TOSHIBA

Leading Innovation 》>

GR Series Relay

Humericallic|ay

GRD1

Feeder Manager

FEATURES

Protection functions

- Non-directional and directional overcurrent and earth-fault protection and sensitive earth fault protection (option)
- Overvoltage and undervoltage protection
- Thermal overload protection
- Underfrequency or overfrequency protection
- Negative phase sequence overcurrent protection
- Undercurrent protection
- Circuit breaker failure protection
- Autoreclose function (option)

Control functions

- Indication of the status of switching devices, i.e. circuit breakers and disconnectors
- Open and close commands for switching devices
- Synchronism check function (option)
- MIMIC configuration display

Monitoring and Metering

- Circuit breaker condition monitoring
- Trip circuit supervision
- Metering: three-phase currents and voltages, residual current and voltage, frequency, active and reactive power, power factor, and max. demand values.

Recording

- Event record: 480 most recent events
- Alarm record: 32 most recent alarms
- Fault record: 8 most recent faults
- Disturbance record: 9 analog and 32 binary signals

User Interface

- Menu-based HMI system
- Graphical LCD display
- PLC function
- Configurable binary inputs and outputs
- Configurable LED indications
- Communication Interface: RS485, Fibre optic or Ethernet LAN (option)

APPLICATION

GRD150 feeder manager is designed for protection, control, metering and supervision of medium voltage networks.

GRD150 includes multiple, high accuracy, overcurrent protection elements (for phase and/or earth fault) with
inverse time (IDMTL) and definite time delay (DTL) functions. All phase, earth and sensitive earth fault overcurrent elements can be independently subject to directional control. The directional elements provide user-settable characteristic angles.

Other protection functions are also available, including thermal protection to IEC60255-8, negative sequence overcurrent protection, under/overvoltage and under/ over frequency protections.

GRD150 provides continuous monitoring of internal circuits and of software. External circuits are also monitored, by trip circuit supervision, CT and VT supervision, and CB condition monitoring features.

A user-friendly HMI is provided through a backlit LCD, programmable LEDs, keypad and menu-based operating system. PC access is also provided, either for local connection via a front-mounted RS232 port, or for remote connection via a rear-mounted RS485 or fibre optic port. The communication system allows the user to read and modify the relay settings, and to access data gathered by the relay's metering and recording functions.

Data available either via the relay HMI or communications ports includes the following functions.

- Metering
- Fault recording
- Event recording
- Alarm recording
- Disturbance recording (available via communications ports)

Figure 1 - Front View

Table 1 GRD150 models and Functions

Function	GRD150-			
	10* series	20* series	30* series	40* series
Non-directional overcurrent OC (IDMTL, DTL, INST)	\checkmark	\checkmark	\checkmark	\checkmark
Non-directional earth fault EF (IDMTL, DTL, INST)	\checkmark	\checkmark	\checkmark	\checkmark
Non-directional sensitive earth fault SEF (IDMTL, DTL, INST)		\checkmark		\checkmark
Directional overcurrent DOC (IDMTL, DTL, INST)	\checkmark	\checkmark	\checkmark	\checkmark
Directional earth fault DEF (IDMTL, DTL, INST)	\checkmark	\checkmark	\checkmark	\checkmark
Directional sensitive earth fault DSEF (IDMTL, DTL, INST)		\checkmark		\checkmark
Undercurrent UC	\checkmark	\checkmark	\checkmark	\checkmark
Thermal over load THM	\checkmark	\checkmark	\checkmark	\checkmark
Non-directional negative phase overcurrent NOC (IDMTL, DTL, INST)	\checkmark	\checkmark	\checkmark	\checkmark
Directional negative phase overcurrent DNOC (IDMTL, DTL, INST)	\checkmark	\checkmark	\checkmark	\checkmark
Broken conductor detection BCD	\checkmark	\checkmark	\checkmark	\checkmark
Circuit breaker failure protection CBF	\checkmark	\checkmark	\checkmark	\checkmark
Cold load pick-up feature	\checkmark	\checkmark	\checkmark	\checkmark
Overvoltage OV (IDMTL, DTL, INST)	\checkmark	\checkmark	\checkmark	\checkmark
Undervoltage UV (IDMTL, DTL, INST)	\checkmark	\checkmark	\checkmark	\checkmark
Zero phase sequence overvoltage ZOV (IDMTL, DTL, INST)	\checkmark	\checkmark	\checkmark	\checkmark
Negative phase sequence overvoltage NOV (IDMTL, DTL, INST)	\checkmark	\checkmark	\checkmark	\checkmark
Under/over frequency FRQ	\checkmark	\checkmark	\checkmark	\checkmark
Autoreclose function			\checkmark	\checkmark
Fault locator	\checkmark	\checkmark	\checkmark	\checkmark
Indication of the status of switching devices	\checkmark	\checkmark	\checkmark	\checkmark
Open and close commands for switching devices	\checkmark	\checkmark	\checkmark	\checkmark
Synchronism check function			\checkmark	\checkmark
MIMIC configuration picture (*)	\checkmark	\checkmark	\checkmark	\checkmark
PLC function (*)	\checkmark	\checkmark	\checkmark	\checkmark
CT supervision	\checkmark	\checkmark	\checkmark	\checkmark
VT supervision	\checkmark	\checkmark	\checkmark	\checkmark
Trip circuit supervision	\checkmark	\checkmark	\checkmark	\checkmark
Self supervision	\checkmark	\checkmark	\checkmark	\checkmark
CB state monitoring	\checkmark	\checkmark	\checkmark	\checkmark
Trip counter alarm	\checkmark	\checkmark	\checkmark	\checkmark
Ely alarm	\checkmark	\checkmark	\checkmark	\checkmark
CB operate time alarm	\checkmark	\checkmark	\checkmark	\checkmark
Multiple settings groups	\checkmark	\checkmark	\checkmark	\checkmark
Metering	\checkmark	\checkmark	\checkmark	\checkmark
Fault records	\checkmark	\checkmark	\checkmark	\checkmark
Alarm records	\checkmark	\checkmark	\checkmark	\checkmark
Event records	\checkmark	\checkmark	\checkmark	\checkmark
Disturbance records	\checkmark	\checkmark	\checkmark	\checkmark
Communication	\checkmark	\checkmark	\checkmark	\checkmark

IDMTL: inverse definite minimum time
DTL: definite time
INST: instantaneous
(*): PC tools (MIMIC editor and PLC editor) are option.

