

#### **Important Information**

Misuse of this equipment can result in property damage or human injury. Because controlled system applications vary widely, you should satisfy yourself as to the acceptability of this equipment for your intended purpose. In no event will Toshiba Corporation be responsible or liable for either indirect or consequential damage or injury that may result from the use of this equipment. 6F3B0250

No patent liability is assumed by Toshiba Corporation with respect to use of information, illustrations, circuits, equipment or examples of application in this publication.

Toshiba Corporation reserves the right to make changes and improvements to this publication and/or related products at any time without notice. No obligation shall be incurred other than as noted in this publication.

This publication is copyrighted and contains proprietary material. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means — electrical, mechanical, photocopying, recording, or otherwise — without obtaining prior written permission from Toshiba Corporation.

© TOSHIBA Corporation 1995. All rights reserved

PROSEC and TOSLINE are registered trademarks of TOSHIBA Corporation.

IBM is a registered trademark of International Business Machines Corporation. MS-DOS and Windows are registered trademarks of Microsoft Corporation.

Publication number: UM-TS01\*\*\*-E001 1st edition December 1995, 4th edition February 1998

## **CE Marking**

The Programmable Controller PROSEC T1 and T1S (hereafter called T1/T1S) complies with the requirements of the EMC Directive 89/336/EEC and Low Voltage Directive 72/23/EEC under the condition of use according to the instructions described in this manual. The contents of the conformity are shown below.

| Application of                                                              | EMC :      | 89/336/EEC (as amended by 91/263/EEC and 92/31/EEC) |  |
|-----------------------------------------------------------------------------|------------|-----------------------------------------------------|--|
| Council Directive                                                           | LVD :      | 72/23/EEC (as amended by 93/68/EEC)                 |  |
|                                                                             |            |                                                     |  |
| Manufacture's Name                                                          | :          | Toshiba Corporation, Fuchu Works                    |  |
| Address                                                                     | :          | 1, Toshiba-Cho                                      |  |
|                                                                             |            | Fuchu-shi                                           |  |
|                                                                             |            | ТОКҮО 183                                           |  |
|                                                                             |            | Japan                                               |  |
| declares, that the product                                                  |            |                                                     |  |
|                                                                             |            |                                                     |  |
| Product Name                                                                | :          | Programmable Controller, TI Series                  |  |
|                                                                             |            |                                                     |  |
| Model Number                                                                | :          | TDR116*6S, TAR116*6S, TDR116*3S                     |  |
|                                                                             |            | TDR128*6S, TAR128*6S, TDR128*3S                     |  |
|                                                                             |            | TDR140*6S, TAR140*6S, TDR140*3S                     |  |
|                                                                             |            | TDR140S6S, TAR140S6S, TDR140S3S                     |  |
|                                                                             |            |                                                     |  |
| conforms to the following                                                   | Product Sp | pecifications:                                      |  |
| EMC                                                                         |            |                                                     |  |
|                                                                             |            |                                                     |  |
| Radiated Interference                                                       | ÷          | EN 55011 Group I Class A                            |  |
| Mains Interference                                                          |            | EN 55011 Group I Class A                            |  |
| Radiated Susceptibility                                                     | 1.11.      | ENV50140                                            |  |
| Conducted RF1 Suscepti                                                      | omty :     | ENV50141, IEC100-4-6.                               |  |
| Electrostatic Discharge                                                     | X          | IEC1000-4-2                                         |  |
| Electrical Fast Transien                                                    |            | IEC1000-4-4                                         |  |
|                                                                             | 1.         | EN61121 2:1005 2:10 Dialastria Properties           |  |
|                                                                             | •          | A Mechanical Requirements                           |  |
|                                                                             |            | 4. Mechanical Requirements                          |  |
|                                                                             |            |                                                     |  |
| Supplementary informat                                                      | tion ·     |                                                     |  |
| (1) Included Handy Progr                                                    | ammer TH   | IP911A*S                                            |  |
| (2) Included each type of                                                   | associated | input/output unit in a typical configuration        |  |
| (2) Product must be installed in accordance with manufacturers instructions |            |                                                     |  |
|                                                                             |            |                                                     |  |
|                                                                             |            |                                                     |  |

NNN

6F3B0250

# UL/c-UL Listing

6F3B0250

The Programmable Controller PROSEC T1 and T1S (hereafter called T1/T1S) are UL/c-UL listed as shown below.

| UL and c-UL Listing                 |                                                                                                  |
|-------------------------------------|--------------------------------------------------------------------------------------------------|
| The Manual and                      | E05/27                                                                                           |
| File Number :                       | E95637                                                                                           |
| Product Name :<br>Product Covered : | Main Unit                                                                                        |
| Trouber Covereu.                    | TDR116*6S TAR116*6S TDR116*3S                                                                    |
|                                     | TDR128*6S TAR128*6S TDR128*3S                                                                    |
|                                     | TDR140*6S TAR140*6S TDR140*3S                                                                    |
|                                     | TDR140S6S TAR140S6S TDR140S3S                                                                    |
|                                     | Option Card                                                                                      |
|                                     | TDI116*BS, TDD116*BS, TDO116*BS,                                                                 |
|                                     | TAD121*BS, TAD131*BS, TDA121*BS, TDA131*BS,                                                      |
|                                     | TFR112*BS                                                                                        |
|                                     | Expansion Unit                                                                                   |
|                                     | TDR132E*S, TAR132E*S                                                                             |
|                                     | Expansion Rack                                                                                   |
|                                     | TBU152**S, TBU154**S                                                                             |
|                                     | Peripherals                                                                                      |
|                                     | TRM102**S, TCU111**S, THP911A*S                                                                  |
|                                     |                                                                                                  |
| UL and c-UL Listing Fo              | or Use in Hazardous Locations                                                                    |
|                                     |                                                                                                  |
| File Number :                       |                                                                                                  |
| Product Name :                      | Programmable Controller, 11 Series                                                               |
| Product Covered :                   | Main Unit                                                                                        |
|                                     | 1DK110*05, 1AK110*05, 1DK110*55,                                                                 |
|                                     | $TDR128^{*}05$ , $TAR128^{*}05$ , $TDR128^{*}35$ ,<br>$TDR140*65$ , $TAR128^{*}65$ , $TDR140*25$ |
| Locations Class                     | Class I Division 2 Groups A B C D                                                                |
| Locations Class:                    | Class I, Division 2, Groups A, B, C, D                                                           |
| Important Notice :                  | 1 THIS FOUIPMENT IS SUITABLE FOR USE IN CLASS I                                                  |
| important route t                   | DIVISION 2. GROUPS A. B. C. D OR NON-HAZARDOUS                                                   |
|                                     | LOCATIONS ONLY.                                                                                  |
|                                     | 2. WARNING - EXPLOSION HAZARD - SUBSTITUTION OF                                                  |
|                                     | COMPONENTS MAY IMPAIR SUITABILITY FOR CLASS I,                                                   |
|                                     | DIVISION 2.                                                                                      |
|                                     | 3. WARNING - EXPLOSION HAZARD - DO NOT DISCONNECT                                                |
|                                     | EQUIPMENT UNLESS POWER HAS BEEN SWITCHED OFF                                                     |
| •                                   | OR THE AREA IS KNOWN TO BE NON-HAZARDOUS.                                                        |
|                                     |                                                                                                  |
|                                     |                                                                                                  |
|                                     |                                                                                                  |
|                                     |                                                                                                  |
|                                     |                                                                                                  |
|                                     |                                                                                                  |
|                                     |                                                                                                  |
|                                     |                                                                                                  |

T1/T1S User's Manual

This manual is prepared for users of Toshiba's Programmable Controller T1/T1S. Read this manual thoroughly before using the T1/T1S. Also, keep this manual and related manuals so that you can read them anytime while the T1/T1S is in operation.

#### **General Information**

- The T1/T1S has been designed and manufactured for use in an industrial environment. However, the T1/T1S is not intended to be used for systems which may endanger human life. Consult Toshiba if you intend to use the T1/T1S for a special application, such as transportation machines, medical apparatus, aviation and space systems, nuclear controls, submarine systems, etc.
- 2. The T1/T1S has been manufactured under strict quality control. However, to keep safety of overall automated system, fail-safe systems should be considered outside the T1/T1S.
- In installation, wiring, operation and maintenance of the T1/T1S, it is assumed that the users have general knowledge of industrial electric control systems. If this product is handled or operated improperly, electrical shock, fire or damage to this product could result.
- 4. This manual has been written for users who are familiar with Programmable Controllers and industrial control equipment. Contact Toshiba if you have any questions about this manual.
- 5. Sample programs and circuits described in this manual are provided for explaining the operations and applications of the T1/T1S. You should test completely if you use them as a part of your application system.

#### **Hazard Classifications**

In this manual, the following two hazard classifications are used to explain the safety precautions.

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.

Even a precaution is classified as CAUTION, it may cause serious results depending on the situation. Observe all the safety precautions described on this manual.

6E3B0250

6E3B0250

#### Installation:



### 

- 1. Turn off power before wiring to minimize the risk of electrical shock.
- 2. Exposed conductive parts of wire can cause electrical shock. Use crimp-style terminals with insulating sheath or insulating tape to cover the conductive parts. Also close the terminal covers securely on the terminal blocks when wiring has been completed.
- 3. Operation without grounding may cause electrical shock or malfunction. Connect the ground terminal on the T1/T1S to the system ground.
- 4. Applying excess power voltage to the T1/T1S can cause explosion or fire. Apply power of the specified ratings described in the manual.
- 5. Improper wiring can cause fire, electrical shock or malfunction. Observe local regulations on wiring and grounding.

#### **Operation:**

### 

1. Configure emergency stop and safety interlocking circuits outside the T1/T1S. Otherwise, malfunction of the T1/T1S can cause injury or serious accidents.





6E3B0250

6F3B0250

#### Maintenance:

T1/T1S User's Manual

### 

- 1. Turn off power before removing or replacing units, modules, terminal blocks or wires. Failure to do so can cause electrical shock or damage to the T1/T1S and related equipment.
- 2. When you remove both input and output terminal blocks with wires for maintenance purpose, pay attention to prevent inserting them upside down.
- 3. Do not insert your finger into the expansion rack's ventilation hole during power on. This can cause electrical shock.
- 4. Do not disassemble the T1/T1S because there are hazardous voltage parts inside.
- 5. Perform daily checks, periodical checks and cleaning to maintain the system in normal condition and to prevent unnecessary troubles.
- Check by referring "Troubleshooting" section of this manual when operating improperly. Contact Toshiba for repairing if the T1/T1S or related equipment is failed. Toshiba will not guarantee proper operation nor safety for unauthorized repairing.
- 7. The contact reliability of the output relays will reduce if the switching exceeds the specified life. Replace the unit or module if exceeded.

# 6F3B0250 Safety Precautions Safety Label The safety label as shown on the right is CAUTION attached to the power terminal of the T1/T1S. Do not touch terminals Remove the mount paper before wiring. while power on. Hazardous voltage can shock, burn or cause death. Do not touch terminals while power on. Read related manual thoroughly for safety. Stick this seal on unit or near unit. Peel off the label from the mount paper and stick it near the power terminals where it can be readily seen. Take off this sheet before wiring. Contact Toshiba if the label is damaged. M Basic Hardware and Function **7**

#### **About This Manual**

#### **About This Manual**

This manual has been prepared for first-time users of Toshiba's Programmable Controller T1 and/or T1S to enable a full understanding of the configuration of the equipment, and to enable the user to obtain the maximum benefits of the equipment.

6E3B0250

This manual introduces the T1 and T1S, and explains the system configuration, specifications, installation and wiring for T1/T1S's basic hardware. This manual provides the information for designing T1/T1S user program, such as the internal operation, memory configuration, I/O allocation and programming instructions. Information for maintenance and troubleshooting are also provided in this manual.

The specifications of the option cards, expansion units, and I/O modules, and how to use them, are explained in the separate manual. Read the T1/T1S User's Manual - Expansion I/O - when using the option cards, expansion units, and/or I/O modules. The T1/T1S's computer link function and T1S's multi-purpose communication functions are covered by the separate manual. Read the T1/T1S User's Manual - Communication Function - for details.

#### **Inside This Manual**

This manual consists of 10 main sections and an appendix.

Section 1 outlines the T1/T1S configuration. To fully understand the T1/T1S, it is important to read this section carefully. Sections 2, to 4 describe the hardware used in designing external circuits and panels. Sections 5 to 7 are mainly concerned with software. Section 8 explains the T1/T1S's special I/O functions. Sections 9 and 10 describe the maintenance procedure for the T1/T1S, to ensure safe operation and long service life.

#### **Related Manuals**

The following related manuals are available for T1/T1S. Besides this manual, read the following manuals for your better understanding.

T1/T1S User's Manual - Basic Hardware and Function - (this manual) T1/T1S User's Manual - Expansion I/O -T1/T1S User's Manual - Communication Function -T-Series Handy Programmer (HP911) Operation Manual T-Series Program Development System (T-PDS) User's Manual



Other than the listed above, some T1 related manuals for special I/O modules and data transmission modules are available. Contact Toshiba for more information.

T1/T1S User's Manual

### **About This Manual**

### Terminology

The following is a list of abbreviations and acronyms used in this manual.

| μS     | microsecond                                                      |
|--------|------------------------------------------------------------------|
| ASCII  | American Standard Code For Information Interchange               |
| AWG    | American Wire Gage                                               |
| BCC    | Block Check Code                                                 |
| CCW    | Counter-Clockwise                                                |
| CPU    | Central Processing Unit                                          |
| CW     | Clockwise                                                        |
| EEPROM | Electrically Erasable Programmable Read Only Memory              |
| н      | hexadecimal (when it appears in front of an alphanumeric string) |
| I/O    | Input/Output                                                     |
| LED    | Light Emitting Diode                                             |
| LSB    | Least Significant Bit                                            |
| ms     | millisecond                                                      |
| MSB    | Most Significant Bit                                             |
| PWM    | Pulse Width Modulation                                           |
| RAM    | Random Access Memory                                             |
| ROM    | Read Only Memory                                                 |
| Vac    | AC voltage                                                       |
| Vdc    | DC voltage                                                       |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        | *.U                                                              |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        | <b>7</b>                                                         |
| •      |                                                                  |
| •      |                                                                  |
| Ť      |                                                                  |
| 2      |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        |                                                                  |
|        | Basic Hardware and Fu                                            |
|        |                                                                  |

### Contents

#### **Contents**

| 1.    | System Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.1   | Introducing the T1 and T1S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.2   | Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.3   | System configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.4   | I/O expansion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.5   | Components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.5.1 | Basic unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.5.2 | Option cards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.5.3 | Expansion rack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.5.4 | I/O modules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.5.5 | Expansion unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.5.6 | Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.6   | Computer link system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.7   | T1S communication function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.8   | Real-time data link system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.9   | Peripheral tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.    | Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21    | General specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 22    | External dimensions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.3   | Eulerian anteriority in the second se |
| 2.0   | I/O specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.1   | T1-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 242   | T1-28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.4.3 | T1-40/T1-40S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2     | 1/O Application Processions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| э.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.1   | Application precautions for input signals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.2   | Application precautions for output signals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.    | Installation and Wiring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4.1   | Environmental conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4.1   | Installing the unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4.2   | Wiring torminals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4.5   | Grounding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4.4   | Bower supply wiring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4.5   | Power suppry winning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

6F3B0250

**)** 

| 5.       Operating System Overview         5.1       Operation modes         5.2       About the built-in EEPROM         5.3       Scanning         6.       Programming Information         6.1       Devices and registers         6.2       Index modification         6.3       Real-time clock/calendar         6.4       I/O allocation         6.5       T1S memory mode setting         6.6       User program configuration         6.6.1       Main program         6.6.2       Sub-program #1         6.6.3       Timer interrupt program         6.6.4       I/O interrupt programs         6.6.5       Suboutines         6.7       Programming language         6.8       Program execution sequence         6.9       On-line debug support functions         6.10       Password protection         7.1       List of instructions         7.2       Instruction specifications         7.3       Special I/O Functions         8.4       Special I/O function overview         8.5       Special I/O function overview         8.1       Special I/O function overview         8.2       Variable input filter constant |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.       Operating System Overview         5.1       Operation modes         5.2       About the built-in EEPROM         5.3       Scanning         6.       Programming Information         6.1       Devices and registers         6.2       Index modification         6.3       Real-time clock/calendar         6.4       I/O allocation         6.5       T1S memory mode setting         6.6       User program configuration         6.6.1       Main program         6.6.2       Sub-program #1         6.6.3       Timer interrupt program         6.6.4       I/O interrupt programs         6.6.5       Suborotines         6.7       Programming language         6.8       Program execution sequence         6.9       On-line debug support functions         6.10       Password protection         7.1       List of instructions         7.2       Instructions         8.1       Special I/O Functions         8.1       Special I/O function overview         8.2       Variable input filter constant         8.3.1       Single ohase up-counter         8.3.2       Single ohase spened-counter                  |
| 5.1       Operation modes         5.2       About the built-in EEPROM         5.3       Scanning         5.4       Programming Information         6.       Programming Information         6.1       Devices and registers         6.2       Index modification         6.3       Real-time clock/calendar         6.4       I/O allocation         6.5       T1S memory mode setting         6.6       User program configuration         6.6.1       Main program         6.6.2       Sub-program #1         6.6.3       Timer interrupt programs         6.6.4       I/O interrupt programs         6.6.5       Subroutines         6.7       Programming language         6.8       Program execution sequence         6.9       On-line debug support functions         6.10       Password protection         7.1       List of instructions         7.2       Instructions         7.3       Special I/O Functions         8.4       Special I/O Functions         8.5       Special I/O function overview         8.1       Single phase up-counter         8.3.1       Single onase speed-counter                              |
| 5.1       About the built-in EEPROM         5.3       Scanning         6.       Programming Information         6.1       Devices and registers         6.2       Index modification         6.3       Real-time clock/calendar         6.4       I/O allocation         6.5       T1S memory mode setting         6.6       User program configuration         6.6.1       Main program         6.6.2       Sub-program #1         6.6.3       Timer interrupt program         6.6.4       I/O interrupt programs         6.6.5       Subroutines         6.7       Programming language         6.8       Program execution sequence         6.9       On-line debug support functions         6.10       Password protection         7.1       List of instructions         7.2       Instructions         7.3       Special I/O Functions         8.4       Special I/O function overview         8.2       Variable input filter constant         8.3.1       Single phase up-counter         8.3.1       Single phase up-counter                                                                                                   |
| 5.2       Addd file builtent EEE NOM         5.3       Scanning         6.       Programming Information         6.1       Devices and registers         6.2       Index modification         6.3       Real-time clock/calendar         6.4       I/O allocation         6.5       T1S memory mode setting         6.6       User program configuration         6.6.1       Main program         6.6.2       Sub-program #1         6.6.3       Timer interrupt program         6.6.4       I/O interrupt programs         6.6.5       Subroutines         6.7       Programming language         6.8       Program execution sequence         6.9       On-line debug support functions         6.10       Password protection         7.1       List of instructions         7.2       Instructions sequence         8.       Special I/O Functions         8.1       Special I/O Functions         8.1       Special I/O function overview         8.2       Variable input filter constant         8.3       High speed counter         8.3.1       Single phase up-counter                                                         |
| 5.3       Scanning         6.       Programming Information         6.1       Devices and registers         6.2       Index modification         6.3       Real-time clock/calendar         6.4       I/O allocation         6.5       T1S memory mode setting         6.6       User program configuration         6.6.1       Main program         6.6.2       Sub-program #1         6.6.3       Timer interrupt program         6.6.4       I/O interrupt programs         6.6.5       Subroutines         6.7       Programming language         6.8       Program execution sequence         6.9       On-line debug support functions         6.10       Password protection         7.1       List of instructions         7.2       Instructions         7.3       Special I/O Functions         8.4       Special I/O function overview         8.5       Variable input filter constant         8.3       High speed counter         8.3.1       Single phase up-counter         8.3.2       Single phase speed-counter                                                                                                       |
| 6.       Programming Information         6.1       Devices and registers         6.2       Index modification         6.3       Real-time clock/calendar         6.4       I/O allocation         6.5       T1S memory mode setting         6.6       User program configuration         6.6.1       Main program         6.6.2       Sub-program #1         6.6.3       Timer interrupt program         6.6.4       I/O interrupt programs         6.6.5       Subroutines         6.7       Program execution sequence         6.8       Program execution sequence         6.9       On-line debug support functions         6.10       Password protection         7.1       List of instructions         7.2       Instructions         7.3       Special I/O Functions         8.4       Special I/O function overview         8.5       Variable input filter constant         8.3       High speed counter         8.3.1       Single phase up-counter         8.3.2       Single phase up-counter                                                                                                                               |
| 6.1       Devices and registers         6.2       Index modification         6.3       Real-time clock/calendar         6.4       I/O allocation         6.5       T1S memory mode setting         6.6       User program configuration         6.6.1       Main program         6.6.2       Sub-program #1         6.6.3       Timer interrupt program         6.6.4       I/O interrupt programs         6.6.5       Subroutines         6.7       Programming language         6.8       Program execution sequence         6.9       On-line debug support functions         6.10       Password protection         7.1       List of instructions         7.2       Instructions         7.3       Special I/O Functions         8.4       Special I/O function overview         8.2       Variable input filter constant         8.3       High speed counter         8.3.1       Single phase up-counter         8.3.2       Single phase speed-counter                                                                                                                                                                           |
| 6.2       Index modification         6.3       Real-time clock/calendar         6.4       I/O allocation         6.5       T1S memory mode setting         6.6       User program configuration         6.6       User program configuration         6.6.1       Main program         6.6.2       Sub-program #1         6.6.3       Timer interrupt program         6.6.4       I/O interrupt programs         6.6.5       Subroutines         6.7       Program execution sequence         6.8       Program execution sequence         6.9       On-line debug support functions         6.10       Password protection         7.1       List of instructions         7.2       Instructions         7.3       Special I/O Functions         8.4       Special I/O function overview         8.5       Special I/O function overview         8.1       Special I/O function overview         8.2       Variable input filter constant         8.3       Single phase up-counter         8.3.1       Single phase up-counter                                                                                                          |
| 6.3       Real-time clock/calendar         6.4       I/O allocation         6.5       T1S memory mode setting         6.6       User program configuration         6.6       User program configuration         6.6.1       Main program         6.6.2       Sub-program #1         6.6.3       Timer interrupt program         6.6.4       I/O interrupt programs         6.6.5       Subroutines         6.7       Program execution sequence         6.8       Program execution sequence         6.9       On-line debug support functions         6.10       Password protection         7.1       List of instructions         7.2       Instructions         7.3       Special I/O Functions         8.4       Special I/O function overview         8.5       Special I/O function overview         8.1       Special I/O function overview         8.2       Variable input filter constant         8.3       Single phase up-counter         8.3.1       Single phase speed-counter                                                                                                                                            |
| 6.4       I/O allocation         6.5       T1S memory mode setting         6.6       User program configuration         6.6.1       Main program         6.6.2       Sub-program #1         6.6.3       Timer interrupt program         6.6.4       I/O interrupt programs         6.6.5       Subroutines         6.6.7       Program execution sequence         6.8       Program execution sequence         6.9       On-line debug support functions         6.10       Password protection         7.1       List of instructions         7.2       Instruction specifications         8.       Special I/O Functions         8.1       Special I/O function overview         8.2       Variable input filter constant         8.3       Single phase up-counter         8.3       Single phase up-counter                                                                                                                                                                                                                                                                                                                          |
| 6.5       T1S memory mode setting         6.6       User program configuration         6.6.1       Main program         6.6.2       Sub-program #1         6.6.3       Timer interrupt program         6.6.4       I/O interrupt programs         6.6.5       Subroutines         6.7       Programming language         6.8       Program execution sequence         6.9       On-line debug support functions         6.10       Password protection         7.1       List of instructions         7.2       Instructions         8.       Special I/O Functions         8.1       Special I/O Functions         8.2       Variable input filter constant         8.3       Light speed counter         8.3       Single phase up-counter         8.32       Single phase up-counter                                                                                                                                                                                                                                                                                                                                                  |
| 6.5       User program configuration         6.6       User program configuration         6.6.1       Main program         6.6.2       Sub-program #1         6.6.3       Timer interrupt program         6.6.4       I/O interrupt programs         6.6.5       Subroutines         6.7       Programming language         6.8       Program execution sequence         6.9       On-line debug support functions         6.10       Password protection         7.1       List of instructions         7.2       Instructions         8.       Special I/O Functions         8.1       Special I/O Functions         8.2       Variable input filter constant         8.3       Single phase up-counter         8.3.1       Single phase up-counter                                                                                                                                                                                                                                                                                                                                                                                    |
| 6.6       Main program         6.6.1       Main program         6.6.2       Sub-program #1         6.6.3       Timer interrupt program         6.6.4       I/O interrupt programs         6.6.5       Subroutines         6.6.7       Programming language         6.8       Program execution sequence         6.9       On-line debug support functions         6.10       Password protection         7.1       List of instructions         7.2       Instructions         8.       Special I/O Functions         8.1       Special I/O function overview         8.2       Variable input filter constant         8.3       Single phase up-counter         8.32       Single phase speed-counter                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6.6.1       Main program #1         6.6.2       Sub-program #1         6.6.3       Timer interrupt program         6.6.4       I/O interrupt programs         6.6.5       Subroutines         6.7       Program ming language         6.8       Program execution sequence         6.9       On-line debug support functions         6.10       Password protection         7.       Instructions         7.1       List of instructions         7.2       Instruction specifications         8.       Special I/O Functions         8.1       Special I/O function overview         8.2       Variable input filter constant         8.3       Single phase up-counter         8.3       Single phase up-counter                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6.6.2       Sub-program #1         6.6.3       Timer interrupt program         6.6.4       I/O interrupt programs         6.6.5       Subroutines         6.6.7       Programming language         6.8       Program execution sequence         6.9       On-line debug support functions         6.10       Password protection         7.1       List of instructions         7.2       Instructions         7.3       Instructions         7.4       List of instructions         7.5       Instructions         7.6       Special I/O Functions         8.       Special I/O function overview         8.1       Special I/O function overview         8.2       Variable input filter constant         8.3       High speed counter         8.3.1       Single phase up-counter         8.3.2       Single phase speed-counter                                                                                                                                                                                                                                                                                                      |
| <ul> <li>6.6.3 Timer interrupt program</li> <li>6.6.4 I/O interrupt programs</li> <li>6.6.5 Subroutines</li> <li>6.7 Programming language</li> <li>6.8 Program execution sequence</li> <li>6.9 On-line debug support functions</li> <li>6.10 Password protection</li> <li>7. Instructions</li> <li>7.1 List of instructions</li> <li>7.2 Instruction specifications</li> <li>8. Special I/O Functions</li> <li>8.1 Special I/O function overview</li> <li>8.2 Variable input filter constant</li> <li>8.3 Single phase up-counter</li> <li>8.3 2</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>6.6.4 I/O interrupt programs</li> <li>6.6.5 Subroutines</li> <li>6.7 Programming language</li> <li>6.8 Program execution sequence</li> <li>6.9 On-line debug support functions</li> <li>6.10 Password protection</li> <li>7. Instructions</li> <li>7.1 List of instructions</li> <li>7.2 Instruction specifications</li> <li>8. Special I/O Functions</li> <li>8.1 Special I/O Functions</li> <li>8.1 Special I/O function overview</li> <li>8.2 Variable input filter constant</li> <li>8.3 High speed counter</li> <li>8.3.1 Single phase up-counter</li> <li>8.32</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>6.6.5 Subroutines</li> <li>6.7 Programming language</li> <li>6.8 Program execution sequence</li> <li>6.9 On-line debug support functions</li> <li>6.10 Password protection</li> <li>7. Instructions</li> <li>7.1 List of instructions</li> <li>7.2 Instruction specifications</li> <li>8. Special I/O Functions</li> <li>8.1 Special I/O function overview</li> <li>8.2 Variable input filter constant</li> <li>8.3 High speed counter</li> <li>8.3 Single phase up-counter</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>6.7 Programming language</li> <li>6.8 Program execution sequence</li> <li>6.9 On-line debug support functions</li> <li>6.10 Password protection</li> <li>7. Instructions</li> <li>7.1 List of instructions</li> <li>7.2 Instruction specifications</li> <li>8. Special I/O Functions</li> <li>8.1 Special I/O function overview</li> <li>8.2 Variable input filter constant</li> <li>8.3 High speed counter</li> <li>8.3.1 Single phase up-counter</li> <li>8.32 Single phase speed-counter</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>6.8 Program execution sequence</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>6.9 On-line debug support functions</li> <li>6.10 Password protection</li> <li>7. Instructions</li> <li>7.1 List of instructions</li> <li>7.2 Instruction specifications</li> <li>8. Special I/O Functions</li> <li>8.1 Special I/O function overview</li> <li>8.2 Variable input filter constant</li> <li>8.3 High speed counter</li> <li>8.3.1 Single phase up-counter</li> <li>8.3.2 Single phase speed-counter</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>6.10 Password protection</li> <li>7. Instructions</li> <li>7.1 List of instructions</li> <li>7.2 Instruction specifications</li> <li>8. Special I/O Functions</li> <li>8.1 Special I/O function overview</li> <li>8.2 Variable input filter constant</li> <li>8.3 High speed counter</li> <li>8.3.1 Single phase up-counter</li> <li>8.3.2 Single phase speed-counter</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>7. Instructions</li> <li>7.1 List of instructions</li> <li>7.2 Instruction specifications</li> <li>8. Special I/O Functions</li> <li>8.1 Special I/O function overview</li> <li>8.2 Variable input filter constant</li> <li>8.3 High speed counter</li> <li>8.3.1 Single phase up-counter</li> <li>8.3.2 Single phase speed-counter</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>7. Instructions</li> <li>7.1 List of instructions</li> <li>7.2 Instruction specifications</li> <li>8. Special I/O Functions</li> <li>8.1 Special I/O function overview</li> <li>8.2 Variable input filter constant</li> <li>8.3 High speed counter</li> <li>8.3.1 Single phase up-counter</li> <li>8.3.2 Single phase speed-counter</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>7.1 List of instructions</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>7.2 Instruction specifications</li> <li>8. Special I/O Functions</li> <li>8.1 Special I/O function overview</li> <li>8.2 Variable input filter constant</li> <li>8.3 High speed counter</li> <li>8.3.1 Single phase up-counter</li> <li>8.3.2 Single phase speed-counter</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>8. Special I/O Functions</li> <li>8.1 Special I/O function overview</li> <li>8.2 Variable input filter constant</li> <li>8.3 High speed counter</li> <li>8.3.1 Single phase up-counter</li> <li>8.3.2 Single phase speed-counter</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>8. Special I/O Functions</li> <li>8.1 Special I/O function overview</li> <li>8.2 Variable input filter constant</li> <li>8.3 High speed counter</li> <li>8.3.1 Single phase up-counter</li> <li>8.3.2 Single phase speed-counter</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>8.1 Special I/O function overview</li> <li>8.2 Variable input filter constant</li> <li>8.3 High speed counter</li> <li>8.3.1 Single phase up-counter</li> <li>8.3.2 Single phase speed-counter</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>8.2 Variable input filter constant</li> <li>8.3 High speed counter</li> <li>8.3.1 Single phase up-counter</li> <li>8.3.2 Single phase speed-counter</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>8.3 High speed counter</li> <li>8.3.1 Single phase up-counter</li> <li>8.3.2 Single phase speed-counter</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8.3.1 Single phase up-counter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8.3.2 Single phase speed-counter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8.3.3 Quadrature bi-pulse counter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8.4 Interrupt input function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8.5 Analog setting function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8.6 Pulse output function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.7 PWM output function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9. Maintenance and Checks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9.1 Precautions during operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9.2 Daily checks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9.3 Periodic checks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9.4 Maintenance parts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

