GEK-7303
Supersedes
GEI-74600
GEH-1798A
GEH-1799
GEH-1823A
GEI-50210
GEI-50211
GEI-50212A
GEI-57077

LOW-VOLTAGE POWER CIRCUIT BREAKERS

TYPES

AK-2/3/2A/3A-50/50S
AK-2/3/2A/3A-75/75S
AK-2/3/2A/3A-100/100S
AKT-2/3/50/50S
AKU-2/3/2A/3A-50/50S
AKF-2C/2D/2E

SWITCHGEAR DEPARTMENT

GENERAL ELECTRIC

PHILADELPHIA, PA.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>OPERATION</td>
<td></td>
</tr>
<tr>
<td>MANUAL CLOSING</td>
<td>3</td>
</tr>
<tr>
<td>MANUAL MAINTENANCE CLOSING OF ELECTRICAL BREAKERS</td>
<td>4</td>
</tr>
<tr>
<td>ELECTRICAL CLOSING</td>
<td>4</td>
</tr>
<tr>
<td>QUICK CLOSE FOR ELECTRICAL BREAKERS</td>
<td>5</td>
</tr>
<tr>
<td>MAINTENANCE</td>
<td>5</td>
</tr>
<tr>
<td>INSERTING SAFETY PIN-AK-50, AK-75 AND AK-100</td>
<td>5</td>
</tr>
<tr>
<td>INSPECTION</td>
<td>5</td>
</tr>
<tr>
<td>TROUBLE SHOOTING</td>
<td>6</td>
</tr>
<tr>
<td>LUBRICATION</td>
<td>7</td>
</tr>
<tr>
<td>SEPARATION OF FRONT AND REAR FRAMES</td>
<td>7</td>
</tr>
<tr>
<td>BASIC BREAKER COMPONENTS</td>
<td></td>
</tr>
<tr>
<td>ARC QUENCHERS</td>
<td>7</td>
</tr>
<tr>
<td>POLE UNIT ASSEMBLY</td>
<td>8</td>
</tr>
<tr>
<td>OPERATING MECHANISMS</td>
<td>13</td>
</tr>
<tr>
<td>QUICK CLOSE BREAKER ADJUSTMENTS</td>
<td>16</td>
</tr>
<tr>
<td>AUXILIARY SWITCH</td>
<td>11</td>
</tr>
<tr>
<td>ELECTRICAL CLOSING DEVICES AND CONTROLS</td>
<td></td>
</tr>
<tr>
<td>CLOSING SWITCH</td>
<td>23</td>
</tr>
<tr>
<td>CUT-OFF SWITCHES</td>
<td>23</td>
</tr>
<tr>
<td>CONTROL RELAY</td>
<td>23</td>
</tr>
<tr>
<td>PROTECTIVE DEVICES</td>
<td></td>
</tr>
<tr>
<td>STATIC TIME DELAY UNDervoltage TRiPPING DEVICE</td>
<td>23</td>
</tr>
<tr>
<td>INSTANTANEOUS UNDER VOLTAGE TRiPPING DEVICE</td>
<td>25</td>
</tr>
<tr>
<td>UNDervOLTAGE LOCKOUT DEVICE</td>
<td>25</td>
</tr>
<tr>
<td>DIRECT-ACTING TRiPPING DEVICE-EC-1B</td>
<td>26</td>
</tr>
<tr>
<td>SERIES OvERCURRENT TRiPPING DEVICE-EC-1</td>
<td>29</td>
</tr>
<tr>
<td>SERIES OvERCURRENT TRiPPING DEVICE-EC-2/EC-2A</td>
<td>31</td>
</tr>
<tr>
<td>REVERSE CURRENT TRiPPING DEVICE (AK-50 ONLY)</td>
<td>33</td>
</tr>
<tr>
<td>POWER SENSOR TRiP</td>
<td>33</td>
</tr>
<tr>
<td>SELECTIVE TRiPPING</td>
<td>39</td>
</tr>
<tr>
<td>BREAKER ACCESSORIES</td>
<td></td>
</tr>
<tr>
<td>PRIMARY DISCONNECTS</td>
<td>42</td>
</tr>
<tr>
<td>SECONDARY DISCONNECTS</td>
<td>42</td>
</tr>
<tr>
<td>DRAWOUT MECHANISMS</td>
<td>43</td>
</tr>
<tr>
<td>SHUNT TRiPPING DEVICE</td>
<td>44</td>
</tr>
<tr>
<td>BELL ALARM AND LOCKOUT DEVICE</td>
<td>44</td>
</tr>
<tr>
<td>OPEN FUSE LOCKOUT DEVICE</td>
<td>45</td>
</tr>
<tr>
<td>MISCELLANEOUS</td>
<td></td>
</tr>
<tr>
<td>TOOLS</td>
<td>47</td>
</tr>
<tr>
<td>RENEWAL PARTS</td>
<td>47</td>
</tr>
</tbody>
</table>

These instructions do not purport to cover all details or variations in equipment nor to provide for every possible contingency to be met in connection with installation, operation or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to the General Electric Company.
LOW-VOLTAGE POWER CIRCUIT BREAKERS
TYPES AK-50, AK-75, AK-100, AKF-2C, AKF-2D, AKF-2E

INTRODUCTION

The instructions contained herein are intended to aid in the maintenance and repair of basic breakers and accessories for AK-50-75-100 Low Voltage Power Circuit Breakers.

The basic AK-50, AK-75 and AK-100 breaker designs have been expanded to include special designs for specific applications. These design extensions have caused variations in the nomenclature including the following:

AK-2-50, AK-2-75 or AK-2-100 - Basic standard design of breaker for stationary mounting or for drawout use in AKD type equipment.

AK-2A-50, AK-2A-75, AK-2A-100 - The A indicates it has mounting features for AKD-5 type equipment.

AK-2-50S, AK-2-75S, AK-2-100S - The S indicates breaker is equipped with a quick-close mechanism which provides closing times of approximately 5 cycles (.08 seconds).

AKU-2-50 - The U indicates an internal fuse breaker combination.

AK-2-50H - The H indicates the interrupting rating has been increased to the 75,000 amp. class.

AK-2-50C, AK-2-75C - The C indicates the interrupting rating has been increased to the 100,000 amp. class.

AKT-2-50 - The T indicates increased continuous rating of 2000 amps.

AK-3-50, AK-3-75, AK-3-100 - The 3 indicates the breaker is equipped with the Power Sensor Overcurrent Trip Device.

AK-2-50X - The X indicates the breaker has very special features or it includes two or more of the design extensions previously described.

When contacting the factory, it is important to furnish the complete nameplate information.

OPERATION

MANUAL CLOSING

For a description of manual closing, refer to the section of these instructions entitled CLOSING THE BREAKER - MANUALLY OPERATED AK-50 and section entitled AK-50-75 AND-100 STORED ENERGY MANUAL MECHANISM, both under OPERATING MECHANISMS.

LEGEND

@ - CLOSING RELAY COIL
$ - CLOSING RELAY CONTACT
$ - ANTI-PUMP RELAY CONTACTS
F & G - MECHANICALLY OPERATED SWITCHES
- NORMALLY OPEN SWITCH CONTACTS
$ - NORMALLY CLOSED SWITCH CONTACTS
® - AUXILIARY SWITCH CONTACTS

SIMPLIFIED ELEMENTARY DIAGRAM
INTERNAL WIRING AK-50, 75, AND 100

Fig. 1.

LEGEND

C - CLOSING RELAY CONTACTS
$ - ANTI-PUMP RELAY CONTACTS
F & G - MECHANICALLY OPERATED SWITCHES
® - AUXILIARY SWITCH CONTACTS

SIMPLIFIED ELEMENTARY DIAGRAM
INTERNAL WIRING QUICK CLOSE BREAKER

Fig. 1A.
MANUAL MAINTENANCE
CLOSING OF ELECTRICAL BREAKERS

An electrical breaker may be closed manually by means of the maintenance handle furnished with the breaker.

To observe the operation of the breaker without power, with the breaker open and springs discharged, proceed as follows:

1. Charge the closing spring with the maintenance handle (1, Fig. 3) until the indicator reads "charged".
2. Continue to operate the maintenance handle until the breaker closes.
3. Open the breaker by pushing the trip button (4, Fig. 2).

ELECTRICAL CLOSING

The electrical control system is comprised of an X relay, two double contact mechanically operated switches (F and G), a push button closing switch and any means for remote closing which the user may incorporate into the system. When voltage is first applied to the breaker, (before any closing signal is given) the motor is energized through two of the X relay contacts and the two G switch contacts. The motor then compresses the closing springs to the "pre-charged" position at which point the mechanically operated F and G switches are operated. This opens the G contacts, stopping the motor, and closes the F contacts, which readies the system for the actual closing of the breaker. When the push button or remote switch signals for a closing operation, the X relay coil is energized, operating the X contacts. This seals in the X relay and energizes the motor once again and the closing operation takes place.

QUICK CLOSE
FOR ELECTRICAL BREAKERS

Functionally, the quick close mechanism differs from the standard electrical mechanism in that the pre-charge operation is extended to completely charge the closing springs. At the end of the charging operation, which takes approximately 5 seconds, a latch plate engages the prop roller to prevent the closing springs from discharging.

With the closing springs fully charged the breaker is ready for a closing operation upon release of the prop roller. This may be accomplished either manually, by depressing the closing lever on the breaker, or electrically by closing the remote closing switch. Upon the release of the prop roller the closing springs discharge and close the breaker in the same manner as on the standard electrical breaker.

With control voltage applied, the motor is energized through the G switch contacts, and charges the closing springs. When the springs reach the fully charged position, the mechanically operated switches operate, reversing their contacts. Upon operation of these switches the motor is stopped by the opening of the G switch. The closing of the F switch prepares the breaker for a closing operation.

A closing signal now given energizes the control relay X whose contacts close and complete the circuit through the closing relay coil. With the closing relay coil energized the breaker closes as described above. At the same time the closing relay contact closes to energize the anti-pump relay causing its contacts to reverse providing the anti-pump feature.

When the breaker closes, the mechanical operated G switches close to energize the motor again and the F switches open and de-energize the control relay from being energized until the breaker is tripped open. With the G switches closed, the motor charges the closing springs ready for the next closing operation.
ELECTRICAL TRIPPING

The breaker may be tripped electrically by any of the electrical tripping devices described in these instructions. The breaker may also be tripped by the automatic overcurrent or reverse current tripping devices, if so equipped. All these devices trip the breaker in a similar manner, i.e. the device trip arm moves against the trip paddles fastened on the trip shaft, thus rotating the trip shaft and displacing the trip latch.

The most commonly used tripping device is the shunt trip device connected in the control circuit as shown in Fig. 1. When a tripping signal is given, the shunt trip coil is energized through a normally-open auxiliary switch "a" contact, thus tripping the breaker.

MAINTENANCE

BEFORE INSPECTION OR ANY MAINTENANCE WORK IS DONE BE SURE THAT THE BREAKER IS IN THE OPEN POSITION. ALL ELECTRICAL POWER, BOTH PRIMARY AND CONTROL SOURCES, SHOULD ALSO BE DISCONNECTED.

Warning: On breakers employing stored-energy closing mechanisms, care must be taken when the circuit breaker is being installed and when any inspection or maintenance work is being done so that the breaker is in the open position and the closing springs are being restrained by the safety pin. The procedure for inserting the safety pin is given below.

INSERTING SAFETY PIN AK-50, -75 and -100 (Fig. 3)

The closing spring should be charged with the maintenance handle (1) so that the safety pin (3) can be placed in the hole of the push rod (2). Continue to operate the maintenance handle, closing the breaker. This is done so that the safety pin takes the spring force.

To install the safety pin of the manual stored-energy mechanism refer to the section entitled STORED-ENERGY MANUAL MECHANISM on page 17 of these instructions.

With the safety pin restraining the closing spring force, the contacts will close slowly when the breaker is manually operated allowing the operation of the mechanism and the contact alignment to be visually observed.

Following the inspection period, the closing springs must be recharged, the safety pin removed from the push rod, and the pin placed in the retaining spring clip adjacent to the push rod.

Fig. 3 (8039670) View showing operation of AK-2-50 breaker with manual maintenance handle and installation of safety pin

1. Manual maintenance Handle
2. Push Rod
3. Safety Pin

INSPECTION

Periodic inspection of the circuit breaker is recommended at least once a year. More frequent inspections are recommended if severe load conditions, dust, moisture or other unfavorable conditions exist. A complete inspection of the breaker, including contacts and arc quenchers, should always be made after the breaker has interrupted a short-circuit.