GRD150

FUNCTIONS

Protection

- 4-stage non-directional and directional overcurrent and earth-fault protection and sensitive earth fault protection (option)
$1^{\text {st }}$ and $2^{\text {nd }}$ stage: Instantaneous, IDMTL or DTL $3^{\text {rd }}$ and $4^{\text {th }}$ stage: Instantaneous or DTL
- 2-stage non-directional and directional negative phase sequence overcurrent protection $1^{\text {st }}$ stage: Instantaneous, IDMTL or DTL $2^{\text {nd }}$ stage: Instantaneous or DTL
- 2-stage overvoltage and undervoltage protection $1^{\text {st }}$ stage: Instantaneous, IDMTL or DTL $2^{\text {nd }}$ stage: Instantaneous or DTL
- 6-stage underfrequency or overfrequency protection
- Thermal overload protection
- Cold load protection function or Inrush current (2 $2^{\text {nd }}$ harmonic) detector provided for energising the system
- Undercurrent protection
- Broken conductor detection
- Circuit breaker failure protection
- Autoreclose function: 5-shots, 3-phase autoreclose (option)

Control

Two-stepped operation (select-control) is used for the control procedure of circuit breakers, disconnectors, earthing disconnector switches and transformers to ensure highly reliable operation.

- Control of circuit breakers, disconnectors and earthing disconnector switches
- Interlock check
- Synchronism check for circuit breaker closing (option)
- MIMIC configuration picture displayed on LCD
- Double command blocking
- Switchgear operation counter
- Control blocking

Password protection is provided to operate above functions.

Monitoring and Metering

- Status monitoring of switchgear devices and failure monitoring of power apparatus, control equipment, protection relays and ancillary equipment
- Metering: current, voltage, frequency, active power, reactive power and max. demand values
An energy calculation (Watt-hour, var-hour) is also available.
- Limit value checking of metering
- Opening and closing time monitoring

These data are available on the HMI and at a local or remote PC.

Recording

- Event records: The most recent 480 time-tagged events with 1 ms resolution are stored.
- Alarm records: The most recent 32 time-tagged alarms with 1 ms resolution are stored.
- Fault records: The most recent 8 time-tagged faults with 1 ms resolution are stored.
- Disturbance records: GRD150 can record 9 analog and 32 binary signals, initiated by relay tripping. Pretrigger and post-trigger recording times can be set, and the maximum number of records which can be stored is dependent on the recording times chosen.

These records are available on the HMI and at a local or remote PC.

GRD150

Inverse Time Operate and Reset Curves

Inverse time operate function
$t=R T M S \times\left[\frac{t_{r}}{1-\left(I / I_{S}\right)^{2}}\right]$

Dependent time reset function

Constants for dependent time curves

Curve Description	\mathbf{k}	$\boldsymbol{\alpha}$	\mathbf{C}	$\mathbf{t}_{\mathbf{r}}$
IEC Normal Inverse (NI)	0.14	0.02	0	-
IEC Very Inverse (VI)	13.5	1	0	-
IEC Extremely Inverse (EI)	80	2	0	-
UK Long Time Inverse (LTI)	120	1	0	-
IEEE Moderately Inverse (MI)	0.0515	0.02	0.114	4.85
IEEE Very Inverse (VI)	19.61	2	0.491	21.6
IEEE Extremely Inverse (EI)	28.2	2	0.1217	29.1
US CO8 Inverse (I)	5.95	2	0.18	5.95
US CO2 Short Time Inverse (STI)	0.02394	0.02	0.01694	2.261

Figure 2 - Operate and Reset Characteristics of IDMTL

USER INTERFACE

Relay Front Panel

A user friendly interface is provided on the relay front panel. A menu-based system provides for easy programming of relay functions and access to realtime and stored data. The front panel includes the following features.

- Graphical LCD display with backlight.
- 12 LEDs including 8 user programmable LEDs.
- Keypad.
- RS232C serial port for connection of local PC.

Local PC Connection

The user can communicate with the GRD150 from a local PC via the RS232C port on the front panel. Using RSM100 software, the user can view and modify settings, monitor real-time metering and analyse recorded data.

Relay Setting and Monitoring (RSM) and Remote Control System

GRD150 can be connected to the RSM system via the rear mounted serial communications port, using RS485 or other connections such as fibre optic, Ethernet LAN, etc., (specified at time of order). Using RSM100 software, the user can view and modify settings, monitor real-time metering and analyse recorded data.

A maximum of 32 relays can be connected to the remote PC in multi-drop mode, by connection via a protocol converter, with data transmission rate of 64kbps using RSM-X protocol. Modbus®(RTU) protocol can be also available.

The figures below show the configuration of the RSM system and typical displays from the RSM100 software.

Using an additional port (option), GRD150 can be connected to a Substation Control System. In this case, GRD150 supports IEC60870-5-103 or DNP3.0 transmission protocols.

Figure 3 - Relay Setting and Monitoring System

Mimic Editor (MMEdit)

Yhe user can configure and customize the MIMIC data displayed on the LCD of GRD150 using MMEdit software. The MIMIC data produced by the MMEdit software can be uploaded to GRD150 via the PC communication port (RS232C).