### Contents

|                | 10.1<br>10.1.1 | Troubleshooting procedure | 204     |
|----------------|----------------|---------------------------|---------|
|                | 10.1.1         | Dowor oupply chook        | 294     |
|                |                | Power supply check        | <br>295 |
|                | 10.1.2         | CPU check                 | <br>296 |
|                | 10.1.3         | Program check             | <br>296 |
|                | 10.1.4         | Input check               | 297     |
|                | 10.1.5         | Output cneck              | <br>298 |
|                | 10.1.0         | Solf-diagnostic itoms     | 299     |
|                | 10.2           |                           | 300     |
|                | Append         | xik                       | 305     |
| 1              | A.1            | List of models and types  | 306     |
| 1              | A.2            | Instruction index         | <br>309 |
|                |                |                           |         |
|                | 4              |                           |         |
|                | *              |                           |         |
| $\overline{2}$ |                |                           |         |
| 72             |                |                           |         |

6F3B0250



#### 1.1 Introducing the T1 and T1S

The T1 Series are compact, block style, high-performance programmable controllers with a range of 16 to 328 input and output points.

The T1 Series are available in two versions, T1 and T1S. The T1S is an enhanced version against the standard T1.

The figure below shows the T1 Series line-up. The T1 Series consists of the total 12 types.



#### I/O points:

The T1 Series are available in four models, T1-16, T1-28, T1-40 and T1-40S. Each model has the following I/O points.

|           | T1-16         | T1-28          | T1-40              | T1-40S      |
|-----------|---------------|----------------|--------------------|-------------|
| Input     | 8 points      | 14 points      | 24 points          |             |
| Output    | 8 points      | 14 points      | 16 points          |             |
|           | (6 relay plus | (12 relay plus | (14 relay plus 2 s | olid-state) |
|           | 2 slid-state) | 2 slid-state)  |                    |             |
| Expansion | No            | No             | 2 option cards plu | JS          |
|           |               |                | 1 expansion rack   | or unit.    |
|           |               |                | Total up to 382 p  | oints.      |
|           |               |                |                    |             |

The T1-16 and T1-28 are fixed I/O non-expandable controllers.

The T1-40 and T1-40S, however, provides additional flexibility. They are expandable in three ways, option cards, expansion rack and expansion unit.

The T1-40/T1-40S can hold two option cards. These are approximately 1/2 the size of a credit card. Also, the T1-40/T1-40S can be connected to either one expansion rack or one expansion unit. The expansion rack (2-slot type or 4-slot type) allows the T1-40/T1-40S to use most T2 series I/O modules. The expansion unit is a fixed I/O unit. It has 32 I/O points (16 inputs and 16 outputs).

If two 16 points option cards are inserted and the 4-slot expansion rack with four 64 points modules is connected to the T1-40/T1-40S, it can control up to 328 points.

T1/T1S User's Manual

#### Memory capacity:

Program memory capacity of the T1 is 2 k steps. And that of the T1S is 8 k steps. Whole the program and a part of data registers are stored in built-in EEPROM.

|                  | T1                            | T1S                            |  |  |
|------------------|-------------------------------|--------------------------------|--|--|
| Memory           | RAM (for execution) and EEPRO | OM (for back-up)               |  |  |
| Program capacity | 2 k steps                     | 8 k steps                      |  |  |
|                  |                               | (4 k mode or 8 k mode)         |  |  |
| Data capacity    | Auxiliary relay: 1024 points  | Auxiliary relay: 4096 points   |  |  |
|                  | Timer: 64 points              | Timer: 256 points              |  |  |
|                  | Counter: 64 points            | Counter: 256 points            |  |  |
|                  | Data register: 1024 words     | Data register: 4096 words      |  |  |
| EEPROM back-up   | Program and leading 512 words | Program and the user specified |  |  |
|                  | of Data register              | range of Data register (0 to   |  |  |
|                  |                               | (2048 words)                   |  |  |
| RAM back-up      | Capacitor                     | Capacitor                      |  |  |
|                  | (6 hours or more at 25°C)     | (168 hours or more at 25°C)    |  |  |

#### **Control functions:**

In addition to the basic relay ladder functions, the T1/T1S provides functions such as data operations, arithmetic operations, various functions, etc. Furthermore, its high speed counter functions, pulse output functions and data communication functions allow its application to a wide scope of control systems.

|                  | T1                                                            | T1S                             |  |
|------------------|---------------------------------------------------------------|---------------------------------|--|
| Language         | Ladder diagram with function block                            |                                 |  |
| Number of        | Basic: 17 types                                               | Basic: 21 types                 |  |
| instructions     | Function: 76 types                                            | Function: 99 types              |  |
| Subroutines      | 16 (nesting not allowed)                                      | 256 (up to 3 levels of nesting) |  |
| Execution speed  | 1.4 μs/contact, 2.3 μs/coil, 4.2 μs/transfer, 6.5 μs/addition |                                 |  |
| Real-time clock/ | No                                                            | Yes (year, month, day, week,    |  |
| calendar         | hours, minutes, seconds)                                      |                                 |  |
| Communication    | RS-232C (programmer port)                                     | RS-232C (programmer port),      |  |
|                  | RS-485 (multi-purpose)                                        |                                 |  |

#### **Construction:**

The T1/T1S is a compact, easy-handling block style programmable controller. The T1/T1S has all of the features of a block style controller. In addition, the T1-40/T1-40S has modular expandability. The T1-40/T1-40S provides flexibility into the block style controller.

#### Series compatibility:

Programming instructions are upward compatible in the T-Series programmable controllers. The T1/T1S programs can be used for other models of the T-Series, T2, T2E, T2N, T3 and T3H. Peripheral tools can also be shared.

#### 1.2 Features

#### **Option card support:**

The T1-40/T1-40S has two slots for the option card, which is approximately 1/2 the size of a credit card. The following eight types of the option cards are available.

- 16 points DC input
- 16 points DC output
- 8 DC inputs + 8 DC outputs
- 1 channel analog input (0 to 5 V/0 to 20 mA)
- 1 channel analog input (±10 V)
- 1 channel analog output (0 to 20 mA)
- 1 channel analog output (±10 V)
- Field network TOSLINE-F10 remote

By using the 16 points input and 16 points output cards, the T1-40/T1-40S can control up to 72 I/O points without enlarging the mounting space.

#### Built-in high speed counter:

Two single-phase or one quadrature (2-phase) pulses can be counted. The acceptable pulse rate is up to 5 kHz. (DC input type only)

#### Built-in analog setting adjusters:

Two analog setting adjusters are provided on the T1/T1S. This allows operators to adjust time or other control parameters easily using a screwdriver.

#### High speed processing:

Sophisticated machine control applications require high speed data manipulations. The T1/T1S is designed to meet these requirements.

- 1.4 μs per contact 2.3 μs per coil
- 4.2 μs per 16-bit transfer
   6.5 μs per 16-bit addition

The T1/T1S also supports interrupt input function (DC input type only). This allows immediate operation independent of program scan.

#### High performance software:

The T1 offers 17 basic ladder instructions and 76 function instructions. The T1S offers 21 basic ladder instructions and 99 function instructions.

Subroutines, Interrupt functions, Indirect addressing, For/Next loops, Pre-derivative real PID, etc. are standard on the T1/T1S. These functions allow the T1/T1S to be applied to the most demanding control applications.

#### **Battery-less operation:**

The T1/T1S has a standard built-in EEPROM, permitting operation without need of a battery. Also, the variable data can be written into and/or read from the EEPROM, providing completely maintenance-free back-up operation.

This function is an important feature for OEMs, because it can eliminate the need for changing the battery every few years. The cost of the battery is also eliminated.

T1/T1S User's Manual

#### Pulse output / PWM output:

One point of variable frequency pulses (max. 5 kHz) or variable duty pulses can be output. These functions can be used to drive a stepping motor or to simulate an analog output. (DC input type only)

#### **Built-in computer link function:**

The T1/T1S's RS-232C programmer port can accept the computer link protocol (data read/write). This results in easy connection to a higher level computer, an operator interface unit, etc.

The parity setting of the programmer port can be selected either odd or none. The none parity mode is provided especially for telephone modem connection. Using modems, remote programming/monitoring is available.

#### Real-time control data link network:

By inserting the TOSLINE-F10 remote card (option card) into the T1-40/T1-40S, high speed data link network can be established. In this network, upper T-series PLC model (T2/T2E/T2N or T3/T3H) works as master and up to 16 T1-40/T1-40Ss can be connected as remote. Each T1-40/T1-40S can exchange data with the master through 1 word input and 1 word output. The transmission speed can be selected either 750 kbps or 250 kbps.

#### T2 Series I/O module interface:

In addition to the option cards, the T1-40/T1-40S has a interface for connecting the T2 Series I/O modules. Up to four modules can be connected to the T1-40/T1-40S. The following I/O modules are available.

- 16 points DC input (DI31)
- 32 points DC input (DI32)
- 64 points DC input (DI235)
- 16 points AC input (IN51/IN61)
- 8 points isolated relay output (RO62)
- 4 channels analog input (AI21/AI22/AI31/AI32)
- 1 channel pulse input (PI21)
- Communication interface (CF211)

- 16 points DC output (DO31/DO233P)
- 32 points DC output (DO32)
- 64 points DC output (DO235)
- 12 points AC output (AC61)
- 12 points relay output (RO61)
- 2 channels analog output (AO31/AO22/AO32)
- 1 axis position control (MC11)

#### Sampling trace function:

The sampling trace is the function to collect the user specified data every user specified timing (minimum every scan), and to display the collected data on the programmer screen in time chart and/or trend graph format. This function is useful for checking the input signals changing.

The collecting capacities between T1 and T1S are different as follows.

- T1 ..... 1 register 128 times, or 8 devices 256 times
- T1S ... 3 registers and 8 devices 256 times

NN

#### **Password protection:**

By registering your passwords, four levels of protection is available according to the security levels required for your application.

- Level 4: Reading/writing program and writing data are prohibited
- Level 3: Reading/writing program are prohibited
- Level 2: Writing program is prohibited
- Level 1: No protection (changing passwords is available only in this level)

#### Two points of solid-state output:

Each model of the T1/T1S has two points of solid-state output (transistors for DC input type and triacs for AC input type). These solid-state outputs are suitable for frequent switching application.

#### **Removable terminal blocks:**

The T1-28, T1-40 and T1-40S are equipped with removable terminal blocks. This supports the easy maintenance work.

#### **DIN rail mounting:**

The T1/T1S is equipped with brackets for mounting on a standard 35 mm DIN rail. The T1/T1S can be mounted on a DIN rail as well as screw mounting.

#### On-line program changes: (T1S only)

When the T1S's memory mode is set to 4 k steps mode, on-line (in RUN mode) program changes are available. Furthermore, program writing into the built-in EEPROM is also available in RUN mode. These functions are useful in program debugging stage.

#### Real-time clock/calendar function: (T1S only)

The T1S has the real-time-clock/calendar function (year, month, day, day of the week, hours, minutes, seconds) that can be used for performing scheduled operations, data gathering with time stamps, etc. The real-time-clock/calendar data is backed up by built-in capacitor for power off. The back-up period is more than 7 days at 25 °C.

#### RS-485 multi-purpose communication port: (T1S only)

The T1S has an RS-485 multi-purpose communication port. Using this port, one of the following communication modes can be selected.

- Computer link mode: T-series computer link protocol can be used in this mode.
   Up to 32 T1Ss can be connected to a master computer. By using this mode, MMI/SCADA system can be easily configured.
- **Data link mode:** Two PLCs (any combination of T1S, T2E or T2N) can be directly linked together. This direct link is inexpensive, easily configured and requires no special programming.
- Free ASCII mode: User defined ASCII messages can be transmitted and received through this port. A terminal, printer, bar-code reader, or other serial ASCII device can be directly connected.

T1/T1S User's Manual

#### 1.3 System configuration

The following figure shows the T1/T1S system configuration.



#### 1.4 I/O expansion

The I/O points on the T1-16 and T1-28 are not expandable. The T1-40 and T1-40S, however, provides I/O expandability by using the option cards, expansion rack and expansion unit.

The T1-40/T1-40S can hold up to two option cards. Also, the T1-40/T1-40S can be connected to either one expansion rack (2-slot or 4-slot) or one expansion unit. By using the expansion rack, most of the T2 Series I/O modules can be used with the T1-40/T1-40S.

- Available option cards
  - DI116: 16 points DC input
  - DO116: 16 points DC output
  - DD116: 8 points DC input + 8 points DC output
  - AD121: 1 channel analog input (0 to 5V or 0 to 20mA)
  - AD131: 1 channel analog input (-10 to +10V)
  - DA121: 1 channel analog output (0 to 20mA)
  - DA131: 1 channel analog output (-10 to +10V)
  - FR112: TOSLINE-F10 remote station
- Available expansion racks BU152: Up to 2 I/O modules can be mounted BU154: Up to 4 I/O modules can be mounted
- Available expansion units
  - T1-EDR32: 16 points DC input + 16 points relay output T1-EAR32: 16 points AC input + 16 points relay output
- Available I/O expansion configuration

| Model       | Unit configuration       | I/O points                 |
|-------------|--------------------------|----------------------------|
| T1-16       | T1-16                    | 16 points (8 in / 8 out)   |
| T1-28       | T1-28                    | 28 points (14 in / 14 out) |
| T1-40<br>or | T1-40(S)                 | 40 points (24 in / 16 out) |
| T1-40S      | T1-40(S) + DI116         | 56 points (40 in / 16 out) |
|             | T1-40(S) + DD116         | 56 points (32 in / 24 out) |
|             | T1-40(S) + DO116         | 56 points (24 in / 32 out) |
| •           | T1-40(S) + DI116 + DI116 | 72 points (56 in / 16 out) |
|             | T1-40(S) + DI116 + DD116 | 72 points (48 in / 24 out) |

T1/T1S User's Manual

- Model Unit configuration I/O points (40 in / 32 out) T1-40 72 points T1-40(S) + DI116 + DO116 or or T1-40S + |DD116| + |DD116 T1-40(S) (32 in / 40 out) 72 points T1-40(S) + DD116 + DO116 72 points (24 in / 48 out) T1-40(S) + DO116 + DO116 (40 in / 32 out) 72 points T1-40(S) Exp 32 + 104 points Exp 32 T1-40(S) + + Option cards (any combinations) 168 points (BU152) T1-40(S) 200 points T1-40(S) (BU152) + Option cards (any combinations) 296 points T1-40(S) (BU154) 328 points (BU154) T1-40(S) + Option cards (any combinations)
- Available I/O expansion configuration (continued)

NOTE

NNN

- When the TOSLINE-F10 remote station (FR112) is used, only one additional option card can be inserted into the T1-40/T1-40S.
   In the above table, "Exp 32" means the expansion unit (T1-EDR32)
  - In the above table, "Exp 32" means the expansion unit (T1-EDR32 or T1-EAR32).
- (3) In the above table, I/O points of the combinations with an expansion rack show the maximum points using 64 points I/O modules.

#### **1.5 Components**

#### 1.5.1 Basic unit

The basic unit is available in four models, the T1-16, T1-28, T1-40 and T1-40S. And each model is available in three types, depending on the power supply and input types.

| Model  | Туре       | Power supply | Input                  | Output                |
|--------|------------|--------------|------------------------|-----------------------|
| T1-16  | T1-MDR16   | 100-240 Vac, | 8 points - dry contact | 6 points - relay,     |
|        |            | 50/60 Hz     | (24 Vdc)               | 2 points - transistor |
|        | T1-MAR16   | 100-240 Vac, | 8 points - 120 Vac     | 6 points - relay,     |
|        |            | 50/60 Hz     |                        | 2 points - triac      |
|        | T1-MDR16D  | 24 Vdc       | 8 points - 24 Vdc      | 6 points - relay,     |
|        |            |              |                        | 2 points - transistor |
| T1-28  | T1-MDR28   | 100-240 Vac, | 14 points - 24 Vdc     | 12 points - relay,    |
|        |            | 50/60 Hz     |                        | 2 points - transistor |
|        | T1-MAR28   | 100-240 Vac, | 14 points - 120 Vac    | 12 points - relay,    |
|        |            | 50/60 Hz     |                        | 2 points - triac      |
|        | T1-MDR28D  | 24 Vdc       | 14 points - 24 Vdc     | 12 points - relay,    |
|        |            |              |                        | 2 points - transistor |
| T1-40  | T1-MDR40   | 100-240 Vac, | 24 points -24 Vdc      | 14 points - relay,    |
|        |            | 50/60 Hz     |                        | 2 points - transistor |
|        | T1-MAR40   | 100-240 Vac, | 24 points - 120 Vac    | 14 points - relay,    |
|        |            | 50/60 Hz     |                        | 2 points - triac      |
|        | T1-MDR40D  | 24 Vdc       | 24 points -24 Vdc      | 14 points - relay,    |
|        |            |              |                        | 2 points - transistor |
| T1-40S | T1-MDR40S  | 100-240 Vac, | 24 points -24 Vdc      | 14 points - relay,    |
|        | • (        | 50/60 Hz     |                        | 2 points - transistor |
|        | T1-MAR40S  | 100-240 Vac, | 24 points - 120 Vac    | 14 points - relay,    |
|        |            | 50/60 Hz     |                        | 2 points - triac      |
|        | T1-MDR40SD | 24 Vdc       | 24 points -24 Vdc      | 14 points - relay,    |
|        |            |              | -<br>                  | 2 points - transistor |

22 T1/T1S User's Manual

1. System Configuration Input status LEDs Power supply and -Output status LEDs V Mounting hole IN Programmer port cover PROSEC TOSHIBA MDR16 Τ1 OUT Output terminals **Operation status LEDs** 



♦ T1-16

Input terminals



#### Behind the programmer port cover



#### Power supply terminals:

Connect the power cable and grounding wire. The terminal screw size is M3.5. See sections 4.4 and 4.5 for wiring.

#### Input terminals:

Connect input signal wires. The terminal screw size is M3.5. See section 2.4 for details.

#### **Output terminals:**

Connect output signal wires. The terminal screw size is M3.5. See section 2.4 for details.

#### Input status LEDs:

Indicate the ON status of each input signal. (color: red)

#### **Output status LEDs:**

Indicate the ON status of each output signal. (color: red)

M

6F3B0250

### 1. System Configuration

#### **Operation status LEDs:**

Indicate the operation status of the T1/T1S.



| T1-16 / | ′ T1-28 |
|---------|---------|
|---------|---------|



| PWR               | Lit      | Internal 5 Vdc power is normal.                     |
|-------------------|----------|-----------------------------------------------------|
| (Power) (green)   | Not lit  | Internal 5 Vdc power is not normal.                 |
|                   | Lit      | RUN mode (in operation)                             |
| RUN (green)       | Blinking | HOLD mode                                           |
|                   | Not lit  | HALT mode or ERROR mode                             |
| FLT               | Lit      | ERROR mode                                          |
| (Fault) (red)     | Blinking | Hardware error (programmer cannot be connected)     |
|                   | Not lit  | Normal                                              |
| AUX               | _        | Can be controlled by user program. Lit when S320 is |
| (Auxiliary) (red) |          | ON and unlit when S320 is OFF. (T1-40/T1-40S)       |
|                   |          |                                                     |

#### Mode control switch:

Controls the operation modes of the T1/T1S.

| H (HALT) | When the switch is turned to H (HALT) side, the T1/T1S stops         |
|----------|----------------------------------------------------------------------|
|          | program execution (HALT mode). In this position, RUN/HALT            |
|          | command from the programmer is disabled. In case of the T1,          |
|          | programming is available only in the HALT mode.                      |
| R (RUN)  | When the switch is turned to R (RUN) side, the T1/T1S starts program |
|          | execution. This is the position during normal operation.             |
|          | In this position, RUN/HALT command from the programmer is also       |
|          | available.                                                           |
|          |                                                                      |

#### Analog setting adjusters:

Two analog setting adjusters are provided. The V0 value is stored in SW30 and the V1 value is stored in SW31. The converted value range is 0 to 1000. Refer to section 8.5 for details of the analog setting function.