At regular inspection periods the breaker should be operated manually; (stored energy mechanisms with the safety pin restraining the closing spring force) to observe the contact alignment and to make sure all mechanism parts move freely without binding or excessive friction.

If the breaker remains open or closed for a period of six months or more, it is recommended that arrangements be made to open and close it several times in succession, preferably under load.

If overheating, not caused by overcurrent, is observed, a complete inspection of the breaker should be made including connections and contacts.
TROUBLE SHOOTING

<table>
<thead>
<tr>
<th>TROUBLE</th>
<th>CAUSE</th>
<th>REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overheating</td>
<td>Contacts not aligned.</td>
<td>Adjust contacts.</td>
</tr>
<tr>
<td></td>
<td>Contacts dirty, greasy or coated with dark film.</td>
<td>Clean contacts.</td>
</tr>
<tr>
<td></td>
<td>Contacts badly burned or pitted.</td>
<td>Replace contacts.</td>
</tr>
<tr>
<td></td>
<td>Current-carrying surfaces dirty.</td>
<td>Clean surfaces of current-carrying parts.</td>
</tr>
<tr>
<td></td>
<td>Corrosive atmosphere.</td>
<td>Relocate or provide adequate enclosure.</td>
</tr>
<tr>
<td></td>
<td>Insufficient bus or cable capacity.</td>
<td>Increase capacity of bus or cable.</td>
</tr>
<tr>
<td></td>
<td>Bolts and nuts at terminal connections not tight.</td>
<td>Tighten, but do not exceed, elastic limit of bolts or fittings.</td>
</tr>
<tr>
<td></td>
<td>Current in excess of breaker rating.</td>
<td>Check breaker application or modify circuit by decreasing load.</td>
</tr>
<tr>
<td></td>
<td>Excessive ambient temperature.</td>
<td>Provide adequate ventilation.</td>
</tr>
<tr>
<td></td>
<td>Inductive heating.</td>
<td>Correct bus or cable arrangement.</td>
</tr>
<tr>
<td>Failure to Trip</td>
<td>Travel of tripping device does not provide positive release of tripping latch.</td>
<td>Re-adjust or replace tripping device.</td>
</tr>
<tr>
<td>AK-2 Breakers</td>
<td>Worn or damaged trip unit parts.</td>
<td>Replace trip unit.</td>
</tr>
<tr>
<td></td>
<td>Binds in overcurrent trip device.</td>
<td>Replace overcurrent trip device.</td>
</tr>
<tr>
<td>Failure to Trip</td>
<td>Loose or Disconnected Power Sensor Disconnect Plugs.</td>
<td>Tighten or Reconnect Disconnect Plugs.</td>
</tr>
<tr>
<td>AK-3 Breakers</td>
<td>Loose or Broken Power Sensor Coil Tap Connections.</td>
<td>Tighten or Reconnect Tap Connections.</td>
</tr>
<tr>
<td>False Tripping</td>
<td>Overcurrent pick up too low.</td>
<td>Check application of overcurrent trip device.</td>
</tr>
<tr>
<td>AK-2 Breakers</td>
<td>Overcurrent time setting too short.</td>
<td>Check application of overcurrent trip device.</td>
</tr>
<tr>
<td></td>
<td>Bind in overcurrent trip device.</td>
<td>Replace overcurrent trip device.</td>
</tr>
<tr>
<td>False Tripping</td>
<td>Captive Thumb Screw on Power Sensor Loops</td>
<td>Tighten Thumb Screw on Desired Setting.</td>
</tr>
<tr>
<td>AK-3 Breakers</td>
<td>Loose Fail-Safe Circuitry Reverts Characteristic to Minimum Setting and Maximum Time Delay.</td>
<td>Set Dial to Correspond with Power Sensor Coil Tap.</td>
</tr>
<tr>
<td></td>
<td>Tap Setting Dial on Power Supply Incorrectly Set.</td>
<td>Refer to Fig. 40 Page 38 for Polarity and Connections. Check Continuity of Shield and Conductors Connecting the External Ground Sensor Coil</td>
</tr>
<tr>
<td>Failure to Close and Latch</td>
<td>Binding in attachments preventing resetting of latch.</td>
<td>Re-align and adjust attachments.</td>
</tr>
<tr>
<td></td>
<td>Latch out of adjustment.</td>
<td>Adjust latch.</td>
</tr>
<tr>
<td></td>
<td>Latch return spring too weak or broken.</td>
<td>Replace spring.</td>
</tr>
<tr>
<td></td>
<td>Hardened or gummy lubricant.</td>
<td>Clean bearing and latch surfaces.</td>
</tr>
<tr>
<td></td>
<td>Safety pin left in push rod..</td>
<td>Remove safety pin.</td>
</tr>
<tr>
<td></td>
<td>Motor burned out.</td>
<td>Replace motor.</td>
</tr>
<tr>
<td></td>
<td>Faulty control circuit component.</td>
<td>Replace or adjust faulty device.</td>
</tr>
<tr>
<td>Burned Main Contacts</td>
<td>Improper contact sequence (main contacts not sufficiently parted when arcing contacts parted).</td>
<td>Increase arcing contact wipe. Adjust contact sequence by raising or lowering main movable contact pivot block. Requires system study and possible replacement with breaker having adequate interrupting capacity.</td>
</tr>
<tr>
<td></td>
<td>Short-circuit current level above interrupting rating of breaker.</td>
<td>Replace stationary contact springs and dress up or replace contacts.</td>
</tr>
<tr>
<td></td>
<td>Loss of contact wipe or pressure.</td>
<td></td>
</tr>
</tbody>
</table>
At all times it is important not to permit pencil lines, paint, oil or other foreign materials to remain on the insulating surfaces of the breaker as they may cause low resistance between points of different potential and result in eventual electrical breakdown.

The breaker should be operated several times at a rated voltage to assure that the control circuits are properly connected and that all electrical attachments are functioning properly.

A complete contact inspection, including contact wipe and pressure, should be made at regular inspection periods and always after a known short circuit current has been interrupted, to determine whether the contacts are worn or pitted in which case they should be dressed or replaced. It is necessary to remove the arc quenchers to properly inspect the contacts. Arcing contacts and arc quencher barriers should be replaced when they are eroded to half their original thickness.

LUBRICATION

In general, the circuit breaker requires moderate lubrication. Mechanical bearing points and sliding surfaces should be lubricated at the regular inspection periods with a thin film of G-E Lubricant D50H15. Sliding silver plated contact surfaces should be lubricated with G-E Lubricant D50H47. Hardened grease and dirt should be removed from latch and bearing surfaces by using kerosene. ALL EXCESS LUBRICANT SHOULD BE REMOVED TO AVOID ANY ACCUMULATION OF DIRT OR DUST.

The use of cotton waste to wipe bearing surfaces should be avoided, as the cotton ravelings may become entangled under the bearing surfaces and destroy the surface of the bearing.

On drawout breakers, the contact surface of the disconnect studs should be greased with G-E Grease Specification D50H47.

SEPARATION OF FRONT AND REAR FRAMES

To repair or replace contacts, operating mechanism, or the overcurrent devices, the front frame must be separated from the back frame. To separate the two frames proceed as follows:

1. The breaker contacts must be open with the safety pin in place. (See MAINTENANCE.)
2. Remove the two opening springs (on lower part of the breaker) from the outside pole units.
3. Remove the clevis pin (14, Fig. 6) (13, Fig. 7) from the center pole unit.
4. Remove the six nuts from the back frame using a socket wrench with an extension. These include the two nuts at the top of the frame.
5. Remove the auxiliary switch operating rod (5, Fig. 20).
6. Check along the trip shaft for a mechanical interference or connection between the overcurrent trip device and the trip paddles. Remove mechanical connection if present, or if interference exists, use extreme care when removing or re-assembling front and back frames to avoid mechanical breakage of trip devices. In reassembling the front and rear frames, the two frames should be positioned vertically so that the trip shaft is horizontally aligned.

NOTE: It is recommended that the breaker be fastened to a suitable mounting base with the front frame supported by a sling or hook as the bolts are being installed.

BASIC BREAKER COMPONENTS

ARC QUENCHERS
(Fig. 4 and 5)

The arc quenchers should be inspected at the regular inspection period. If the barriers are cracked or eroded to one-half their original thickness, they should be replaced.

REPLACEMENT—AK BREAKERS

1. Be sure the breaker is open.
2. Remove the channel-shaped retaining bar by removing two screws and two nuts.
3. Lift the quenchers clear of the movable arcing contacts.
4. During replacement be careful not to overtighten the screw which secure the channel-shaped retaining bar. Overtightening the screws will bow the bar and leave the center arc quencher loose.

REPLACEMENT—AKF BREAKERS

The center-pole arc quencher of these breakers is similar to the arc quenchers of the standard breakers and is replaced in a similar manner, except that the breaker must be closed. With the breaker closed the center-pole contacts are open and the arc quencher can be removed. Replace the outer-pole arc quenchers of the Type AKF breaker as follows:

1. Be sure the breaker is open.
2. Remove the two channel-shaped retaining bars which bear against the front of the arc quenchers by removing four screws, two on each side.
3. Lift the arc quenchers clear of the movable arcing contacts.
4. Replace arc quenchers and insert the four screws holding the retaining bars in position.
Fig. 4 (8014830) Disassembly of arc quenchers - standard breaker and AKF center pole.

DISASSEMBLY—AK AND AKF CENTER POLE (Fig. 4)

The following instructions apply to both the Type AK and AKF breaker center poles.

1. Remove arc quenchers (see REPLACEMENT).
2. Remove screws holding spacer block (9).
3. Remove spacer block, steel back plate (8), and compound support (7).
4. Rock muffler (6) slightly and remove. The inner barriers (5) can now be removed for inspection.
5. Remove nut and withdraw stud (1).
6. Remove cap (2). The side (3) and pocket (4) barriers should be free.
7. Reassemble and replace the arc quencher in the reverse order. Tighten the fastenings after replacement.

DISASSEMBLY—AKF OUTER POLES (Fig. 5)

1. Remove arc quenchers (see above) and lay on sides on a flat surface.
2. Remove hardware from one side of arc quencher as indicated in Fig. 5.
3. Remove bolt fastening cap (4) and barrier plate assembly.
4. Barrier plates may now be lifted from assembly for inspection.
5. In reassembling, make sure components are positioned so that holes for self-tapping hardware are in line. Do not strip threads in compound by over stressing screws.

POLE UNIT ASSEMBLY (Fig. 6)

NOTE: The text and part identification numbers contained in this section apply to illustrations covering the AK-50 breaker. The same text is applicable to the AK-75 and 100 breakers by referring to Fig. 7 and identifying the similar parts. These similar parts may not, in every case, be identified by the same number.

Each pole unit assembly consists of a set of arcing contacts, a set of main contacts, the actuating linkage and the mounting base. See Fig. 8 and 9, pole unit assemblies mounted on back frame assemblies.

The stationary arcing-contact assembly consists of a set of parallel contact fingers (2), pin (3), and compression springs (22), which provide continuous contact pressure for the full
travel of the contacts. Steel springs (5) shunt the pivot pin to prevent possible pitting at the pivot point when interrupting high currents. On earlier model breakers flexible braid leads were used.

The movable arcing-contact assembly consists of parallel contact arms (4) carried on two movable pivot pins (8) and (19). The arcing contacts interleave the main contacts and pivot with them about pin (19). This relative motion is obtained by linkages from the upper pin (7) to the breaker mechanism.

The stationary main contact assembly includes main and intermediate contacts. The intermediate-contact surface extends beyond the main contacts and will, therefore, make before the main contacts and break after the main contacts. The number of contacts for each breaker rating is given in Table I.

The movable main contacts pivot around a stationary pin (18), which holds them to the lower block. Motion is obtained from a second pin (7), connected by an insulated link (12) to the breaker mechanism. In addition to steel springs shunting the current from the contact directly to the lower contact block, steel springs (17) force the contacts against the pins to prevent pitting at the pivot point. The movable main contact assembly also contains main and intermediate contacts.

In order to function properly, a definite amount of contact pressure and contact wipe must exist between the movable and stationary contacts. Table I gives the figures for contact pressure and contact wipe. Both wipe and pressure should be checked during the regular inspection period.

MEASURING CONTACT WIPE (Fig. 6)

1. Remove arc quenchers (see REPLACEMENT under ARC QUENCER).

2. With the breaker open, measure the horizontal distance from the edge of the stationary contact to the stationary block behind it. ("B" dim. for arcing contacts, "C" dim. for main contacts).

3. Close the breaker and repeat item 2. The difference between the readings in items 2 and 3 determines the wipe of the contacts. For safety reasons be extremely careful not to trip the breaker.