Figure 4 - PC Display of MMEdit

PLC Editor (PLCEdit)

The user can customize logic functions on GRD150 such as trip and interlock sequence, etc., using PLCEdit software. The PLC data produced by the PLCEdit software can be uploaded to GRD150 via PC communication port (RS232C).

Figure 5 - PC Display of PLCEdit

GRD150

PC DISPLAY

Setting

Record (disturbance record: data analysis)

Status: display measurement values of power system quantities and status of relay element, etc. Setting: change settings of protection relay and control function, etc.

Record: display fault record, event record, alarm record and disturbance record.

Figure 6 - Relay Setting and Monitoring System - PC Displays

TECHNICAL DATA

Ratings	
AC current In AC voltage Vn: Frequency: DC auxiliary supply: Superimposed AC ripple on DC supply: DC supply interruption: Binary input circuit DC voltage:	1A or 5A 100 V to 120 V 50 Hz or 60 Hz $110 / 125 \mathrm{Vdc}$ (Operative range: $88-150 \mathrm{Vdc}$), $220 / 250 \mathrm{Vdc}$ (Operative range: $176-300 \mathrm{Vdc}$), 48/54/60Vdc, (Operative range: $38.4-72 \mathrm{Vdc}$) $\begin{aligned} & \leq 12 \% \\ & \leq 50 \mathrm{~ms} \text { at } 110 \mathrm{~V} \\ & 110 / 125 \mathrm{Vdc} \\ & 220 / 250 \mathrm{Vdc}, \\ & 48 / 54 / 60 \mathrm{Vdc} \\ & \hline \end{aligned}$
Overload Ratings	
AC current inputs: AC voltage inputs:	3 times rated current continuous 100 times rated current for 1 second 2 times rated voltage continuous
Burden	
AC phase current inputs: AC earth current inputs: AC sensitive earth inputs: AC voltage inputs: DC power supply: Binary input circuit:	$\begin{aligned} & \leq 0.1 \mathrm{VA}(1 \mathrm{~A} \text { rating }) \\ & \leq 0.3 \mathrm{VA} \text { (} 5 \mathrm{~A} \text { rating) } \\ & \leq 0.3 \mathrm{VA} \text { (} 1 \mathrm{~A} \text { rating) } \\ & \leq 0.4 \mathrm{VA} \text { (} 5 \mathrm{~A} \text { rating) } \\ & \leq 0.3 \mathrm{VA} \text { (} 1 \mathrm{~A} \text { rating) } \\ & \leq 0.4 \mathrm{VA} \text { (} 5 \mathrm{~A} \text { rating) } \\ & \leq 0.1 \mathrm{VA} \text { (at rated voltage) } \\ & \leq 15 \mathrm{~W} \text { (quiescent) } \\ & \leq 20 \mathrm{~W} \text { (maximum) } \\ & \leq 0.5 \mathrm{~W} \text { per input at } 110 \mathrm{Vdc} \end{aligned}$
Protection Functions	
Current Transformer Requirements	
Phase Inputs Standard Earth Inputs: Sensitive Earth Inputs:	Typically 5P20 with rated burden according to load, (refer to manual for detailed instructions). Core balance CT or residual connection of phase CTs. Core balance CT.
Non-directional Phase Overcurrent Protection	
OC $1^{\text {st }}$ Overcurrent threshold: OC $2^{\text {nd }}$ Overcurrent threshold: Delay type: IDMTL Time Multiplier Setting TMS: DTL delay: Reset Type: Reset Definite Delay: Reset Time Multiplier Setting RTMS: OC $3^{\text {rd }}, 4^{\text {th }}$ Overcurrent thresholds: DTL delay:	OFF, $0.04-5.00 \mathrm{~A}$ in 0.01 A steps (1 A rating) OFF, $0.2-25.0 \mathrm{~A}$ in 0.1 A steps (5 A rating) OFF, $0.10-50.00 \mathrm{~A}$ in 0.01 A steps (1 A rating) OFF, $0.5-250.0 \mathrm{~A}$ in 0.1 A steps (5A rating) DTL, IEC NI, IEC VI, IEC EI, UK LTI, IEEE MI, IEEE VI, IEEE EI, US CO8 I, US CO2 STI, User SI $0.010-1.500$ in 0.001 steps Inst, $0.01-300.00$ s in 0.01 s steps Definite Time or Dependent Time. Instantaneous, $0.1-300.0 \mathrm{~s}$ in 0.1 s steps $0.010-1.500$ in 0.001 steps OFF, $0.10-50.00 \mathrm{~A}$ in 0.01 A steps (1 A rating) OFF, $0.5-250.0 \mathrm{~A}$ in 0.1 A steps (5 A rating) Inst, $0.01-300.00$ s in 0.01 s steps

Non-directional Earth Fault Protection

EF ${ }^{\text {st }}$ Overcurrent threshold:	OFF, $0.01-5.00 \mathrm{~A}$ in 0.01 A steps (1 A rating) OFF, $0.05-25.00 \mathrm{~A}$ in 0.01 A steps (5 A rating)
EF $2^{\text {nd }}$ Overcurrent threshold:	OFF, $0.04-50.00 \mathrm{~A}$ in 0.01 A steps (1 A rating) OFF, $0.2-250.0 \mathrm{~A}$ in 0.1A steps (5A rating)
Delay type:	DTL, IEC NI, IEC VI, IEC EI, UK LTI, IEEE MI, IEEE VI, IEEE EI, US CO8 I, US CO2 STI, User SI
IDMTL Time Multiplier Setting TMS:	$0.010-1.500$ in 0.001 steps
DTL delay:	Inst, $0.01-300.00$ s in 0.01 s steps
Reset Type:	Definite Time or Dependent Time.
Reset Definite Delay:	Instantaneous, $0.1-300.0 \mathrm{~s}$ in 0.1 s steps
Reset Time Multiplier Setting RTMS:	$0.010-1.500$ in 0.001 steps
EF 3 ${ }^{\text {rd }}, 4^{\text {th }}$ thresholds:	OFF, $0.04-50.00 \mathrm{~A}$ in 0.01 A steps (1 A rating) OFF, $0.2-250.0 \mathrm{~A}$ in 0.1 A steps (5A rating)
DTL delay:	Inst, $0.01-300.00$ s in 0.01 s steps