#### Programmer port connector:

Used to connect the programmer cable. The interface is RS-232C. This port can also be used for the computer link function. Refer to section 1.6 for more information about the computer link function.

#### Option card slot (T1-40/T1-40S):

Used to insert the option cards. Two slots are provided. Refer to separate "T1/T1S Use's Manual – Expansion I/O –" for details of the option cards.

#### Expansion connector (T1-40/T1-40S):

Used to connect the expansion rack or expansion unit. Refer to separate "T1/T1S Use's Manual – Expansion I/O –" for details of the T2 type I/O modules.

#### RS-485 port (T1-40S only):

Used to connect a computer (SCADA system), operator interface unit, other T1S, or many kinds of serial ASCII devices including Toshiba's Inverter through RS-485 interface. Refer to section 1.7 for more information about the T1S's RS-485 multi-purpose communication functions.

#### Mounting holes:

Used to fix the T1/T1S on a mounting frame by screws. The mounting holes are provided at two opposite corners.



Use two M4 screws for mounting. See section 4.2 for installing the unit.

#### **DIN rail bracket:**

The DIN rail bracket is provided at the rear for mounting the T1/T1S on a 35 mm DIN rail. See section 4.2 for installing the unit.

#### 1.5.2 Option cards

The T1-40/T1-40S can hold up to two option cards for expanding I/O points, etc. The following eight types of the option cards are available.

For details of the option cards, refer to the separate manual "T1/T1S User's Manual – Expansion I/O –".

| Туре  | Description                                   | Power supply       |
|-------|-----------------------------------------------|--------------------|
| DI116 | 16 points input, 24 Vdc - 5 mA                | Supplied from the  |
| DO116 | 16 points output, 24 Vdc - 100 mA             | basic unit (5 Vdc) |
| DD116 | 8 points input, 24 Vdc - 5 mA                 |                    |
|       | + 8 points output, 24 Vdc - 100 mA            |                    |
| AD121 | 1 channel analog input, 0 to 5 V / 0 to 20 mA |                    |
| AD131 | 1 channel analog input, ±10 V                 |                    |
| DA121 | 1 channel analog output, 0 to 20 mA           |                    |
| DA131 | 1 channel analog output, ±10 V                |                    |
| FR112 | TOSLINE-F10 remote station,                   |                    |
|       | 1 word input + 1 word output                  |                    |



The TOSLINE-F10 remote card (FR112) can be used with other cards. However two FR112s cannot be used together.



NOTE

6F3B0250

#### 1.5.3 Expansion rack

I M

The T1-40/T1-40S can be connected to either one expansion rack or one expansion unit.

The following two types of the expansion racks are available. By using the expansion rack, T2 Series I/O modules can be used with the T1-40/T1-40S.

For details of the expansion rack, refer to the separate manual "T1/T1S User's Manual – Expansion I/O –".

| Туре  | Description             | Power supply      |
|-------|-------------------------|-------------------|
| BU152 | 2 slots for I/O modules | Supplied from the |
| BU154 | 4 slots for I/O modules | basic unit        |



- (1) A 0.15 m expansion cable is supplied with the expansion rack.
- (2) Internal 5 Vdc power for I/O modules is supplied from the T1-40/T1-40S basic unit. No power supply module is required on the expansion rack.
  (3) Expansion connectors are provided on the both sides. However either one can be used at a time.
- (4) DIN rail bracket is not provided.

#### 1.5.4 I/O modules

As listed below, various I/O modules are available for the T1-40/T1-40S, allowing it to be used for a wide variety of applications. Up to four I/O modules can be used with the T1-40/T1-40S by connecting the expansion rack.

For details of the I/O modules, refer to the separate manual "T1/T1S User's Manual – Expansion I/O –".

| Туре   | Name             | Specifications                                                        |  |  |
|--------|------------------|-----------------------------------------------------------------------|--|--|
| DI31   | DC/AC input      | 16 points (16 points/common), 12 to 24 Vdc/Vac                        |  |  |
| DI32   | DC input         | 32 points (4 × 8 points/common), 24 Vdc                               |  |  |
| DI235  |                  | 64 points (8 × 8 points/common), 24 Vdc                               |  |  |
| IN51   | AC input         | 16 points (16 points/common), 100 to 120 Vac                          |  |  |
| IN61   |                  | 16 points (16 points/common), 200 to 240 Vac                          |  |  |
| RO61   | Relay output     | 12 points $(3 \times 4 \text{ points/common}),$                       |  |  |
|        |                  | 240 Vac/24 Vdc (max.), 2 A/point, 4 A/common (max.)                   |  |  |
| RO62   |                  | 8 points (isolated), 240 Vac/24 Vdc (max.),                           |  |  |
|        |                  | 2 A/point (max.)                                                      |  |  |
| DO31   | Transistor       | 16 points (16 points/common), 5 to 24 Vdc,                            |  |  |
|        | output           | 1 A/point, 1.2 A/4 points (max.)                                      |  |  |
| DO32   | (current sink)   | 32 points ( $4 \times 8$ points/common), 5 to 24 Vdc,                 |  |  |
| DOOD5  |                  |                                                                       |  |  |
| DO235  |                  | 64 points ( $8 \times 8$ points/common), 5 to 24 Vdc,                 |  |  |
| DODDD  | Transistar       | 0.1 A/point (max.)                                                    |  |  |
| D0233P |                  | 1  A/point = 1.2  A/A points (max)                                    |  |  |
|        | (current source) |                                                                       |  |  |
| AC61   | Triac output     | $12 \text{ points} (3 \times 4 \text{ points/common}) 100 to 240 Vac$ |  |  |
|        |                  | 0.5 A/point. 0.6 A/SSR (max.)                                         |  |  |
| AI21   | Analog input     | 4 channels, 1 to 5 V / 4 to 20 mA, 8-bit resolution                   |  |  |
| AI22   |                  | 4 channels, 1 to 5 V / 4 to 20 mA, 12-bit resolution                  |  |  |
| AI31   |                  | 4 channels, 0 to 10 V, 8-bit resolution                               |  |  |
| AI32   |                  | 4 channels, ±10 V, 12-bit resolution                                  |  |  |
| AO31   | Analog output    | 2 channels, 1 to 5 V / 4 to 20 mA / 0 to 10 V,                        |  |  |
|        | 8-bit resolution |                                                                       |  |  |
| AO22   |                  | 2 channels, 1 to 5 V / 4 to 20 mA, 12-bit resolution                  |  |  |
| AO32   |                  | 2 channels, $\pm 10$ V, 12-bit resolution                             |  |  |
| Pl21   | Pulse input      | 1 channel (2-phase and zero marker), 5/12 V,                          |  |  |
|        | -                | 100 kHz (max.), 24-bit counter                                        |  |  |
| MC11   | Positioning      | 1 axis, 200 kHz (max.), 5 to 24 Vdc, ±999999 pulses                   |  |  |
| CF211  | Communication    | 1 port of RS-232C, full-duplex, ASCII code,                           |  |  |
| -      | interface        | 300 / 600 / 1200 / 2400 / 4800 / 9600 / 19200 bps                     |  |  |

#### 1.5.5 **Expansion unit**

The T1-40/T1-40S can be connected to either one expansion rack or one expansion unit.

The following two types of the expansion units are available. Each expansion unit has 32 points I/O (16 inputs and 16 outputs).

For details of the expansion unit, refer to the separate manual "T1/T1S User's Manual -Expansion I/O -".

| Туре     | Description                                   | Power supply           |
|----------|-----------------------------------------------|------------------------|
| T1-EDR32 | Input: 16 points, 24 Vdc - 7 mA               | Supplied from the      |
|          | Output: 16 points, relay, 240 Vac/24 Vdc (max | .) - basic unit (5Vdc) |
|          | 2 A/point (max.)                              |                        |
| T1-EAR32 | Input: 16 points, 100 to 120 Vac - 7 mA       |                        |
|          | Output: 16 points, relay, 240 Vac/24 Vdc (max | .) -                   |
|          | 2 A/point (max.)                              |                        |



- (1) A 0.5 m expansion cable is supplied with the expansion unit.
- (2) Internal 5 Vdc power for expansion unit is supplied from the T1-40/T1-40S basic unit.
- (3) 24 Vdc power for output relay coils is required externally.
- (4) DIN rail bracket is provided.



6F3B0250

### 1. System Configuration

### 1.5.6 Options

The following optional items are available.

| Item             | Туре   | Description                                                     |  |
|------------------|--------|-----------------------------------------------------------------|--|
| Programmer port  | PT16S  | For RS-232C computer link, with 2 m cable                       |  |
| connector        |        |                                                                 |  |
| Option card      | PT15S  | Cable side connector for DI116, Soldering type                  |  |
| I/O connector    | PT15F  | DO116, or DD116                                                 |  |
| Expansion cable  | CS1R2  | For connecting the expansion rack, 0.15 m length, (spare parts) |  |
|                  | CS1R5B | For connecting the expansion unit 0.5m length                   |  |
|                  | 001102 | (spare parts)                                                   |  |
| Empty slot cover | _      | For covering empty slot on the expansion rack                   |  |
|                  |        |                                                                 |  |

T1/T1S User's Manual

#### 1.6 Computer link system

The interface of the T1/T1S's programmer port is RS-232C. Normally this port is used to connect the programmer. However, this port can also be used for the computer link function.

The computer link is a data communication function between computer or operator interface unit and the T1/T1S. The data in the T1/T1S can be read and written by creating simple communication program on the computer. The computer link protocol of the T1/T1S is published in "T1/T1S User's Manual - Communication Function -".

| Item                      | Specifications                   |  |
|---------------------------|----------------------------------|--|
| Interface                 | Conforms to RS-232C              |  |
| Transmission system       | Half-duplex                      |  |
| Synchronization           | Start-stop system (asynchronous) |  |
| Transmission speed        | 9600 bps (fixed)                 |  |
| Transmission distance     | 15 m max.                        |  |
| Framing                   | Start bit: 1 bit                 |  |
|                           | Data bits: 8 bits (fixed)        |  |
|                           | Parity: Odd or none              |  |
|                           | Stop bit: 1 bit (fixed)          |  |
| Protocol                  | T-series computer link (ASCII)   |  |
|                           | Programmer (binary)              |  |
| Transmission delay option | 0 to 300 ms                      |  |

By using the multi-drop adapter (CU111), multiple T1/T1Ss can be connected on an RS-485 line. The T-series PLC programming software (T-PDS) can also be used in this configuration.



#### 1.7 T1S communication function

The T1S has an RS-485 multi-purpose communication port. This port can work independent of the programmer port.

By using this communication port, one of the following three communication modes is available, computer link mode, data link mode and free ASCII mode.

For details of these functions, refer to the separate manual "T1/T1S User's Manual -Communication Function -".

| Computer link                         | Free ASCII                                                                                                                                                                                                                                                                                                          | Data link                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conforms to RS-458 (4-wire or 2-wire) |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                     |
| Half-duplex                           |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                     |
| Start-stop system                     | (asynchronous)                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                     |
| ASCII/binary                          | ASCII                                                                                                                                                                                                                                                                                                               | Binary                                                                                                                                                                                                                                                                                                                              |
| 300, 600, 1200, 24                    | 00, 4800, 9600, or                                                                                                                                                                                                                                                                                                  | 19200 bps (fixed)                                                                                                                                                                                                                                                                                                                   |
| 19200 bps                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                     |
| 1 km max.                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                     |
| Start bit: 1 bit                      | Special                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                     |
| Data bits: 7 or 8                     |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                     |
| Parity: Odd, even, or none            |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                     |
| Stop bit: 1 or 2                      | bits                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                     |
| T-series                              | User defined                                                                                                                                                                                                                                                                                                        | Special                                                                                                                                                                                                                                                                                                                             |
|                                       | ASCII messages                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                     |
| Programmer                            |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                     |
| (hinary)                              |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                     |
| 1-to-N                                | N/A                                                                                                                                                                                                                                                                                                                 | 1-to-1                                                                                                                                                                                                                                                                                                                              |
| 0 to 300 ms                           | N/A                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                 |
|                                       |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                     |
|                                       | Computer link<br>Conforms to RS-48<br>Half-duplex<br>Start-stop system (<br>ASCII/binary<br>300, 600, 1200, 24<br>19200 bps<br>1 km max.<br>Start bit: 1 bit<br>Data bits: 7 or 8<br>Parity: Odd, e<br>Stop bit: 1 or 2<br>T-series<br>computer link<br>(ASCII),<br>Programmer<br>(binary)<br>1-to-N<br>0 to 300 ms | Computer linkFree ASCIIConforms to RS-458 (4-wire or 2-wire)Half-duplexStart-stop system (asynchronous)ASCII/binaryASCII300, 600, 1200, 2400, 4800, 9600, or19200 bps1 km max.Start bit:1 bitData bits:7 or 8 bitsParity:Odd, even, or noneStop bit:1 or 2 bitsT-seriesUser definedASCII),ASCII messagesProgrammerN/A0 to 300 msN/A |

#### Computer link mode

T-series computer link protocol can be used in this mode. A maximum of 32 T1Ss can be connected to a master computer.

By using this mode, all the T1S's data can be accessed by a master computer. The T-series PLC programming software (T-PDS) can also be used in this configuration.



T1/T1S User's Manual

Max. 32 T1Ss
#### Data link mode

Two PLCs (any combination of T1S, T2E or T2N) can be directly linked together. This direct link is inexpensive, easily configured and requires no special programming. Data registers D0000 to D0031 are used for the data transfer.



#### Free ASCII mode

User defined ASCII messages can be transmitted and received through this port. A terminal, printer, bar-code reader, or other serial ASCII device can be directly connected. This mode also allows the T1S to communicate with other PLCs (T1, T2E, T2N, etc.), Toshiba's Inverters (such as VF-S7/A5, G3), Toshiba's motor protection relay (S2E21), or others.



Basic Hardware and Function 35

#### 1.8 Real-time data link system

#### **TOSLINE-F10**

TOSLINE-F10 is a high speed data transmission system suited for small points I/O distribution system. By inserting the TOSLINE-F10 remote card (FR112) into the T1-40/T1-40S, the T1-40/T1-40S can work as a remote station of the TOSLINE-F10 network. On this network, the T1-40/T1-40S sends 1 word data to the master station and receives 1 word data from the master station.

| Item                  | TOSLINE-F10 system specifications |                    |  |  |
|-----------------------|-----------------------------------|--------------------|--|--|
|                       | High speed mode                   | Long distance mode |  |  |
| Topology              | Bus (terminated at both en        | ds)                |  |  |
| Transmission distance | 500 m max. (total)                | 1 km max. (total)  |  |  |
| (without repeater)    |                                   |                    |  |  |
| Transmission speed    | 750 kbps                          | 250 kbps           |  |  |
| Scan transmission     | 512 points (32 words) max.        |                    |  |  |
| capacity              |                                   |                    |  |  |
| Scan cycle            | 7 ms/32 words                     | 12 ms/32 words     |  |  |
| Error checking        | CRC check                         |                    |  |  |



- (1) Refer to the separate "T1 User's Manual Option Card and I/O
- Module –" for details of the TOSLINE-F10 remote card (FR112).
- (2) Refer to the separate TOSLINE-F10 User's Manual for details of overall TOSLINE-F10 system.

## Typical data link configuration

The figure below shows the typical data link configuration.



#### 1.9 Peripheral tools

The following peripheral tools are available for the T1/T1S.

#### **T-Series Program Development System (T-PDS)**

The T-Series Program Development System (T-PDS) is a software which runs on any IBM-PC compatible personal computers such as Toshiba's Notebook computers. The same T-PDS software supports on-line/off-line programming, debugging and program documentation for all the T-Series programmable controllers T1/T1S, T2/T2E/T2N and T3/T3H.

- User-friendly program editor includes cut & paste, address search & replace, program block move/copy, etc.
- Group programming part program development by multiple designers and merging them into a complete program – enhance the software productivity.
- Powerful monitoring, I/O force and data set functions fully support your program debugging.
- Documentation of programs with commentary makes your maintenance work easy.
- Remote monitoring/programming via modem (radio/phone) is possible.

| Туре              | Part number | Versions available for |                  |  |
|-------------------|-------------|------------------------|------------------|--|
|                   |             | T1                     | T1S              |  |
| T-PDS for Windows | TMW33E1SS   | Ver 1.0 or later *1)   | Ver 1.2 or later |  |
| T-PDS for MS-DOS  | TMM3311SS   | Ver 1.61 or later *1)  | Ver 2.1 or later |  |

The table below shows the T-PDS versions that support the T1/T1S.

- \*1) The T1S can be used with these versions. However, in this case, there are the following functional limitations.
  - The program size setting is only available as 2 k. It is set to 4 k mode in the T1S.
  - Some of the added instructions (MAVE, DFL, HTOA, ATOH) may not be edited/monitored. (depending on the version)

The connection cable for the T1 Series is different from that for upper T-Series PLCs. These cables are supplied separately.

Connection cable for T1/T1S ... Type: CJ105, 5 m length Connection cable for T2/T3 .... Type: CJ905, 5 m length

NN

#### **T-Series Handy Programmer (HP911A)**

The HP911A is a hand-held programmer, that can be used to program the T1/T1S using ladder diagram. Its portability makes it ideal for maintenance use at remote locations.

The HP911A has the following features.

- The HP911A supports ladder diagram programming of T-Series programmable controllers T1/T1S, T2/T2E/T2N and T3.
- Built-in EEPROM allows program copy between T-Series controllers.
- Two display modes are available,
  - Normal: 5 lines and 12 columns
     Zoom: Full device description
- On-line data set and I/O force are useful for system checking.
- Backlit LCD display allows operation in dim light.

There are two types of the Handy Programmer (HP911) depending on the cable included with.

| Туре   | Part number | Cable included with                      | Versions available for T1/T1S |
|--------|-------------|------------------------------------------|-------------------------------|
| HP911A | THP911A*S   | 2 m cable for T1/T1S                     | Ver 1.1 or later              |
| HP911  | THP911**S   | 2 m cable for the upper<br>T-series PLCs | Ver 1.1 or later              |

The T1S can be used with the HP911(A). However, there are the following functional limitations.

- The program size setting is only available as 2 k. It is set to 4 k mode in the T1S.
- Some of the added instructions (MAVE, DFL, HTOA, ATOH) cannot be edited/monitored.

NOTE

A 2 m connection cable for the T1/T1S (Type: CJ102) is supplied with the HP911A. The cable for the T2/T3 is available separately. (Type: CJ902, 2 m length)



#### Program Storage Module (RM102)



#### Multi-drop adapter (CU111)



The program storage module (RM102) is an external memory for storing the T1/T1S program. By using the RM102, program saving from the T1/T1S to the RM102, and program loading from the RM102 to the T1/T1S can be done without need of a programmer. Because the RM102 has an EEPROM, maintenance-free program storage and quick saving/loading are available.

#### The T1/T1S's RS-232C programmer port supports the computer link function. When two or more T1/T1Ss are connected with a master computer, the multi-drop adapter (CU111) can be used. (One-to-N configuration) The CU111 is an RS-232C/RS-485 converter specially designed for the T1/T1S's programmer port.





#### 2.1 General specifications

|        | Item                      | T1-16                                                               | T1-28               | T1-40             | T1-40S        |
|--------|---------------------------|---------------------------------------------------------------------|---------------------|-------------------|---------------|
|        | Power supply voltage      | 100 to 240 Vac                                                      | (+10/-15 %), 50/6   | 60 Hz             | •             |
|        | Power consumption         | 30 VA or less38 VA or less45 \50 A or less (at 240 Vac, cold start) |                     |                   | 45 VA or less |
| L      | Inrush current            |                                                                     |                     |                   |               |
| Ne Ve  | 24 Vdc output rating      | 0.1 A for 0.2 A (for external devices and/or for input              |                     |                   | for input     |
| õ      | (24 Vdc, ±10%)            | service power                                                       | signals)            |                   |               |
| U<br>U |                           | +                                                                   |                     |                   |               |
| A      |                           | power for dry                                                       |                     |                   |               |
|        |                           | contact inputs                                                      |                     |                   |               |
|        | 5 Vdc output rating       | -                                                                   |                     | 1 A (for option c | ard and/or    |
|        | <b>D</b>                  | 04.14.4.004.45                                                      |                     | expansion rack/   | unit)         |
| er     | Power supply voltage      | 24 Vdc (+20/-15                                                     | <u>, %)</u>         | 42144             |               |
| Ň      | Power consumption         | 12 W or less                                                        |                     | 18 W or less      |               |
| đ      | Inrush current            | 25 A or less (at 24 Vdc)                                            |                     |                   |               |
|        | 5 Vdc output rating       | -                                                                   |                     | 1 A (for option c | ard and/or    |
|        |                           | expansion rack/unit)                                                |                     |                   | unit)         |
| Ret    | entive power interruption | 10 ms or less                                                       |                     |                   |               |
| Insu   | lation resistance         | 10 M $\Omega$ or more                                               |                     |                   |               |
|        |                           | (between power terminals and ground terminal)                       |                     |                   |               |
| Witl   | nstand voltage            | 1500 Vac - 1 mi                                                     | nute                |                   |               |
|        |                           | (between power                                                      | terminals and gr    | ound terminal)    |               |
| Am     | bient temperature         | 0 to 55 °C (oper                                                    | ation), -20 to 75 ° | °C (storage)      |               |
| Am     | bient humidity            | 20 to 90% RH, r                                                     | no condensation     |                   |               |
| Nois   | se immunity               | 1000 V p-p/1 μs                                                     | , Conform to EM     | C Directive 89/33 | 6/EEC         |
| Vibr   | ation immunity            | 16.7 Hz - 3 mm                                                      | p-p (3 mutually p   | erpendicular axe  | s)            |
| Sho    | ck immunity               | 98 m/s² (10 g)                                                      |                     |                   |               |
|        |                           | (3 shocks per a                                                     | kis, on 3 mutually  | perpendicular a   | (es)          |
| Арр    | proximate weight          | 500 g                                                               | 700 g               | 800 g             |               |
|        |                           | Option card:                                                        | 50 g 2-s            | lot expansion rac | k: 600 g      |
|        |                           | Expansion unit:                                                     | 600 g 4-s           | lot expansion rac | k: 800 g      |

NOTE

(1) 24 Vdc service power output is not provided on the AC input type and DC power supply type.

(2) 5 Vdc output capacity of T1-40/T1-40S is reduced by 0.2 A with using HP911A, and by 0.1 A with using RS-485 port.



#### 2.2 External dimensions

NNN



[mm]



T1/T1S User's Manual

6F3B0250



#### 2.3 Functional specifications

| I <sup>†</sup>       | tem                     | <u>T1-16</u>                                              | <u>T1-2</u> 8                       | <u>T1-4</u> 0                                                | T1-40S                                            |
|----------------------|-------------------------|-----------------------------------------------------------|-------------------------------------|--------------------------------------------------------------|---------------------------------------------------|
| Control m            | ethod                   | Stored program, o                                         | cyclic scan system                  |                                                              |                                                   |
| Scan syst            | tem                     | Floating scan or constant scan (10 - 200 ms, 10 ms units) |                                     |                                                              |                                                   |
| I/O updat            | e                       | Batch I/O refresh (direct I/O instruction available)      |                                     |                                                              |                                                   |
| Program              | memory                  | RAM (capacitor ba                                         | ack-up) and EEPR                    | OM (no back-up ba                                            | attery required)                                  |
| RAM mer              | nory back-              | 6 hours (25°C)                                            |                                     |                                                              | 168 hours (25°C)                                  |
| Program              | capacity                | 2 k steps                                                 |                                     |                                                              | 8 k steps<br>(4 k or 8 k mode)                    |
| Programr<br>language | ning                    | Ladder diagram w                                          | vith function block                 | ~                                                            |                                                   |
| Instruction          | ns                      | Basic ladder instru<br>Function block ins                 | uctions: 17<br>structions: 76       |                                                              | Basic: 21<br>Function: 99                         |
| Execution            | n speed                 | 1.4 μs/contact, 2.3<br>4.2 μs/16-bit trans                | 3 μs/coil,<br>sfer, 6.5 μs/16-bit a | ddition                                                      |                                                   |
| Program              | types                   | 1 main program                                            |                                     |                                                              |                                                   |
|                      |                         | 1 sub-program (in                                         | itial program)                      |                                                              |                                                   |
|                      |                         | 1 timer interrupt (i                                      | interval: 5 to 1000 r               | ns, 5 ms units)                                              |                                                   |
|                      |                         | 4 I/O interrupt (hig                                      | gh-speed counter a                  | nd interrupt input)                                          |                                                   |
|                      |                         | 16 subroutines (n                                         | esting not available                | 2)                                                           | 256 subroutines<br>(up to 3 levels of<br>nesting) |
| User                 | I/O register            | 512 points/32 wor                                         | ds (X/XW, Y/YW)                     |                                                              | -                                                 |
| data                 | Auxiliary<br>relay      | 1024 points/64 wo                                         | ords (R/RW)                         |                                                              | 4096 points/<br>256 words<br>(R/RW)               |
|                      | Special<br>relay        | 1024 points/64 words (S/SW)                               |                                     |                                                              |                                                   |
|                      | Timer                   | 64 points (T./T), 3                                       | 32 @ 0.01 s, 32 @                   | 0.1 s                                                        | 256 points (T./T)<br>64 @ 0.01 s,<br>192 @ 0.1 s  |
|                      | Counter                 | 64 points (C./C)                                          |                                     |                                                              | 256 points (C./C)                                 |
|                      | Data<br>register        | 1024 words (D)                                            |                                     |                                                              | 4096 words (D)                                    |
|                      | Index<br>register       | 3 words (I, J, K)                                         |                                     |                                                              |                                                   |
| I/O capac            | ity                     | 16 points<br>(fixed)                                      | 28 points<br>(fixed)                | 40 points (basic)<br>+ 32 points (optio<br>+ 16 words (I/O m | n cards)<br>nodules)                              |
| Input<br>type        | DC input<br>type (Note) | Dry contact input<br>(AC PS),<br>24 Vdc input<br>(DC PS)  | 24 Vdc input                        |                                                              |                                                   |
| •                    | AC input<br>type        | 100 - 120 Vac input                                       |                                     |                                                              |                                                   |
| Output<br>type       | DC input<br>type        | Relay + transistor (2 points)                             |                                     |                                                              |                                                   |
|                      | AC input<br>type        | Relay + triac (2 points)                                  |                                     |                                                              |                                                   |
| 1/0                  | hlock                   | Fixed                                                     | Removable                           |                                                              |                                                   |

Functional specifications (cont'd)

| ltem                            | T1-16                                                                                             | T1-28                                                                        | T1-40                               | T1-40S                                                                          |
|---------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------|
| Real-time clock                 | No                                                                                                |                                                                              |                                     | Yes, 🔶                                                                          |
| /calendar                       |                                                                                                   |                                                                              |                                     | (±30 s/month)                                                                   |
| Special I/O functions<br>(Note) | High speed counter<br>Interrupt input (2 p<br>Adjustable analog<br>Pulse output (CW<br>PWM output | er (2 single or 1 qu<br>points),<br>register (2 points),<br>+CCW or pulse+di | adrature),<br>rection),             | 2                                                                               |
| Communications interface        | 1 port RS-232C (p<br>- for Programmer                                                             | orogrammer port)<br>or Computer link o                                       | connection                          |                                                                                 |
|                                 | _                                                                                                 |                                                                              | S                                   | 1 port RS-485<br>- Programmer<br>- Computer link<br>- Data link<br>- Free ASCII |
|                                 | _                                                                                                 |                                                                              | TOSLINE-F10 rer<br>(by option card) | note                                                                            |
| Debug support<br>function       | Sampling trace<br>(8 devices - 256 ti                                                             | mes or 1 register -                                                          | 128 times)                          | Sampling trace<br>(8 devices and<br>3 register - 256<br>times)                  |
|                                 | -                                                                                                 | 0                                                                            |                                     | On-line<br>programming                                                          |
|                                 | -                                                                                                 |                                                                              |                                     | On-line<br>EEPROM write                                                         |



MM

(1) The input specification of the T1-16 (AC power type) is dry contact input, which supplies the power for input signals (24 Vdc) from the unit. Other types are DC input, which requires external power for input signals.

