped with the tank lowered or not filled to the proper level with oil. Consequently, tripping the breaker under these conditions should be avoided except in cases of absolute necessity.

Condenser Bushings. If it is necessary to install or replace condenser bushings, refer to the instructions which are included when the bushings are received. Extreme care should be taken to prevent damage to the Micarta insulation of the bushing, and also to prevent the bushing stud from striking the current transformer, damaging its insulation. Do not permit the metal flange of the bushing to touch the metal support which holds the transformer in place; this has the effect of a short circuiting turn around the transformer, and affects its ratio.

Make certain the weatherproofing gasket is in place between the bushing flange and the recessed seat on the breaker top. Also the top of the gasket should also be greased. After the moving and stationary contacts and "De-ion" Grid structures are properly aligned with each other, check the bushing flange bolts to be sure they are tightened uniformly around the flange. While inspecting the bolts, check to be sure the gasket is properly located to insure a moistureproof seal between the flange and the breaker top.

Caution. When working on a breaker which has just been in service, be sure the condenser bushing has been discharged by grounding the terminal end. The capacity of the larger bushings is sufficient to cause serious shock to a workman if accidentally discharged through him.

Stationary Contacts. The stationary contact assembly, including the "De-ion" Grid stack, is attached to the bottom of the condenser bushing in the steps shown in Fig. 13. In most cases, especially with the larger grids, this is best accomplished by removing the contact foot from the grid before attempting to screw it onto the bushing.
FIG. 13. Method of Disassembling the Stationary Contact Assembly
Moving Contacts. The U-shaped moving contact is fastened to the bottom of the lift rod by four sets of nuts and studs as shown in Fig. 14. These should be set so that the crossarm portion of the moving contact is horizontal and the upright portions lie in a vertical plane. This can be done by adjustment of the various nuts on the studs with respect to each other. Clearance in bushing flange holes and contact feet permit alignment. Any appreciable adjustment should be done by adjusting the height of the stationary contacts on their respective bushings.

The grid stacks have been assembled at the factory under pressure and the large nuts holding them together should not be removed. They should be handled as units at all times.

Final Adjustment of the Breaker Contacts. After all parts are in place, operate the breaker slowly by hand and adjust the various parts with respect to each other until proper contact, pressure or engagement is obtained. (See Figures 13 and 14.) Correct adjustment of the pole unit lever systems must be made so that the moving contacts and lift rods move freely in the slots of the "De-ion" Grids and the lift rods in the lift rod guides. After this is done, tighten all bushing flange bolts evenly and securely, tighten lock nut holding contact foot to bushing, replace insulating shield on stationary contact assembly and check all nuts and bolts on the stationary and moving contacts for tightness.

Accelerating Spring. An accelerating spring is mounted on the number three pole of the breaker for the purpose of accelerating the opening stroke of the contacts. It operates on and is mounted in the extension of the horizontal pull rod. This spring is set at the proper compression at the factory and should not be disturbed.
PAR T FOU R

MAINTENANCE

It has become the practice of operating companies to establish a system of regular inspection of their apparatus. Oil circuit breakers especially, due to the nature of their function, should be operated on a planned maintenance program. It is recommended that each new breaker be given a one year "shake-down" period to prove the initial installation and to establish the duty to which it is likely to be subjected. After this one year period, the oil should be drained from the tanks, and a thorough inspection made as outlined under "General Inspection Procedure". It is our standard practice to recommend that each breaker be given such a general inspection once a year. It is recognized, however, that many breakers operate so seldom that such yearly inspections may not be necessary, and on the other hand that some breakers are subjected to severe duty which makes more frequent servicing necessary.

Many companies compile detailed operating data on individual breakers, and from such information and past experience on various types of breakers are able to set up an inspection and maintenance program which fits more closely the duty performed. Following are some of the factors to be considered in setting up such a "tailor made" inspection schedule:

1. Time.
2. Number of switching and testing operations.
3. Number of overload and fault operations.
4. Severity of fault operations.
5. Condition of oil.
6. Cleanliness of atmosphere surrounding breaker.
7. Accumulated experience of breaker characteristics and duty.

Where an inspection schedule other than the yearly General Inspection is set up, we recommend that each breaker be given a "Routine" Inspection once yearly and that it be given a "General" Inspection at least once every three years. The significance of the two types of inspection are developed in the following paragraphs.

Regardless of what type maintenance program is adopted, it is further recommended that frequent visual inspections be made by operators touring the switchyard in order to catch any obvious abnormal condition. It is also considered good practice to operate the breaker from the switchboard at regular intervals to insure the integrity of all electrical circuits, as well as proper mechanical functioning of the breaker.

Caution. Before working on a breaker that has just been disconnected from the line, make sure that the condenser bushings have been discharged by grounding the terminal end. The larger bushings have a rather high capacity which may cause serious shock to a workman.

ROUTINE INSPECTION PROCEDURE

The suggested Routine Inspection procedure is as follows:

1. Check mechanical operation of breaker. See operating mechanism instruction book for specific procedure on operating mechanism.
2. Check dielectric strength of oil.
3. Measure contact compression.

It naturally follows that any abnormal condition found during the Routine Inspection should be cause for lowering the tanks and giving the breaker a thorough General Inspection.

GENERAL INSPECTION PROCEDURE

General inspection of the breaker requires that the tanks be lowered on the breaker. Before any parts are disturbed, the following adjustments should be checked to give an indication of the condition of the breaker as removed from service for the inspection.

Caution: Open the control circuit at the breaker before starting to inspect or work on the breaker parts, so that accidental breaker operation cannot occur.
operated breakers, take the additional precaution of closing the hand valve between compressor tank and mechanism.