Non-directional Sensitive Earth Fault Protection (Option)

SEF $1^{{ }^{\text {st }}}, 2^{\text {nd }}$ Overcurrent threshold:

Delay Type:
IDMTL Time Multiplier Setting TMS:
DTL delay:
Reset Type:
Reset Definite Delay:
Reset Time Multiplier Setting RTMS:
SEF $3^{\text {rd }}, 4^{\text {th }}$ thresholds:

DTL delay:

OFF, $0.005-0.025 \mathrm{~A}$ in 0.001 A steps (1 A rating)
OFF, $0.025-0.125 \mathrm{~A}$ in 0.001 A steps (5 A rating)
DTL, IEC NI, IEC VI, IEC EI, UK LTI, IEEE MI, IEEE VI, IEEE EI, US CO8 I, US CO2 STI, User SI
$0.010-1.500$ in 0.001 steps
Inst, $0.01-300.00$ s in 0.01 s steps
Definite Time or Dependent Time.
Instantaneous, $0.1-300.0$ s in 0.1 s steps
$0.010-1.500$ in 0.001 steps
OFF, $0.005-0.025 \mathrm{~A}$ in 0.001 A steps (1 A rating)
OFF, $0.025-0.125 \mathrm{~A}$ in 0.001 A steps (5A rating)
Inst, $0.01-300.00$ s in 0.01 s steps

Non-directional Negative Phase Sequence Overcurrent Protection

NOC $1^{\text {st }}$ overcurrent threshold:

Delay type ($1^{\text {st }}$ threshold only):
IDMTL Time Multiplier Setting TMS:
DTL delay:
Reset Type:
Reset Definite Delay:
Reset Time Multiplier Setting RTMS:
DTL delay:

OFF, $0.10-2.00 \mathrm{~A}$ in 0.01 A steps (1 A rating)
OFF, $0.5-10.0 \mathrm{~A}$ in 0.1 A steps (5A rating)
DTL, IEC NI, IEC VI, IEC EI, UK LTI, IEEE MI, IEEE VI, IEEE EI, US CO8 I, US CO2 STI, User SI
$0.010-1.500$ in 0.001 steps
Inst, 0.01 - 300.00s in 0.01s steps
Definite Time or Dependent Time.
Instantaneous, $0.1-300.0$ s in 0.1 s steps
$0.010-1.500$ in 0.001 steps
Inst, $0.01-300.00$ s in 0.01 s steps

Directional Phase Overcurrent Protection

DOC $1^{\text {st }}$ Overcurrent threshold:	OFF, $0.04-5.00 \mathrm{~A}$ in 0.01 A steps (1 A rating) OFF, $0.2-25.0 \mathrm{~A}$ in 0.1 A steps (5A rating)
DOC $2^{\text {nd }}$ Overcurrent threshold:	OFF, $0.10-50.00 \mathrm{~A}$ in 0.01 A steps (1 A rating) OFF, $0.5-250.0 \mathrm{~A}$ in 0.1A steps (5A rating)
Delay type:	DTL, IEC NI, IEC VI, IEC EI, UK LTI, IEEE MI, IEEE VI, IEEE EI, US CO8 I, US CO2 STI, User SI
IDMTL Time Multiplier Setting TMS:	$0.010-1.500$ in 0.001 steps
DTL delay:	Inst, $0.01-300.00$ s in 0.01 s steps
Reset Type:	Definite Time or Dependent Time.
Reset Definite Delay:	Instantaneous, $0.1-300.0 \mathrm{~s}$ in 0.1 s steps
Reset Time Multiplier Setting RTMS:	$0.010-1.500$ in 0.001 steps
DOC $3^{\text {rd }}, 4^{\text {th }}$ Overcurrent thresholds:	OFF, $0.10-50.00 \mathrm{~A}$ in 0.01 A steps (1 A rating) OFF, $0.5-250.0 \mathrm{~A}$ in 0.1 A steps (5A rating)
DTL delay:	Inst, $0.01-300.00$ s in 0.01 s steps
DOC Characteristic Angle:	-95° to $+95^{\circ}$ in 1° steps
Directional Earth Fault Protection	
DEF $1^{\text {st }}$ Overcurrent threshold:	OFF, $0.01-5.00 \mathrm{~A}$ in 0.01 A steps (1 A rating) OFF, $0.05-25.00 \mathrm{~A}$ in 0.01 A steps (5 A rating)
DEF $2^{\text {nd }}$ Overcurrent threshold:	OFF, $0.04-50.00 \mathrm{~A}$ in 0.01 A steps (1 A rating) OFF, $0.2-250.0 \mathrm{~A}$ in 0.1A steps (5A rating)
Delay type:	DTL, IEC NI, IEC VI, IEC EI, UK LTI, IEEE MI, IEEE VI, IEEE EI, US CO8 I, US CO2 STI, User SI
IDMTL Time Multiplier Setting TMS:	$0.010-1.500$ in 0.001 steps
DTL delay:	Inst, $0.01-300.00$ s in 0.01 s steps
Reset Type:	Definite Time or Dependent Time.
Reset Definite Delay:	Instantaneous, $0.1-300.0 \mathrm{~s}$ in 0.1 s steps
Reset Time Multiplier Setting RTMS:	$0.010-1.500$ in 0.001 steps
DEF $3^{\text {rd }}, 4^{\text {th }}$ thresholds:	OFF, $0.04-50.00 \mathrm{~A}$ in 0.01 A steps (1 A rating) OFF, $0.2-250.0 \mathrm{~A}$ in 0.1 A steps (5A rating)
DTL delay:	Inst, $0.01-300.00$ s in 0.01 s steps
DEF Characteristic angle:	-95° to $+95^{\circ}$ in 1° steps
DEF Voltage threshold:	$0.5-100.0 \mathrm{~V}$ in 0.1 V steps