- (2) High speed counter, interrupt input, pulse output and PWM output are available in the DC input types.
- (3) High speed counter and interrupt input cannot be used simultaneously.
- (4) Pulse output and PWM output cannot be used simultaneously.

#### 2.4 I/O specifications

#### 2.4.1 T1-16

#### • T1-16 input specifications

| Itom                 | Specifications       |                        |                                           |  |
|----------------------|----------------------|------------------------|-------------------------------------------|--|
| nem                  | DC inn               |                        |                                           |  |
|                      |                      | DC nower type          |                                           |  |
|                      | Dry contact input    | DC input               | AC input                                  |  |
| mput type            | current source or    | current source or      |                                           |  |
|                      | sink *1              | sink *2                |                                           |  |
| Number of input      | 8 points (8 points/c | common)                | 8 points (8 points/common)                |  |
| points               |                      | ,                      |                                           |  |
| Rated input voltage  | Supplied from        | 24 Vdc,                | 100 - 120 Vac, +10/-15 %,                 |  |
|                      | T1-16                | +10/-15%               | 50/60 Hz                                  |  |
|                      | (24 Vdc, ±10 %)      |                        |                                           |  |
| Rated input current  | 7 mA (at 24 Vdc)     |                        | 7 mA (at 100 Vac)                         |  |
| ON level             | Contact close        | Min. ON                | Min. ON voltage: 80 Vac                   |  |
|                      | (max. 1.2 kΩ)        | voltage: 15 Vdc        |                                           |  |
| OFF level            | Contact open         | Min. OFF               | Max. OFF voltage: 30 Vac                  |  |
|                      | (min. 20 kΩ)         | voltage: 5 Vdc         | *4                                        |  |
| ON delay time        | 0 to 15 ms           |                        | 25 ms or less + user setting              |  |
| OFF delay time       | 0 to 15 ms 3         |                        | 30 ms or less + user setting <sup>→</sup> |  |
| Input signal display | LED display for all  | points, lit at ON, int | ernal logic side                          |  |
| External connection  | Terminal block (fix  | ed), M3.5              |                                           |  |
| Withstand voltage    | 1500 Vac, 1 minute   | e (between internal    | and external circuits)                    |  |
| Internal circuit     |                      |                        |                                           |  |
|                      |                      |                        |                                           |  |
|                      | 0 •                  |                        |                                           |  |
|                      |                      |                        |                                           |  |
|                      |                      |                        | │                                         |  |
|                      |                      |                        |                                           |  |
|                      |                      |                        |                                           |  |
|                      |                      |                        | │ 7◎→□→┤─ │ Ë │ │                         |  |
|                      | *1                   | ,*2 <b>ut</b>          |                                           |  |
|                      | 1 9 @ 9              | 3                      |                                           |  |
|                      |                      |                        |                                           |  |
|                      | ⊕ <b>◎</b>           | - <b> </b>             |                                           |  |
|                      | 24                   | Vdc                    |                                           |  |
|                      | (AC powe             | er type only)          |                                           |  |
|                      | •                    |                        |                                           |  |

6F3B0250

- The input current direction (source or sink) of the dry contact input can be selected by the internal jumper plug. (Factory setting = current source) Refer to section 3.1.
  - 3 side: current flows from input terminal to (-) terminal (current source)
  - 1 side: current flows from (+) terminal to input terminal (current sink)
- \*2 The jumper plug of the DC power supply type must be set to 1 side.
- \*3: The input ON/OFF delay time of the DC input type can be changed by user. The setting range is 0 to 15 ms. (Default value = 10 ms) Refer to section 8.2.
- \*4: The input ON/OFF delay time of the AC input can be extended by user. The extension setting range is 0 to 15 ms. (Default value = 10 ms) Resulting the default delay times are 35 ms (ON delay) and 40 ms (OFF delay). Refer to section 8.2.

 Input signal connections < DC input (AC power) type > Current sink Current source ► Current Current flow flow ⊕ 2 4 6 0 2 4 6 0 L 3 5 7 1 Ν 1 3 5 7 IN IN T1-16 T1-16 + Vin 21 23 25 27 OUT + Vin 21 23 25 27 OUT CO 20 22 24 26 C1 C0 20 22 24 26 C1 Note) The factory setting is current source. < DC input (DC power) type < AC input type > 24 Vdc input 100 - 120 Vac input 24Vdc -100 - 120 Vac 📀 ⊕ 2 4 6 0 2 4 6 L 3 5 7 5 7 3 N  $\mathbb{C}$ 1 IN IN T1-16 T1-16 NC NC 21 23 25 27 OUT NC 0 21 23 25 27 OUT 24 26 C1 24 26 C1 20 22 (C0) 20 22 COMM

Note) 24 Vdc service power output is not provided on the DC power supply type.

#### • T1-16 output specifications

| Item                    | Specifications             |                                       |                      |  |
|-------------------------|----------------------------|---------------------------------------|----------------------|--|
|                         | Relay output               | Transistor output                     | Triac output         |  |
|                         | (both DC input and         | (DC input type)                       | (AC input type)      |  |
|                         | AC input types)            |                                       |                      |  |
| Output type             | Relay contact,             | Transistor output,                    | Triac output         |  |
|                         | normally open              | current sink                          |                      |  |
| Number of output points | 6 points                   | 2 points                              | 2 points             |  |
|                         | (6 points/common)          | (2 points/common)                     | (2 points/common)    |  |
| Rated load voltage      | 240 Vac/24 Vdc (max.)      | 24 Vdc                                | 100 - 240 Vac        |  |
| C C                     |                            |                                       | (50/60 Hz)           |  |
| Range of load voltage   | Max. 264 Vac/125Vdc        | 20.0 - 28.0 V                         | 24 - 264 Vac         |  |
| 5 5                     |                            |                                       | (47 - 63 Hz)         |  |
| Maximum load current    | 2 A/point (resistive),     | 0.5 A/point                           | 1.0 A/point          |  |
|                         | 4 A/common                 | (resistive)                           | (resistive)          |  |
| ON resistance           | 50 m $\Omega$ or less      |                                       | _                    |  |
|                         | (initial value)            |                                       |                      |  |
| Voltage drop at ON      | -                          | 1.5 V or less                         | 1.5 V or less        |  |
| Leakage current at OFF  | None                       | 0.1 mA or less                        | 1 mA or less         |  |
|                         |                            |                                       | (at 100 Vac, 50 Hz), |  |
|                         |                            |                                       | 2 mA or less         |  |
|                         |                            |                                       | (at 240 Vac, 50 Hz)  |  |
| Minimum load            | 5 Vdc, 10 mA               | _                                     | 100mA (24 Vac),      |  |
|                         | (50 mW)                    |                                       | 50mA (100 - 240 Vac) |  |
| ON delay time           | 10 ms or less              | 0.1 ms or less                        | 1 ms or less         |  |
| OFF delay time          | 10 ms or less              | 0.1 ms or less                        | 1 ms + 1/2 cycle or  |  |
|                         |                            |                                       | less                 |  |
| Input signal display    | LED display for all point  | ts, lit at ON, internal logi          | c side               |  |
| External connection     | Terminal block (fixed),    | M3.5                                  |                      |  |
| Withstand voltage       | 1500 Vac, 1 minute (be     | tween internal and exter              | nal circuits)        |  |
| Internal circuit        |                            |                                       |                      |  |
|                         | LED                        | LED                                   | LED                  |  |
|                         |                            |                                       |                      |  |
|                         |                            | l l l l l l l l l l l l l l l l l l l |                      |  |
|                         |                            |                                       |                      |  |
|                         |                            |                                       |                      |  |
|                         |                            |                                       |                      |  |
|                         |                            |                                       |                      |  |
|                         | <b>] ] ] ] ] ] ] ] ] ]</b> |                                       |                      |  |
|                         |                            |                                       |                      |  |
|                         |                            |                                       |                      |  |
|                         |                            |                                       |                      |  |

\*1: The switching life of the relay output is as follows.20 million times or more (mechanical)

100 thousand times or more (electrical, at maximum rated voltage and current)

2. Specifications Output signal connections < DC input type – 6 relays and 2 transistors > 2 4 6 0 3 5 7 Ν 1 (-)IN T1-16 Note) 24 Vdc service power output is + Vin 21 23 25 27 OUT not provided on the DC power supply type. C0 20 22 24 26 C1 es 240 Vac/24 Vdc (max. 24 Vdc Transistor **Relay outputs** outputs < AC input type – 6 relays and 2 triacs > 0 2 6 L 4 Ν  $(\mathbf{C})$ 1 3 7 5 IN T1-16 NC CO 21 23 25 27 OUT C0 20 22 24 26 C1 100 - 240 Vac PS 240 Vac/24 Vdc (max.) Triac 2 M Relay outputs outputs

#### 2.4.2 T1-28

#### • T1-28 input specifications

| Item                   | Specifications                         |                              |  |  |
|------------------------|----------------------------------------|------------------------------|--|--|
|                        | DC input type                          | AC input type                |  |  |
| Input type             | DC input,                              | AC input                     |  |  |
|                        | current source/sink                    |                              |  |  |
| Number of input points | 14 points (14 points/common)           | 14 points (14 points/common) |  |  |
| Rated input voltage    | 24 Vdc, +10/-15 %                      | 100 - 120 Vac, +10/-15 %,    |  |  |
|                        |                                        | 50/60 Hz                     |  |  |
| Rated input current    | 7 mA (at 24 Vdc)                       | 7 mA (at 100 Vac)            |  |  |
| Min. ON voltage        | 15 Vdc                                 | 80 Vac                       |  |  |
| Max. OFF voltage       | 5 Vdc                                  | 30 Vac                       |  |  |
| ON delay time          | 0 to 15 ms (X00 - X07) <sup>-1</sup>   | 25 ms or less + user setting |  |  |
|                        | 10 ms or less (X08 - X0D)              | (X00 - X07) <sup>2</sup>     |  |  |
|                        |                                        | 25 ms or less (X08 - X0D)    |  |  |
| OFF delay time         | 0 to 15 ms (X00 - X07)                 | 30 ms or less + user setting |  |  |
|                        | 10 ms (X08 - X0D)                      | (X00 - X07) <sup>2</sup>     |  |  |
|                        |                                        | 30 ms or less (X08 - X0D)    |  |  |
| Input signal display   | LED display for all points, lit at ON, | internal logic side          |  |  |
| External connection    | Removable terminal block, M3.5         |                              |  |  |
| Withstand voltage      | 1500 Vac, 1 minute (between interr     | nal and external circuits)   |  |  |
| Internal circuit       | LED                                    | LED                          |  |  |
|                        |                                        |                              |  |  |
|                        |                                        |                              |  |  |
|                        |                                        | ↓ (♥▲ √ ) 🔔                  |  |  |
|                        |                                        |                              |  |  |
|                        | · · · · · · · · · · · · · · · · · · ·  |                              |  |  |
|                        |                                        |                              |  |  |
| ٠.                     |                                        |                              |  |  |
|                        |                                        |                              |  |  |
|                        |                                        |                              |  |  |
| X                      |                                        |                              |  |  |
|                        |                                        |                              |  |  |

- \*1: The input ON/OFF delay time of the leading 8 points of the DC input can be changed by user. The setting range is 0 to 15 ms. (Default value = 10 ms) Refer to section 8.2.
- \*2: The input ON/OFF delay time of the leading 8 points of the AC input can be extended by user. The extension setting range is 0 to 15 ms. (Default value = 10 ms) Resulting the default delay times of these points are 35 ms (ON delay) and 40 ms (OFF delay). Refer to section 8.2.



- Input signal connections
- < DC input type >



Note) The 24 Vdc service power output is not provided on the DC power supply type.



#### • T1-28 output specifications

| Item                    | Specifications                    |                              |                       |  |
|-------------------------|-----------------------------------|------------------------------|-----------------------|--|
|                         | Relay output                      | Transistor output            | Triac output          |  |
|                         | (both DC input and                | (DC input type)              | (AC input type)       |  |
|                         | AC input types)                   |                              |                       |  |
| Output type             | Relay contact,                    | Transistor output,           | Triac output          |  |
|                         | normally open                     | current sink                 |                       |  |
| Number of output points | 12 points                         | 2 points                     | 2 points              |  |
|                         | $(1 \times 2 \text{ pts/common},$ | (2 points/common)            | (2 points/common)     |  |
|                         | $1 \times 4$ pts/common,          |                              |                       |  |
|                         | 1 × 6 pts/common)                 |                              |                       |  |
| Rated load voltage      | 240 Vac/24 Vdc (max.)             | 24 Vdc                       | 100 - 240 Vac         |  |
|                         |                                   |                              | (50/60 Hz)            |  |
| Range of load voltage   | Max. 264 Vac/125Vdc               | 20.0 - 28.0 V                | 24 - 264 Vac          |  |
|                         |                                   |                              | (47 - 63 Hz)          |  |
| Maximum load current    | 2 A/point (resistive),            | 0.5 A/point (resistive)      | 1.0 A/point           |  |
|                         | 4 A/common                        |                              | (resistive)           |  |
| ON resistance           | 50 m $\Omega$ or less             | -                            | -                     |  |
|                         | (initial value)                   |                              |                       |  |
| Voltage drop at ON      | -                                 | 1.5 V or less                | 1.5V or less          |  |
| Leakage current at OFF  | None                              | 0.1 mA or less               | 1 mA or less          |  |
|                         |                                   | •                            | (at 100 Vac, 50Hz),   |  |
|                         |                                   |                              | 2 mA or less          |  |
|                         |                                   |                              | (at 240 Vac, 50Hz)    |  |
| Minimum load            | 5 Vdc, 10 mA                      | -                            | 100 mA (24 Vac),      |  |
|                         | (50 mW)                           |                              | 50 mA (100 - 240 Vac) |  |
| ON delay time           | 10 ms or less                     | 0.1 ms or less               | 1 ms or less          |  |
| OFF delay time          | 10 ms or less                     | 0.1 ms or less               | 1 ms + 1/2 cycle or   |  |
|                         |                                   |                              | less                  |  |
| Output signal display   | LED display for all point         | ts, lit at ON, internal logi | c side                |  |
| External connection     | Removable terminal blo            | ock, M3.5                    |                       |  |
| Withstand voltage       | 1500 Vac, 1 minute (be            | tween internal and exter     | nal circuits)         |  |
| Internal circuit        |                                   |                              |                       |  |
|                         |                                   |                              |                       |  |
|                         |                                   |                              |                       |  |
|                         |                                   | Here Vin                     |                       |  |
|                         |                                   |                              |                       |  |
|                         |                                   |                              | <del>.</del> ⊡        |  |
|                         |                                   |                              |                       |  |
|                         |                                   |                              |                       |  |
|                         |                                   | <u> </u>                     | <u>  </u>             |  |
|                         |                                   |                              |                       |  |
|                         | └® ( <u>C</u> )                   |                              |                       |  |
|                         |                                   |                              |                       |  |

\*1. The switching life of the relay output is as follows. 20 million times or more (mechanical)

100 thousand times or more (electrical, at maximum rated voltage and current)

- Output signal connections
- < DC input type 12 relays and 2 transistors >



6F3B0250

#### 2.4.3 T1-40/T1-40S

#### • T1-40/T1-40S input specifications

| ltem                   | Specifications                        |                               |  |  |
|------------------------|---------------------------------------|-------------------------------|--|--|
| nom                    | DC input type                         | AC input type                 |  |  |
| Input type             | DC input.                             | AC input                      |  |  |
|                        | current source/sink                   |                               |  |  |
| Number of input points | 24 points (24 points/common)          | 24 points (24 points/common)  |  |  |
| Rated input voltage    | 24 Vdc, +10/-15 %                     | 100 - 120 Vac, +10/-15 %,     |  |  |
|                        |                                       | 50/60 Hz                      |  |  |
| Rated input current    | 7 mA (at 24 Vdc)                      | 7 mA (at 100 Vac)             |  |  |
| Min. ON voltage        | 15 Vdc                                | 80 Vac                        |  |  |
| Max. OFF voltage       | 5 Vdc                                 | 30 Vac                        |  |  |
| ON delay time          | 0 to 15 ms (X00 - X07)                | 25 ms or less + user setting  |  |  |
|                        | 10 ms (X08 - X17)                     | (X00 - X07) <sup>2</sup>      |  |  |
|                        | *1                                    | 25 ms or less (X08 - X17)     |  |  |
| OFF delay time         | 0 to 15 ms (X00 - X07)                | 30  ms or less + user setting |  |  |
|                        | 10 ms (X08 - X17)                     | $(X00 - X07)^{-1}$            |  |  |
| Input signal display   | LED display for all points lit at ON  | 30 ms or less (X08 - X17)     |  |  |
|                        | LED display for all points, in at ON, | Internal logic side           |  |  |
| Withstand voltage      | 1500 Voc. 1 minute (between interr    | and external circuite)        |  |  |
|                        | 1500 vac, 1 minute (between intern    | iai and external circuits)    |  |  |
| Internal circuit       |                                       | LED                           |  |  |
|                        |                                       |                               |  |  |
|                        |                                       |                               |  |  |
|                        |                                       |                               |  |  |
|                        |                                       |                               |  |  |
|                        | <del> </del>   <del> </del>           |                               |  |  |
|                        |                                       |                               |  |  |
| ٠.                     |                                       |                               |  |  |
|                        |                                       | <u> </u>                      |  |  |
|                        |                                       |                               |  |  |
| X                      |                                       |                               |  |  |
|                        |                                       |                               |  |  |

- \*1: The input ON/OFF delay time of the leading 8 points of the DC input can be changed by user. The setting range is 0 to 15 ms. (Default value = 10 ms) Refer to section 8.2.
- \*2: The input ON/OFF delay time of the leading 8 points of the AC input can be extended by user. The extension setting range is 0 to 15 ms. (Default value = 10 ms) Resulting the default delay times of these points are 35 ms (ON delay) and 40 ms (OFF delay). Refer to section 8.2.



6F3B0250

- Input signal connections
- < DC input type >



#### • T1-40/T1-40S output specifications

| Item                    | Specifications               |                               |                             |  |
|-------------------------|------------------------------|-------------------------------|-----------------------------|--|
|                         | Relay output                 | Transistor output             | Triac output                |  |
|                         | (both DC input and           | (DC input type)               | (AC input type)             |  |
|                         | AC input types)              |                               |                             |  |
| Output type             | Relay contact,               | Transistor output,            | Triac output                |  |
|                         | normally open                | current sink                  |                             |  |
| Number of output points | 14 points                    | 2 points                      | 2 points                    |  |
|                         | $(6 \times \text{isolated},$ | (2 points/common)             | (2 points/common)           |  |
|                         | $2 \times 4$ pts/common)     |                               |                             |  |
| Rated load voltage      | 240 Vac/24 Vdc (max.)        | 24 Vdc                        | 100 - 240 Vac<br>(50/60 Hz) |  |
| Range of load voltage   | Max. 264 Vac/125Vdc          | 20.0 - 28.0 V                 | 24 - 264 Vac                |  |
|                         |                              |                               | (47 - 63 Hz)                |  |
| Maximum load current    | 2 A/point (resistive),       | 0.5 A/point (resistive)       | 1.0 A/point                 |  |
|                         | 2 A/common                   |                               | (resistive)                 |  |
| ON resistance           | 50 m $\Omega$ or less        | _                             | -                           |  |
|                         | (initial value)              |                               |                             |  |
| Voltage drop at ON      | -                            | 1.5 V or less                 | 1.5 V or less               |  |
| Leakage current at OFF  | None                         | 0.1 mA or less                | 1 mA or less                |  |
| C C                     |                              |                               | (at 100 Vac, 50Hz)          |  |
|                         |                              |                               | 2 mA or less                |  |
|                         |                              |                               | (at 240 Vac, 50Hz)          |  |
| Minimum load            | 5 Vdc, 10 mA                 | _                             | 100 mA (24 Vac),            |  |
|                         | (50 mW)                      |                               | 50 mA (100 - 240 Vac)       |  |
| ON delay time           | 10 ms or less                | 0.1 ms or less                | 1 ms or less                |  |
| OFF delay time          | 10 ms or less                | 0.1 ms or less                | 1 ms + 1/2 cycle or         |  |
|                         |                              |                               | less                        |  |
| Input signal display    | LED display for all point    | ts, lit at ON, internal logic | c side                      |  |
| External connection     | Removable terminal blo       | ock, M3.5                     |                             |  |
| Withstand voltage 🔺     | 1500 Vac, 1 minute (be       | tween internal and exter      | nal circuits)               |  |
| Internal circuit        |                              |                               |                             |  |
|                         | LED                          | LED                           | LED                         |  |
| X                       |                              |                               |                             |  |
|                         |                              | Vin                           |                             |  |
|                         |                              |                               |                             |  |
|                         |                              |                               |                             |  |
|                         | 27                           |                               |                             |  |
|                         |                              |                               |                             |  |
|                         | <u> </u> <u>−</u> © 2B       |                               |                             |  |
|                         |                              |                               |                             |  |
|                         | <u> </u>                     |                               |                             |  |
|                         | <u>2F</u>                    |                               |                             |  |
|                         | <u> </u>                     |                               |                             |  |

٠

\*1: The switching life of the relay output is as follows. 20 million times or more (mechanical)

100 thousand times or more (electrical, at maximum rated voltage and current)

- Output signal connections
- < DC input type 14 relays and 2 transistors >



6F3B0250





#### 3.1 Application precautions for input signals

WARNING Configure emergency stop and safety interlocking circuits outside the T1/T1S. Otherwise, malfunction of the T1/T1S can cause injury or serious accidents.

(1) Current source / sink selection on the T1-16 dry contact input The input current flow direction (source or sink) of the T1-16 dry contact input can be selected by setting the jumper plug on the T1-16 printed circuit board as shown below. The factory setting is current source. Refer to section 2.4.1 for specifications and signal connections.



(2) Minimum ON/OFF time of the input signal

The following conditions guarantee correct reading of the ON/OFF state of the input signal:

Input ON time: ON delay time + the time for one scan

Input OFF time: OFF delay time + the time for one scan

The ON and OFF times of the input signals must be longer than these intervals.

(3) Increasing the contact current

The reliability of some contacts cannot be guaranteed by the specified input current. In this case, install an external bleeder resistor to increase the contact current.



Note) The above solution cannot be applied to the T1-16 dry contact input.

- (4) Connecting transistor output device An example of connecting a transistor output device to T1/T1S's input circuit is shown below.
  - For NPN open collector

For PNP open collector

M



(current source)

T1-16 dry contact input

(current sink)

(+)

n

T1

input

circuit



T1-28, T1-40 and T1-40S DC input





(5) Countermeasures against leakage current

When a switch with an LED or an AC output sensor is used, the input sometimes cannot recognize that the switch is off due to the current leakage. In this case, install a bleeder resistor to reduce input impedance.



Select a bleeder resistor according to the following criteria:

- (a) The voltage between the input terminals must be lower than the OFF voltage when the sensor is switched off.
- (b) The current must be within the allowable range when the sensor is switched on.
- (c) Calculate the wattage of the bleeder resistor by multiplying the current when the sensor is switched on times three.

Note) The above solution cannot be applied to the T1-16 dry contact input.

(6) Countermeasures against induced current

With ac input signals, if the external cable is long or if a multi-core cable is used, an induced current can flow from the charged wire to the open wire, in proportion to the capacities of the cables. In this case, sometimes the voltage reaches the level of the ON input even though the contact is open, causing the input to malfunction for no apparent reason.

The usual practice when this happens is to reduce input impedance. Install a resistor or a resistor and capacitor between the input and common terminals, or use shielded cables. Such precautions are necessary when dealing with a large number of ac input signals.