MEASURING CONTACT PRESSURE

(Fig. 6)

1. Remove arc quenchers (see REPLACEMENT UNDER ARC QUENCER).

2. Close the breaker and measure dimension "B".

3. Open the breaker. Place a push-type scale
Low Voltage Power Circuit Breakers GEK-7303

<table>
<thead>
<tr>
<th>TABLE I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breaker Type</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>AK-50 for AC</td>
</tr>
<tr>
<td>AK-50 for DC</td>
</tr>
<tr>
<td>AK-75 for AC</td>
</tr>
<tr>
<td>AK-75 for DC</td>
</tr>
<tr>
<td>AK-100 for AC</td>
</tr>
<tr>
<td>AK-100 for DC</td>
</tr>
<tr>
<td>AKF-2C (Outside Poles)</td>
</tr>
<tr>
<td>AKF-2D (Outside Poles)</td>
</tr>
<tr>
<td>AKF-2C (Field Discharge Contacts)</td>
</tr>
</tbody>
</table>

* The intermediate contact wipe should be at least 1/16 in. greater than main contact wipe.

** Left stationary contact extends approximately 3/32 in. ± 1/32 further than right hand contact.

against the stationary arcing contacts at a point measured in line with the break between the contact stop and the contact pivot block. Push the contact backward until dimension "B" recorded in item 2 is reached. The scale should then be read.

4. If the pressure is not within the requirements listed on TABLE I, refer to the section of these instructions dealing with ADJUSTING CONTACT WIPE AND PRESSURE.

ADJUSTING CONTACT WIPE AND PRESSURE (Fig. 6)

1. To obtain proper contact wipe and pressure on the center pole, dimension "A" should be increased to increase wipe and decreased to decrease wipe.

2. To change dimension "A" remove the clevis pin (14) and rotate the clevis as necessary.

3. To prevent overstressing the clevis threads (13) dimension "A" should not exceed 3/16 in. and space "A" should be filled with shims to 0.005 in. of being solid.

4. With the proper center pole wipe obtained, moving the crossbar adjusting plate (1OA) on the center pole to the right will simultaneously increase the wipe on both outside poles; moving the adjusting plate to the left will have the reverse effect.

5. To increase the wipe on either outside pole individually, move the crossbar adjusting plate of that pole to the left; to decrease the wipe move the adjusting plate to the right.

NOTE: If the proper contact pressure does not exist when the contact wipe is within its limits, the stationary contacts springs should be replaced.

CONTACT SEQUENCE (Fig. 6)

On the horizontal plane, the difference in the making of the arcing contacts on the same pole must be no greater than 1/32 in.; the difference between arcing contacts on separate poles 1/16 in. If it is desired to advance or retard the closing of the main contacts of a pole, loosen the bolts holding the adjustment plate (10A) of that pole and slide plate to the left to advance contact closing, or to the right to retard contact closing. Make this adjustment on the outer poles, using the center pole as a reference. Upon retightening adjustment plate bolts, make sure the locking tabs are turned up around bolt heads, locking the bolts securely in place.

Contact sequence in the vertical plane should be such that when the arcing contacts are just touching, the intermediate contact gap should be
at least 3/16 in., the main contacts gap at least 1/4 in.

NOTE: This check can best be made by means of the maintenance handle, with the safety pin restraining the closing springs.

If the gap is under the required minimum, it is usually possible to form the arcing contacts and obtain the required dimensions. To form the contacts, place a piece of conduit approximately two feet long, over the contact and form the contact either forward or backward. If the proper dimensions are still not obtained the movable arcing contacts should be replaced.

If it has been necessary to make any adjustments while obtaining proper contact sequence, the contact wipe and pressure must be checked, and adjusted, if necessary.

CONTACT GAP (Fig. 6)

When the breaker is open, the gap between the movable and stationary contacts should be between 2 5/8 in. and 2 3/4 in. The gap may be adjusted by varying the number of buffer spacers on the cross-bar. The locking nuts on the buffer bolts should be locked in such a position that the buffer bolt may be rotated freely.

REPLACEMENT OF CONTACTS
(Fig. 6)

Stationary Arcing Contacts (2, Fig. 6)
(1, Fig. 7)

1. Remove the upper plate by removing two screws (1). On the AK-75 and -100 remove the top contact block (25, Fig. 7) and remove insulation (3, Fig. 7).

2. Loosen screws holding spring. (5)

3. Remove pin (3) freeing the stationary contacts and springs (22).

4. Install new springs and stationary arcing contacts in reverse order.

5. Adjust contact wipe and pressure. (See ADJUSTING CONTACT WIPE AND PRESSURE).
The movable arcing contacts (4) should be replaced when the stationary arcing contacts are replaced.

1. Separate the front frame from the back frame as described under SEPARATION OF FRONT AND REAR FRAMES.

2. Remove pins (8) and (19) and withdraw the contacts.

3. Reassemble parts in reverse order.

Stationary, Intermediate and Main Contacts (Fig. 6)
1. Remove stationary arcing contacts as described above.

2. Remove screws (27) and remove bracket which holds pin (28) in place.

3. Remove main-and intermediate-contact stop (20A) which holds the lower part of stationary contact. Removal will be facilitated if the force on the contact springs (21) is neutralized. This can be accomplished by operating the breaker with the maintenance handle, with the safety pin in place, until the load on the contact stop is relieved.

4. Loosen the hardware which fastens the upper stud to the pole unit base until the contact
Fig. 8 (8014678) Front view of back frame assembly - AK-2-50

1. Stationary Arcing Contact
2. Movable Arcing Contact
3. Stationary Main Contact
4. Clamp
5. Movable Main Contact

spring load on pin (25) is relieved.

5. Remove pin (25) and screws (27) and lift out contacts.

6. Reassemble contacts in reverse order, being careful to replace the intermediate contact in the proper position.

Movable Intermediate and Main Contacts (Fig. 6)

1. Remove the movable arcing contacts as described above.

2. Loosen spring (17).

3. Remove braid if present by removing screw at bottom of contact.

4. Slide link (12) to the side and off of pin (7).

5. Slide pins (7) and (18) far enough to the side to allow the movable intermediate contacts to be replaced.

6. Reassemble parts in reverse order.

Always check contact wipe and pressure following contact replacement.

Fig. 9 (8039669) Front view of back frame assembly - AK-3-50

1. Power Sensor Coil Assembly
2. Disconnect Plug
3. Transformer Taps in Amperes

(See ADJUSTING CONTACT WIPE AND PRESSURE).

OPERATING MECHANISMS

ELECTRICALLY OPERATED AK-50, -75 and -100; MANUAL AK -50

The electrically operated mechanism includes a motor and a gear reduction unit, which charges the closing springs (16, Fig. 10) through a crank shaft (14, Fig. 10). The crank shaft has an arm with a roller (12, Fig. 10) which rides on the closing cam (2, Fig. 11). The position of this closing cam roller is shown in Fig. 11A, 11B, and 11C. The closing cam is connected to the center-pole unit through a clevis and through a crossbar it controls the opening and closing of the contacts on all pole units.

Charging the Closing Springs (Fig. 10)

1. The mechanism in position is shown in Fig. 11A.

2. The motor turns the crank (10) which is mounted on the output shaft of the gear reduction unit. The charging roller, which is on the race of the crank, has paddle arm (11) bearing on it.
Fig. 10 (541E304) Closing spring and charging mechanism

3. As the crank turns, the roller pushes the paddle arm upward, thereby charging the closing springs through the spring charging arm (15) of the crank shaft.

4. As the charging roller approaches dead center a cut-off switch opens, de-energizing the motor circuit.

5. The breaker is now ready to close when a closing signal is given.

6. With the breaker resting at the precharge position, the trip latch may or may not be in the reset position. This depends on the position of roller (15, Fig. 11B) with respect to the cam (2, Fig. 11B).

Fig. 11 (541E305) Operating mechanism

1. With the mechanism in the position described above and the closing springs charged, applying a closing signal will cause the motor to continue to charge the closing springs allowing the mechanism to reset, if not already reset, to the position shown in Fig. 11B.
As the crank roller (7) passes its top dead-center position, (maximum spring charge position) the closing springs are free to discharge. Crank (10) can be overdriven independently of the motor so that roller (7) assumes its bottom dead-center position without restraint.

As the springs discharge, the rotation of the crank shaft (14) causes roller (15, Fig. 11) to rotate cam (2, Fig. 11) and raise clevis (13, Fig. 11). Prop (16, Fig. 11) holds cam (2, Fig. 11C) in this position.

Raising clevis (13, Fig. 11C) closes the breaker contacts through the pole base linkage.

Tripping the Breaker (Fig. 11)

Operation of any of the trip devices rotates the trip shaft (11) which allows the trip latch (10) to release the latch prop (5). This allows the forces of the contact and opening springs to reposition the operating mechanism linkage to the position shown in Fig. 11A. In this position, the operating cycle may be repeated.

Adjustments (Fig. 11)

All adjustments should be made with the operating mechanism in the reset position as shown in

Adjustments (Fig. 11)

All adjustments should be made with the operating mechanism in the reset position as shown in

2. The gap between the trip latch (10) and the roller (9) of the reset latch should be between 1/64 in. and 1/32 in. This adjustment can be obtained by turning screw (6).

2. The center line of the trip latch (10) should pass through the center of the roller (9). The latch buffer stop on the mechanism frame can be adjusted by loosening the retaining screws to reposition the latch with respect to the roller.

3. The distance between the roller on link (3) and prop (5) should be between 1/64 in. and 1/32 in. To obtain this gap, advance or retard the nuts (4A) on the bottom of the rod using the reset spring (4).

Replacement

When replacing the operating mechanism, refer to the section titled SEPARATION OF FRONT AND BACK FRAMES under MAINTENANCE in these instructions.

The motor is mounted on the side of the gear-
reduction unit and through a worm gear and a planetary gear train drives the crank (10, Fig. 10) with a reduction 1000:1. To remove the motor and gear-reduction unit, proceed as follows:

1. Remove the front frame (see SEPARATION OF FRONT AND REAR FRAME.)

2. Remove closing springs and crank-shaft as illustrated in Fig. 12 and 13.

3. Disconnect the leads from motor and remove the wires attached to gear unit housing.

4. Remove four bolts at the bottom of the front frame and one bolt at top of gear reduction unit. The motor and gear unit may now be removed.

NOTE: If it is desired to replace only the motor unit, disconnect the motor leads and remove only the hardware fastening it to the gear-reduction unit. When removing the motor only, the front frame should be placed front side down to prevent the oil escaping from the gear unit.

The gear reduction unit contains 4 ounces of oil similar to Atlantic Refining Company's Grade HFS No. 3. It should not be necessary to add or change oil except when the gear-reduction unit and motor are disassembled.

QUICK CLOSE BREAKER ADJUSTMENTS

The quick close breaker basically differs from the standard breaker in that the precharging operation is extended to and slightly past the top dead center position of the closing spring assembly. As the springs start to discharge to close the breaker, the discharge operation is arrested by a prop and latch arrangement. The subsequent closing operation is accomplished by tripping the latch to release the prop which in turn allows the springs to continue the interrupted discharging operation and close the breaker.

The gear reduction unit for the standard breaker is not interchangeable with the gear reduction unit on the quick close unit because the quick close gear reduction unit employs a slip clutch to relieve the pressure that would otherwise be exerted between the output crank plate and the prop.

After the closing springs have been completely charged and the prop and latch system are preventing closure of the breaker, the closing operation may be accomplished by energizing the closing relay thru the control relay contacts, or manually by depressing the push to close lever which mechanically displaces the latch to allow the breaker to close.

On drawout breakers an interlock between the breaker and enclosure requires the springs to be discharged before the breaker can be removed from the enclosure.

Quick-Closing Release Latch - Fig. 14A

Adjust the engagement of the roller on the latch to 1/8"+1/64" by turning the screw "A". After adjustment is set, lock the bolt with the hex nut "B". Adjust the clearance between the latch and the roller to 1/32-0-1/64 by turning the screw "C".

Release Arm Adjusting - Fig. 14B

Adjust release arm screw "D" so that the stroke of the armature of the closing solenoid releases the roller from the latch with a minimum of 1/32" over-travel. Check by using 1/32" GO and 3/32" NO GO gauge between armature and magnet.
Release Shaft Stop and Switchette - Fig. 14C

Adjust screw "E" to 1/32" clearance between screw and lever with clearance on release arm taken up by pressing lever lightly forward.

Adjust switchette operation by adding washers "F" under cotter pin, so that contact is made when armature is adjusted as shown below.