Directional Sensitive Earth Fault Protection (Option)

DSEF $1^{\text {st }}, 2^{\text {nd }}$ Overcurrent threshold:

Delay Type:

IDMTL Time Multiplier Setting TMS:
DTL delay:
Reset Type:
Reset Definite Delay:
Reset Time Multiplier Setting RTMS:
DSEF $3^{\text {rd }}, 4^{\text {th }}$ thresholds:

DTL delay:
DSEF Characteristic angle:
DSEF Boundary of operation:
DSEF Voltage threshold:
Residual power threshold:

OFF, $0.005-0.025 \mathrm{~A}$ in 0.001 A steps (1 A rating) OFF, $0.025-0.125 \mathrm{~A}$ in 0.001 A steps (5 A rating)
DTL, IEC NI, IEC VI, IEC EI, UK LTI, IEEE MI, IEEE VI, IEEE EI, US CO8 I, US CO2 STI, User SI
$0.010-1.500$ in 0.001 steps
Inst, $0.01-300.00$ s in 0.01 s steps
Definite Time or Dependent Time
Instantaneous, $0.1-300.0 \mathrm{~s}$ in 0.1 s steps
$0.010-1.500$ in 0.001 steps
OFF, $0.005-0.025 \mathrm{~A}$ in 0.001 A steps (1 A rating)
OFF, $0.025-0.125 \mathrm{~A}$ in 0.001 A steps (5A rating)
Inst, $0.01-300.00$ s in 0.01 s steps
-95° to $+95^{\circ}$ in 1° steps
$\pm 87.5^{\circ}$
$0.5-100.0 \mathrm{~V}$ in 0.1 V steps
OFF, $0.00-20.00 \mathrm{~W}$ in 0.05 W (1A rating)
OFF, $0.00-100.00 \mathrm{~W}$ in 0.25 W (5A rating)

Directional Negative Phase Sequence Overcurrent Protection

DNOC $1^{\text {st }}$ overcurrent threshold:	OFF, $0.10-2.00 \mathrm{~A}$ in 0.01 A steps (1 A rating) OFF, $0.5-10.0 \mathrm{~A}$ in 0.1 A steps (5 A rating)
Delay type ($1^{\text {st }}$ threshold only):	DTL, IEC NI, IEC VI, IEC EI, UK LTI, IEEE MI, IEEE VI, IEEE EI, US CO8 I, US CO2 STI, User SI
IDMTL Time Multiplier Setting TMS:	$0.010-1.500$ in 0.001steps
DTL delay:	Inst, $0.01-300.00$ s in 0.01 s steps
Reset Type:	Definite Time or Dependent Time
Reset Definite Delay:	Instantaneous, $0.1-300.0$ s in 0.1 s steps
Reset Time Multiplier Setting RTMS:	$0.010-1.500$ in 0.001 steps
DNOC $2^{\text {nd }}$ overcurrent threshold:	OFF, $0.10-2.00 \mathrm{~A}$ in 0.01 A steps (1 A rating) OFF, $0.5-10.0 \mathrm{~A}$ in 0.1 A steps (5 A rating)
DTL delay:	Inst, $0.01-300.00 \mathrm{~s}$ in 0.01 s steps
DNOC Characteristic angle:	-95° to $+95^{\circ}$ in 1° steps
DNOC Dir. Voltage threshold	$0.5-25.0 \mathrm{~V}$ in 0.1 V steps
Overvoltage Protection	
$1^{\text {st }}, 2^{\text {nd }}$ Overvoltage thresholds:	OFF, $10.0-200.0 \mathrm{~V}$ in 0.1 V steps
Delay type (1 ${ }^{\text {st }}$ threshold only):	DTL, IDMTL
IDMTL Time Multiplier Setting TMS:	$0.05-100.00$ in 0.01 steps
DTL delay:	Inst, $0.01-300.00$ s in 0.01 s steps
DO/PU ratio	$10-98 \%$ in 1% steps
Reset Delay (1 ${ }^{\text {st }}$ threshold only):	Instantaneous, $0.1-300.0 \mathrm{~s}$ in 0.1 s steps
Undervoltage Protection	
$1^{\text {st }}, 2^{\text {nd }}$ Undervoltage thresholds:	OFF, $5.0-130.0 \mathrm{~V}$ in 0.1 V steps
Delay type ($1^{\text {st }}$ threshold only):	DTL, IDMTL
IDMTL Time Multiplier Setting TMS:	$0.05-100.00$ in 0.01 steps
DTL delay:	Inst, $0.01-300.00$ s in 0.01 s steps
Reset Delay (1 ${ }^{\text {st }}$ threshold only):	Instantaneous, $0.1-300.0$ s in 0.1 s steps
Zero Sequence Overvoltage Protection	
ZOV 1 ${ }^{\text {st }}, 2^{\text {nd }}$ Overvoltage thresholds:	OFF, $5.0-130.0 \mathrm{~V}$ in 0.1 V steps
Delay type (1 $1^{\text {st }}$ threshold only):	DTL, IDMTL
IDMTL Time Multiplier Setting TMS:	$0.05-100.00$ in 0.01 steps
DTL delay:	Inst, $0.01-300.00$ s in 0.01 s steps
Reset Delay (1 ${ }^{\text {st }}$ threshold only):	Instantaneous, $0.1-300.0 \mathrm{~s}$ in 0.1 s steps
Negative Sequence Overvoltage Protection	
NOV $1^{\text {st }}, 2^{\text {nd }}$ Overvoltage thresholds:	OFF, $5.0-130.0 \mathrm{~V}$ in 0.1 V steps
Delay type (1 $1^{\text {st }}$ threshold only):	DTL, IDMTL
IDMTL Time Multiplier Setting TMS:	$0.05-100.00$ in 0.01 steps
DTL delay:	Inst, $0.01-300.00$ s in 0.01 s steps
Reset Delay (1 ${ }^{\text {st }}$ threshold only):	Instantaneous, $0.1-300.0 \mathrm{~s}$ in 0.1 s steps
Under/Over Frequency Protection	
$1^{\text {st }}-6^{\text {th }}$ under/overfrequency threshold:	$25.00-75.00 \mathrm{~Hz}$ in 0.01 Hz steps
DTL delay:	Inst, $0.01-300.00$ s in 0.01 s steps
Undervoltage block:	$40.0-100.0 \mathrm{~V}$ in 0.1 V steps
Thermal Overload Protection	
$\mathrm{I}_{\theta}=$ k. IFLC (Thermal setting):	OFF, $0.40-2.00 \mathrm{~A}$ in 0.01 A steps (1 A rating) OFF, $2.0-10.0 \mathrm{~A}$ in 0.1 A steps (5A rating)
Pre-load current setting:	$0.00-1.00 \mathrm{~A}$ in 0.01 A steps (1 A rating) $0.0-5.0 \mathrm{~A}$ in 0.1 A steps (5 A rating)
Time constant (τ):	0.5-100.0 mins in 0.1 min steps
Thermal alarm:	OFF, 50% to 99% in 1% steps