#### 3.2 Application precautions for output signals

| Configure emergency stop and safety interlocking circuits outside the T1/T1S. Otherwise, malfunction of the T1/T1S can cause injury or serious accidents                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Turn on power to the T1/T1S before turning on power to the loads. Failure<br/>to do so may cause unexpected behavior of the loads.</li> </ol>                                                                                               |
| 2. Configure the external circuit so that the external 24 Vdc power required for the transistor output circuits and power to the loads are switched on/off simultaneously. Also, turn off power to the loads before turning off power to the T1/T1S. |
| 3. Install fuses appropriate to the load current in the external circuits for the outputs. Failure to do so can cause fire in case of load over-current.                                                                                             |

- (1) 2 points of solid-state output The leading 2 points of output (Y020 and Y021) are solid-state outputs, transistors on the DC input types and triacs on the AC input types. These solid-state outputs are suited for frequent switching applications. Note that the specifications of the solid-state outputs and other outputs (relays) are different.
- (2) Switching life of output relays

Expected relay life is more than 100,000 electrical cycles at rated maximum voltage and current, and more than 20 million mechanical cycles. The expected contact life (electrical cycles) is shown on the table below.

|   |      | Load voltage    | Load    | Expected life |
|---|------|-----------------|---------|---------------|
|   |      |                 | current | (thousand)    |
|   | AC   | 110 Vac,        | 2 A     | 340           |
| 1 | load | $COS\phi = 1$   | 1 A     | 720           |
|   |      |                 | 0.5 A   | 1,600         |
|   |      | 110 Vac,        | 2 A     | 150           |
|   |      | COSo = 0.7      | 1 A     | 320           |
|   |      |                 | 0.5 A   | 700           |
|   | X    | 220 Vac,        | 2 A     | 220           |
|   |      | $COS\phi = 1$   | 1 A     | 500           |
|   |      |                 | 0.5 A   | 1,100         |
|   | •    | 220 Vac,        | 2 A     | 100           |
|   |      | $COS\phi = 0.7$ | 1 A     | 210           |
|   |      |                 | 0.5 A   | 460           |
| M |      |                 |         |               |

|      | Load voltage | Load    | Expected life |
|------|--------------|---------|---------------|
|      |              | current | (thousand)    |
| DC   | 24 Vdc,      | 2 A     | 280           |
| load | L/R = 0 ms   | 1 A     | 600           |
|      |              | 0.5 A   | 1,300         |
|      | 24 Vdc,      | 2 A     | 60            |
|      | L/R = 15 ms  | 1 A     | 150           |
|      |              | 0.5 A   | 350           |
|      | 48 Vdc,      | 1 A     | 200           |
|      | L/R = 0 ms   | 0.5 A   | 420           |
|      | 48 Vdc,      | 0.5 A   | 130           |
|      | L/R = 15 ms  | 0.2A    | 420           |
|      | 110 Vdc,     | 0.5 A   | 200           |
|      | L/R = 0 ms   | 0.2 A   | 550           |
|      | 110 Vdc,     | 0.2 A   | 150           |
|      | L/R = 15 ms  | 0.1 A   | 350           |

(3) Over-current protection

The output circuit of the T1/T1S does not contain protective fuses. Fuses rated for the output should be provided by the user.



(4) Output surge protection

Where an inductive load is connected to the output, a relatively high energy transient voltage will be generated when the relay turns OFF. To prevent the problems caused by this surge, install a surge absorber in parallel to the inductive load.



Surge absorber:

• Flywheel diode (for DC output)



Inverse withstand voltage: At least three times that of the power supply Forward current: Larger than the load current

• Varistor (for AC output)

The voltage rating is 1.2 times the maximum (peak) voltage of the power supply

• CR snubber (for DC or AC output)



R: 0.5 to 1  $\Omega$  per volt coil voltage C: 0.5 to 1  $\mu$ F per ampere of coil current (non-polarity capacitor)



#### 4. Installation and Wiring

#### 4.1 Environmental conditions

CAUTION Excess temperature, humidity, vibration, shocks, or dusty and corrosive gas environment can cause electrical shock, fire or malfunction. Install and use the T1/T1S and related equipment in the environment described in this section.

Do not install the T1/T1S in the following locations:

- Where the ambient temperature drops below 0 °C or exceeds 55 °C.
- Where the relative humidity drops below 20 % or exceeds 90 %.
- Where there is condensation due to sudden temperature changes.
- In locations subject to vibration that exceeds tolerance.
- In locations subject to shock that exceeds tolerance.
- Where there are corrosive or flammable gases.
- In locations subject to dust, machining debris or other particles.
- In locations exposed to direct sunlight.

Observe the following precautions when installing enclosures in which the T1/T1S will be installed:

- Provide the maximum possible distance from high-voltage or high-power panels. This distance must be at least 200 mm.
- If installing the enclosures in the vicinity of high-frequency equipment, be sure to correctly ground the enclosures.
- When sharing the channel base with other panels, check for leakage current from the other panels or equipment.

68 T1/T1S User's Manual

6F3B0250

#### 4. Installation and Wiring

#### 4.2 Installing the unit

# A CAUTION 1. Improper installation directions or insufficient installation can cause fire or the units to drop. Install the T1/T1S and related equipment in accordance with the instructions described in this section.

- 2. Turn off power before installing or removing any units, modules, racks or terminal blocks. Failure to do so can cause electrical shock or damage to the T1/T1S and related equipment.
- 3. Entering wire scraps or other foreign debris into to the T1/T1S and related equipment can cause fire or malfunction. Pay attention to prevent entering them into the T1 and related equipment during installation and wiring.



The T1/T1S basic unit and the expansion unit come equipped with a bracket at the rear for mounting on a 35 mm DIN rail. However, no DIN rail bracket is provided on the expansion rack.

#### Installation precautions:

- Because the T1/T1S is not dust-proof, install it in a dust-proof enclosure.
- Do not install the unit directly above equipment that generates a large amount of heat, such as a heater, transformer, or large-capacity resistor.
- Do not install the unit within 200 mm of a high-voltage or high-power cables.
- Allow at least 70 mm on all sides of the unit for ventilation.
- For safely during maintenance and operation, install the unit as far as possible from high-voltage or power equipment. Alternatively, keep the unit separate using a metal plate or similar separator.
- If a high-frequency equipment is installed in the enclosure together with the T1/T1S, special attention is required for grounding. See section 4.4.
- Be sure to install the unit vertically with keeping the power terminals upside. Do not install the unit horizontally or upside-down for safety reason.
- Use M4 size screws to mount the T1/T1S. (Recommended torque: 1.47 N·m = 15 kgf·cm)

| Upwa |  |
|------|--|
|      |  |

Mount the T1 on a vertical panel. All other mounting positions are not acceptable.


### 4.3 Wiring terminals

A CAUTION
 A CAUTI

- 2. Exposed conductive parts of wire can cause electrical shock. Use crimp-style terminals with insulating sheath or insulating tape to cover the conductive parts. Also close the terminal covers securely on the terminal blocks when wiring has been completed.
- 3. Turn off power before removing or replacing units, modules, terminal blocks or wires. Failure to do so can cause electrical shock or damage to the T1/T1S and related equipment.

The terminal arrangement of each T1 Series model are shown below. The terminal screw size is M3.5. Use crimp-style terminals of 7 mm width or less useable for M3.5.

The terminal blocks of the T1-16 are not removable (fixed). On the other hand, the terminal blocks of the T1-28, T1-40 and T1-40S are removable. However, be sure to turn off power before removing or replacing the terminal blocks.



For input and output signal connections, refer to sections 2.4 and 3.

• T1-16

MM

T1-MDR16 ... AC power supply, Dry contact input type





6F3B0250

• T1-28

MAN

T1-MDR28 ... AC power supply, DC input type



NC stands for "no connect". Do not use the NC terminals for wire relaying or branching.

• T1-40

T1-MDR40 ... AC power supply, DC input type



6F3B0250

T1-MAR40 ... AC power supply, AC input type

| L 🖶 N | C C ′         | 1 3 5   | 7 9 B     | D F 11 1   | 3 15 17   |
|-------|---------------|---------|-----------|------------|-----------|
| N NC  | NC 0          | 2 4 6   | 6 8 A C   | E 10 12    | 14 16 IN  |
|       |               |         | S         | T1-40      |           |
|       |               |         |           |            |           |
| NC NC | <u>C</u> 0 20 | 22 23 2 | 4 25 26 2 | 7 C1 29 2B | 2C 2E OUT |

T1-MDR40D ... DC power supply, DC input type



NOTE

NC stands for "no connect". Do not use the NC terminals for wire relaying or branching.

• T1-40S

T1-MDR40S ... AC power supply, DC input type



T1-MAR40S ... AC power supply, AC input type

|    |             |       |      |     |    |     |     |    |            |     |     |     | _   |     |     |    |     |
|----|-------------|-------|------|-----|----|-----|-----|----|------------|-----|-----|-----|-----|-----|-----|----|-----|
| L  | $(\square)$ | NC    | )©   | ) 1 |    | 3 5 | 5   | 7  | 9          | в   | D   | F   | 11  | 13  | 15  | 17 |     |
|    | N N         | C١    | ٩C   | 0   | 2  | 4   | 6   | 8  | 3 <i>F</i> | A ( | C E | Ξ 1 | 0 1 | 2 1 | 4 1 | 6  | IN  |
|    |             |       |      |     |    |     |     |    |            |     |     | Т   | 1-4 | 0S  |     |    |     |
| F  | RXB T.      | ×B (( | 20   | 20  | 22 | 23  | 24  | 12 | 52         | 62  | 70  | 1)2 | 92  | B 2 | C 2 | E  | OUT |
| RX | A TXA       | SG    | 6 (Ĉ | )2  | 12 | 2 2 | 3 : | 24 | 25         | 26  | 27  | 28  | 2A  | Ċ2  | 2D  | 2F |     |

T1-MDR40SD ... DC power supply, DC input type



NOTE

I M

- (1) NC stands for "no connect". Do not use the NC terminals for wire relaying or branching.
- (2) For the connections of the RS-485 communication port (left end 5 terminals of the lower terminal block), refer to the separate manual "T1/T1S User's Manual Communication Function -.

The applicable wire size is 0.3 mm<sup>2</sup> (22 AWG) to 1.25 mm<sup>2</sup> (16 AWG). The table below shows the recommended wire size.

| Type of signal | Recommended wire size                                         |  |
|----------------|---------------------------------------------------------------|--|
| Power          | 1.25 mm <sup>2</sup> (16 AWG)                                 |  |
| Grounding      | 1.25 mm <sup>2</sup> (16 AWG)                                 |  |
| I/O signals    | 0.3 mm <sup>2</sup> (22 AWG) to 0.75 mm <sup>2</sup> (18 AWG) |  |

### 4.4 Grounding

A CAUTION 1. Turn off power before wiring to minimize the risk of electrical shock.

2. Operation without grounding may cause electrical shock or malfunction. Connect the ground terminal on the T1/T1S to the system ground.

The optimum method for grounding electronic equipment is to ground it separately from other high-power systems, and to ground more than one units of electronic equipment with a single-point ground.

Although the T1/T1S has noise immunity to be used in industrial operating conditions, grounding is important for safety and reliability.

Check the grounding against the following criteria.

- 1. The T1/T1S must not become a path for a ground current. A high-frequency current is particularly harmful.
- 2. Equalize the ground potentials when the expansion rack or unit is connected. Ground the T1/T1S and the expansion rack or unit at a single point.
- 3. Do not connect the ground of the T1/T1S to that of high-power systems.
- 4. Do not use a ground that has an unstable impedance, such as painted screws, or ground subject to vibration.

The grounding marked terminal (see below) is provided on the T1/T1S basic unit and the expansion unit for grounding purpose.

T1/T1S User's Manual



In case of the expansion rack is connected to the T1/T1S, the rack mounting screw is used for this purpose.

- 1.25 mm<sup>2</sup> (16 AWG) wire should be used to connect the T1/T1S and the expansion rack/unit with the enclosure grounding bus bar.
- 100  $\Omega$  or less to ground is required.

NN

### 4.5 Power supply wiring

 1. Turn off power before wiring to minimize the risk of electrical shock.

 2. Applying excess power voltage to the T1/T1S can cause explosion or fire. Apply power of the specified ratings described below.

6F3B0250



• Power conditions:

|                   | AC power supply type          | DC power supply type       |
|-------------------|-------------------------------|----------------------------|
| Rated voltage     | 100 to 240 Vac, +10/-15 %     | 24 Vdc, +20/-15 %          |
| Frequency         | 50/60 Hz, ±5 %                | -                          |
| Power consumption | 30 VA or less (T1-16/T1-28)   | 12 W or less (T1-16/T1-28) |
|                   | 38 VA or less (T1-40)         | 18 W or less (T1-40)       |
|                   | 45 VA or less (T1-40S)        | 18 W or less (T1-40S)      |
| Retentive power   | Continuous operation for less | than 10 ms                 |
| interruption      |                               |                            |

- 1.25 mm<sup>2</sup> (16 AWG) twisted-pair cable should be used for the power cable.
- The power cable should be separated from other cables.





### 4.6 I/O wiring

| 1. Turn off power before wiring to minimize the risk o | f electrical shock. |
|--------------------------------------------------------|---------------------|
|                                                        |                     |

2. Exposed conductive parts of wire can cause electrical shock. Use crimp-style terminals with insulating sheath or insulating tape to cover the conductive parts. Also close the terminal covers securely on the terminal blocks when wiring has been completed.

6F3B0250

- 3. Turn off power before removing or replacing units, modules, terminal blocks or wires. Failure to do so can cause electrical shock or damage to the T1/T1S and related equipment.
- Refer to sections 2.4 and 3 for instructions on how to properly wire the I/O terminals.
- 0.75 mm<sup>2</sup> (18 AWG) to 0.3 mm<sup>2</sup> (22 AWG) wires are recommended for I/O signals.
- Separate the I/O signal cables from high-power cables by at least 200 mm.
- If expansion rack or unit is used, separate the expansion cable from the power and I/O signal cables by or unit at least 50 mm.
- It is recommended to separate the input signal cables from output signal cables.





#### 5.1 Operation modes

The T1/T1S has three basic operation modes, the RUN mode, the HALT mode and the ERROR mode. The T1/T1S also has the HOLD and RUN-F modes mainly for system checking.

- RUN: The RUN mode is a normal control-operation mode. In this mode, the T1/T1S reads external signals, executes the user program stored in the RAM, and outputs signals to the external devices according to the user program. It is in the RUN mode that the T1/T1S performs scans the user program logic, which is the basic operation of a PLC. In case of the T1S, program changes and EEPROM write are possible while the T1S is in the RUN mode. Refer to section 6.9. On the other hand, in case of the standard T1, program changes and EEPROM write are not possible in the RUN mode.
- The HALT mode is a programming mode. HALT: In this mode, user program execution is stopped and all outputs are switched off. Program loading into the T1/T1S is possible only in the HALT mode. For the standard T1, program changes and EEPROM write are possible only when the T1 is in the HALT mode.
- **ERROR:** The ERROR mode is a shut-down mode as a result of self-diagnosis. The T1/T1S enters the ERROR mode if internal trouble is detected by selfdiagnosis. In this mode, program execution is stopped and all outputs are switched off. The cause of the shut-down can be confirmed by connecting the programming tool. To exit from the ERROR mode, execute the Error Reset command from the

programming tool, or cycle power off and then on again.

The HOLD mode is provided mainly for checking the external I/O signals. HOLD: In this mode, user program execution is stopped, with input and output updating is executed. It is therefore possible to suspend program execution while holding the output state. Moreover, a desired output state can be established by setting any data by using the programming tool.

RUN-F: The RUN-F mode is a forced RUN mode provided for program checking. This mode is effective when using the expansion I/Os. Deferent from the normal RUN mode, the RUN-F mode allows operation even if the registered option cards, expansion unit and/or I/O modules are not actually mounted.

The operation modes are switched by the mode control switch provided on the T1/T1S and the mode control commands issued from the programming tool.



- Mode control switch is in R (RUN) side.
- 2 Mode control switch is in H (HALT) side.
- Solution Mode control switch is turned to H (HALT) side, or HALT command is issued from the programming tool.
- Mode control switch is turned to R (RUN) side, or RUN command is issued from the programming tool.
- Force RUN (RUN-F) command is issued from the programming tool.
- **6** HOLD command is issued from the programming tool.
- HOLD Cancel command is issued from the programming tool.
- Error Reset command is issued from the programming tool.
- → (dotted line) Error is detected by self-diagnosis.

NOTE

MM

The commands from the programming tool are available when the mode control switch is in R (RUN) side.

### 5.2 About the built-in EEPROM

The T1/T1S is equipped with a built-in EEPROM and a RAM as standard features. The user program is stored in the EEPROM so that the user program can be maintained without the need of a battery. A part of the Data register can also be stored in the EEPROM.

The table below shows the contents stored in the built-in EEPROM.

|              | T1                             | T1S                            |
|--------------|--------------------------------|--------------------------------|
| User program | Entire program (2 k steps) and | Entire program (8 k steps) and |
|              | System information             | System information             |
| User data    | Leading 512 words of Data      | User specified number of Data  |
|              | register (fixed).              | register starting with address |
|              | D0000 - D0511                  | 0. It is set by SW55.          |
|              |                                | D0000 - Dnnnn                  |
|              |                                | (up to 2048 words)             |
| Other data   | -                              | SW36 - SW38:                   |
|              |                                | Programmer port settings       |
|              |                                | SW55:                          |
|              |                                | Number of Data register to     |
|              |                                | be saved in the EEPROM         |
|              |                                | SW56 - SW57:                   |
|              | Ċ.                             | RS-485 port settings           |
|              |                                |                                |

The user program and the data stored in the EEPROM is transferred to the RAM when power is turned on. Subsequent program execution is done based on the RAM contents. Program editing is also performed on the RAM contents.

Therefore, if the program is modified, it is necessary to issue the EEPROM Write command from the programming tool. Otherwise, the modified program is overwritten by original EEPROM contents when the power is turned off and on again.





- issued from the programming tool. The EEPROM Read is possible only in the HALT mode.
- ② When EEPROM Write command is issued from the programming tool. It is possible only in the HALT mode (T1), or in other than the ERROR mode (T1S).

In case of the T1S, Special register SW55 is used to specify the number of Data registers to be stored in the EEPROM. The allowable setting value is 0 to 2048. The table below shows the correspondence between the SW55 value and Data registers saved in the EEPROM.

| Range of Data registers saved in | Remarks                                                                                                                                                         |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EEPROM                           |                                                                                                                                                                 |
| None                             |                                                                                                                                                                 |
| D0000 only                       |                                                                                                                                                                 |
| D0000 to D0001                   |                                                                                                                                                                 |
| D0000 to D0002                   |                                                                                                                                                                 |
|                                  |                                                                                                                                                                 |
| D0000 to D2046                   |                                                                                                                                                                 |
| D0000 to D2027                   | Default value                                                                                                                                                   |
| D0000 to D2027                   | Regarded as 2048                                                                                                                                                |
|                                  | Range of Data registers saved in<br>EEPROM<br>None<br>D0000 only<br>D0000 to D0001<br>D0000 to D0002<br>:<br>D0000 to D2046<br>D0000 to D2027<br>D0000 to D2027 |

When the EEPROM Write command is executed, the T1S checks the value of SW55 and saves the Data registers into the EEPROM depending on the SW55 value. The value of SW55 itself is also saved in the EEPROM.

At the initial load or the EEPROM Read command is executed, the T1S checks the value for SW55 in the EEPROM and transfers the corresponding number of data to the Data registers of the RAM.



- (1) The EEPROM has the life limit for writing. It is 100,000 times. Pay attention not to exceed the limit. If the number of execution of EEPROM Write command exceeds 100,000 times, EEPROM alarm flag (S007) comes ON.
- (2) In the T1S, if the EEPROM Write command is executed in RUN mode, only the user program is written into the EEPROM.
- (3) The data in the EEPROM (D0000 to D0511 or D0000 to D2047) can also be read or written by using the program instruction (FUN236 XFER instruction).
  - 4) The SW55 setting is available only for the T1S.



### 5.3 Scanning

The flowchart below shows the basic internal operations performed by the T1/T1S from the time power is turned on through program execution. As the diagram shows, executing a program consists of continuous scanning operations. One scan is a cycle starting with the self-diagnosis and ending with the completion of peripheral support.



#### Hardware check:

Performs checking and initialization of the system ROM, the system RAM and the peripheral LSIs.

#### Initial load:

Transfers the user program and user data from the EEPROM to the RAM. (Refer to section 5.2)

#### **Register/device initialization:**

Initializes registers and devices as shown below.

| Register/device           | Initialization                                              |
|---------------------------|-------------------------------------------------------------|
| External input (X/XW)     | Forced inputs are retained. Others are cleared to 0.        |
| External output (Y/YW)    | Forced coil devices are retained. Others are cleared to 0.  |
| Auxiliary device/register | User specified retentive registers and forced coil devices  |
| (R/RW)                    | are retained. Others are cleared to 0.                      |
| Special device/register   | Special setting data are retained. Others are cleared to 0. |
| (S/SW)                    |                                                             |
| Timer device/register     | User specified retentive registers are retained. Others are |
| (T./T)                    | cleared to 0.                                               |
| Counter device/register   | User specified retentive registers are retained. Others are |
| (C./C)                    | cleared to 0.                                               |
| Data register (D)         | User specified retentive registers are retained. Others are |
|                           | cleared to 0.                                               |
| Index register (I, J, K)  | Cleared to 0.                                               |



- (1) When the data stored in the EEPROM (Data registers) are used, these registers should be specified as retentive. Otherwise, these data are transferred from EEPROM to RAM, but then cleared to 0 at the initialization.
- (2) The data in the retentive registers are stored in RAM and backed up by built-in capacitor. The back-up period is 6 hours or more at 25 °C (T1), or 168 hours or more at 25 °C (T1S).

The T1/T1S checks the validity of the retentive data at the power-up initialization, and if they are not valid, sets the special device (S00F) to ON. Therefore, it is recommended to check the status of S00F in the user program and to initialize the retentive registers if S00F is ON.

- ) The retentive registers can be set by the programming tool for RW, T, C and D registers. The registers from address 0 to the designated address for each type are set as retentive registers. Refer to the separate manual for the programming tool for setting the retentive registers.
- (4) The input force and the forced coil are functions for program debugging. For details, refer to section 6.7.

### Self-diagnosis:

Checks the proper operation of the T1/T1S itself. If an error has detected and cannot be recovered by re-tries, the T1/T1S moves into ERROR mode. For the self-diagnosis items, refer to section 10.2.

### Mode control:

Checks the mode control switch status and the mode control request commands from the programming tool.

The scan mode – floating scan or fixed-time scan – is also controlled hear.



#### The floating scan:

When one scan is finished, immediately starts the next scan. The scan time is shortest, but may vary depending on the program execution status.



#### The fixed-time scan:

The scan operation is started every user-specified time. The time setting range is 10 to 200 ms (10 ms units). If an actual scan needs longer time than the setting time, it works as the floating scan.



### Program check:

At the beginning of the RUN mode, the user program is compiled and its validity is checked.

### I/O update:

Reads the external input signals into the external input devices/registers (X/XW), and sends the data of the external output devices/registers (Y/YW) to the external output circuits. Then the outputs (relays, etc.) changes the states and latches until the next I/O update timing.

The states of the forced input devices are not updated by this operation.

### Timer update:

Updates the timer registers which are activated in the user program, and the timing devices (S040 to S047).



#### User program execution:

Executes the programmed instructions from the beginning to the END instruction. This is the essential function of the T1/T1S.

In this section, only the main program execution is mentioned. For other program types, such as timer interrupt, etc., refer to section 6.5.

#### **Peripheral support:**

Supports the communications with the programming tool or an external devices connected by the computer link function. The time for this operation is limited within approx. 2 ms in the floating scan mode, and within allowable idling time in the fixed-time scan mode.

In case of the T1S, if the special relay S158 is set to ON, the peripheral support priority mode is selected. In the peripheral support priority mode, the peripheral support time is not limited. As the result, the communication response is improved although the scan time becomes long at the time.



#### 6.1 Devices and registers

The T1/T1S program consists of bit-based instructions that handle ON/OFF information, such as contact and coil instructions, and register-based (16-bit) instructions, such as those for data transfer and arithmetic operations. Devices are used to store the ON/OFF information of contacts and coils, and registers are used to store 16-bit data.

Devices are divided into six types:

- X External input devices
- Y External output devices
- R Auxiliary relay devices
- S Special devices
- T. Timer devices
- C. Counter devices

Registers are divided into eight types:

- XW External input registers
- YW External output registers
- RW Auxiliary relay registers
- SW Special registers
- T Timer registers
- C Counter registers
- D Data registers
- I, J, K Index registers

### **Device and register numbers**

X devices share the same memory area as XW registers. Device X014, for example, represents the number 4 bit in the XW01 register.



Thus, "X014 is ON" means that bit number 4 of XW01 is 1. Y, R, and S devices work in a similar manner.

### **Addressing devices**

A device number of X, Y, R and S devices consists of a register number and bit position as follows.



As for the timer (T.) and the counter (C.) devices, a device number is expressed as follows.



### Addressing registers

A register number except the index registers is expressed as follows.

<u>XW 01</u> ↑

N

- Register number. (decimal number)

Represents the type of register. (XW, YW, RW, SW, T, C or D)

The index registers (I, J and K) do not have the number.