1. Close the breaker by power with the operating mechanism before lowering the tanks.

2. Check stop clearances at the top of the lift rod and at the toggle stop of the pole unit mechanism.

3. Inspect the stationary contact assemblies to determine the condition of the contact surfaces and the contact setting. A slight amount of burning on the contacts is not detrimental as long as the electrical conductivity and contact setting have not been materially changed. If the burning is severe the contacts should be removed and reconditioned or replaced.

4. Note the condition of the moving contacts, reconditioning or replacing them if necessary.

5. Note the condition of all parts now accessible. Check the bolts, nuts, spring cotters, etc., and tighten where necessary. Repair or replace any damaged parts.

6. Close the breaker slowly by hand and check the contact adjustment.

7. Clean the lower ends of the bushings and the Micarta lift rods and guides with a clean cloth dampened with clean oil. Clean carbon from the grid stacks.

8. Check the operating mechanism for loose nuts and bolts and for missing spring cotters. Lubricate bearings with a few drops of lubricating oil.

9. Check latches to see that faces are in good condition and are properly adjusted. (See Instruction Book for Operating Mechanism.) Apply rust inhibitor to latch faces. The inhibitor should be free flowing at all anticipated temperatures, non-hardening and self-healing (so that it will not wipe completely off in one operation). A light lubricant similar to Westinghouse 9921-4 or Beacon 325 is suggested.

10. Check air system on pneumatic mechanism for leaks.

11. Check control wiring for loose connections.

12. Check gasket joints, conduit and tank fittings to make sure no water can enter the breaker.

13. Check dielectric breakdown strength of the oil.

14. Check oil bumper cylinders to be sure they are not jammed.

15. Raise and secure tanks after replacing oil if required. Check closing and tripping operations, using all usual relays and circuits involved in the operation of the breaker. Be sure all relay and pressure switch contacts are clean.

16. Check closing and tripping at reduced voltage to insure safety margin.

Note: If it is necessary to make any re-adjustments, it is recommended that a recheck of the operating speed be made.

CARE OF OIL

Wemco "C" oil is recommended for use in all circuit breakers. Westinghouse cannot assume responsibility for circuit breakers if an inferior grade of insulating oil is used, or if the dielectric strength of the oil is not properly maintained.

All oil used in circuit breakers is subject to deterioration in service due to carbonization and to the presence of water, even under the most favorable conditions. It is, therefore, essential to provide for periodic inspection and test, and to purify the oil whenever necessary to maintain it in good condition. The more handling the insulating oil receives, the greater are the chances for it to become contaminated, unless adequate precautions are taken.

It is recommended that operators prepare a schedule for inspection based on operating conditions. Reference to the station log of the operation of the circuit breakers, together with the record of dielectric tests of the oil, should determine the frequency of inspection and test. This period between successive inspections should never be longer than six months. When the dielectric strength of the oil drops to 20,000 volts, the oil should be looked upon with suspicion, and in no case should it be allowed to drop below 16,500 volts when tested in a standard test cup with electrodes spaced 0.1 in. apart. It is essential that the proper oil level be maintained in the circuit breakers. Considerable change may be caused by changing temperature or possible leakage of oil. Low oil levels may cause flashover of bushings or failure to handle heavy interruptions properly. Oil bumpers may be uncovered and fail to provide proper cushioning effect.

Attention is called to Westinghouse Instruction Book 44-820-1. This book covers the care and maintenance of oil and should be referred to before any attempt is made to test or purify the oil.
CONDENSER BUSHINGS

Maintenance and power factor testing of condenser bushings should be given consideration during breaker inspection. An instruction leaflet is sent with each condenser bushing. This leaflet should be studied for complete recommendations on maintenance of bushings.

Important: When placing bushings in breaker, do not permit the metal flange on the bushing to touch the metal support which holds the transformer in place. This has the effect of a short circuiting turn around the transformer, and affects the ratio.

BUSHING CURRENT TRANSFORMER

If it should be necessary for any reason to replace a current transformer, the stationary contact and "De-ion" Grid should be removed first so that the transformer may be slipped down over the condenser bushing.

The transformer may be disconnected at the terminal block in the lead channel on each side of breaker frame. When the transformer is removed, it will be necessary to remove the gas plug. Care should be taken to see that the packing on top and bottom of the transformer is in place. See Fig. 4.

Be sure to place the end of the transformer carrying the white polarity mark upward. Also, see that the transformer is not thrown off ratio by allowing the case to touch the metal grounding band on the condenser bushing.

Caution: Be sure that proper transformer connections are made and a burden or short circuit placed across the terminals at the blocks in the mechanism housing before the breaker is closed on the line. Otherwise dangerous voltage may appear across the open secondary terminals.

OIL GAUGE

A float type oil gauge which screws into each tank top is provided. See Fig. 15. The gauge is marked for normal oil level at 25 degrees C. Fluctuations on either side of normal will be noted with temperature changes. **FIG. 15. Oil Gauge**

The gauge glass is gasketed and sealed with a plastic cement to insure weather tightness. Should it be necessary to replace a gauge glass, remove the old glass and cement, clean the guard thoroughly, assemble the gasket at top and bottom of the glass, and tighten cap so that the glass is held in proper position. Then fill bottom end of guard with Westinghouse Cement No. 672 when reassembling, so that water will not enter the tank at this point.

OPERATING MECHANISM

Complete instructions for operation and maintenance of the operating mechanism (either solenoid or pneumatic) are given in a separate instruction book which accompanies this book. If the Operating Mechanism Instruction Book is lost or misplaced, the I.B. number may be found on the nameplate inside the housing.

RENEWAL PARTS

A list of renewal parts recommended to be maintained in stock will be furnished on request. When ordering renewal parts, specify the name of the part. Identify the breaker by including the type, amperes, volts and Shop Order (S.O.) Number, as engraved on the nameplate.