GRD150

Phase Undercurrent Protection	
Undercurrent $1^{\text {st }}, 2^{\text {nd }}$ threshold: DTL Delay:	OFF, $0.10-2.00 \mathrm{~A}$ in 0.01 A steps (1 A rating) OFF, $0.5-10.0 \mathrm{~A}$ in 0.1 A steps (5 A rating) Inst, 0.01 - 300.00s in 0.01 s steps
Broken Conductor Protection	
Broken conductor threshold $\left(I_{2} / l_{1}\right)$: DTL delay:	OFF, $0.10-1.00$ in 0.01 steps Inst, $0.01-300.00$ s in 0.01 s steps
CBF Protection	
CBF threshold: CBF back trip DTL: CBF Retrip DTL:	OFF, $0.10-2.00 \mathrm{~A}$ in 0.01 A steps (1 A rating) OFF, $0.5-10.0 \mathrm{~A}$ in 0.1 A steps (5 A rating) Inst, $0.01-300.00$ s in 0.01 s steps Inst, $0.01-300.00$ s in 0.01 s steps
Accuracy	
IDMTL Overcurrent Pick-up: All Other Overcurrent Pick-ups: Overcurrent PU/DO ratio: Undercurrent Pick-up: Undercurrent PU/DO ratio: IDMTL Overvoltage Pick-up: All Other Overvoltage Pick-ups: Inverse Time Delays: Definite Time Delays: Transient Overreach for instant. elements:	```Setting value }\pm5 Setting value }\pm5 \geq95% Setting value }\pm5 <105% Setting value }\pm2 Setting value }\pm2 \pm5% or 30ms (1.5 to 30 times setting) \pm1% (for more than 1s setting) or 10ms <-5% for X/R = 100.```
Synchronism Check Function (option)	
Synchronism check angle: Frequency difference check: Voltage difference check: Voltage dead check: Voltage live check:	$\begin{aligned} & 5-75^{\circ} \text { in } 1^{\circ} \text { steps } \\ & 0.02-0.50 \mathrm{~Hz} \text { in } 0.01 \mathrm{~Hz} \text { steps } \\ & 5.0-150.0 \mathrm{~V} \text { in } 0.1 \mathrm{~V} \text { steps } \\ & 5.0-150.0 \mathrm{~V} \text { in } 0.1 \mathrm{~V} \text { steps } \\ & 5.0-150.0 \mathrm{~V} \text { in } 0.1 \mathrm{~V} \text { steps } \end{aligned}$
Auto-Reclose (option)	
ARC Reclaim Time Close Pulse Width Lock-out Recovery Time Sequences Dead Times (programmable for each shot)	$0.0-600.0$ s in 0.1 s steps $0.01-10.00$ s in 0.01 s steps OFF, $0.1-600.0 \mathrm{~s}$ in 0.1 s steps 1 - 5 Shots to Lock-out, each trip programmable for Inst or Delayed operation. 0.01 - 300.00s in 0.01 s steps
Metering Function	
Current Voltage Power Frequency	IL1, IL2, IL3, 3lo. Accuracy $\pm 0.5 \%$ (at rated frequency) V12, V23, V31, 3Vo. Accuracy $\pm 0.5 \%$ (at rated frequency) $P, Q, \cos \phi$, Wh, varh. Accuracy $\pm 1 \%$ (at rated frequency) Accuracy $\pm 0.05 \mathrm{~Hz}$
Control and Monitoring Function	
Control devices Circuit breaker $\times 1$, Disconnector $\times 5$, Earthing disconnector switch $\times 2$	Control input Interlock setting Interlock bypass setting Operate time counter Breaker travel time Double command blocking Control blocking