I. J. or K

### Available address range

| Device/register  | Symbol |                 | T1             | T1S            |                |  |
|------------------|--------|-----------------|----------------|----------------|----------------|--|
| -                |        | Number of       | Address range  | Number of      | Address range  |  |
|                  |        | points          |                | points         |                |  |
| External input   | Х      | Total 512       | X000 - X31F    | Total 512      | X000 - X31F    |  |
| device           |        | points          |                | points         |                |  |
| External output  | Y      |                 | Y020 - Y31F    |                | Y020 - Y31F    |  |
| device           | 2010   | <b>T</b> ( 1.00 |                |                |                |  |
| External input   | XVV    | Total 32        | XW00 - XW31    | Total 32       | XW00 - XW31    |  |
| register         | 2014   | words           |                | words          |                |  |
| External output  | YVV    |                 | YVV02 - YVV31  |                | YVV02 - YVV31  |  |
|                  |        | 4004            |                | 4000           |                |  |
| Auxiliary relay  | ĸ      | 1024            | R000 - R63F    | 4096<br>nointe | R000 - R255F   |  |
|                  |        | points          |                | points         | DW000          |  |
| Auxiliary relay  | RW     | 64 words        | RVV00 - RVV63  | 256 Words      | RW000 -        |  |
| register         |        |                 |                |                | RVV255         |  |
| Special device   | S      | 1024            | S000 - S63F    | 1024           | S000 - S63F    |  |
|                  |        | points          |                | points         |                |  |
| Special register | SW     | 64 words        | SW00 - SW63    | 64 words       | SW00 - SW63    |  |
| Timer device     | Τ.     | 64 points       | T.00 - T.63    | 256 points     | T.000 - T.255  |  |
| Timer register   | Т      | 64 words        | T00 - T63      | 256 words      | T000 - T255    |  |
| Counter device   | C.     | 64 points       | C.00 - C.63    | 256 points     | C.000 - C.255  |  |
| Counter register | С      | 64 words        | C00 - C63      | 256 words      | C000 - C255    |  |
| Data register    | D      | 1024            | D0000 - D1023  | 4096           | D0000 - D4095  |  |
|                  |        | words           |                | words          |                |  |
| Index register   |        | 1 word          | I (no address) | 1 word         | I (no address) |  |
|                  | J      | 1 word          | J (no address) | 1 word         | J (no address) |  |
|                  | K      | 1 word          | K (no address) | 1 word         | K (no address) |  |



(1) 1 word = 16 bits

(2) The available data range in each register is -32768 to 32767 (H8000 to H7FFF) except for the timer and the counter registers.

The data range of the timer register is 0 to 32767. That of the counter register is 0 to 65535.

(3) Double-word (32 bits) data is available in two consecutive registers.In this case, lower address register stores the lower 16 bits data.

(MSB) F ..... 0 F ..... 0 (LSB)

| D0101   | D0100   |
|---------|---------|
| Upper   | Lower   |
| 16 bits | 16 bits |

In this manual, a double-word register is expressed by using '.'. For example, D0101·D0100.

### External input devices (X)

These devices (X) indicate the ON/OFF states of external input signals through the input circuits. External input devices can be used many times in a program.

### External output devices (Y)

The external output devices (Y) store the ON/OFF signals that drive the external devices through the output circuits. They can be used for coils in a program.

#### External input registers (XW)

These (XW) are 16-bit registers for storing values which are received from the input circuits.

#### External output registers (YW)

These 16-bit registers (YW) are used for storing values which are sent to the output circuits.

#### Auxiliary relay devices and registers (R/RW)

The auxiliary relay devices (R) are used to store intermediate results of sequences. The auxiliary relay registers (RW) are used to store temporary results of function instructions. The data in R/RW cannot be output directly to the output circuits. It is necessary to move the data to Y/YW.

It is possible to make these registers retentive so that they retain data in the event of a power failure. See section 5.3.

### Timer devices and registers (T./T)

The timer registers (T) are used for storing the elapsed time of timer instructions, the on-delay (TON), off-delay (TOF) and single-shot (SS) timers.

0.01 s base timers and 0.1 s base timers are provided.

| Time base | TI           | T1S          |
|-----------|--------------|--------------|
| 0.01 s    | T000 to T031 | T000 to T063 |
| 0.1 s     | T032 to T063 | T064 to T255 |

The timer devices (T.) works as the output of the timer instructions. It is possible to specify the T registers as retentive to retain their data in the event of a power failure. See section 5.3.

### Counter devices and registers (C./C)

The counter registers (C) are used for storing the count value of the counter (CNT) and the up-down counter (U/D) instructions.

The counter devices (C.) works as the output of the counter instructions. It is possible to specify the C registers as retentive to retain their data in the event of a power failure. See section 5.3.

#### Data registers (D)

Functionally the data registers (D) are the same as auxiliary relay registers (RW) except that the D registers cannot be used as devices.

A part of the data registers are saved in the built-in EEPROM as fixed data and transferred into the RAM at the initial load. See section 5.2.

Range of the data registers saved in the EEPROM:

| T1             | T1S                                                               |
|----------------|-------------------------------------------------------------------|
| D0000 to D0511 | User specified range<br>starting with D0000<br>(up to 2048 words) |

It is possible to specify the D registers as retentive to retain their data in the event of a power failure. See section 5.3.

### Index registers (I, J, and K)

T1/T1S User's Manual

These index registers are used for indirect addressing for a register. For example, if the value of I is 100 in the following register expression, it designates D0100. For details, refer to section 6.2.

L D0000 D0100 if I=100

### Special devices and registers (S/SW)

The special devices (S) and special registers (SW) are used for special purposes. See list below.

| Device/  | Name                      | Function                                                 |  |  |
|----------|---------------------------|----------------------------------------------------------|--|--|
| register |                           |                                                          |  |  |
| S000     |                           | 0: Initialization 4: HOLD mode                           |  |  |
| S001     | T1/T1S operation mode     | 1: HALT mode 6: ERROR mode                               |  |  |
| S002     |                           | 2: RUN mode                                              |  |  |
| S003     |                           | 3: RUN-F mode                                            |  |  |
| S004     | CPU error (down)          | ON at error state (related to SW01)                      |  |  |
| S005     | I/O error (down)          | ON at error state (related to SW02)                      |  |  |
| S006     | Program error (down)      | ON at error state (related to SW03)                      |  |  |
| S007     | EEPROM alarm (alarm)      | ON when EEPROM write exceeds 100,000 times               |  |  |
| S008     | Fixed-time scan time-over | ON when actual scan time is longer than the setting time |  |  |
|          | (alarm)                   | as fixed-time scan                                       |  |  |
| S009     | _                         | Reserved                                                 |  |  |
| S00A     | Clock/calendar error      | ON when clock/calendar data is illegal (T1S only)        |  |  |
|          | (alarm)                   |                                                          |  |  |
| S00B     | _                         | Reserved                                                 |  |  |
| S00C     | _                         | Reserved                                                 |  |  |
| S00D     | TL-F10 error (alarm)      | ON when TOSLINE-F10 transmission error occurs            |  |  |
| S00E     | _                         | Reserved                                                 |  |  |
| S00F     | Retentive data invalid    | ON when retentive data in RAM are invalid                |  |  |
|          | (alarm)                   |                                                          |  |  |



MM

- (1) These devices are set by the T1/T1S operating system. These devices are read only for user.
- (2) Devices marked as (down) are set in the ERROR mode. Therefore these devices cannot be used in the user program.
- (3) Devices marked as (alarm) are set in the normal operation mode. These devices can be used in the user program.

#### 6F3B0250

# 6. Programming Information

| Dovico/ | Namo                    | Function                               |  |  |
|---------|-------------------------|----------------------------------------|--|--|
| Device/ | Name                    | Function                               |  |  |
| S010    | System ROM error (down) | ON at error state                      |  |  |
| S011    | System RAM error (down) | ON at error state                      |  |  |
| S012    | Program memory error    | ON at error state                      |  |  |
|         | (down)                  |                                        |  |  |
| S013    | EEPROM error (down)     | ON at error state                      |  |  |
| S014    | —                       | Reserved                               |  |  |
| S015    | —                       | Reserved                               |  |  |
| S016    | —                       | Reserved                               |  |  |
| S017    | _                       | Reserved                               |  |  |
| S018    | —                       | Reserved                               |  |  |
| S019    | —                       | Reserved                               |  |  |
| S01A    | —                       | Reserved                               |  |  |
| S01B    | _                       | Reserved                               |  |  |
| S01C    | _                       | Reserved                               |  |  |
| S01D    | _                       | Reserved                               |  |  |
| S01E    | _                       | Reserved                               |  |  |
| S01F    | Watchdog timer error    | ON at error state                      |  |  |
|         | (down)                  |                                        |  |  |
| S020    | I/O bus error (down)    | ON at error state (for T2 I/O modules) |  |  |
| S021    | I/O mismatch (down)     | ON at error state                      |  |  |
| S022    | I/O no answer (down)    | ON at error state (for T2 I/O modules) |  |  |
| S023    | I/O parity error (down) | ON at error state (for T2 I/O modules) |  |  |
| S024    | -                       | Reserved                               |  |  |
| S025    | -                       | Reserved                               |  |  |
| S026    | -                       | Reserved                               |  |  |
| S027    | -                       | Reserved                               |  |  |
| S028    |                         | Reserved                               |  |  |
| S029    | *.                      | Reserved                               |  |  |
| S02A    |                         | Reserved                               |  |  |
| S02B    | -                       | Reserved                               |  |  |
| S02C    |                         | Reserved                               |  |  |
| S02D    | -                       | Reserved                               |  |  |
| S02E    | -                       | Reserved                               |  |  |
| S02F    | -                       | Reserved                               |  |  |
|         |                         |                                        |  |  |

 These devices are set by the T1/T1S operating system. These devices are read only for user.

(2) Devices marked as (down) are set in the ERROR mode. Therefore these devices cannot be used in the user program.

T1/T1S User's Manual

98

| Device/  | Name                  | Function                                |                |  |  |
|----------|-----------------------|-----------------------------------------|----------------|--|--|
| register |                       |                                         |                |  |  |
| 5030     | Program error         | ON at error state (related to SW06)     | •              |  |  |
| 5031     | Scan time over (down) | ON when the scan time exceeds 200 ms    |                |  |  |
| 5032     | _                     | Reserved                                |                |  |  |
| S033     | _                     | Reserved                                |                |  |  |
| S034     | —                     | Reserved                                |                |  |  |
| S035     | _                     | Reserved                                |                |  |  |
| S036     | _                     | Reserved                                |                |  |  |
| S037     | _                     | Reserved                                |                |  |  |
| S038     | —                     | Reserved                                |                |  |  |
| S039     | —                     | Reserved                                |                |  |  |
| S03A     | _                     | Reserved                                |                |  |  |
| S03B     | _                     | Reserved                                |                |  |  |
| S03C     | _                     | Reserved                                |                |  |  |
| S03D     | _                     | Reserved                                |                |  |  |
| S03E     | _                     | Reserved                                |                |  |  |
| S03F     | _                     | Reserved                                |                |  |  |
| S040     | Timing relay 0.1 s    | OFF 0.05 s / ON 0.05 s (0.1 s interval) |                |  |  |
| S041     | Timing relay 0.2 s    | OFF 0.1 s / ON 0.1 s (0.2 s interval)   |                |  |  |
| S042     | Timing relay 0.4 s    | OFF 0.2 s / ON 0.2 s (0.4 s interval)   | All OFF at the |  |  |
| S043     | Timing relay 0.8 s    | OFF 0.4 s / ON 0.4 s (0.8 s interval)   | beginning of   |  |  |
| S044     | Timing relay 1.0 s    | OFF 0.5 s / ON 0.5 s (1.0 s interval)   | RUN mode       |  |  |
| S045     | Timing relay 2.0 s    | OFF 1.0 s / ON 1.0 s (2.0 s interval)   |                |  |  |
| S046     | Timing relay 4.0 s    | OFF 2.0 s / ON 2.0 s (4.0 s interval)   |                |  |  |
| S047     | Timing relay 8.0 s    | OFF 4.0 s / ON 4.0 s (8.0 s interval)   |                |  |  |
| S048     | -                     | Reserved                                |                |  |  |
| S049     |                       | Reserved                                |                |  |  |
| S04A     |                       | Reserved                                |                |  |  |
| S04B     |                       | Reserved                                |                |  |  |
| S04C     |                       | Reserved                                |                |  |  |
| S04D     | -                     | Reserved                                |                |  |  |
| S04E     | Always OFF            | Always OFF                              |                |  |  |
| S04F     | Always ON             | Always ON                               |                |  |  |

NOTE

1) These devices are set by the T1/T1S operating system. These devices are read only for user.

(2) Devices marked as (down) are set in the ERROR mode. Therefore these devices cannot be used in the user program.



| Device/  | Name                         | Function                                                 |  |  |
|----------|------------------------------|----------------------------------------------------------|--|--|
| register |                              |                                                          |  |  |
| S050     | CF (carry flag)              | Used for instructions which manipulate carry             |  |  |
| S051     | ERF (instruction error flag) | ON when instruction execution error is occurred          |  |  |
|          |                              | (related to alarm flags of SW06)                         |  |  |
| S052     | _                            | Reserved                                                 |  |  |
| S053     | —                            | Reserved                                                 |  |  |
| S054     | —                            | Reserved                                                 |  |  |
| S055     | _                            | Reserved                                                 |  |  |
| S056     | _                            | Reserved                                                 |  |  |
| S057     | _                            | Reserved                                                 |  |  |
| S058     | _                            | Reserved                                                 |  |  |
| S059     | _                            | Reserved                                                 |  |  |
| S05A     | _                            | Reserved                                                 |  |  |
| S05B     | _                            | Reserved                                                 |  |  |
| S05C     | _                            | Reserved                                                 |  |  |
| S05D     | _                            | Reserved                                                 |  |  |
| S05E     | _                            | Reserved                                                 |  |  |
| S05F     | _                            | Reserved                                                 |  |  |
| S060     | Illegal instruction (down)   | ON when illegal instruction is detected                  |  |  |
| S061     | _                            | Reserved                                                 |  |  |
| S062     | -                            | Reserved                                                 |  |  |
| S063     | -                            | Reserved                                                 |  |  |
| S064     | Boundary error (alarm)       | ON when illegal address is designated by indirect        |  |  |
|          |                              | addressing (operation continued)                         |  |  |
| S065     | -                            | Reserved                                                 |  |  |
| S066     | -                            | Reserved                                                 |  |  |
| S067     |                              | Reserved                                                 |  |  |
| S068     | Division error (alarm)       | ON when error occurs in division instruction (operation  |  |  |
|          |                              | continued)                                               |  |  |
| S069     | BCD data error (alarm)       | ON when BCD data error has detected in BCD operation     |  |  |
|          |                              | instructions (operation continued)                       |  |  |
| S06A     | Table operation error        | ON when table size error has detected in table operation |  |  |
| 0000     | (alarm)                      | instructions (operation continued) (11S only)            |  |  |
| S06B     | Encode error (alarm)         | ON when error occurs in encode instruction (operation    |  |  |
| S06C     | 7                            | Reserved                                                 |  |  |
| S06D     | $\mathbf{O}^{-}$             | Reserved                                                 |  |  |
| SOGE     | -                            | Reserved                                                 |  |  |
| SORE     | _                            | Reserved                                                 |  |  |
|          | —                            | 1/2921/20                                                |  |  |

NOTE

- (1) Devices marked as (down) are set in the ERROR mode. Therefore these devices cannot be used in the user program.
- (2) CF, ERF and devices marked as (alarm) can be reset by the user program.

00

| Γ  | Device/<br>register | Name                                                                                                          | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|----|---------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ङ  | SW07                | Clock/calendar (Year)                                                                                         | Lower 2 digits of the calendar year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|    | 21//08              | Clock/calendar (Month)                                                                                        | Month (01, 02, 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|    |                     | Clock/calendar (Month)                                                                                        | $\frac{1}{1} \frac{1}{1} \frac{1}$ |  |
|    | SVVU9               | Clock/calendar (Day)                                                                                          | Day (01, 02, 31) If the tower 8 bits by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|    | SVV 10<br>SVV/14    | Clock/calendar (Hour)                                                                                         | Minute (00, 01, 59)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|    |                     | Clock/calendar (Minute)                                                                                       | $\frac{1}{2} \frac{1}{2} \frac{1}$ |  |
|    |                     | Clock/calendar (Maak)                                                                                         | Second (00, 01, 59)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|    | 50013               | Clock/calendar (Week)                                                                                         | (Sun = 00, Mon = 01,, Sat = 06)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 9  | SW14                | _                                                                                                             | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| S  | SW15                | Peripheral support priority                                                                                   | Bit 8 (S158) is used to select peripheral support priority (T1S only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| ङ  | SW16                | Mode of special input<br>functions                                                                            | Used to select the special input functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 5  | SW17                | Input filter constant                                                                                         | Used to set the input filter constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 5  | SW18                | Preset values for high                                                                                        | Used to set the preset values for high speed counters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|    | SW19                | speed counter                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|    | SW20                | •                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 3  | SW21                |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 19 | SW22                | Count values for high                                                                                         | Present count values of the high speed counters are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 5  | SW23                | speed counter                                                                                                 | stored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| ङ  | SW24                | High speed counter control flags                                                                              | Control flags for the high speed counters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|    | SW25                | _                                                                                                             | Reserve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| ङ  | SW26                | Mode of special output functions                                                                              | Used to select the special output functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|    | SW27                | Special output control flags                                                                                  | Control flags for the pulse/PWM output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| ङ  | SW28                | Special output frequency setting                                                                              | Output frequency setting for the pulse/PWM output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|    | SW29                | PWM output duty setting                                                                                       | Pulse duty setting for the PWM output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|    | SW30                | Analog setting value 1                                                                                        | Input value of the analog setting adjuster V0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 5  | SW31                | Analog setting value 2                                                                                        | Input value of the analog setting adjuster V1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| ि  | SW32                | AUX LED control Bit 0 (S320) is used to control AUX LED (T1-40/T1-40S only)                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|    | SW33                | -                                                                                                             | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 5  | SW34                | TL-F10 send data                                                                                              | TOSLINE-F10 transmission data (send to master)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 5  | SW35                | TL-F10 receive data                                                                                           | TOSLINE-F10 transmission data (receive from master)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| S  | SW36                | PRG port station address                                                                                      | Used to set the programmer port station address<br>(1 to 32) (T1S only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 3  | SW37                | PRG port parity                                                                                               | Used to set the programmer port parity (0=none, 1=odd)<br>(T1S only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| S  | SW38                | PRG port response delay                                                                                       | Used to set the programmer port response delay time (0 to 30: 0 to 300ms)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|    | NOTE                | <ol> <li>For details of SW16</li> <li>For details of SW34</li> <li>For details of SW36<br/>manual.</li> </ol> | though SW31, refer to section 8.<br>and SW35, refer to the Expansion I/O manual.<br>through SW38, refer to the Communication function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 2  |                     |                                                                                                               | Basic Hardware and Function <b>101</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |

- (2) For details of SW34 and SW35, refer to the Expansion I/O manual.
- (3) For details of SW36 through SW38, refer to the Communication function manual.

6F3B0250

# 6. Programming Information

| Device/      | Name                       | Function                                             |
|--------------|----------------------------|------------------------------------------------------|
| register     | Name                       | T diretion                                           |
| S390         | Timer interrupt execution  | ON during execution                                  |
|              | status                     |                                                      |
| S391         | I/O interrupt #1 execution | ON during execution                                  |
|              | status                     |                                                      |
| S392         | I/O interrupt #2 execution | ON during execution                                  |
|              | status                     |                                                      |
| S393         | I/O interrupt #3 execution | ON during execution                                  |
| 0004         | status                     |                                                      |
| \$394        | I/O interrupt #4 execution | ON during execution                                  |
| S205         | status                     | Papariod                                             |
| S395         |                            | Reserved                                             |
| S390         |                            | Reserved                                             |
| 5397         |                            | Reserved                                             |
| 5398         |                            | Reserved                                             |
| 5399         | _                          | Reserved                                             |
| 539A         | _                          | Reserved                                             |
| S39B         | _                          | Reserved                                             |
| S39C         | _                          | Reserved                                             |
| S39D         | _                          | Reserved                                             |
| S39E         | -                          | Reserved                                             |
| S39F         | -                          | Reserved                                             |
| S400         | -                          | Reserved                                             |
| S401         | HOLD device                | ON during HOLD mode (setting by user program is also |
| S402         |                            | available)                                           |
| S402         |                            | Reserved                                             |
| S403         |                            | Reserved                                             |
| S404<br>S405 |                            | Reserved                                             |
| S405         |                            | Reserved                                             |
| 5400         |                            | Reserved                                             |
| 5407         |                            | Reserved                                             |
| 5408         | +                          | Reserved                                             |
| 5409         | -                          | Reserved                                             |
| S40A         | -                          | Reserved                                             |
| S40B         | -                          | Reserved                                             |
| 5400         | -                          | Keservea                                             |
| S40D         | -                          | Keservea                                             |
| S40E         | -                          | Keserved                                             |
| S40F         | –                          | Keserved                                             |

| Device/  | Name                       | Function                                                 |
|----------|----------------------------|----------------------------------------------------------|
| register |                            |                                                          |
| SW41     | Sub-program #1 execution   | Bit 0 (S410) is ON during the sub-program #1 is executed |
|          | status                     |                                                          |
| SW42     | _                          | Reserved                                                 |
| SW43     | —                          | Reserved                                                 |
| SW44     | _                          | Reserved                                                 |
| SW45     | —                          | Reserved                                                 |
| SW46     | —                          | Reserved                                                 |
| SW47     | _                          | Reserved                                                 |
| SW48     | —                          | Reserved                                                 |
| SW49     | —                          | Reserved                                                 |
| SW50     | —                          | Reserved                                                 |
| SW51     | —                          | Reserved                                                 |
| SW52     | _                          | Reserved                                                 |
| SW53     | —                          | Reserved                                                 |
| SW54     | _                          | Reserved                                                 |
| SW55     | Number of EEPROM write     | Used to set the number of data registers to be saved in  |
|          | data                       | the EEPROM (0 to 2048, initial value is 2048) (T1S only) |
| SW56     | RS-485 port operation      | Used to set the RS-485 port operation mode (T1S only)    |
|          | mode                       |                                                          |
| SW57     | RS-485 port response delay | Used to set the RS-485 port response delay time          |
|          |                            | (0 to 30: 0 to 300ms) (T1S only)                         |
| SW58     | RS-485 port Free ASCI      | Used for the RS-485 port Free ASCII function (T1S only)  |
|          | flags                      |                                                          |
| SW59     | -                          | Reserved                                                 |
| SW60     | -                          | Reserved                                                 |
| SW61     |                            | Reserved                                                 |
| SW62     |                            | Reserved                                                 |
| SW63     | *                          | Reserved                                                 |

(1) For details of SW55, refer to section 5.2.

(2) For details of SW56 through SW58, refer to the Communication function manual.

MM

NOTE

#### 6.2 Index modification

When registers are used as operands of instructions, the method of directly designating the register address as shown in Example 1) below is called 'direct addressing'.

As opposed to this, the method of indirectly designating the register by combination with the contents of the index register (I, J, or K) as shown in Example 2) below is called 'indirect addressing'. In particular, in this case, since the address is modified using an index register, this is called 'index modification'.

Example 1)

-[ RW10 MOV D1000 ]---

Data transfer instruction Transfer data of RW10 to D1000

Example 2)

I J ---[ RW10 MOV D0000 ]---

Data transfer instruction (with index modification) Transfer data of RW(10 + I) to D(0000 + J)(If I = 3 and J = 200, the data of RW13 is transferred to D0200)

There are 3 types of index register, I, J and K. Each type processes 16-bit integers (-32768 to 32767). There are no particular differences in function between these 3 types of index register.

There is no special instruction for substituting values in these index registers. These are designated as destination of data transfer instructions, etc.

| _[ 00064 | MOV | ) <u> </u> |
|----------|-----|------------|
| -[ D0035 | MOV | J 🏳        |

(substitutes 64 in index register I)

(substitutes the data of D0035 in index register J)

[RW20 + 00030  $\rightarrow$  K]— (substitutes the result of addition in index register K)



The index modification is available for RW, T, C and D registers.
 If index registers are used as a double-length register, only the combinations J·I and K·J are allowed.



### 6.3 Real-time clock/calendar (T1S only)

The T1S is equipped with the real-time clock/calendar for year, month, day, day of the week, hour, minute, and second.

These data are stored in the special registers SW07 to SW13 by 2-digit BCD format as follows.

| Register | Function | Data                                                    |
|----------|----------|---------------------------------------------------------|
| SW07     | Year     | 1998 = H0098, 1999 = H0099, 2000 = H0000, 2001 = H0001, |
| SW08     | Month    | Jan. = H0001, Feb. = H0002, Mar. = H0003, Dec. = H0012  |
| SW09     | Day      | 1st = H0001, 2nd = H0002, 3rd = H0003, 31st = H0031     |
| SW10     | Hour     | H0000, H0001, H0002, H0022, H0023                       |
| SW11     | Minute   | H0000, H0001, H0002, H0058, H0059                       |
| SW12     | Second   | H0000, H0001, H0002, H0058, H0059                       |
| SW13     | Week     | Sun. = H0000, Mon. = H0001, Tue. = H0002, Sat. = H0006  |

#### **Program example:**

In the following circuit, output Y030 turns ON for 1 minute at every Sunday 6 pm.

|          | _ | 000007 [20040 | _ | (H0018)     | _ |        | Y0030 |
|----------|---|---------------|---|-------------|---|--------|-------|
| 1-724612 | - | 00000_L2M010  | - | 00024759011 | - | 00000_ |       |
| I        |   |               |   |             |   |        | I     |

#### Clock/calendar back-up:

The clock/calendar continues updating even while the power to the T1S is off by built-in capacitor. Its buck-up period is as follows.

| Temperature | Expected value | Guarantee value |
|-------------|----------------|-----------------|
| 25 °C       | 300 hours      | 168 hours       |
| 40 °C       | 144 hours      | 72 hours        |

In the T1S, the validity of the clock/calendar is checked. If the data is not valid by excess power off period, special relay S00A is set to ON. Therefore, when the clock/calendar is used, it is recommended to check the status of S00A in the user program.

### Setting the clock/calendar:

To set the clock/calendar data, the following 2 ways are available. In both cases, the week data is automatically calculated.

- (a) Setting the clock/calendar data on the system information screen of the programming tool.
- (2) Using the Calendar Set instruction (CLND) in the user program.