The control relay or (X) relay is located on the left side of the front frame channel. It may be removed by disconnecting the wiring, loosening the (3) two mounting screws and lifting it slightly to admit the top mounting screw through the keyhole mounting. In general, the entire relay should be replaced rather than changing coils and contacts.

The anti-pump relay is located on the left side of the front channel above the control relay. The connections to this relay are soldered. Removal of the relay is straightforward. When re-installing use extreme care to avoid shorting contact points of different voltage potential with solder or flux.

The closing control relay consists of a strong box solenoid with sufficient linkages to operate the remotely located D switches.

Low Voltage Power Circuit Breakers GEK-7303

This breaker is equipped with a spring-charged stored-energy mechanism similar to the mechanism used on the AK-50, -75 and -100 electrical breakers. The closing springs (5) are charged by operating the manual closing handle (22) on the front of the breaker, instead of the closing motor as is the case with the electrical breaker. Closing this breaker is accomplished by pumping the operating handle four complete cycles, first counterclockwise through 120 degrees from its normal vertical position and then clockwise back through 120 degrees from its normal vertical position and then clockwise back through 120 degrees. When approximately 70 degrees of the fourth clockwise stroke have been completed, the closing springs, which have been charged during the previous strokes of the closing handle, are driven over-center and the breaker closes.

This mechanism consists basically of a closing spring assembly, ratchet wheel and output crank assembly, handle shaft and pawl assembly, and the closing handle.

Closing the Breaker (Fig. 15)

The first stroke of the closing handle causes the ratchet pawls (21) attached to the handle shaft (23), to engage the first tooth of the ratchet wheel (17), thus beginning to charge the closing springs. The subsequent closing handle strokes perform the same function as the pawls (21) engage the teeth in the ratchet wheel (17), thus rotating the ratchet wheel and output crank (32) and completely charging the closing springs. This rotation of the ratchet wheel and output crank is in a counterclockwise direction from the lower position, through slightly more than 180 degrees, to a position just beyond dead center. In this position the closing springs are free to release their energy, closing the breaker at a high speed.

Inserting the Safety Pin (Fig. 15)

If it is desired to slowly close the breaker contacts to check contact wipe and sequence, operate the closing handle 3 1/2 complete cycles as described above. At the end of the fourth counterclockwise stroke and before performing the fourth clockwise stroke, insert the safety pin (3) into the hole (4) in the guide rod (6), thus preventing the closing springs (5) from releasing their energy to close the breaker contacts.

Replacement (Fig. 15)

If it is necessary to replace any of the mechanism parts, the following total procedure is recommended. This procedure may be halted at the step required to replace any particular part:

1. Install the safety pin (3) as described above.

2. Separate the front and rear frames as described under "SEPARATION OF FRONT AND REAR FRAMES" in the "MAINTENANCE" section of these instructions.
Fig. 15 (669D805) Stored-energy manual closing mechanism charged position AK-2

1. Upper Spring Pin
2. Safety Pin Holder
3. Safety Pin and Chain
4. Safety Pin Hole
5. Closing Springs
6. Guide Rod
7. Pawl Springs
8. Front Escutcheon
9. Front Escutcheon Plate
10. Bearing Plate Mounting Bolts
11. Output Crank Roller
12. Thrust Bearing
13. Shims
14. Groove Pin
15. Nylok Screw
16. Ratchet Wheel Shaft and Asm.
17. Ratchet Wheel
18. Side Plate Shims
19. Side Plate Mounting Bolts
20. Bearing Side Plate
21. Ratchet Pawls
22. Manual Closing Handle
23. Closing Handle Shaft and Pawl Asm.
24. Roll Pin
25. Main Closing Crank
26. Pawl Buffer Stop
27. Buffer Stop Shims
28. Buffer Stop Support
29. Handle Return Spring
30. Mechanism Roller
31. Lower Spring Pin
32. Output Crank
3. Remove the closing spring assembly by removing the upper and lower spring pins (1, 31).

4. Remove the right hand bearing side plate (20), and the side plate shims (18) if present, by removing four mounting bolts (19), thus allowing the main closing crank (25) to be removed.

5. Remove the closing handle (22) by removing two set screws threaded in same hole.

6. Remove the front escutcheon by removing four screws holding it to the front frame center support.

7. Remove the handle return spring (29) by unhooking either end of the spring.

8. Disconnect the top end of each pawl spring (7).

9. Remove the roll pin (24), thus allowing the closing handle shaft (23) and pawl assembly (23) to be removed.

10. Remove the ratchet wheel (17) and its assembly (16) by removing Nylok* screw (15) and thrust bearing (12). If shims (13) are present they must also be removed.

11. Remove front bearing plate (9) by removing three mounting bolts (10) accessible from the front of the breaker. The mechanism is now completely disassembled. It is not recommended that any of the subassemblies removed during the above operation be further disassembled in the field. Replacement sub-assemblies should be obtained from the factory.

12. To reassemble the mechanism, reverse the procedure described above.

NOTE: When reassembling the mechanism the adjustments listed below should be checked at the appropriate time of reassembly. The appropriate time for each adjustment is indicated in the adjustment text.

Adjustments (Fig. 15)

Frequent adjustments to the mechanism should not be required. If the mechanism has been disassembled, it will be necessary to check the following adjustments:

1. It may be necessary to add shims (13) to reduce the end play of the ratchet wheel shaft (16). An end play of 0.010 to 0.020 of an inch is recommended. Shims should be obtained from the factory.

2. It may be necessary to add buffer stop shims (27) to the buffer stop (26) to provide a clearance of 1/64 to 1/32 inch between the pawls (21) and the buffer stop, when the pawls are touching the ratchet wheel teeth extending a maximum distance from the center of rotation of the ratchet wheel (17). This measurement should be made while operating the closing handle during the four spring charging operations and before the closing springs are reassembled.

3. The ratchet pawls (21) should operate freely throughout the closing strokes. They should engage the ratchet wheel teeth near the end of each counterclockwise and clockwise stroke of the closing handle with a definite clicking sound, indicating a free non-binding operation. After the clicking sound is detected, the closing handle should have a minimum overtravel of 1/2 in. or 3 1/2 degrees, measured at the end of each handle stroke.

4. The groove pin (14) in the front of the ratchet wheel assembly (16) must be assembled in a manner that will allow Nylok screw (15) to be tightened securely. A clearance of 1/64 to 1/32 in. should exist between the front of the groove pin and the rear surface of the Nylok head.

Other adjustments to the closing and operating mechanisms, such as complete contact and latch adjustments, may be made by following the previously described instructions for the AK-50, -75 and -100 breaker mechanisms.

Fig. 16 (415A845) Typical connection diagram

AKF MECHANISM (Fig. 17)

The Type AKF breakers are two-pole breakers with field discharge contacts placed in the center pole. When this breaker is opened, the field discharge contacts close, thus connecting an external discharge resistor across the field of the generator or motor. When the breaker is closed, the field discharge contacts are opened. See Fig. for a typical circuit connection.

* Trade-mark of Republic Steel Corp.
When the breaker is tripped, the opening springs pull crossbar (9) downward, opening the breaker's outer poles. As the crossbar moves downward, link (A) rotates about a fixed center (17), collapsing toggle links (B) and (C) upward, thereby closing center-pole contacts through connecting link (D). Link (C) consists of two links riveted together, forming a single triangular link.

Contact Adjustments

Measurements

For contact measurements and adjustments of the two outside poles of the breaker, refer to POLE UNIT ASSEMBLY.

Contact measurements of the center-pole field discharge contacts should be made on the left contact and be within the following limits:

1. Contact wipe, 3/16 in. to 7/16 in.
2. Contact pressure, 10 lb. to 16 lb.
3. Gap between contacts when center pole is open, 1 1/2 in. to 1 3/4 in.
4. Overlap between the center-pole contacts and the arcing contacts of the outer poles, 3/16 in. to 7/16 in.

Measurements of the center-pole contact wipe and pressure may be made by following the same procedure as outlined for the standard pole unit in POLE UNIT ASSEMBLY. Overlap of the center-pole contacts and the outer pole arcing contacts may be checked by the following procedure:

1. Remove arc quenchers (see ARC QUENCHER).
2. Insert safety pin in push rod. (See Fig. 3 under MAINTENANCE.)
3. Operate closing mechanism with maintenance handle until arcing contacts of outer poles just touch.
4. Measure distance between forward edge of left stationary contact of center pole and surface of insulation block behind contact.
5. Continue to operate maintenance closing handle until center-pole contact opens fully.
6. Repeat measurement described in step 4. Difference between measurements indicates amount of overlap.

Adjusting Center-pole Contact Wipe and Overlap (Fig. 17)

If measurements reveal either incorrect center-pole contact wipe or incorrect overlap of contacts, adjustments should be made by the following procedure:
1. With outside poles open, loosen adjustment plate (10) of center pole on crossbar (9) by freeing bolt locking tab and loosening bolts (11).

2. If center-pole wipe or overlap is to be increased, move the adjustment plate to the left; if it is to be decreased, move it to the right.

3. After proper adjustment is made, tighten adjustment plate bolts until plate is snug. Then tap adjustment plate in such a way as to bring lower edge of slot in plate to bear against bolt. Tighten bolt until lockwasher is fully compressed. Then form locking tabs over bolt heads so that bolts are securely held in place.

NOTE: If the above adjustment has been made, it is necessary to recheck the outer-pole wipe. If this is outside the prescribed limits, correct as described in POLE UNIT ASSEMBLY.

4. If proper wipe cannot be obtained within the range of the adjustment described above, it will be necessary to obtain further adjustment by means of the vertical shims (14) provided for the purpose. In order to accomplish this, proceed as follows:

 a. Separate the front frame from the back frame (see SEPARATION OF FRONT AND REAR FRAMES).
 b. Loosen screw (13) and remove bolt (15).
 c. Remove horizontal shims (14) to decrease wipe; add to increase.
 d. Replace bolt (15) and tighten screw (13).
 e. Reassemble front and back frame.

Adjusting Center-pole Open Contact Gap (Fig. 17)

Improper open contact gap of the center pole may be adjusted by the following procedure.

1. Loosen screw (13) and bolt (15).

2. If gap is to be increased, horizontal shims (14) should be removed. If it is to be decreased, they should be added. Shims may be removed by sliding them to the front of the breaker. They are slotted for easy removal. (Effect of this adjustment on contact wipe and overlap is negligible.)

3. Tighten hardware.

Contact Replacement

Stationary Contacts (Fig. 17)

1. Remove arc quencher (see ARC QUENCHER).
2. Remove screw (5) from braid.
3. Drift out pin (4) and remove contacts.
4. Reassemble in reverse order with new contacts.

5. Check contact overlap and wipe and re-adjust if necessary (see above).

Movable Contacts (Fig. 17)

1. Remove arc quencher (see ARC QUENCHER).
2. Remove tru-arc retainers on right side of pins (7) and (16).
3. Drift pins (7) and (16) to the left far enough to free movable contacts.
4. Reassemble in reverse order with new contacts.

5. Check contact overlap and wipe and re-adjust if necessary (see above).

Fig.18 (0133C9020) Auxiliary switch linkage
- standard breaker

AUXILIARY SWITCH

AK BREAKERS (Fig. 18)

The auxiliary switch is used to make and break various control circuits as the circuit breaker is opened and closed. The auxiliary switch is mounted on the left side of the front frame. As the crossbar (4) moves, with the contacts, to the open or closed position it operates a triangular link (6) through an operating rod (5). The triangular link rotates the operating shaft (8) of the auxiliary switch, which, through cams located on this shaft, opens and closes the auxiliary switch contacts. The top terminals of the switch are "a" contacts (open when the breaker is open) and the bottom terminals are "b" contacts (closed when the breaker is open).

Replacement (Fig. 18)

1. Disconnect all leads to auxiliary switch.
GEK-7303 Low Voltage Power Circuit Breakers

1. Mounting Bolt
2. Tie Bolt
3. Shaft
4. Screw
5. Bottom Cover
6. End Plate
7. Top Cover
8. 'a' Contacts
9. Contact Spring
10. Rocker Arm
11. Pin
12. Cam
13. 'b' Contacts
14. 'b' Terminals
15. 'a' Terminals
16. Barrier

Fig. 19 (242C588) Auxiliary switch - standard breaker

- 2. Remove two mounting bolts.
- 3. Disengage auxiliary switch shaft (8) from the triangular link (6).
- 4. Set arrow on new auxiliary switch shaft.
- 5. Push auxiliary switch shaft (8) into square hole in link (breaker open).
- 6. Replace mounting hardware and wiring.

