TYPE M EDGEWOUND RESISTORS

INSTRUCTIONS

General Information

The capacity of resistors depends largely upon the ventilating space. The frames should never be stacked more than 4 high, and, when space is available, each frame should be separated from the next by approximately the width of the end frame. Frames may be mounted on the floor, platform or on the wall, but in such a way as to obtain free ventilation.

Resistors should be given periodical inspections, that include the tightening of loose lock nuts, connections, etc. The collection of dirt and dust should be blown out from between the resistor units.

Westinghouse standard resistors, for starting and regulating the speed of motors, are rated in accordance with the National Electrical Manufacturers' Association Classification, shown in Table I. The name plates, on Westinghouse resistors specify horsepower and class numbers, which, if used in conjunction with Table I, indicate the rating of the resistor and the starting torque and current that will be obtained on the first point of the controller in per cent of full load.

TABLE I

Table I shows forty-two classes of resistors, but experience has shown that the requirements of practically all industrial applications can be met by classes 93, 95, 134, 135, 152, 153, 162 and 163.

Resistors for D-C. Motors

Resistors for D-C. motors may have one or more frames and the name plates should always be checked to see that all frames have been received. After connecting frames in series by connecting

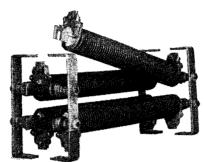


FIG. 1-TYPE M EDGEWOUND RESISTOR

A to A, B to B. etc., the resistor should be connected to the controller in line with the diagram inside of the controller cover. Fig. 3 shows resistor connections for a D-C. motor, for the specific case of a five-point resistor consisting of two frames

Fig. 2—Resistor Connections for D-C. Motors

Resistors for A-C. Motors

All standard A-C. wound rotor motors, whether for two or three phase circuits, have their secondaries wound for three phase. The resistors for each phase, used with these motors are identical with the exception of the terminal marking. The resistor for the first phase has its terminals marked consecutively R-1, R-2,

R-3, etc.: the second phase, R-11, R-12. R-13, etc.: the third phase, R-21, R-22, R-23, etc. The actual resistor will consist of 1, 2, 3 or multiples of three frames of tubes or grids. Check name plate to see if all frames have been received. When two frames are furnished, they should be connected in series by connecting terminals A to A. When three frames are furnished, this connection is not required. When more than three frames are supplied, sort out the frames for each phase according to the terminal marking, and connect those frames belonging to each phase by connecting A to A, B to B, etc. Make all other connections in line with the following information and the diagram located in controller cover.

Secondary resistors for A-C. motors are designed for star connection. Resistors for most manual controllers may be connected either with all three secondary phases closed or with one secondary phase open on the first point of the controller. Resistors for magnetic controllers are connected with all three phases closed in the secondary on the first point.

The torque obtained with a resistor of a given class number varies with the connection used on the first connection. The torques available on the first point with single phase and three phase starting are shown in Table 1. Where it is possible to use both methods of connection, the control diagram shows one method of connection, and explains how to obtain the other method. The method actually shown on the diagram is ordinarily recommended, but if a change in starting torque is desirable, the other method may be used.

							TABLE I	N. E. M. A.	CLASSIFIC	CATION					
•	Per cent	**STARTING TORQUE						Resistor Class Number							
	Full Load Current	S		it ors	Wor Ro Indu	tor ction									
	on First Point	Series Motor	Comp' Motor	Shunt Motors	Mot 1 Ph. Stg.	3 Ph. Stg.	5 Sec. on out of 80 Sec.	10 Sec. on out of 80 Sec.	15 Sec. on out of 90 Sec.	15 Sec. on out of 60 Sec.	15 Sec. on out of 45 Sec.	15 Sec. on out of 30 Sec.	Cont.		
	25 30 70	8 30 50	12 40 60	50	30	25 50 70	111 112 113	131 132 133	141 142 143	151 152 153	161 162 163	171 172 173	91 92 93		
	00 150 200	100 170 250	160	150	85	100 150 200	114 115 116	134 135 136	144 145 146	154 155 156	164 165 166	174 175 176	94 95 96		

**Based on Westinghouse Motors.

The letter D indicates additional capacity for dynamic lowering.

The letter B added to any class indicates additional step for dynamic braking.

TYPE M EDGEWOUND RESISTORS RENEWAL PARTS DATA

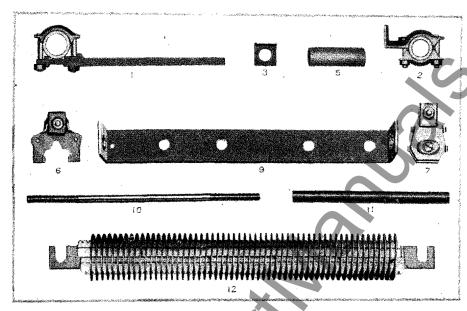


Fig. 3-Renewal Parts for Type M Edgewound Resisters.