**U6** T1/T1S User's Manual
#### 6.4 I/O allocation

The external input signals are allocated to the external input devices/registers (X/XW). The external output signals are allocated to the external output devices/registers (Y/YW). The register numbers of the external input and output registers are consecutive. Thus one register number can be assigned for either input or output.

As for the T1/T1S basic unit, I/O allocation is fixed as follows.



Any operation for the I/O allocation are not required if only the T1/T1S basic unit is used.

However, if the option cards, the Expansion unit and/or the T2 I/O modules are used with the T1-40/T1-40S, the I/O allocation operation is necessary. For this information, refer to the separate manual for Expansion I/O.

NNN

Internally, the T1/T1S has an information called 'I/O allocation table' in its memory. This I/O allocation table shows the correspondence between I/O hardware and software, i.e. register/device.

The contents of the I/O allocation table are as follows.



The T1/T1S operating system automatically sets the I/O type 'X+Y 4W' on the slot 0 position when the memory clear is executed for the T1/T1S.

When the T1/T1S program is developed in off-line, the above I/O allocation table should be set before programming. For this operation (called manual I/O allocation), refer to the programming tool manual.

T1/T1S User's Manual

#### 6.5 T1S memory mode setting

The program capacity of the T1S is 8 k steps. However, user can set the T1S's program capacity to 4 k steps. It is called the T1S's memory mode. That is, the T1S has two memory modes, 8 k mode and 4 k mode.

In the 4 k mode, on-line program changes become available, although the program capacity is limited to 4 k steps. Refer to section 6.9 for the on-line debug support functions.

To set the T1S's memory mode, write 4 k or 8 k on the Program Size Setting of the System Parameters using the programming tool. Then execute the EEPROM write command.



There is no memory mode setting for the standard T1. The program capacity of the standard T1 is 2 k steps fixed.

### 6.6 User program configuration

A group of instructions for achieving the PLC-based control system is called 'user program'. The T1 has 2 k steps capacity for storing the user program. And the T1S has 8 k steps capacity for storing the user program. A 'step' is the minimum unit which composes an instruction. Number of steps required for one instruction is depending on the type of instruction. Refer to section 7.1.

The figure below shows the T1/T1S's memory configuration.



6F3B0250

#### System information

System information is the area which stores execution control parameters. The following contents are included in the system information.

- (1) Machine parameters (hardware type, memory type)
- (2) User program information (program ID, system comments, number of steps used)
- (3) Passwords
- (4) Retentive register area information
- (5) T1S program memory mode, 4 k steps or 8 k steps (T1S only)
- (6) Execution control parameters (scan mode, timer interrupt interval)
- (7) Station number setting for programmer port (T1), or RS-485 port communication parameters (T1S)
- (8) I/O allocation table
- (9) Input force table

The system information is stored in the built-in EEPROM. Therefore, when these information is modified, the EEPROM write operation is necessary. Otherwise, these are over-written by original EEPROM contents at the next initial load timing.

#### User program

The T1 has a capacity of 2 k steps of the user program. And the T1S has a capacity of 8 k steps of the user program.

The user program is stored by each program types as shown in the following diagram, and is managed by units called blocks in each program types.



In the user program, the main program is the core. The scan operation explained in section 5.3 is for the main program. The operation of other program types are explained in the following sections.

The following 8 program types are supported by the T1/T1S.

- (1) Main program
- (2) Sub-program #1
- (3) Timer interrupt program
- (4) I/O interrupt program #1
- (5) I/O interrupt program #2
- (6) I/O interrupt program #3
- (7) I/O interrupt program #4
- (8) Subroutine

The blocks are just separators of the program, and have no effect on the program execution. However, by dividing the user program into some blocks, the program becomes easy to understand. The block numbers need not be consecutive.

In each program type and block, there is no limit of program capacity. The only limit is the total capacity.

#### 6.6.1 Main program

The main program is the core of the user program. It is executed once in each scan.



In the above figure, Mode means the mode control operation

I/O means the I/O update processing

Timer means the timer up date processing

Main program means the main program execution

the self-diagnostic check and peripheral support are omitted in this figure.

The end of the main program is recognized by the END instruction.

Although instructions may be present after the END instruction, these portions will not be executed.

T1/T1S User's Manual

#### 6.6.2 Sub-program #1

If the sub-program #1 is programmed, it is executed once at the beginning of the first scan (before main program execution).

Therefore, the sub-program #1 can be used to set the initial value into the registers. The sub-program #1 is called the initial program.

The figure below shows the first scan operation.

| RUN mode<br>transition | *   | 1st scan |       |              |   | 2nd scan |     |       |              |  |  |
|------------------------|-----|----------|-------|--------------|---|----------|-----|-------|--------------|--|--|
|                        |     |          |       |              |   |          |     |       |              |  |  |
|                        | I/O | Timer    | Sub#1 | Main program | 1 | Mode     | 1/0 | Timer | Main program |  |  |
|                        |     |          |       |              |   |          |     |       |              |  |  |
|                        |     |          |       | → Time       |   |          |     |       |              |  |  |

The end of the sub-program #1 is recognized by the END instruction.

#### 6.6.3 Timer interrupt program

The timer interrupt is the highest priority task. It is executed cyclically with a user specified interval, with suspending other operation. The interrupt interval is set in the system information. (5 to 1000 ms, 5 ms units)



The end of the timer interrupt is recognized by the IRET instruction. INN

#### 6.6.4 I/O interrupt programs

The I/O interrupt program is also the highest priority task. It is executed immediately when the interrupt factor is generated, with suspending other operation.

the following 4 types I/O interrupt programs are supported in the T1/T1S

(1) I/O interrupt #1

The I/O interrupt #1 is used with the high speed counter function. When the count value reaches the preset value, etc., the I/O interrupt #1 is activated immediately with suspending other operation. The end of the I/O interrupt #1 is recognized by the IRET instruction. For detailed information, refer to section 8.3.

(2) I/O interrupt #2

The I/O interrupt #2 is also used with the high speed counter function. Refer to section 8.3 for details.

(3) I/O interrupt #3

The I/O interrupt #3 is used with the interrupt input function. When the state of the interrupt input is changed from OFF to ON (or ON to OFF), the I/O interrupt #3 is activated immediately with suspending other operation. The end of the I/O interrupt #3 is also recognized by the IRET instruction. For detailed information, refer to section 8.4.

(4) I/O interrupt #4

The I/O interrupt #4 is also used with the interrupt input function. Refer to section 8.4 for details.

If an interrupt factor is generated while other interrupt program is executing (including the timer interrupt), the interrupt factor is held. Then it will be activated after finishing the other interrupt program execution.

If two or more interrupt factors are generated at the same time, the priority is as follows.

Timer > I/O #1 > I/O #2 > I/O #3 > I/O #4

T1/T1S User's Manual

#### 6.6.5 Subroutines

In the program type 'Subroutine', The following number of subroutines can be programmed.

| T1                   | T1S                   |
|----------------------|-----------------------|
| Up to 16 subroutines | Up to 256 subroutines |

The subroutine is not a independent program. It is called from other program types (main program, sub-program, interrupt program) and from other subroutines (T1S only).

One subroutine is started with the SUBR instruction, and ended by the RET instruction.

It is necessary to assign a subroutine number to the SUBR instruction. The available subroutine numbers are 0 to 15 for the T1, or 0 to 255 for the T1S.

---[ SUBR (000) ]---↑ Subroutine number

The RET instruction has no subroutine number.

The instruction that calls a registered subroutine is the CALL instruction. The CALL instruction has the subroutine number to be called.



#### 6.7 Programming language

T1/T1S User's Manual

The programming language of the T1/T1S is 'ladder diagram'. Ladder diagram is a language which composes program using relay symbols as a base in an image similar to a hard-wired relay sequence. In the T1/T1S, in order to achieve an efficient data-processing program, ladder diagram which are combinations of relay symbols and function blocks are used.

6F3B0250

The ladder diagram program is constructed by units called 'rung'. A rung is defined as one network which is connected each other.



The rung numbers are a series of numbers (decimal number) starting from 1, and cannot be skipped. There is no limit to the number of rungs.

The size of any one rung is limited to 11 lines  $\times$  12 columns.

A example of a ladder diagram program is shown below.

| Y0027 |
|-------|
| -     |
| -     |

When X005 is ON or the data of D0100 is greater than 200, Y027 comes ON. Y027 stays ON even if X005 is OFF and the data of D0100 is 200 or less. Y027 will come OFF when X006 comes ON.

#### 6.8 Program execution sequence

The instructions execution sequence is shown below.

- (1) They are executed in the sequence from block 1 through the final block which contains the END instruction (or IRET in an interrupt program).
- (2) They are executed in the sequence from rung 1 through the final rung in a block (or the END instruction).
- (3) They are executed according to the following rules in any one rung.



The instructions execution sequence in which function instructions are included also follows the above rules. However, for program execution control instructions, such as jumps (JCS), loops (FOR-NEXT), subroutines (CALL-SUBR-RET), it will depend the specifications of each instruction.

M

#### 6.9 On-line debug support functions

The following on-line (during RUN) functions are supported in the T1/T1S for effective program debugging.

| On-line function               | T1  | T'       | 1S       |
|--------------------------------|-----|----------|----------|
|                                |     | 4 k mode | 8 k mode |
| Force function                 | Yes | Yes      | Yes      |
| Sampling trace function        | Yes | Yes      | Yes      |
| Changing timer /counter preset | Yes | Yes      | Yes      |
| value                          |     |          |          |
| Changing constant operand of   | No  | Yes      | Yes      |
| function instruction           |     |          |          |
| Changing device directly       | No  | Yes      | Yes      |
| Program changing in edit mode  | No  | Yes      | No       |
| EEPROM write command           | No  | Yes      | Yes      |



Refer to section 6.5 for 4 k/8 k mode of the T1S.

#### **Force function**

Two types of force functions are available, input force and coil force.

The input force is used to disable the external input signals. When an external input device is designated as forced input, the ON/OFF state of the device can be changed manually by using the data setting function of the programming tool, regardless of the corresponding external signal state. The input force designation is available for the external input devices (X).

The coil force is used to disable the coil instruction. When a coil instruction on the program is designated as forced coil, the ON/OFF state of the coil device can be changed manually by using the data setting function of the programming tool, regardless of the coil circuit execution status.

On the programming tool, the forced input and forced coil are expressed as follows.



NOTE

If EEPROM write operation is executed with remaining the force designation, the force designation is also saved into the built-in EEPROM. Because the force function is debugging function, release all force designation before executing the EEPROM write operation. The force batch release command is available when the T1/T1S is in HALT mode.

#### Sampling trace function

The sampling trace function collects the status of specified devices or register at every specified sampling timing. The collected data can be displayed on the programmer (T-PDS) screen in the format of timing chart (for devices) or trend graph (for register). The minimum sampling timing is the T1/T1S's scan cycle.

This function is useful for program debugging and troubleshooting.

|                   | T1                     | T1S                   | 7 |
|-------------------|------------------------|-----------------------|---|
| Sampling target   | Devices (up to 8) or   | Devices (up to 8) and |   |
|                   | Register (only 1)      | Registers (up to 3)   |   |
| Sampling capacity | 256 times for device   | 256 times             |   |
|                   | 128 times for register |                       |   |

The collected data is stored in the T1/T1S internal buffer. The buffer works as a ring buffer, and latest collected data can be displayed.

The sampling start/stop condition (arm condition) and the collection timing (trigger condition) can be specified by status changing of devices.

For detailed key operations for arm/trigger conditions setting on the T-PDS, refer to the manual for T-PDS.



T-PDS screen example of device timing chart

NOTE

M

- (1) On the T-PDS, select '3 registers + 8 devices' as the sampling type.
- (2) As the arm and trigger conditions, register values cannot be used.
- (3) The After times setting is not effective for the T1/T1S.

#### Timer/counter preset value (constant data) changing

The preset value (constant data) of timer or counter instruction can be changed in on-line (during RUN) by using the programming tool.

#### Function instruction constant operand changing (T1S only)

The constant operand of function instruction can be changed in on-line (during RUN) by using the programming tool.

#### Device changing (T1S only)

The device of contact or coil instruction can be changed in on-line (during RUN) by using the programming tool.

#### On-line program changing (T1S only)

When the T1S's memory mode is 4 k mode, the program can be changed using normal edit mode. (rung by rung)

In the on-line program changing, it is not allowed to change the number or order of the following instructions.

END, MCS, MCR, JCS, JCR, FOR, NEXT, CALL, SUBR, RET, IRET



The above on-line functions are performed on the RAM memory. Therefore, when program has been changed, execute the EEPROM write operation before turning off power. Otherwise, program stored in the EEPROM will be overwritten.

#### **On-line EEPROM write (T1S only)**

The EEPROM write is possible in on-line (during RUN) as well as in HALT mode. In the on-line EEPROM write, user data is not written into the EEPROM. During this operation, the T1S's scan time becomes longer. However, as it has the time limit per scan, the T1S's control operation is not stopped.

#### NOTE

In case of the standard T1, the EEPROM write is possible only in the HALT mode.



#### 6.10 Password protection

The T1/T1S has the password function to protect the user program and data from unauthorized operations.

There are four levels of protection. Accordingly, three levels of passwords can be registered to control the protection levels.

These passwords are stored in the built-in EEPROM. Therefore, if you entered, changed or cleared the passwords, the EEPROM write operation is necessary.

The outline of the protection levels are shown below. For details, refer to the manual for the programming tool.



When the level 1, 2 and 3 passwords are registered, the T1/T1S will be started as protection level 4. In this state, for example, entering the level 2 password changes the protection level to 2.



Otherwise, you cannot change/release the registered passwords.

When you use the password function, do not forget the level 1 password.





#### 7.1 List of instructions

The T1 has 17 types of basic ladder instructions and 76 types of function instructions, the T1S has 21 types of basic ladder instructions and 99 types of function instructions as listed below. The specifications of each instruction will be described in detail later. The tables listing these instructions are provided as a quick reference. (Note: In the following table, italic character means operand, i.e. register, device or constant value.)

#### **Basic ladder instructions**

| FUN | Name                              | Expression           | Function                                                                                                                        | Steps | Speed     | Avai         | able         | Page |
|-----|-----------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------|-------|-----------|--------------|--------------|------|
| No. |                                   |                      | $\sim$                                                                                                                          |       | (μS)      | T1           | T1S          | -    |
| _   | NO contact                        | A<br>-   -           | NO (normally open) contact of device A.                                                                                         | 1     | 1.4 - 3.3 | $\checkmark$ | $\checkmark$ | 135  |
| _   | NC contact                        | A<br>+/-             | NC (normally closed) contact of device A.                                                                                       | 1     | 1.4 - 3.3 | $\checkmark$ | $\checkmark$ | 136  |
| -   | Transitional contact (rising)     | -  <b>↑</b>  -       | Turns ON output for 1 scan<br>when input changes from OFF<br>to ON.                                                             | 1     | 3.0       | $\checkmark$ | $\checkmark$ | 137  |
| _   | Transitional contact<br>(falling) | <b>⊣</b> ↓⊢          | Turns ON output for 1 scan<br>when input changes from ON to<br>OFF.                                                             | 1     | 3.0       | V            |              | 138  |
| -   | Coil                              |                      | Relay coil of device A.                                                                                                         | 1     | 2.3       | $\checkmark$ | $\checkmark$ | 139  |
| -   | Forced coil                       | A<br>★⊂ ≻            | Forced coil of device <i>A</i> . State of device <i>A</i> is retained regardless of the input state.                            | 1     | 2.3       | $\checkmark$ | $\checkmark$ | 140  |
| _   | Inverter                          | $\neg   \downarrow $ | Inverts the input state.                                                                                                        | 1     | 1.4 - 3.3 |              |              | 141  |
| _   | Invert coil                       |                      | Stores the inverse state of input<br>into device <i>A.</i>                                                                      | 1     | 2.3       | $\checkmark$ | $\checkmark$ | 142  |
| _   | Positive pulse<br>contact         | A<br>⊣P⊢             | Turns ON output for 1 scan<br>when input is ON and device <i>A</i><br>changes from OFF to ON.                                   | 1     |           |              |              | 143  |
| _   | Negative pulse contact            |                      | Turns ON output for 1 scan<br>when input is ON and device <i>A</i><br>changes from ON to OFF.                                   | 1     |           |              | $\checkmark$ | 144  |
| _   | Positive pulse coil               | -(P)-(               | Turns ON device <i>A</i> for 1 scan when input changes from OFF to ON.                                                          | 1     |           |              | $\checkmark$ | 145  |
| _   | Negative pulse coil               |                      | Turns ON device <i>A</i> for 1 scan when input changes from ON to OFF.                                                          | 1     |           |              | $\checkmark$ | 146  |
| -   | ON delay timer                    | -[A TON B]-          | Turns ON output when the time<br>specified by <i>A</i> has elapsed<br>after the input came ON. <i>B</i> is a<br>timer register. | 2     | 12.6      | $\checkmark$ | $\checkmark$ | 147  |
| _   | OFF delay timer                   | -[A TOF B]-          | Turns OFF output when the time specified by <i>A</i> has elapsed after the input came OFF. <i>B</i> is a timer register.        | 2     | 12.8      | $\checkmark$ | $\checkmark$ | 148  |
| -   | Single shot timer                 | -[A SS B]-           | Turns ON output for the time specified by <i>A</i> when the input comes ON. <i>B</i> is a timer register.                       | 2     | 13.0      | $\checkmark$ |              | 149  |

T1/T1S User's Manual

| FUN | Name                    | Expression                                                        | Function                                                                                                                                                                                                                 | Steps | Speed          | Avai          | lable        | Page |
|-----|-------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|---------------|--------------|------|
| No. |                         |                                                                   |                                                                                                                                                                                                                          |       | (μS)           | T1            | T1S          |      |
| _   | Counter                 | $\begin{bmatrix} C & - & CNT \\ E & - & A & B \end{bmatrix}^{-Q}$ | Counts the number of cycles<br>the count input (C) comes ON<br>while the enable input (E) is<br>ON, and turns ON output (Q)<br>when the count reaches to the<br>value specified by <i>A. B</i> is a<br>counter register. | 2     | 22.6           | √<br><b>)</b> | √            | 150  |
| _   | Master control set      | [ MCS ]-                                                          | Turns OFF power rail between                                                                                                                                                                                             | 1     | 3.75           |               |              | 151  |
| _   | Master control<br>reset | [ MCR ]-                                                          | MCS and MCR when MCS input is OFF.                                                                                                                                                                                       | 1     | (in a<br>pair) |               |              |      |
| -   | Jump control set        | [ JCS ]-                                                          | Jumps from JCS to JCR when                                                                                                                                                                                               | 7     | 2.75           |               |              | 152  |
| -   | Jump control reset      | [ JCR ]-                                                          | JCS input is ON.                                                                                                                                                                                                         |       | (in a<br>pair) |               |              |      |
| -   | End                     | [ END ]-                                                          | Indicates end of main program<br>or sub-program.                                                                                                                                                                         | 1     | 1.4            | $\checkmark$  | $\checkmark$ | 153  |

#### **Data transfer instructions**

| FL | N Name                         | Expression                           | Function                                                                                                                   | Steps  | Speed   | Avai         | lable        | Page |
|----|--------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------|---------|--------------|--------------|------|
| N  | ).                             |                                      |                                                                                                                            |        | (μs)    | T1           | T1S          |      |
| 01 | 8 Data transfer                | -[ A MOV B ]-                        | Transfers data of A to B.                                                                                                  | 3      | 4.2     |              |              | 154  |
| 01 | 9 Double-word<br>data transfer | -[ <i>A+1·A</i> DMOV <i>B+1·B</i> ]- | Transfers double-word data of<br>A+1·A to B+1·B.                                                                           | 3      | 7.2     | $\checkmark$ | $\checkmark$ | 155  |
| 02 | 0 Invert transfer              | -[ A NOT B]-                         | Transfers bit-inverted data of <i>A</i> to <i>B</i> .                                                                      | 3      | 4.6     | $\checkmark$ | $\checkmark$ | 156  |
| 02 | 2 Data exchange                | -[A XCHG B]-                         | Exchanges data of A with B.                                                                                                | 3      | 6.5     |              |              | 157  |
| 02 | 4 Table initialize             | -[ A TINZ (n) B ]-                   | Transfers data of <i>A</i> to <i>n</i> registers starting with <i>B</i> .                                                  | 3      |         |              | $\checkmark$ | 158  |
| 02 | 5 Table transfer               | -[ A TMOV (n) B]-                    | Transfers data of <i>n</i> registers starting with <i>A</i> to <i>n</i> registers starting with <i>B</i> .                 | 3      |         |              | $\checkmark$ | 159  |
| 02 | 6 Table invert<br>transfer     | -[ A TNOT (n) B]-                    | Transfers bit-inverted data of<br><i>n</i> registers starting with <i>A</i> to <i>n</i> registers starting with <i>B</i> . | 3      |         |              | $\checkmark$ | 160  |
| 09 | 0 Multiplexer                  | $-[A MPX (n) B \rightarrow C] -$     | Transfers data from the register specified by <i>B</i> in the table, size <i>n</i> starting with <i>A</i> , to <i>C</i> .  | 5      | 70.6    | $\checkmark$ | V            | 194  |
| 09 | 1 Demultiplexer                | $-[A DPX (n) B \rightarrow C] -$     | Transfers data from <i>A</i> to the register specified by <i>B</i> in the table, size <i>n</i> starting with <i>C</i> .    | 5      | 71.5    | $\checkmark$ | $\checkmark$ | 195  |
|    |                                |                                      |                                                                                                                            |        |         |              |              |      |
| A. | ٠                              |                                      |                                                                                                                            |        |         |              |              |      |
| Z  |                                |                                      | Basic Hardw                                                                                                                | are ar | nd Func | tion         | 12           | 25   |

#### **Arithmetic operations**

| FUN | Name            | Expression                                                 | Function                                     | Steps | Speed       | Avai | able | Page |
|-----|-----------------|------------------------------------------------------------|----------------------------------------------|-------|-------------|------|------|------|
| 027 | Addition        | $-[A + B \rightarrow C]$                                   | Adds data of A and B and                     | 4     | (μs)<br>6.5 |      | 110  | 161  |
| 02. |                 |                                                            | stores the result in <i>C</i> .              |       |             |      | v    | 101  |
| 028 | Subtraction     | $-[A - B \rightarrow C] -$                                 | Subtracts data of <i>B</i> from <i>A</i> ,   | 4     | 6.5         | V    |      | 162  |
|     |                 |                                                            | and stores the result in C.                  |       |             |      |      |      |
| 029 | Multiplication  | $-[A * B \rightarrow C+1 \cdot C] -$                       | Multiplies data of A and B,                  | 4     | 8.8         |      |      | 163  |
|     |                 |                                                            | and stores the result in                     |       |             |      |      |      |
|     | <b></b>         |                                                            | double-length register C+1·C.                |       |             |      | 1    |      |
| 030 | Division        | $-[A / B \rightarrow C] -$                                 | Divides data of A by B, and                  | 4     | 9.7         |      |      | 164  |
|     |                 |                                                            | stores the quotient in C and                 |       |             |      |      |      |
| 004 | Davida a surrad |                                                            | the reminder in C+1.                         |       | 44.0        | 1    | 1    | 405  |
| 031 | Double-word     | $-[A+1\cdot A D+ B+1\cdot B \rightarrow C+1\cdot C]-$      | Adds data of A+1A and                        | 4     | 11.6        | γ    | γ    | 165  |
|     | addition        |                                                            | $B+1 \cdot B$ , and stores the result in     |       |             |      |      |      |
|     | <u> </u>        |                                                            | C+1·C.                                       |       |             | 1    | 1    | 100  |
| 032 | Double-word     | $-[A+1 \cdot A D - B+1 \cdot B \rightarrow C+1 \cdot C] -$ | Subtracts data of <i>B+1</i> · <i>B</i> from | 4     | 11./        | N    | V    | 166  |
|     | subtraction     |                                                            | $A+1 \cdot A$ , and stores the result        |       |             |      |      |      |
|     |                 |                                                            | in <i>C+1</i> · <i>C</i> .                   |       |             | ,    | 1    |      |
| 035 | Addition with   | $-[A +C B \rightarrow C] -$                                | Adds data of A, B and the                    | 4     | 9.7         |      |      | 167  |
|     | carry           |                                                            | carry, and stores the result in              |       |             |      |      |      |
|     |                 |                                                            | C. The carry flag changes                    |       |             |      |      |      |
| 000 | 0.1.1           |                                                            | according to the result.                     |       | 0.7         | 1    | 1    | 100  |
| 036 | Subtraction     | $-[A - C B \rightarrow C] -$                               | Subtracts data of <i>B</i> and the           | 4     | 9.7         | N    | γ    | 168  |
|     | with carry      |                                                            | carry from A, and stores the                 |       |             |      |      |      |
|     |                 |                                                            | changes according to the                     |       |             |      |      |      |
|     |                 |                                                            | result                                       |       |             |      |      |      |
| 039 | Unsigned        | $-[A     * B \rightarrow C+1;C ]$                          | Multiplies data of A and B                   | 4     |             |      | 2    | 169  |
| 000 | multiplication  |                                                            | and stores the result in                     | -     |             |      | v    | 100  |
|     | manipiloadion   |                                                            | double-length register $C+1\cdot C$          |       |             |      |      |      |
|     |                 |                                                            | (Unsigned integer operation)                 |       |             |      |      |      |
| 040 | Unsianed        | $-[A \cup B \rightarrow C]$                                | Divides data of A by B. and                  | 4     |             |      |      | 170  |
|     | division        |                                                            | stores the quotient in C and                 |       |             |      |      |      |
|     |                 |                                                            | the reminder in C+1.                         |       |             |      |      |      |
|     |                 |                                                            | (Unsigned integer operation)                 |       |             |      |      |      |
| 041 | Unsigned        | $-[A+1:A DIV B \rightarrow C]-$                            | Divides data of A+1.A by B,                  | 4     | 15.3        |      |      | 171  |
|     | double/single   |                                                            | and stores the quotient in $C$               |       |             |      |      |      |
|     | division        |                                                            | and the reminder in C+1.                     |       |             |      |      |      |
|     |                 |                                                            | (Unsigned integer operation)                 |       |             |      |      |      |
| 043 | Increment       | -[+1 A]-                                                   | Increments data of A by 1.                   | 2     | 4.6         |      |      | 172  |
| 044 | Decrement       | - <b>[</b> -1 A]-                                          | Decrements data of A by 1.                   | 2     | 4.6         |      |      | 173  |