Adjustment (Fig. 18)

The "a" contacts of the auxiliary switch should close before the arcing contacts of the breaker close. This may be checked by slowly closing the breaker with the maintenance handle, with the safety pin restraining the closing springs, and with a bell set across the "a" terminals of the auxiliary switch.

The closing of the "a" contacts can be advanced or retarded by extending or reducing the external length of the operating rod (5). The length of the operating rod (5) should be adjusted so that the switch "a" contacts close when the arcing contacts are parted by 1/8 to 1/4 in. The operating rod should also be aligned vertically so that it is parallel with the sides of the breaker frame center channel and perpendicular with the crossbar (4). This alignment may be secured by relocating the washers on the pin which connects the operating rod to the crossbar.
AKF BREAKERS (Fig. 20)

The auxiliary switch mounting and linkage on the AKF breakers are different from that of the standard AK breakers. Figures 17 and 19 show the difference in the mounting positions, with the AKF switches rotated 90 degrees with respect to the mounting position of the standard breaker switch. There is also a slight difference between the linkage of the AKF breaker switches, however the principle of operation remains the same.

When the breaker operates, the movement of the crossbar (4) rotates triangular link (11) about fixed center (1). This rotational motion is transmitted to the auxiliary-switch shaft (3) by the linkage comprised of links (10), (8) and (6). The breaker position indicator is also operated by this mechanism through link (12).

Replacement (Fig. 20)

1. Disconnect all leads to auxiliary switch.
2. Remove mounting bolts (2) and (7).
3. Withdraw auxiliary switch.
4. Insert new switch with arrow on shaft pointing up and towards the back of the breaker as in Fig. 18.
5. Replace mounting hardware and wiring.

Adjustments (Fig. 20)

The auxiliary switch operating rod (5) should be adjusted so that the switch "a" contacts close when the arcing contacts of the outer poles are parted by 1/8 to 1/4 in. This dimension may be checked in the same manner described for the standard breakers. The length of the operating rod may be varied by changing dimension "a" (see Fig. 19) and aligning the operating rod as described for the standard breakers.

ELECTRICAL CLOSING DEVICES AND CONTROLS

A closing switch and motor mechanism are provided for closing the breaker electrically.

CLOSING SWITCH

The closing button, when provided is mounted on the front frame behind the escutcheon. A hole is provided in the escutcheon to allow operation of the switch. Remove the escutcheon to gain access to the switch.

CUT-OFF SWITCHES (Fig. 21)

The motor cut-off switches are mounted on the side of the front frame. When the breaker control circuit is energized the motor circuit is maintained through the closed contacts of switch (1), thus charging the closing springs. At the end of the charging stroke the cut-off switch is mechanically operated by the charging of the springs and through the operating rod (4), thus opening switch (1) contacts and closing switch (3) contacts. This opens the motor circuit until a closing signal is given. When a closing signal is given the motor is energized through switch (3) contact, further charging the closing springs and closing the breaker. When the breaker closes, the cut-off switch is again mechanically operated, reverting to its original position with switch (1) contact now closed and switch (3) open, thereby allowing the motor to charge the closing springs for a subsequent closing operation. Most breakers have two normally open auxiliary contacts in series with the motor circuit to prevent pre-charging the closing springs with the breaker closed.

If the switches do not function properly, they should be replaced by disconnecting the wiring and removing them form their mounting bracket.

CONTROL RELAY

The control relay is mounted on the left side of the front frame. It is used to open and close the motor circuit. To replace, remove wiring and holding screws. 3, (Fig. 2)

PROTECTIVE DEVICES

STATIC TIME DELAY UNDERVOLTAGE TRIPPING DEVICE

(Fig. 22)

The Static Time Delay Undervoltage Tripping
GEK-7303 Low Voltage Power Circuit Breakers

Device consists of an undervoltage device mounted on the breaker, a static time delay box mounted separately from the breaker and a control power transformer if the voltage is other than D.C., 208V AC or 230V, AC. Refer to wiring diagram 0102C3698 (Fig. 23).

The voltage 208V AC or 230V AC, to be monitored is connected to Terminals #1 and #2 of the the time delay box. The undervoltage device on the breaker is always connected through either its secondary disconnects or terminal board, to terminals #4 and #5 of the time delay box.

The undervoltage device is set to pickup at approximately 80% of bus voltage and drop out between 30% and 60%.

The undervoltage device coil circuit is continuously rated and will remain picked up as long as the voltage remains above the predetermined drop out voltage. The time delay is field adjustable between 1 and 5 seconds, it is factory set at the minimum setting, and once the time delay is established, it is consistent.

No more than one undervoltage device should be connected to a static time delay box.

The Static Time Delay Undervoltage can also be furnished in conjunction with the thermotector control package, as shown on wiring diagram 0102C3699 (Fig. 24). Overheating of the motor windings causes the thermotector, imbedded in the motor windings, to open and allow the "Z"
relay of the control box to instantaneously trip the breaker through a normally closed "Z" contact in series with the undervoltage device mounted on the breaker.

Fig. 24 (102C3699) Thermotector Wiring Diagram

"Warning": Do not use bell set to check continuity of bridge circuit in static time delay box, only a volt-ohm meter or vacuum tube volt meter should be used.

In the event the device fails to pick-up, the following checks are recommended to determine whether the magnetic device on the breaker or the static time delay unit is the faulty component.

A. Check input voltages across terminals 1 & 2 on static box. These voltages should be as follows:
 1. Device 177L316 G-12-208 or 230 volts A.C.
 2. Device 177L316 G-14-125 volts D.C.
 3. Device 177L316 G-15-250 volts D.C.

B. Check output voltages on terminals 4 & 5 with the under voltage device connected. The approximate voltages are as follows:
 1. 208 Volt A. C. 177L316 G-12- 110 Volts D. C.
 230 Volt A. C. 177L316 G-12- 120 D. C.
 Volts D. C.
 2. 125 Volt D. C. 177L316 G-14 50 Volts D. C.
 3. 250 Volt D. C. 177L316 G-15- 100 Volts D. C.

REPLACEMENT

1. Disconnect coil leads.
2. Remove four mounting screws (11) and remove device.
3. Install new device in reverse order.

Coil (15)

1. Disconnect leads to coil.
2. Remove two screws (16).
3. Remove magnet and coil assembly.
4. Straighten laminations around shading ring (5).
5. Remove shading ring and straighten lower end of coil clamp (13).
6. Remove coil. Install new coil in reverse order.

INSTANTANEOUS UNDER-VOLTAGE TRIPPING DEVICE

The instantaneous undervoltage device is mounted in the same location and manner as the static time-delay device and its construction is similar.

The adjustments and replacement of this device are the same as those described above for the static time-delay undervoltage device.

UNDERVOLTAGE LOCKOUT DEVICE

(Fig. 25)

The undervoltage lockout device holds an open breaker trip-free when the coil of the device is de-energized. When the breaker is in the closed position, linkage operated by the breaker mechanism cam positions itself to mechanically hold the undervoltage device armature in the closed air gap position to prevent tripping the breaker in the event the undervoltage device coil is de-energized. This feature when used in conjunction with normally-closed auxiliary contacts of an alternate breaker presents a convenient method of mechanically interlocking two or more breakers to assure that no two breakers may be closed at the same time.

The undervoltage lockout device is mounted on the right side of the mechanism frame (7) (looking from the front). This device is identical to the standard instantaneous undervoltage trip device.
UNDERSHIELD LOCKOUT DEVICE
TYPE AK-50, 75 & 100
Fig. 25 (8039865) Right side view of mechanism frame Breaker shown in closed position

1. Mechanism cam
2. Undervoltage lockout arm
3. Undervoltage lockout lever
4. Undervoltage device armature
5. Undervoltage device
6. Undervoltage lockout spring
7. Mechanism frame

with the addition of the lockout feature. The lockout feature consists of arm (2), lever (3), and spring (6). The lockout linkage is activated by the movement of the mechanism cam (1). When the breaker is closed, the mechanism cam and lockout linkage is in the position shown and the undervoltage device is defeated by the lever (3) holding the armature (4) in the closed air gap position. When the breaker opens, the mechanism cam moves down, allowing spring (6) to rotate arm (2) clockwise which causes lever (3) to rotate counterclockwise to release armature (4) allowing the undervoltage device to operate normally.

DIRECT ACTING TRIPING
DEVICE EC-1B (Fig. 26)
(USED ON AK-2-75 AND AK-2-100)

The type EC-1B overcurrent tripping device is a direct-acting device that causes the power circuit breaker with which it is associated to open within a predetermined time range which depends upon the magnitude of the current overload. The EC-1B tripping device can be constructed to supply a variety of different types of time-current characteristics, either alone or in combination. These are long time delay, short time delay, and instantaneous, and they are identified respectively by numbers 1, 2 and 3. Characteristics are further broken down within each of the first two of these general classifications into maximum, intermediate, and minimum values of the time delay period. These are coded respectively as AA, BB and CC. Time and current relationships for the various device characteristics are given by curve drawing 2691B198.

The EC-1B is adjustable on high-set instantaneous tripping. The adjustable setting mechanism of the EC-1B is shown in Fig. 26.

Low-set instantaneous tripping is adjustable from 80 percent to 250 percent of the continuous current rating of the device. Whenever this is used, it is the only characteristic of the device. Instantaneous tripping used in conjunction with any other characteristic is always high-set.

When armature (1 or 2) closes against the magnet (11), motion is transmitted through the mechanism linkage, rotating tripping link (8) so that connecting rod (10) is pulled towards the rear of the breaker. By means of trip paddle (14) this results in the displacement of the breaker mechanism trip latch which causes the breaker to trip open. Long and short time delay tripping is achieved through separate timing devices as described below:

SHORT TIME-DELAY TRIPPING
(Fig. 26)

The short time delay armature (1) is restrained by a calibration spring (6). If the force tending to close the armature against the magnet (11) is great enough to overcome the spring force, the speed of movement is governed by the mechanical escapement mechanism consisting of parts (2), (3), (4) and (5).

LONG TIME-DELAY TRIPPING
(Fig. 26)

The long time delay armature (14) is restrained by the long time delay calibration spring (16). After the magnetic force produced by the overcurrent condition overcomes this restraint, the velocity of the armature movement is governed by the flow of oil through an orifice in the piston of the dashpot (18). The time required to displace the piston is inversely proportional to the force tending to close the magnetic circuit.

INSTANTANEOUS TRIPPING
(Fig. 26)

High-set, Non-adjustable

When an overcurrent is of the magnitude of the instantaneous trip setting, the magnetic force generated is great enough to extend the instantaneous spring (21), tripping the breaker instantly. If the overcurrent is below this value, the heavy instantaneous spring acts as a link, transmitting the force to the other control elements. If the device has only the instantaneous characteristic, the front end of spring (21) is hooked onto a pin fastened on the frame.

High-set, Adjustable—EC-1B

Adjustable instantaneous tripping is accomplished by varying the amount of tensile force on the
high-set instantaneous spring (21). When a magnetic force greater than the restraining spring force is produced by an over-current condition, the armature (22) is pulled upward against the magnet (24), thus tripping the breaker by the movement of the connecting rod (13) against the trip paddle (14).

The pickup value of the device may have one of the following ranges: 4 to 9, 6 to 12, or 9 to 15 times coil rating. Three calibration marks will appear on the calibration scale (18) and the value of these calibration marks will be indicated by stampings on the scale as follows: (4X - 6.5X - 9X) or (6X - 9X - 12X) or (9X 12X - 15X), depending on the desired range. To set the device at a particular pickup value, loosen the clamping nut (20) and slide the index pointer on the calibration washer (19) to a position which lines up horizontally with the desired pickup value on the calibration scale (18).

Low-set, Adjustable

If the characteristic of the device is low-set, adjustable instantaneous, a link is installed in place of spring (21) and the instantaneous calibration spring is located where spring (15) is shown in Fig. 26. Dashpot (17) is omitted from assembly.

REPLACEMENT (Fig. 26)

1. Disconnect trip paddle (14) and connecting rod (10) by taking out cotter pin and removing coupling pin.

Low Voltage Power Circuit Breakers GEK-7303

2. Remove clamp (19) by loosening locking nut and unscrewing slotted stud.

3. Remove stud (23).

4. Remove two screws fastening magnet (11) to lower stud.

5. Device is now free of breaker. Reassembly is accomplished by reversing the procedure.

When reassembling the magnet to the lower stud, be sure to replace any spacing washers in the same location in which they were found during disassembly. If this is not done, misalignment and consequent malfunction may result.