Ref.	Name of Part Su	Style No.	‡Ref. No. 8 Supporting Strap for Pipe Mounting			
No.			Length	Style No.		
1		28887	131/4"	587654		
2		36302	151/4"	587655		
3		59785	171/4"	587656		
‡4	Mica Washer 4	59798	1914"	587657		
5	Spacer, 34" long	04014	231/4"	587658		
5	Spacer, 1" long	79372	2754"	586402		
5	Spacer, 1½" long	04016	311/4"	587660		
5		04017	331/4"	773819		
‡ ‡6	Terminal, Single 4.	59990	351/4"	587659		
$\triangle 6$	Terminal, Single	75520	3914"	773820		
7	Terminal, Double 50	08044	481/4"	773818		

	No. 9		No. 10		. 11					
End	Frame	Tie	e Rođ	Insulating Tube for Tie Rod						
Length	Style No.	Length	Style No.	Length	Style No.	Length	Style No.			
41/4"	490264	11 312"	466615	11/4"	490262	141/2"	292654			
778"	490263	7 "	508247	21/2"	317501	151/2"	292656			
12 "	591271	101/2"	388995	4 "	439566	17 "	292659			
16 "	591270	13 "	461442	51/2"	285778	181/2"	292662			
24 "	591269	151/2"	292629	7 7"	292639	20 "	292665			
		181/9"	292632	8½"	292642	2116"	292668			
1		2115"	461450	10 2"	292645	23'"	292671			
		241/2"	461453	111/2"	292648	241/5"	292674			
		27 "	461457	13 "	292651	, -				

Ref. No. 12—Resistor Unit. It is recommended that 5% of the total number of Resistor Units in use be carried in Stock for Renewals, and where the total of Resistor Units in use is less than 20, one of each style Unit should be carried. When ordering specify Name Plate Reading attached to each Unit.

‡Not illustrated. ‡Used with ".102 Diameter (*10) Wire. △Used with ".204 Diameter (*4) Wire.

ORDERING INSTRUCTIONS

Name the part and give its style number. Give the complete name plate reading. State whether shipment is desired by express, freight or by parcel post. Send all orders or correspondence to the nearest sales office of the company. Small orders should be combined so as to amount to a value of at least one dollar net. Where the total of the sale is less than this, the material will be invoiced at \$1.00.

Westinghouse Electric & Manufacturing Company

Instructions for Type M Edgewound Resistors

I.L. 1733-0

General Information

The capacity of resistors depends largely upon the ventilating space. The frames should never be stacked more than 4 high, and, when space is available. each frame should be separated from the next by approximately the width of the end frame. Frames may be mounted on the floor, platform or on the wall, but in such a way as to obtain free ventilation.

Resistors should be given periodical inspections, that include the tightening of loose lock nuts, connections, etc. The collection of dirt and dust should be blown out from between the resistor units.

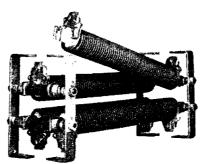

Westinghouse standard resistors, for starting and regulating the speed of motors, are rated in accordance with the National Electrical Manufacturers' Association Classification, shown in Table I. The name plates, on Westinghouse resistors specify horsepower and class numbers, which, if used in conjunction with Table I, indicate the rating of the resistor and the starting torque and current that will be obtained on the first point of the controller in per cent of full load.

TABLE I

Table I shows forty-two classes of resistors, but experience has shown that the requirements of practically all industrial applications can be met by classes 93. 95, 134, 135, 152, 153, 162 and 163.

Resistors for D-C. Motors

one or more frames and the name plates should always be checked to see that all exception of the terminal marking. The frames have been received. After connecting frames in series by connecting minals marked consecutively R-1, R-2.

Type M Edgewound Resistor

A to A, B to B, etc., the resistor should be connected to the controller in line with the diagram inside of the controller cover. Fig. 2 shows resistor connections for a D-C. motor, for the specific case of a five-point resistor consisting of two frames.

RESISTOR CONNECTIONS FOR D.C. MOTORS

Resistors for A-C. Motors

All standard A-C. wound rotor motors, whether for two or three phase circuits, have their secondaries wound for three Resistors for D-C. motors may have phase. The resistors, for each phase, used with these motors are identical with the resistor for the first phase has its ter-

R-3, etc.; the second phase, R-11, R-12, R-13, etc.; the third phase, R-21, R-22, R-23, etc. The actual resistor will consist of 1, 2, 3 or multiples of three frames of tubes or grids. Check name plate to see if all frames have been received. When two frames are furnished, they should be connected in series by connecting terminals A to A. When three frames are furnished, this connection is not required. When more than three frames are supplied, sort out the frames for each phase according to the terminal marking, and connect those frames belonging to each phase by connecting A to A, B to B. etc. Make all other connections in line with the following information and the diagram located in controller cover.

Secondary resistors for A-C. motors are designed for star connection. Resistors for most manual controllers may be connected either with all three secondary phases closed or with one secondary phase open on the first point of the controller. Resistors for magnetic controllers are connected with all three phases closed in the secondary on the first point.

The torque obtained with a resistor of a given class number varies with the connection used on the first connection. The torques available on the first point with single phase and three phase starting are shown in Table I. Where it is possible to use both methods of connection, the control diagram shows one method of connection, and explains how to obtain the other method. The method actually shown on the diagram is ordinarily recommended, but if a change in starting torque is desirable, the other method may be used.

-			TABLE I—N. E. M. A. CLASSIFICATI●N											
	Per cent **Starting Torque						RESISTOR CLASS NUMBER							
	Full Load Current on First Point	s ors	p'd ors	Shunt Motors	Wound Rotor Induction									
		Series Motors	Comp'd Motors		1 Ph. Stg.	3 Ph. Stg.	5 Sec. on out of 80 Sec.	10 Sec. on out of 80 Sec.	15 Sec. on out of 90 Sec.	15 Sec. on out of 60 Sec.	15 Sec. on out of 45 Sec.	15 Sec. on out of 30 Sec.	Cont.	
•	25 30 70	8 30 50		25 50 70	15 30 40	25 50 70	111 112 113	131 132 133	141 142 143	151 152 153	161 162 163	171 172 173	91 92 93	
	100 150 200	100 170 250	160	100 150 200	85	100 150 200	114 115 116	134 135 136	144 145 146	154 155 156	164 165 166	174 175 176	94 95 96	

**Based on Westinghouse Motors.

The letter DL indicates additional capacity for dynamic lowering.

The letter DB added to any class indicates additional step for dynamic braking.