Disturbance record	
Analogue input Binary input Number of recordings Trigger Data format	Max. 9 Max. 32 6 at recording length 3 s Rising or falling edge of binary input OC, EF, SEF, NOC, OV, UV, NOV, ZOV COMTRADE format
Communication port - local PC (RS232)	
Connection: Cable type: Cable length: Connector:	Point to point Multi-core (straight) 15m (max.) RS232C 9-way D-type female
Communication port (RS485)	
Connection: Cable type: Cable length: Connector: Isolation: Transmission rate:	Multidrop (max. 32 relays) Twisted pair 1200m (max.) Screw terminals 1 kVac for 1 min . 64 kpbs for RSM-X protocol. 9.6, 19.2kbps for others
Communication port (Fibre Optic): Option	
Connection: Cable type: Cable length: Connector: Transmission rate:	Multidrop (max. number depending on protocol) or Star by using Opt. Hub $50 / 125 \mu \mathrm{~m}$ or $62.5 / 125 \mu \mathrm{~m}$ fibre 1000m (max.) ST 9.6, 19.2kbps
IRIG-B	
Connection:	Screw terminals
Binary Inputs	
Operating voltage	Typical $74 \mathrm{Vdc}($ min. 70 Vdc) for $110 \mathrm{~V} / 125 \mathrm{Vdc}$ rating Typical $138 \mathrm{Vdc}(\mathrm{min} .125 \mathrm{Vdc})$ for $220 \mathrm{~V} / 250 \mathrm{Vdc}$ rating Typical $31 \mathrm{Vdc}(\min .28 \mathrm{Vdc})$ for $48 \mathrm{~V} / 54 \mathrm{~V} / 60 \mathrm{Vdc}$ rating Typical $15 \mathrm{Vdc}(\min .14 \mathrm{Vdc})$ for 24 Vdc rating
Binary Outputs	
Number Ratings for tripping auxiliary relay	$8-32$ Make and carry: 4A continuously Make and carry: 20A, 290Vdc for 0.5s (L/R $\geq 5 \mathrm{~ms}$) Break: 0.1A, 290Vdc (L/R=40ms)
Mechanical design	
Weight Case color Installation Connection terminals TB1: TB2 - TB10:	8.9 kg (Standard model) Munsell No. 10YR8/0.5 Flush mounting M3.5 Ring terminal Phoenix Contact, UK MSTB Direct cable connection: AWG24 to AWG12 recommended, stripping length is 10 mm . Cable ferrule: AI 2,5-10BU from Phoenix Contact is recommended for AWG14 (cross-section $2 \mathrm{~mm}^{2}$). AI 1,5-10BK from Phoenix Contact is recommended for AWG14 (cross-section $1.25 \mathrm{~mm}^{2}$).

ENVIRONMENTAL PERFORMANCE

Test	Standards	Details
Atmospheric Environment		
Temperature	IEC60068-2-1/2	Operating range: $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Storage / Transit: $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Humidity	IEC60068-2-3	56 days at $40^{\circ} \mathrm{C}$ and 93% relative humidity.
Enclosure Protection	IEC60529	Front: IP51 or IP52 with cover Rear: IP20
Mechanical Environment		
Vibration	IEC60255-21-1	Response - Class 1 Endurance - Class 1
Shock and Bump	IEC60255-21-2	Shock Response Class 1 Shock Withstand Class 1 Bump Class 1
Seismic	IEC60255-21-3	Class 1
High Voltage Environment		
Dielectric Withstand	IEC60255-5	2 kV rms for 1 minute between all terminals and earth. 2 kVrms for 1 minute between independent circuits. 1 kV rms for 1 minute across normally open contacts.
High Voltage Impulse	IEC60255-5	Three positive and three negative impulses of 5 kV (peak), $1.2 / 50 \mu \mathrm{~s}, 0.5 \mathrm{~J}$ between all terminals and between all terminals and earth.
Electromagnetic Environment		
High Frequency Disturbance / Damped Oscillatory Wave	$\begin{aligned} & \text { IEC60255-22-1 Class 3, } \\ & \text { IEC61000-4-12 } \end{aligned}$	1 MHz 2.5 kV applied to all ports in common mode. 1 MHz 1.0 kV applied to all ports in differential mode.
Electrostatic Discharge	IEC60255-22-2 Class 3, IEC61000-4-2	6 kV contact discharge. 8 kV air discharge.
Radiated RF Electromagnetic Disturbance	$\begin{aligned} & \text { IEC60255-22-3 Class } 3^{(*)} \text {, } \\ & \text { IEC61000-4-3 } \\ & \text { Note (*): Class } 4 \text { with cover } \end{aligned}$	Field strength $10 \mathrm{~V} / \mathrm{m}$ for frequency sweeps of 80 MHz to 1 GHz and 1.7 GHz to 2.2 GHz . Additional spot tests at $80,160,450,900$ and 1890 MHz .
Fast Transient Disturbance	$\begin{array}{\|l} \text { IEC60255-22-4, } \\ \text { IEC61000-4-4 } \\ \hline \end{array}$	$4 \mathrm{kV}, 2.5 \mathrm{kHz}, 5 / 50 \mathrm{~ns}$ applied to all inputs.
Conducted RF Electromagnetic Disturbance	$\begin{aligned} & \text { IEC60255-22-6, } \\ & \text { IEC61000-4-6 } \end{aligned}$	10 Vrms applied over frequency range 150 kHz to 100 MHz . Additional spot tests at 27 and 68 MHz .
Conducted Disturbance over freq. Range 15 Hz to 150 kHz	IEC61000-4-16 Class 3	Varying voltages applied in common mode as follows: 15 Hz to $150 \mathrm{~Hz}: 10 \mathrm{~V} \rightarrow 1 \mathrm{Vrms}$ (20dB/decade) 150 Hz to 1.5 kHz : 1 Vrms 1.5 kHz to $15 \mathrm{kHz}: 1 \rightarrow 10 \mathrm{Vrms}$ (20dB/decade) 15 kHz to 150 kHz : 10 Vrms
Power Frequency Disturbance	IEC60255-22-7	300 V 50 Hz for 10 s applied to ports in common mode. 100 V 50 Hz for 10 s applied to ports in differential mode. Not applicable to AC inputs.