ADJUSTMENTS (Fig. 26)

Before the EC-1B overcurrent device is calibrated at the factory, the air gaps between magnet (11) and armatures (1 and 14) are set. These gaps are measured at their widest point, between the front edge of the armature and magnet. The gap for the short time delay armature is 11/64 in., and for the long time delay armature is 17/64 in. Both have a plus and minus tolerance of 1/64 in.

The air gap setting is a factory adjustment and is not to be attempted in the field. If any change occurs, the calibration of the device will not be true. If any calibration difficulties are experienced, they may be due to the fact that the air gap setting...
has been altered by rough handling or shipment damage. If a check of the air gap measurement reveals that the setting is beyond the tolerance, the device should be returned to the factory for recalibration.

The adjustment screw (7) is provided so that the short-time mechanism will pick up the trip link (8) at the same point at which it is picked up by the long-time mechanism. This may be checked before the device is mounted by pulling forward on the connecting link (10) and checking visually to see that trip link (8) contacts both the set pin in the long time linkage and the end of adjustment screw (7).

After the device is mounted on the breaker, a final adjustment that must be made is the length of the connecting rod (10). This is made by varying the amount of thread engagement between the connecting rod and the insulated coupling which ties onto the trip paddle (14). The approximate distance between the pivot centers on the ends of the connecting rod assembly is six inches. The correct exact distance is that which will just cause tripping of the breaker when the armature is closed to a point 1/32 in. short of contact with the magnet. A step-by-step procedure for making this adjustment follows:

1. Before mounting the trip device, set the center distance between the pivot centers of the connecting rod at six inches.

Fig. 27 (P-6423678) Series overcurrent tripping device- EC-1 (AK-50 only)

1. Series Coil
2. Magnet
3. Pallet
4. Pinion
5. Escape Wheel
6. Driving Segment
7. L.T.D. Armature
8. S.T.D. Calibration Spring
9. Trip Paddle Adjusting Screw
10. L.T.D. Armature
12. Inst. Trip Spring (High Set)
13. Spring Holder
14. Calibration Clamp Nut
15. Plunger
16. Cylinder
17. Calibration Plate
18. Trip Paddle
19. Trip Arm
20. Clamping Bracket
2. Mount the device as described under replacement and insert the pin which couples the connecting rod and the trip paddle.

3. Close the breaker and insert a feeler gage 1/32 in. thick between the armature and magnet. This should be done from the rear of the breaker. The feeler gage should be no wider than 1/2 in. and at least 4 inches long.

4. Close the armature against the gage and magnet.

5. If the breaker does not trip, shorten the length of the connecting rod (10) gradually until it does.

6. Check visually to make sure that the connecting rod does not restrict the engagement of the breaker trip latch when the breaker mechanism resets. It should always be possible to adjust its length to a point where resetting is not interfered with and yet positive tripping by the overcurrent device is achieved.

SERIES OVERCURRENT TRIPPING DEVICE EC-1 (Fig. 27)

Each series overcurrent tripping device is enclosed in a molded case and mounted by three screws and a bracket to the lower part of the pole unit base.

The device can be provided with the same tripping combinations as the EC-1 direct acting device.

SHORT TIME-DELAY TRIPPING (Fig. 27)

The armature (7) is restrained by calibrating spring (8). After the magnetic force produced by an overcurrent condition overcomes this restraining force, the armature movement is further retarded by an escapement mechanism which produces an inverse time delay characteristic. The mechanism is shown on Fig. 24A.

LONG TIME-DELAY TRIPPING (Fig. 27)

The armature (10) is restrained by the calibration spring (11). After the magnetic force produced by an overcurrent condition overcomes this restraining force, the armature movement is further retarded by the flow of silicone oil in a dashpot, which produces an inverse time delay characteristic. The mechanism is shown on Fig. 24B.

INSTANTANEOUS TRIPPING (Fig. 27)

(a) Adjustable instantaneous tripping takes place after the magnetic force produced by an overcurrent condition, overcomes the restraining force of the calibration spring which can be adjusted by the calibration clamp nut (14).

(b) Non-adjustable instantaneous tripping takes place after the magnetic force produced by an overcurrent condition overcomes the restraining force of a non-adjustable spring.

ADJUSTMENTS (Fig. 27)

Calibration clamping nuts (14) are used to set the desired pickup for the adjustable elements.

To adjust for approximately 1/32 in. overtravel of trip arm (19) after tripping:

1. Check trip latch engagement. See ADJUSTMENTS - OPERATING MECHANISM.

2. Loosen the locknut* and turn the adjusting screw (9) on the trip arm (19). The screw should not touch the trip paddle when the breaker is "open" and the latch is reset but should have a clearance not exceeding 1/32 in.

3. Tighten the adjusting screw locknut* on the trip arm.

* NOTE: In lieu of locknuts, some devices are equipped with self-locking nylon insert nuts.

REPLACEMENT (Fig. 27)

1. Remove front frame (see SEPARATION OF FRONT AND REAR FRAMES).

2. Remove the bolts holding the coil to the lower stud.

3. Remove bracket and mounting screws.

4. Before installing a new device, check the travel of the trip arm with a rod or wire and...
push the armature solidly against the magnet (see Fig. 28). The trip arm should travel at least 5/32-in.

5. Replace new device in reverse order.

6. Adjust device as described above.

NOTE: Component parts of any overcurrent tripping devices are not replaceable. It will be necessary to install a new device when parts are worn or damaged.

Fig. 29 (8024843, 801449, 8019485) Overcurrent tripping device - EC-2
SERIES OVERCURRENT TRIPPING DEVICE EC-2, EC-2A, AK-50

The Type EC-2, EC-2A, (see Fig. 29) overcurrent tripping device is available in three forms:

1. Dual overcurrent trip, with long-time delay and high-set instantaneous tripping.
2. Low-set instantaneous tripping.
3. High-set instantaneous tripping.

The dual trip has adjustable long-time and instantaneous pick-up settings and adjustable time settings. Both forms of instantaneous trip have adjustable pick-up settings.

LONG TIME-DELAY AND HIGH-SET INSTANTANEOUS TRIPPING (Fig. 29)

By means of the adjustment knob (3), which can be manipulated by hand, the current pick-up point can be varied from 80 to 160 percent of the series coil rating. The indicator and a calibration plate (2) on the front of the case provide a means of indicating the pick-up point setting in terms of percentage of coil rating. The calibration plate is indexed at percentage settings of 80, 100, 120, 140, and 160.

As in the case of the EC-1 over-current trip, the long-time delay tripping feature can be supplied with any one of three time-current characteristics which correspond to the NEMA standards maximum, intermediate and minimum long-time delay operating bands. These are identified as 1A, 1B and 1C characteristics, respectively. Approximate tripping time for each of these, in the same order are 30, 15, and 5 seconds at 600 percent of the pick-up value of current. (See time-current characteristic curves, Fig. 42).

The tripping time may be varied within the limits shown on the characteristic curves by turning the time adjustment screw (4). Turning in a clockwise direction increases the tripping time; counterclockwise motion decreases it. The dashpot arm (8) is indexed at four points, MIN-1/3-2/3-MAX, as indicated in Fig. 30. When the index mark on the connecting link lines up with a mark on the dashpot arm, the approximate tripping time as shown by the characteristic curve is indicated. The 1A and 1B characteristic devices are shipped with this setting at the 2/3 mark and the 1C characteristic at the 1/3 mark. The standard characteristic curves are plotted at these same settings.

Time values are inversely proportional to the effective length of the dashpot arm. Therefore, the linkage setting that gives the shortest time value is that one at which dimension "A", Fig. 29, is greatest. The time adjustment screw (4) may be turned by inserting a Phillips head screwdriver through the hole in the front of the case. If it is desired to relate the linkage setting to the index marks on the linkage it will be necessary to remove the case. This may be done by removing the two mounting screws, one on each side of the case, which may be taken off without disturbing the trip unit itself.

If the breaker is provided with a shunt trip or undervoltage device, the EC-2, EC-2A, case on the center pole must be taken off first before the cases on the outer poles can be removed.

INSTANTANEOUS LOW-SET TRIPPING (Fig. 29)

The low-set instantaneous pick-up point may be varied by the adjustment knob (3). The calibration in this case usually ranges from 80 percent to 250 percent of the series coil rating, with the calibration plate indexed at values of 80, 100, 150, 200, and 250 percent of the rating.

INSTANTANEOUS HIGH-SET TRIPPING (Fig. 29)

The high-set instantaneous pick-up value may have one of the following three ranges: 4 to 9 times coil rating; 6 to 12 times coil rating or 9 to 15 times coil rating. The pick-up setting may be varied by turning the instantaneous pick-up adjusting screw (12).

Three calibration marks (15) will appear on the operating arm (14) and the value of these calibration marks will be indicated by stampings on the arm as follows: (4X - 6.5X - 9X) or (6X - 9X - 12X) or (9X - 12X - 15X).

At the factory, the pick-up point has been set at the nameplate value of the instantaneous trip current. (Usually expressed in times the ampere rating of the trip coil.) The variation in pick-up setting is accomplished by varying the tensile force on the instantaneous spring (5). Turning the adjustment screw changes the position of the movable nut (11) on the screw. The spring is anchored to this movable nut so that when the position of the nut is changed, there is a corresponding change in the spring load. As the spring is tightened, the pick-up point is increased.

Fig. 30 (417A464) Time-adjustment indexing
The top edge of the movable nut (11) serves as an index pointer and should be lined up with the center of the desired calibration mark (15) to obtain the proper instantaneous trip setting.

The trip screw (6) on the end of the armature (7) should be set so that it does not contact the trip paddle on the trip shaft until the air gap between armature and pole piece is reduced to 3/32 in. or less, measured at the rivet in the pole piece. Also, the armature must have a minimum of 1/32 in. of travel beyond the point in its motion at which the breaker is tripped.

Replacement of the EC-2, EC-2A device is accomplished by the same procedure described for the EC-1 series trip device: however, in some cases, when replacing an EC-1 device with an EC-2, EC-2A it will be necessary to replace the trip paddles on the trip shaft with ones which are slightly longer. When required these will be provided with the replacement trip units.

NOTE: Pickup settings on the cover of the EC-2, EC-2A device are calibrated for the specific device. When replacing covers, replace on associated device.
REVERSE CURRENT TRIPPING DEVICE

AK-50 ONLY (Fig. 31)

The device is enclosed in a molded case and is mounted on the right pole base similar to the series overcurrent tripping device.

The reverse current tripping device (see Fig. 28) consists of a series coil (2) with an iron core mounted between two pole pieces (9), also a potential coil (7) connected across a constant source of voltage and mounted around a rotary-type armature (10). Calibration spring (6) determines the armature pick-up when a reversal of current occurs.

As long as the flow of current through the breaker is in the normal direction, the magnetic flux of the series coil and the magnetic flux of the potential coil produce a torque which tends to rotate the armature counterclockwise. The calibration spring also tends to rotate the armature in the same direction. This torque causes the armature to rest against the stop screw (12) attached to a bearing plate on the right side of the device.

If the current through the series coil (2) is reversed, the armature (10) tends to move in the clockwise direction against the restraint of the calibration spring (6). When the current reversal exceeds the calibration setting, the armature revolves clockwise causing the trip rod (3) to move upward engaging the trip paddle (1), thereby tripping the breaker.

ADJUSTMENTS (Fig. 31)

The only adjustment to be made on the reverse current device is to make sure that the trip rod has a minimum overtravel of 1/32 in. beyond the point of tripping the breaker. This adjustment should have to be made only when an old device is being replaced by a new one.

The new device will be factory adjusted so that the top end of the trip rod (3) will extend 1/2 in. above the top of the device case, and no additional adjustments of the trip rod should be required. To obtain the proper 1/32 in. overtravel, close the breaker and proceed as follows:

1. Loosen the locking nut (2B).

2. Manually lift the trip rod and vary the position of the adjusting nut (2A), this establishing the position of the adjusting nut where the breaker is just tripped.

 NOTE: Be sure to keep clear of moving breaker parts when tripping the breaker.

3. With this position of the adjusting nut established, advance the adjusting nut upward one and one-half turns.

4. Tighten the locking nut and the minimum 1/32-in. overtravel of the trip rod should be obtained.

POWER SENSOR TRIP

GENERAL DESCRIPTION

All AK-3 Type Air Circuit Breakers contain Power Sensor Overcurrent Trip Devices. The Power Sensor Trip functions with solid state components with the exception of the Solenoid Trip which is used to trip the breaker on signal from the Power Sensor Unit. The Power Sensor Overcurrent Trip Device consists of four major components.

1. The magnetic coils around the breaker conductors (Fig. 32 & 33).

2. The Power Supply which provides both the tripping energy and the comparison basis for overcurrent detection (Fig. 34).

3. The Power Sensor Unit with the various pick-up settings and time delay selection taps (Fig. 35).

4. The trip solenoid which physically trips the breaker (Fig. 36).

In addition to the phase overcurrent protection, a ground fault sensing feature may be provided. The Ground Sensing Device works on the principle that the instantaneous value of current flowing in the three conductors (or; in four conductors on four wire systems) must add to zero unless ground current is flowing. Therefore, if the electrical system is a four wire wye system with the neutral grounded at the transformer, the fourth sensing coil Fig. 38 must be included on the neutral conductor with its secondary combined with the secondaries of the three phase sensors which are mounted on the breaker. On Draw-out breakers the output of the external neutral sensor must enter the breaker by a control disconnect which is mounted low and on the centerline on the back of the breaker. Refer to Fig. (38) for Power Sensor Cabling Diagram.

MAINTENANCE

When mal-functioning of the Power Sensor Trip is indicated, the trouble should be traced to one or more of these four components involved, and that component should be replaced as a unit. The following steps should be taken to detect a malfunctioning unit.

NOTE: No adjustment to the taps controlling pick-up should be made with the breaker carrying current.

In the event the Power Sensor Device must be made non-operative to allow the breaker to
continue carrying current without overcurrent protection, it is recommended that the leads to the tripping solenoid be removed to completely eliminate the possibility of the breaker tripping. Do not close breaker with power on the main contacts while the disconnect plug to the magnetic coils is disconnected.

1. Check for the existence of overcurrent or ground fault conditions that may be causing the breaker to trip as a proper response to these normal circuit conditions.

2. The possibility of the breaker being trip free by mechanical interferences along the trip shaft or inadvertent shunt trip operations should be positively eliminated before investigating the Power Sensor. Successful operations in the test position should be obtained before proceeding with the Power Sensor trouble shooting.

3. A PST-1 Power Sensor Test Kit must be available. (Fig. 39). Check the Power Sensor Unit for correct function for each pick up setting and one point on each time delay characteristic. Then check for the correct operation of each phase of the Power Supply Unit. This procedure is described in the instruction manual (GEK-7301) for the PST-1 Test Kit. If the test results for this test do not deviate more than 10% from the published curves, proceed to step 4. If the deviation is more than 10%, contact the factory for possible replacement of the Power Sensor Unit.

4. If the breaker is equipped with ground fault protection, determine whether the false tripping is the result of falsely answering an overcurrent trip or a ground trip signal. This may be determined by temporarily eliminating the ground trip signal by shorting out the ground signal points 1 and 5 at the ground signal terminal board on the back frame of the breaker. Terminals 1 and 5 can be identified by the 0.15UF capacitor connected between them. (See drawing 138B2454) (Fig. 40). With the breaker restored to service and with the ground fault detector deactivated, establish whether there is false tripping due to overcurrent.

FALSE TRIPPING CAUSED BY FAULTY GROUND FAULT DETECTION

If the breaker is equipped for four wire service (fourth C. T. remotely (Fig. 37) it is important that the shielding be effective by having continuity from the disconnect plug at the Power Sensor Unit to the external C. T. and further that this shield be isolated from the signal conductors. It is also important that continuity exists through the ground signal circuit. Check these conditions as follows; referring to Fig. 40.

1. Remove connection plug at Power Sensor Unit and check continuity between A and C (Signal). Letters are located on end of plug.

2. Check to be sure no continuity exists between R and C.

3. Temporarily connect jumper from shield
Low Voltage Power Circuit Breakers GEK-7303

Fig. 33 (8039646) Magnetic Coil Assembly for AK-3 75, 100 Breakers (Only) (Mounted on Assembly Fixture)

1. Power Sensor Coil Assembly
2. Transformer Taps in Amperes
3. Disconnect Plug
4. Terminal Board
5. External Ground Sensor Lead

1 and 5 during overcurrent test.

The above considerations should indicate which of the four major components is faulty and in need of replacement.

REPLACEMENT OF POWER SENSOR COMPONENTS

Power Sensor Unit (Fig. 35)

1. Loosen screw connecting the unit to the front frame.
2. Slide unit forward.
3. Remove control plug by alternately loosening the two retaining screws.
4. Replace in reverse order.

Trip Solenoid (Fig. 36)

1. Remove opening springs
2. Raise cross bar to gain additional access room
3. Remove two nuts holding device to bracket
4. Remove wiring cleats and connections to terminal board on Power Supply to free the trip solenoid for removal.
Fig. 34 (8039648) Power Supply

1. Indicator
2. Terminal Block
3. Capacitor
4. Female Disconnect Plug
5. Male Disconnect Plug
6. Mounting Brackets

Fig. 35 (8039649) Power Sensor Unit

1. Mounting Screw
2. Captive Thumb Screw
3. Name Plate

Fig. 36 (8039903) Magnet Trip Device

1. Name Plate
2. Spring
3. Mounting Bracket
4. Adjusting Screw
5. Trip Arm
6. Armature
7. Clamp
8. Coil
9. Magnet
5. Replace in reverse order.

6. Check positive trip to obtain approx. 1/32" overtravel after armature is moved sufficiently to trip the breaker.

Power Supply (Fig. 34)

1. Remove trip solenoid wires from the terminal board on Power Supply.

2. Remove three bolts holding mounting bracket to mechanism frame.

3. Remove wiring cleats

4. Remove disconnect plug by alternately loosening two retaining screws.

5. Remove Power Supply Unit with control wiring.

6. Reassemble in reverse order.

SENSOR Coils (AK-3-50) Only (Fig. 32)

1. Disconnect plug between the Power Supply Unit and the sensor coils and remove tapped screw holding female plug to breaker mechanism frame.

2. Separate front frame from back frame as described under SEPARATION OF FRONT & REAR FRAMES.

Figure 37 (0133C9018) Power Sensor Cabling Diagram

Figure 38 (8039650) Ground Sensor Coil (Remotely Located)

1. Terminal
2. External Ground Sensor Coil
3. White Polarity Dot

Figure 39 (8039962) Power Sensor Kit
Ground at transformer neutral

Initial installation at power sensor unit disconnect:
- Check continuity A to C.
- Check no continuity A or C to R (shield).
- Check continuity R to shield of neutral ground sensor coil.
- #14 black wire.

Load - 4 wire system

"Typical" ground fault connections (breaker, cabling, ground sensor disconnect and external ground sensor coil).
Part of PB-1 power sensor trip.

Fig. 40 (0138B2454) Ground Fault System
3. On drawout breakers wired for the fourth
ground sensor coil, unsolder external sensor coil
leads at terminal board on female disconnect
plug. On stationary breakers unsolder twisted
shielded pair from Terminal Board (Fig. 40).

4. Remove the four bolts connecting each
coil assembly to the pole unit.

5. Remove the coil assemblies taking care
not to damage the inter-connecting coil wires.

6. No further breakdown of the coil assem-
bies should be made. Do not remove the coils
from around their iron core.

7. Replace coil assemblies in reverse order.

Sensor Coils (AK-3-75/100) Only (Fig. 33)

1. Disconnect control plug between Power
Supply Unit and Sensor Coils.

2. If present, disconnect fourth ground sensor
coil lead as described in Step 3 above.

3. Disconnect resistor board from backframe
by removing two nuts from studs welded to back
frame. Remove the two remaining hex head
bolts and nuts. Lift board from the two studs.

4. Remove collar at end of primary dis-
connects by loosening two allen head bolts and
sliding off collar.

5. Work coils toward end of stud. Starting
with one outside pole, slip coils off stud and
onto your right arm or properly supported cyl-
inder, now move to center pole and out side pole
until coils are removed place coils with resis-
tor board on clean flat surface. When removing coils
from your arm be careful not to break or foul
interconnecting coil wires. Also note location
of spacers. Spaces may vary in thickness their
purpose is to space coils out for a firm fit.

SELECTIVE TRIPPING

Selective tripping is obtained when the breakers
in the electrical distribution system are arranged
on the basis of a progressive series of time and
current pickup. This will allow the breaker having
the shorter time setting and the lower pickup
to trip before the breaker having the longer time
setting and the higher current pickup, provided
the fault is on the part of the line protected by
the breaker having the lower setting. Hence, if
a fault occurs in any part of the electrical system,
only the breaker nearest the fault will trip.

In order to reduce the possibility of damaging
the equipment and to provide maximum safety to
the operator, the overload caused by a fault is
removed in a minimum amount of time by selec-
tive tripping. Overloads producing current up to
two or ten times the breaker rating are removed
in a matter of a few cycles while currents in
excess of this value are removed instantaneously.

Fig. 41 (215D180) Typical time-current characteristics for Magnet Overcurrent Trip Devices
Fig. 42A Long-time-delay, short-time-delay and instantaneous time-current curves for solid-state trip device.
Fig. 42B Ground fault short-time-delay time-current curves for solid-state trip device.
For the exact characteristics and setting of each breaker in a selective system, reference should be made to the coordination chart furnished for the particular system.

BREAKER ACCESSORIES

PRIMARY DISCONNECTS

AK-50 ONLY

The primary disconnects are attached to the circuit breaker studs at the rear of the breaker base. Each disconnect assembly consists of four pairs of opposed contact fingers. The contact fingers are secured to the breaker stud by two bolts which pass through the assembly and the stud of the enclosure, the disconnect fingers exert a set amount of force against the stationary stud through the action of the compression springs. Retainers and spacers hold the contact fingers in correct alignment for engagement with the stud. The amount of force which the fingers exert against the stud is determined by the degree to which the springs are compressed by the bolt and nut which hold the assembly together.

REPLACEMENT

If for any reason the disconnects must be replaced or removed, the position of the nuts on the bolts should be carefully noted and the number of turns of the nuts should be counted, so that in reassembly the original amount of compression can be restored by replacing the nuts to their former position on the bolts.

The primary disconnects should always be kept lubricated with G.E. Co. D50H47 grease.

SECONDARY DISCONNECTS

The secondary disconnects for all breakers serve as connections between breaker control circuit elements and external control circuits. They are used only on drawout breakers and are mounted on a horizontal cross-channel at the top rear of the breaker. A terminal board serves the same purpose on stationary mounted and general purpose enclosure mounted breakers. These secondary disconnects allow removal of the breaker without the necessity of having to detach external connections.

The movable part of the secondary disconnects consists of an insulating body which holds a conducting spring-loaded plunger to which a flexible lead is attached. As the breaker moves into its enclosure, the plunger is depressed by sliding onto the stationary disconnects of the enclosure.

REPLACEMENT

1. Unfasten disconnect body from breaker cross-channel.
2. Open tabs which hold wires on inner side.
3. Pull contact tip loose from hollow tube.
4. Remove contact tip by cutting wire at its
base.

5. Push wire through hollow tube of new disconnect assembly.

6. Strip insulation off end of wire to about 1/4 in. from the end.

7. Place new contact tip on end of wire and crimp.

8. Pull wire through hollow tube until contact tip fits snugly against end of hollow tube.

9. Crimp tab on other side of assembly to hold wire in place.

10. Any hollow tubes which are not used should be pushed into the disconnect body and held in that position by placing fiber spacers over inner ends of tubes and spreading tabs.

11. When all wires have been connected, refasten the body of the movable disconnect assembly to the breaker cross-channel.

DRAWOUT MECHANISM

(FIG. 43)

Drawout breakers are furnished with a drawout mechanism which facilitates the inserting and withdrawing of the breaker from its enclosure. It provides a suitable means of forcing the breaker through the part of the inserting and withdrawal operations when the stationary and movable halves of the disconnects engage and disengage. For complete details of inserting and withdrawing the breaker, such as the number of racking handle strokes required to install or withdraw the breaker, refer to instruction GEK-7302 furnished with the breaker.

The drawout mechanism is equipped with a drawout trip interlock which prevents a racking operation from being performed when the breaker is closed. Inserting the breaker into the housing causes the racking pins on the housing to engage the semi-circular slot in the racking cam (4). In this position the breaker is ready to be fully racked-in by operating the racking handle (1). The first upward stroke of the racking handle causes the racking pin on the housing to engage the trip interlock, link and pin assembly (2, 3), rotating the link (2) and causing the pin (3) to move upward against the adjusting screw on the interlock trip paddle. This trips the breaker and holds it trip-free during the entire racking operation. The fifth and final stroke of the racking handle releases the trip interlock and allows the breaker to be closed, since the breaker is now fully racked-in.