Test	Standards	Details
Surge Immunity	IEC60255-22-5	$1.2 / 50 \mu \mathrm{~s}$ surge in common/differential modes: Auxiliary power supply: 2kV/1kV (peak) Input/Output: 2kV/1kV (peak) RS485 port: 1kV (peak)
Conducted and Radiated Emissions	$\begin{aligned} & \text { IEC60255-25 } \\ & \text { EN55022 Class A } \end{aligned}$	Conducted emissions: 0.15 to $0.50 \mathrm{MHz}:<79 \mathrm{~dB}$ (peak) or $<66 \mathrm{~dB}$ (mean) 0.50 to 30 MHz : $<73 \mathrm{~dB}$ (peak) or $<60 \mathrm{~dB}$ (mean) Radiated emissions: 30 to 230 MHz : $<30 \mathrm{~dB}$ 230 to $1000 \mathrm{MHz}:<37 \mathrm{~dB}$
Power Frequency Magnetic Field	IEC61000-4-8 Class 4	Field applied at 50 Hz with strengths of: 30A/m continuously, $300 \mathrm{~A} / \mathrm{m}$ for 1 second.

PRPTOCOL CONVERTER G1PR2 (OPTION)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\mathbf{G}	\mathbf{R}	\mathbf{D}	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{0}$	-						0		

Configurations

Basic Standard model
with integral Sensitive Earth Fault function (SEF)
with integral Synchronism check, Auto Reclose function with integral SEF \& Synchronism check, Auto Reclose function

MIMIC panel

fixed on the front

BI/BO Module

$\mathrm{BI} \leq 10, \mathrm{BO} \leq 8$
$\mathrm{BI} \leq 21, \mathrm{BO} \leq 16$
$\mathrm{BI} \leq 32, \mathrm{BO} \leq 24$
$\mathrm{BI} \leq 43, \mathrm{BO} \leq 32$

Model version/ Language

A,B,C...

VT, CT, Frequency rating

100 - 120Vac, 1A, $50 \mathrm{~Hz}, 110 / 125 \mathrm{Vdc}$ $100-120 \mathrm{Vac}, 1 \mathrm{~A}, 60 \mathrm{~Hz}, 110 / 125 \mathrm{Vdc}$ $100-120 \mathrm{Vac}, 5 \mathrm{~A}, 50 \mathrm{~Hz}, 110 / 125 \mathrm{Vdc}$ $100-120 \mathrm{Vac}, 5 \mathrm{~A}, 60 \mathrm{~Hz}, 110 / 125 \mathrm{Vdc}$ $100-120 \mathrm{Vac}, 1 \mathrm{~A}, 50 \mathrm{~Hz}, 220 / 250 \mathrm{Vdc}$ $100-120 \mathrm{Vac}, 1 \mathrm{~A}, 60 \mathrm{~Hz}, 220 / 250 \mathrm{Vdc}$ $100-120 \mathrm{Vac}, 5 \mathrm{~A}, 50 \mathrm{~Hz}, 220 / 250 \mathrm{Vdc}$ $100-120 \mathrm{Vac}, 5 \mathrm{~A}, 60 \mathrm{~Hz}, 220 / 250 \mathrm{Vdc}$ $100-120 \mathrm{Vac}, 1 \mathrm{~A}, 50 \mathrm{~Hz}, 48 / 54 / 60 \mathrm{Vdc}$ 100 - 120Vac, 1A, $60 \mathrm{~Hz}, 48 / 54 / 60 \mathrm{Vdc}$ $100-120 \mathrm{Vac}, 5 \mathrm{~A}, 50 \mathrm{~Hz}, 48 / 54 / 60 \mathrm{Vdc}$
100 - 120Vac, 5A, 60Hz, 48/54/60Vdc
$100-120 \mathrm{Vac}, 1 \mathrm{~A}, 50 \mathrm{~Hz}, 24 \mathrm{Vdc}$
$100-120 \mathrm{Vac}, 1 \mathrm{~A}, 60 \mathrm{~Hz}, 24 \mathrm{Vdc}$
$100-120 \mathrm{Vac}, 5 \mathrm{~A}, 50 \mathrm{~Hz}, 24 \mathrm{Vdc}$
100 - 120Vac, $5 \mathrm{~A}, 60 \mathrm{~Hz}, 24 \mathrm{Vdc}$

Hardware options

Communication RS485
Fibre optic.
dual RS485
dual Fibre optic.
RS485 + fibre optic
RS485 + 10BASE-FL
RS485 + 100BASE-FX
RS485 + 10BASE-T
Fibre opt. + 10BASE-FL
Fibre opt. + 100BASE-FX
RS485 + dual 10BASE-FL
RS485 + dual 100BASE-FX
RS485 + dual 10BASE-T
Fibre opt. + dual 10BASE-FL
Fibre opt. + dual 100BASE-FX
Miscellaneous
None

ORDERING INFORMATION (cont'd)

PC TOOLS

\[\)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\mathbf{R}	\mathbf{S}	\mathbf{M}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	-	0		-	0	0	-	0	0	
:---															
RSM100 software (Standard)															
RSM100 + PLCEdit software															
RSM100 + MMEdit software															
RSM100 + PLCEdit + MMEdit software															

\]

GRD150

TYPICAL APPLICATIONS / CONNECTIONS

Figure 7 - GRD150 Typical Appliation Diagram

Figure 8 - Outline and Panel Cut-out Dimension

TOSHIBA CORPORATION

Power Systems Company
1-1,SHIBAURA 1-CHOME,MINATO-KU, TOKYO 105-8001,JAPAN
PHONE;+81-3-3457-3644 FAX;+81-3-5444-9168
http://www.toshiba-relays.com