ADJUSTMENTS (Fig. 43)

One adjustment on the trip interlock is required. With the breaker mechanism in the reset position and the racking cam (4) not engaging the racking pins on the housing, there should be at least 1/8in. clearance between the top edge of the trip interlock pin (3) and the adjusting screw.

The Drawout Mechanism for AK-2A/3A -50, 75, 100 Breakers is located in the equipment. Four racking pins (1) Fig. 44, two on either side of the breaker are furnished to facilitate the drawout mechanism tray in the equipment.
screw on the interlock trip.

SHUNT-TRIPPING DEVICE
(FIG. 45)

The shunt tripping device is mounted on a bracket attached to the left side of the operating mechanism (looking from the front).

A remote switch or relay contacts are used to close the circuit of the device causing the armature (9) to engage the trip paddle (11), thereby tripping the breaker. The spring (2) is used to return the armature to the neutral position after the breaker trips.

To prevent overheating, the coil (7) is cut off by contacts of the auxiliary switch which are open when the breaker is open.

ADJUSTMENTS

From 1/32 in. to 1/16-in. over-travel of the armature is required when the breaker is tripped. If any adjustment is necessary to provide this amount of overtravel, the trip lever is bent in or out accordingly.

REPLACEMENT OF COIL (Fig. 45)

1. Disconnect leads to coil (7).
2. Remove magnet (6) and coil from frame (3).
3. Bend lower end of clamp (8) straight and remove.
4. Remove coil and install new coil in reverse order.

BELL ALARM AND LOCKOUT DEVICE
(FIG. 46)

The device operating link (2) is engaged with the breaker crossbar side-link pin (1), thereby operating the device whenever the breaker is tripped by the overcurrent trip devices, the undervoltage device or the drawout trip interlock. The shunt trip device and the manual trip button will defeat the device. The bell alarm and lockout device can be reset only by the manual trip button on the front escutcheon. If the lockout device is omitted, the device can be reset by manual trip button or by closing the breaker, provided the fault has been eliminated.

Adjustments

1. Adjust the bell alarm-device latch (4) so that a clearance of 1/16 in. ± 1/64 in. is maintained with the catch (15) when the breaker is closed.
2. With the breaker fully open, adjust the device adjusting screw (12), on the operating arm (13), for an overtravel of 1/16 to 3/32 of an in. after the device contacts are just touching. This will assure that the device is operated when the
Fig. 46 (845C278) Bell alarm and lockout device AK-50, AK-75 and AK-100

The open fuse lockout device consists of 2 or 3 separately operated devices (one per phase) each wired in parallel to corresponding breaker fuses. This device is furnished on all AKU breakers, breaker fuse combinations and LB-1 protectors furnished after August, 1960. The devices are mounted on the left hand side of the breaker (looking from front). The purpose of this device is to trip the breaker upon the blowing of any one of the breaker's fuses.

OPERATION

When any one of the breaker's fuses blow the coil (6), in that particular phase, is energized and the armature (8) closes. The armature (8) moving to the closed air gap position engages the trip paddle (1) and trips the breaker. With the armature closed, spring (13) discharges, pivoting the arm (9) in a clockwise direction and latches the armature (9) in the closed position. This motion also moves the reset button (10) forward in the extended position indicating which fuse has blown. The latch closed armature holds the breaker in the trip free position until it is released by operation of the manual reset button (10). The coil (6) is de-energized as soon as the breaker is tripped open.

ADJUSTMENTS

From 1/32 inch to 1/16 inch overtravel of the armature is required when the breaker is tripped. If adjustment is necessary, loosen lock nut (4) and turn rod (3) in or out to obtain the proper overtravel. Retighten lock nut (4).

A 1/8" Min. dimension should be maintained
GEK-7303 Low Voltage Power Circuit Breakers

for the reset button (10). To adjust reset button, loosen lock nut ahead of reset button & turn button until proper adjustment is made. Retighten lock nut.

REPLACEMENT

If it becomes necessary to replace coil (6) proceed as follows:

1. Remove five bolts connecting the device to the side plate and front frame. Lower lockout device, guiding rod (3) thru rod guide (2). Continue lowering the device until movement is restricted by the device wiring harness.

2. Disconnect leads to coil (6).

3. Remove two screws holding the trip device to the device mounting plate.

4. Bend lower end of brass clamp straight.

5. Remove coil. Install new coil and replace parts in reverse order.

Fig. 47 (0133C9024) Open Fuse Lockout Device
The following tools are recommended for proper maintenance of the breakers to which this maintenance manual applies.

Screwdrivers
- Phillips No. 1
- Phillips No. 2, 8 in. shank
- Phillips No. 3
- Long thin, slotted screw
- Standard, slotted screw
- Short shank, slotted screw
- Offset ratchet screwdriver, slotter (No. 3400) Yankee
- Offset ratchet screwdriver, Phillips (No. 3412) Yankee

Pliers
- Gas pliers, 8 in.
- Long nose, side cutting, 6 in.
- Waldes Truarc No. 2, straight
- Waldes Truarc No. 2, 90 degree angle

Socket Wrench (1/2 in. drive)
- Ratchet handle
- Extension, 10 in.
- Extension, 6 in.
- 7/16 in. socket
- 9/16 in. socket
- 5/8 in. socket
- 3/4 in. socket
- 13/16 in. socket
- 15/16 in. socket

End Wrenches
- 8 in. adjustable
- 1/4 in. - 5/16 in. open end
- 1/2 in. - 9/16 in. open end
- 5/8 in. - 13/16 in. open end
- 3/8 in. - 7/16 in. open end
- 11/32 in. - 5/16 in. open end
- 5/8 in. - 6 point open, box

Allen Wrenches
- 1/16 in. for No. 6 screw
- 5/64 in. for No. 8 screw
- 3/32 in. for No. 10 screw
- 1/8 in. for 1/4 in. screw
- 5/16 in. for 3/8 in. screw with adapter shank for 1/2 in. drive ratchet
- 3/8 in. for 1/2 in. screw

Miscellaneous
- 8 oz. ball peen hammer
- 1/4 in. Spintite* wrench, long shank
- 3/8 in. Spintite* wrench

NOTE: Obtain tools from local hardware do not order from the General Electric Co.

RENEWAL PARTS

When ordering renewal parts, address the nearest General Electric Company Sales Office specifying the quantity required and describing the parts by the Catalog Number as shown in the renewal parts bulletins.

In the absence of a parts bulletin or breakers for which no parts bulletin are available, the part should be fully described and the complete nameplate data of the breaker should be given.

Renewal parts which are furnished may not be identical with the original parts since design improvements are made from time to time. However, parts which are furnished will be interchangeable.

Renewal parts bulletins for the various types of breakers are:

<table>
<thead>
<tr>
<th>Bulletin</th>
<th>Breaker Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEF-4150</td>
<td>AK-2-50</td>
</tr>
<tr>
<td>GEF-4151</td>
<td>AK-2-75/100</td>
</tr>
</tbody>
</table>

Trade-mark of Stevens-Walden, Inc.
GENERAL ELECTRIC INSTALLATION AND SERVICE ENGINEERING OFFICES

FOR YOUR LASTING SATISFACTION . . . with the performance and availability of your General Electric equipment, GE provides this nationwide network of field service offices, serving utility, industrial, transportation and marine users. Qualified field engineers provide installation, start-up, engine training, engineering maintenance and other services, throughout the productive life of the equipment. For full information, see your nearest Installation & Service Engineering office.

ALABAMA
- Birmingham 35205 2101 Highland Ave.
- Mobile 36609 1111 S. Belknap Highway

ARIZONA
- Phoenix 85012 3500 N. Central Ave.
- Tucson 85716 153 S. Tucson Blvd.

ARKANSAS
- North Little Rock 72119 120 Main St.

CALIFORNIA
- Los Angeles 90004 212 N. Vignes St.
- Palo Alto 94303 960 San Antonio Rd.
- Sacramento 95838 2407 J St.
- San Diego 92100 250 First Ave.
- San Francisco 94119 75 Hawthorne St.
- Vernon 90058 3059 E. 46th St.

COLORADO
- Denver 80206 201 University Blvd.

CONNECTICUT
- Meriden 06450 1 Preston Dr.

FLORIDA
- Jacksonville 22030 4040 Woodcock Dr.
- Miami 33124 4120 W. Flagler St.
- Tampa 33609 2116 S. Lois Ave.

GEORGIA
- Atlanta 30309 1800 Peachtree Rd., NW
- Savannah 31403 5020 Paulson St.

HAWAII
- Honolulu 96813 440 Coral St.

ILLINOIS
- Chicago 60680 440 S. Canal St.

INDIANA
- Fort Wayne 46807 3606 S. Calhoun St.
- Indianapolis 46207 3570 N. Meridian St.

IOWA
- Davenport 52805 2300 Meadow Dr.

KENTUCKY
- Louisville 40209 2390 Bardstown Rd.

LOUISIANA
- Baton Rouge 70806 3312 Florida Blvd.
- New Orleans 70122 4174 Earlhart Ave.
- Shreveport 71104 2020 Centenary Blvd.
- Monroe 71210 1020 North 6th St.

MARYLAND
- Baltimore 21201 4 N. Charles St.
- Annapolis 21401 200 St. Mary’s St.
- Welchley 21281 1 Washington St.

MICHIGAN
- Detroit 48202 700 Antoinette St.
- Jackson 49201 110 W. Franklin St.
- Lansing 48907 210 Second National Bank Bldg.

MINNESOTA
- Duluth 55802 500 W. Superior St.
- Minneapolis 55416 1500 Lilac Drive S.

MISSOURI
- Kansas City 64119 919 Main St.

MISSISSIPPI
- Butte 59701 10 N. Wisconsin St.

NEBRASKA
- Omaha 68102 409 S. 13th St.

NEW JERSEY
- Millburn 07041 25 E. Willow St.

NEW YORK
- Albany 12205 15 Computer Ave., West
- Buffalo 14210 1423 N. Main St.
- New York 10022 64 Lexington Ave.
- Rochester 14610 99 N. Franklin St.
- Syracuse 13206 325 S. 2nd St.

NORTH CAROLINA
- Charlotte 28207 111 Providence Rd.
- Wilmington 28401 240 Brazil Ave.

OHIO
- Cincinnati 45206 2621 Victory Pkwy.
- Cleveland 44114 300 Lakeside Ave.
- Columbus 43215 215 Morse Rd.
- Toledo 43629 215 Douglas Rd.
- Youngstown 44507 1822 37th Ave.

OKLAHOMA
- Oklahoma City 73106 . . . 2007 Classen Blvd.
- Tulsa 74103 P. O. Box 7644, 74103

OREGON
- Eugene 97401 1139 N. 16th St.
- Portland 97210 2022 NW 23rd Ave.

PA.
- Allen Township 17004 . . . 2044 Hamilton St.
- Philadelphia 19102 3 Peabody Plaza
- Pittsburgh 15222 300 6th Ave.

SOUTH CAROLINA
- Columbia 29011 700 Middletown Dr.
- Greenville 29611 41 Pinecote Dr.

SOUTH DAKOTA
- Charles 57301 706 B. Madison Ave.

TENNESSEE
- Chattanooga 37401 900 10th Ave., E.
- Memphis 38103 330 Airways Blvd.

TEXAS
- Beaumont 77703 395 Alder Ave.
- Corpus Christi 78401 . . . 205 N. Chaparral St.
- Dallas 75222 8101 Stemmons Freeway
- Houston 77045 215 N. St. Louis
- Fort Worth 76102 408 W. Seventh St.
- El Paso 79907 4219 Avenue Q.
- San Antonio 78204 434 S. Main St.

UTAH
- Salt Lake City 84111 431 S. Third East St.

VERMONT
- Burlington 05403 424 North Main St.

VIRGINIA
- Newport News 23601 . . . 311 Main St.
- Richmond 23223 1508 Washington Dr.
- Roanoke 24015 1801 Colonial Ave.

WASHINGTON
- Seattle 98108 1120 Andover Park East, Tukwila
- Spokane 99202 1 E. 18th Ave.

WEST VIRGINIA
- Charleston 25304 306 MacCorkle Ave., SE

WISCONSIN
- Appleton 54911 3003 West College Dr.
- Milwaukee 53209 615 E. Michigan St.

FIELD SERVICE OFFICE CODE KEY
- Mechanical & Nuclear Service
- Electrical & Electronic Service
- Marine Service
- Transportation

When you need service . . . These GE Service offices are operated under the supervision of the Management Team, and are trained in the techniques and procedures used by the factory. The qualifications of the personnel are maintained by regular training and periodic inspections. Latest factory methods and genuine GE renewal parts are used to maintain performance of your equipment. For full information about these services, contact your nearest service shop or sales office.