126 T1/T1S User's Manual

5

#### Logical operations

| FUN | Name         | Expression                           | Function                                   | Steps | Speed | ed Available |              | Page |
|-----|--------------|--------------------------------------|--------------------------------------------|-------|-------|--------------|--------------|------|
| No. |              |                                      |                                            |       | (μs)  | T1           | T1S          |      |
| 048 | AND          | $-[A AND B \rightarrow C]-$          | Finds logical AND of A and B,              | 4     | 5.7   |              | $\checkmark$ | 174  |
|     |              |                                      | and stores it in C.                        |       |       |              |              |      |
| 050 | OR           | $-[A \text{ OR } B \rightarrow C] -$ | Finds logical OR of A and B,               | 4     | 5.7   | $\checkmark$ |              | 175  |
|     |              |                                      | and stores it in <i>C</i> .                |       |       |              |              |      |
| 052 | Exclusive OR | $-[A EOR B \rightarrow C] -$         | Finds logical exclusive OR of A            | 4     | 5.7   |              |              | 176  |
|     |              |                                      | and <i>B</i> , and stores it in <i>C</i> . |       |       |              |              |      |
| 064 | Bit test     | -[A TEST B]-                         | Turns ON output if logical AND             | 3     | 5.0   |              |              | 181  |
|     |              |                                      | of A and B is not 0.                       |       |       |              |              |      |

#### Shift operations

| FUN | Name              | Expression                  | Function                                   | Steps  | Speed  | Avai | able         | Page |
|-----|-------------------|-----------------------------|--------------------------------------------|--------|--------|------|--------------|------|
| No. |                   |                             |                                            |        | (μs)   | T1   | T1S          |      |
| 068 | 1 bit shift right | –[ SHR1 <i>A</i> ]–         | Shifts data of A 1 bit to the right        | 2      | 6.8    |      |              | 182  |
|     |                   |                             | (LSB direction). The carry flag            |        |        |      |              |      |
|     |                   |                             | changes according to the result.           | -      |        |      | ,            |      |
| 069 | 1 bit shift left  | -[ SHL1 A ]-                | Shifts data of A 1 bit to the left         | 2      | 6.8    |      | $\checkmark$ | 183  |
|     |                   |                             | (MSB direction). The carry flag            |        |        |      |              |      |
| 070 | n hit shift right |                             | changes according to the result.           | 4      | 10.2   | .1   | .1           | 101  |
| 070 | n bit shiit right | $-[A SHK N \rightarrow B]-$ | (I SR direction) and stores the            | 4      | 10.2   | N    | N            | 104  |
|     |                   |                             | result in B. The carry flag                |        |        |      |              |      |
|     |                   |                             | changes according to the result            |        |        |      |              |      |
| 071 | n bit shift left  | $-[A SHL n \rightarrow B]$  | Shifts data of <i>A n</i> bits to the left | 4      | 10.2   |      |              | 185  |
| 011 |                   | [                           | (MSB direction) and stores the             |        |        |      | '            |      |
|     |                   |                             | result in B. The carry flag                |        |        |      |              |      |
|     |                   |                             | changes according to the result.           |        |        |      |              |      |
| 074 | Shift register    | D⊣SR ⊢Q                     | When shift input (S) comes ON,             | 3      | 65.9 - |      |              | 186  |
|     |                   | S - (n)                     | shifts the data of specified shift         |        | 76.2   |      |              |      |
|     |                   | E-[ A]                      | register 1 bit to the left, and            |        |        |      |              |      |
|     |                   |                             | stores data input (D) state into A.        |        |        |      |              |      |
|     |                   |                             | I his operation is enabled while           |        |        |      |              |      |
|     |                   |                             | enable input (E) is ON. The carry          |        |        |      |              |      |
|     |                   |                             | result                                     |        |        |      |              |      |
|     |                   |                             | Shift register: <i>n</i> devices starting  |        |        |      |              |      |
|     |                   |                             | with device A.                             |        |        |      |              |      |
| 075 | Bi-directional    | D-I DSR ]- Q                | When shift input (S) comes ON,             | 3      | 69.0 - |      |              | 188  |
|     | shift register    | S- ( <i>n</i> )             | shifts the data of specified shift         |        | 79.3   |      |              |      |
|     |                   | E-                          | register 1 bit to the left or to the       |        |        |      |              |      |
|     |                   |                             | right depending on direction input         |        |        |      |              |      |
|     |                   |                             | (L). This operation is enabled             |        |        |      |              |      |
|     |                   |                             | while enable input (E) is ON. The          |        |        |      |              |      |
|     |                   |                             | carry flag changes according to            |        |        |      |              |      |
|     |                   |                             | the result.                                |        |        |      |              |      |
|     |                   |                             | with device A                              |        |        |      |              |      |
|     | ٠                 |                             | Direction: Left when L is ON               |        |        |      |              |      |
|     |                   |                             | right when L is OFF                        |        |        |      |              |      |
|     | I.                | L.                          |                                            |        |        |      |              |      |
|     |                   |                             |                                            |        |        |      |              |      |
|     |                   |                             |                                            |        |        |      |              |      |
|     |                   |                             |                                            |        |        |      |              |      |
|     |                   |                             |                                            |        |        |      |              |      |
|     |                   |                             |                                            |        |        |      |              |      |
|     |                   |                             |                                            |        | . –    |      | 10           | 7    |
|     |                   |                             | Basic Hardwa                               | are an | d Func | tion | 12           | ./   |
|     |                   |                             |                                            |        |        |      |              |      |

#### **Rotate operations**

|     | N and a            |                                      | E                               | 0     | 0     | A    | 1-1-1- | D    |
|-----|--------------------|--------------------------------------|---------------------------------|-------|-------|------|--------|------|
| FUN | Name               | Expression                           | Function                        | Steps | Speed | Avai | lable  | Page |
| No. |                    |                                      |                                 |       | (μS)  | T1   | T1S    |      |
| 078 | 1 bit rotate right | –[ RTR1 <i>A</i> ]–                  | Rotates data of A 1 bit to the  | 2     | 6.8   |      |        | 190  |
|     |                    |                                      | right (LSB direction). The      |       | . (   |      |        |      |
|     |                    |                                      | carry flag changes according    |       |       |      |        |      |
|     |                    |                                      | to the result.                  |       |       |      |        |      |
| 079 | 1 bit rotate left  | -[ RTL1 A ]-                         | Rotates data of A 1 bit to the  | 2     | 6.8   |      |        | 191  |
|     |                    |                                      | left (MSB direction). The       | •     |       |      |        |      |
|     |                    |                                      | carry flag changes according    |       |       |      |        |      |
|     |                    |                                      | to the result.                  |       |       |      |        |      |
| 080 | n bit rotate right | $-[A \text{ RTR } n \rightarrow B]-$ | Rotates data of A n bits to the | 4     | 10.2  |      |        | 192  |
|     |                    |                                      | right (LSB direction) and       |       |       |      |        |      |
|     |                    |                                      | stores the result in B. The     |       |       |      |        |      |
|     |                    |                                      | carry flag changes according    |       |       |      |        |      |
|     |                    |                                      | to the result.                  |       |       |      |        |      |
| 081 | n bit rotate left  | $-[A \text{ RTL } n \rightarrow B]-$ | Rotates data of A n bits to the | 4     | 10.2  |      |        | 193  |
|     |                    |                                      | left (MSB direction) and        |       |       |      |        |      |
|     |                    |                                      | stores the result in B. The     |       |       |      |        |      |
|     |                    |                                      | carry flag changes according    |       |       |      |        |      |
|     |                    |                                      | to the result.                  |       |       |      |        |      |

### **Compare instructions**

| FUN | Name            | Expression                          | Function                                           | Steps | Speed | Avai         | lable | Page |
|-----|-----------------|-------------------------------------|----------------------------------------------------|-------|-------|--------------|-------|------|
| No. |                 |                                     |                                                    |       | (μs)  | T1           | T1S   |      |
| 096 | Greater than    | -[A > B]-                           | Turns ON output if $A > B$ .                       | 3     | 6.1   | $\checkmark$ |       | 196  |
| 097 | Greater than or | -[ A >= B ]-                        | Turns ON output if $A \ge B$ .                     | 3     | 5.3   |              |       | 197  |
|     | equal           |                                     |                                                    |       |       |              |       |      |
| 098 | Equal           | -[ A = B]-                          | Turns ON output if $A = B$ .                       | 3     | 5.0   |              |       | 198  |
| 099 | Not equal       | -[A <> B]-                          | Turns ON output if $A \neq B$ .                    | 3     | 5.0   | $\checkmark$ |       | 199  |
| 100 | Less than       | -[A < B]-                           | Turns ON output if A < B.                          | 3     | 6.1   |              |       | 200  |
| 101 | Less than or    | -[ A <= B]-                         | Turns ON output if $A \leq B$ .                    | 3     | 5.3   |              |       | 201  |
|     | equal           |                                     |                                                    |       |       |              |       |      |
| 102 | Double-word     | -[ A+1·A D> B+1·B ]-                | Turns ON output                                    | 3     | 6.1   | $\checkmark$ |       | 202  |
|     | greater than    |                                     | if $A+1 \cdot A > B+1 \cdot B$ .                   |       |       |              |       |      |
| 103 | Double-word     | -[ A+1·A D>= B+1·B ]-               | Turns ON output                                    | 3     | 5.3   |              |       | 203  |
|     | greater than or |                                     | if $A+1 \cdot A \ge B+1 \cdot B$ .                 |       |       |              |       |      |
|     | equal           |                                     |                                                    |       |       |              |       |      |
| 104 | Double-word     | -[ <i>A+1</i> ·A D= <i>B+1</i> ·B]- | Turns ON output                                    | 3     | 5.0   |              |       | 204  |
|     | equal           |                                     | $if A+1 \cdot A = B+1 \cdot B.$                    |       |       |              |       |      |
| 105 | Double-word     | –[ A+1·A D<> B+1·B ]–               | Turns ON output                                    | 3     | 5.0   |              |       | 205  |
|     | not equal       |                                     | if <i>A+1</i> · <i>A</i> ≠ <i>B</i> +1· <i>B</i> . |       |       |              |       |      |
| 106 | Double-word     | –[ A+1·A D< B+1·B ]–                | Turns ON output                                    | 3     | 6.1   |              |       | 206  |
|     | less than       |                                     | if <i>A+1</i> · <i>A</i> < <i>B+1</i> · <i>B</i> . |       |       |              |       |      |
| 107 | Double-word     | -[ A+1·A D<= B+1·B ]-               | Turns ON output                                    | 3     | 5.3   |              |       | 207  |
|     | less than or    |                                     | if $A+1 \cdot A \leq B+1 \cdot B$ .                |       |       |              |       |      |
|     | equal           |                                     |                                                    |       |       |              |       |      |

128 T1/T1S User's Manual

٠

| FUN | Name            | Expression  | Function                        | Steps | Speed        | Avai | lable | Page |
|-----|-----------------|-------------|---------------------------------|-------|--------------|------|-------|------|
| No. |                 |             |                                 |       | (μs)         | T1   | T1S   |      |
| 108 | Unsigned        | -[A U> B]-  | Turns ON output if $A > B$ .    | 3     |              |      |       | 208  |
|     | greater than    |             | (Unsigned integer compare)      |       |              |      |       |      |
| 109 | Unsigned        | -[A U>= B]- | Turns ON output if $A \ge B$ .  | 3     |              |      |       | 209  |
|     | greater than or |             | (Unsigned integer compare)      |       |              |      |       |      |
|     | equal           |             |                                 |       |              |      |       |      |
| 110 | Unsigned        | -[A U= B]-  | Turns ON output if $A = B$ .    | 3     |              |      |       | 210  |
|     | equal           |             | (Unsigned integer compare)      |       |              |      |       |      |
| 111 | Unsigned        | -[A U<> B]- | Turns ON output if $A \neq B$ . | 3     |              |      |       | 211  |
|     | not equal       |             | (Unsigned integer compare)      |       | $\mathbf{O}$ |      |       |      |
| 112 | Unsigned        | -[A U< B]-  | Turns ON output if A < B.       | 3     |              |      |       | 212  |
|     | less than       |             | (Unsigned integer compare)      |       |              |      |       |      |
| 113 | Unsigned        | -[A U<= B]- | Turns ON output if $A \leq B$ . | 3     |              |      |       | 213  |
|     | less than or    |             | (Unsigned integer compare)      |       |              |      |       |      |
|     | equal           |             |                                 |       |              |      |       |      |

#### Special data processing

| FU | N Name            | Expression      | Function                                  | Steps  | Speed  | Avai | lable        | Page |
|----|-------------------|-----------------|-------------------------------------------|--------|--------|------|--------------|------|
| No |                   |                 |                                           |        | (μs)   | T1   | T1S          | -    |
| 11 | 4 Device/register | -[ SET A ]-     | If A is a device:                         | 2      | 4.2    |      |              | 214  |
|    | set               |                 | Sets device A to ON.                      |        |        |      |              |      |
|    |                   |                 | If A is a register:                       |        |        |      |              |      |
|    |                   |                 | Stores HFFFF in register A.               |        |        |      |              |      |
| 11 | 5 Device/register | -[RST A]-       | If A is a device:                         | 2      | 4.2    |      |              | 215  |
|    | reset             |                 | Resets device A to OFF.                   |        |        |      |              |      |
|    |                   |                 | If A is a register:                       |        |        |      |              |      |
|    |                   |                 | Stores 0 in register A.                   |        |        |      |              |      |
| 11 | 8 Set carry       | -[ SETC ]-      | Sets the carry flag to ON.                | 1      | 4.2    |      |              | 216  |
| 11 | 9 Reset carry     | -[ RSTC ]-      | Resets the carry flag to OFF.             | 1      | 4.2    |      |              | 217  |
| 12 | 0 Encode          | -[A ENC (n) B]- | Finds the uppermost ON bit                | 4      | 57.0 - |      |              | 218  |
|    |                   |                 | position in the bit file of size 2"       |        | 141.4  |      |              |      |
|    |                   |                 | bits starting with register A, and        |        |        |      |              |      |
|    |                   |                 | stores it in B.                           |        |        |      |              |      |
| 12 | 1 Decode          | -[A DEC (n) B]- | In the bit file of size 2" bits           | 4      | 69.5 - |      | $\checkmark$ | 219  |
|    |                   |                 | starting with register <i>B</i> , sets ON |        | 99.1   |      |              |      |
|    |                   |                 | the bit position indicated by lower       |        |        |      |              |      |
|    |                   |                 | n bits of A, and resets OFF all           |        |        |      |              |      |
| 10 |                   |                 | Other bits.                               | 0      |        |      |              | 000  |
| 12 | 2 Bit count       |                 | Counts the number of ON bits of           | 3      |        |      | γ            | 220  |
| 14 | 7 Elip flop       |                 | A dru stores it in <i>B</i> .             | 2      | 26.7   |      |              | 222  |
| 14 |                   | R - A           | (S) is ON and resets OFF device           | 2      | 20.7   | N    | N            | 233  |
|    |                   |                 | A when reset input (R) is ON              |        |        |      |              |      |
|    |                   |                 | (Reset takes priority)                    |        |        |      |              |      |
| 14 | 9 Np-down         | U-[U/D ]- Q     | While enable input (E) is ON              | 2      | 30.1   | V    |              | 234  |
|    | counter           | C-              | counts up or down the number of           | -      | 00.1   | , ,  | Ì            | 201  |
|    |                   | E-[ A ]         | cycles the count input (C) comes          |        |        |      |              |      |
|    |                   |                 | ON, depending on the up/down              |        |        |      |              |      |
|    |                   |                 | select input (U).                         |        |        |      |              |      |
|    | *                 |                 | Up when U is ON, down when U              |        |        |      |              |      |
|    |                   |                 | is OFF.                                   |        |        |      |              |      |
|    |                   |                 |                                           |        |        |      |              |      |
|    |                   |                 |                                           |        |        |      |              |      |
|    |                   |                 |                                           |        |        |      |              |      |
|    |                   |                 |                                           |        |        |      |              |      |
|    |                   |                 |                                           |        |        |      |              |      |
|    |                   |                 |                                           |        |        |      |              |      |
|    |                   |                 | Racia Hardw                               | ara ar |        | tion | 12           | pq   |
|    |                   |                 | Dasic Hardw                               | arear  |        | uon  | 1 4          |      |
|    |                   |                 |                                           |        |        |      |              |      |

#### **Program control instructions**

| FUN | Name             | Expression               | Function                                               | Steps | Speed         | Avai | lable        | Page |
|-----|------------------|--------------------------|--------------------------------------------------------|-------|---------------|------|--------------|------|
| No. |                  |                          |                                                        |       | (μs)          | T1   | T1S          |      |
| 128 | Subroutine call  | –[ CALL N. <i>n</i> ]–   | Calls the subroutine number <i>n</i> .                 | 2     | 21.0          |      |              | 221  |
| 129 | Subroutine       | [ RET ]-                 | Indicates the end of a                                 | 1     | (in a         |      |              | 222  |
|     | return           |                          | subroutine.                                            |       | pair)         |      |              |      |
| 132 | FOR              | -[FOR n]-                | When the input of FOR is ON, executes the segment from | 2     | 22.0<br>(in a |      | V            | 223  |
| 133 | NEXT             | -[ NEXT ]-               | FOR to NEXT the number of                              | 1     | pair)         |      |              | 224  |
|     |                  |                          | times specified by n.                                  |       |               |      |              |      |
| 137 | Subroutine       | –[ SUBR ( <i>n</i> ) ]–– | Indicates the start of the                             | 2     | included      |      |              | 225  |
|     | entry            |                          | subroutine number n.                                   |       | in CALL       |      |              |      |
| 140 | Enable interrupt | -[ EI ]-                 | Enables execution of interrupt                         | 1     | 27.6          |      | $\checkmark$ | 226  |
|     |                  |                          | program.                                               |       | (in a         |      |              |      |
| 141 | Disable          | -[ DI ]-                 | Disables execution of interrupt                        | 1     | pair)         |      |              | 227  |
|     | interrupt        |                          | program.                                               |       |               |      |              |      |
| 142 | Interrupt return | [ IRET ]-                | Indicates the end of an interrupt                      | 1     | 1.4           |      |              | 228  |
|     |                  |                          | program.                                               |       |               |      |              |      |
| 143 | Watchdog timer   | -[WDT n]-                | Extends the scan time over                             | 2     | 16.1          |      |              | 229  |
|     | reset            |                          | detection time.                                        |       |               |      |              |      |
| 144 | Step sequence    | -[ STIZ (n) A ]-         | Resets OFF the <i>n</i> These                          | 3     | 59.9 -        |      |              | 230  |
|     | initialize       |                          | devices stating with configure                         |       | 65.0          |      |              |      |
|     | <b>e</b> /       |                          | A, and sets ON A. a series                             |       | 07.0          | ,    | 1            | 004  |
| 145 | Step sequence    | -[STIN A]-               | Turns ON output if of step                             | 2     | 27.0          | V    | γ            | 231  |
|     | Input            |                          | input is ON and A is sequence                          |       |               |      |              |      |
| 146 | Stop cogueroo    |                          |                                                        | 2     | 27.0          |      |              | 222  |
| 140 | Step Sequence    |                          | resets OFF the                                         | 2     | 27.0-         | N    | N            | 232  |
|     | ouipui           |                          | devices of STIN on                                     |       | 119.0         |      |              |      |
|     |                  |                          | the same rung and                                      |       |               |      |              |      |
|     |                  |                          | sets ON A.                                             |       |               |      |              |      |
| L   | 1                |                          |                                                        | I     | I             |      |              |      |
|     |                  |                          | 1                                                      |       |               |      |              |      |
| кАЭ |                  |                          |                                                        |       |               |      |              |      |
|     |                  |                          |                                                        |       |               |      |              |      |

#### RAS

| FUN | Name                  | Expression   | Function                                                                                                                                                                                           | Steps | Speed | Avai | lable        | Page |
|-----|-----------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------|--------------|------|
| No. |                       |              |                                                                                                                                                                                                    |       | (μs)  | T1   | T1S          |      |
| 154 | Set calendar          | -[ A CLND ]- | Sets 6 registers data starting with <i>A</i> into clock/calendar.                                                                                                                                  | 2     |       |      | $\checkmark$ | 235  |
| 155 | Calendar<br>operation | -[A CLDS B]- | Calculates difference between<br>present date & time and past<br>date & time stored in 6 registers<br>starting with <i>A</i> , and stores the<br>result in 6 registers starting with<br><i>B</i> . | 3     |       |      | $\checkmark$ | 236  |
|     |                       |              |                                                                                                                                                                                                    |       |       |      |              |      |



#### **Functions**

MAN

| 056       Moving average -[A MAVE (n) B → C]-<br>of latest n scan values of A,<br>and stores the result in C.       5       √       177         061       Digital filter       -[A DFL B → C]-<br>constant specified by B, and<br>stores the result in C.       4       √       178         156       Pre-derivative<br>real PID       -[A PID3 B → C]-<br>eriorms PID control. (pre-<br>derivative real PID algorithm)<br>Process value (FV): A<br>Set value (SV): A+1       85.0 -<br>428.0       √       √       237         160       Upper limit       -[A UL B → C]-<br>B, and stores the result of A by<br>B, and stores the result in C.       85.0 -<br>428.0       √       242         161       Lower limit       -[A UL B → C]-<br>B, and stores the result of A by<br>B, and stores the result in C.       √       243         162       Maximum value       -[A MAX (n) B]-<br>Finds the maximum value of n<br>registers data starting with A,<br>and stores the value of n<br>registers data starting with A,<br>and stores the value in C and<br>the pointer in C+1.       √       244         163       Minimum value       -[A AVE (n) B]-<br>Elocutates the average value<br>of n registers data starting<br>with A, and stores the result in C.       5       77.7 -<br>142.1       √       245         164       Average value       -[A AVE (n) B]-<br>Elocutates the average value<br>of n registers data starting<br>with A, and stores the result in<br>colleates the average value<br>of n registers data starting<br>with A, and stores the result in<br>colleates the average value<br>of n registers data starting       √ | FUN<br>No. | Name                       | Expression                            | Function                                                                                                                                                                              | Steps | Speed<br>(µs)   | Avail<br>T1  | able<br>T1S  | Page |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|--------------|--------------|------|
| 061       Digital filter       -[A DFL B → C]-       Filters the value of A by filter constant specified by B, and stores the result in C.       4       √       178         156       Pre-derivative real PID       -[A PID3 B → C]-       Performs PID control. (pre-derivative real PID algorithm) Process value (PV): A Set value (SV): A+1       4       √       √       237         160       Upper limit       -[A UL B → C]-       Upper limits the value of A by Here value of A by A Set value (SV): A+1       4       √       242         161       Lower limit       -[A LL B → C]-       Lower limits the value of A by A Set value of A by A A Set value of A by A A And stores the result in C.       4       √       243         162       Maximum value       -[A MAX (n) B]-       Finds the maximum value of n registers data starting with A, and stores the value in C and the pointer in C+1.       √       244         163       Minimum value       -[A AVE (n) B]-       Calculates the average value in C and the pointer in C+1.       4       √       245         164       Average value       -[A FG (n) B]-       Calculates the average value for A starting with A, and stores the result in C.       4       √       246         165       Function       -[A FG (n) B]-       Calculates the average value for A starting with A, and stores the result in C.       5       77.7.       √       √                                                                                                                                                                                                                    | 056        | Moving average             | $-[A MAVE (n) B \rightarrow C] -$     | Calculates the average value of latest <i>n</i> scan values of <i>A</i> , and stores the result in <i>C</i> .                                                                         | 5     | C               | 0            | $\checkmark$ | 177  |
| 156Pre-derivative<br>real PID[A PID3 B → C]-<br>(A PID3 B → C]-Performs PID control. (pre-<br>derivative real PID algorithm)<br>Process value (PV): A<br>Set value (SV): A+1<br>PID parameters: B and after<br>Manipulation value (MV): C44√237160Upper limit-[A UL B → C]-<br>(A UL B → C]-Upper limits the value of A by<br>B, and stores the result in C.4√242161Lower limit-[A UL B → C]-<br>(A UL B → C]-Lower limits the value of A by<br>B, and stores the result in C.4√243162Maximum value-[A MAX (n) B]-Finds the maximum value of n<br>registers data starting with A,<br>and stores the value in C and<br>the pointer in C+1.4√244163Minimum value-[A MIN (n) B]-Finds the naximum value of n<br>and stores the value in C and<br>the pointer in C+1.4√245164Average value-[A AVE (n) B]-Finds the average value in C and<br>the pointer in C+1.4√245165Function<br>generator-[A FG (n) B → C]-Finds t(x) for given x=A, and<br>stores the result in<br>C.577.7 -√247165Function<br>generator-[A FG (n) B → C]-Finds f(x) for given x=A, and<br>stores the zeliciter577.7 -√√                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 061        | Digital filter             | $-[A DFL B \rightarrow C]-$           | Filters the value of <i>A</i> by filter constant specified by <i>B</i> , and stores the result in <i>C</i> .                                                                          | 4     | へ               |              | $\checkmark$ | 178  |
| 160       Upper limit       -[A UL $B \rightarrow C$ ]-       Upper limits the value of A by       4 $\checkmark$ 242         161       Lower limit       -[A LL $B \rightarrow C$ ]-       Lower limits the value of A by       4 $\checkmark$ 243         162       Maximum value       -[A MAX (n) B]-       Finds the maximum value of n       4 $\checkmark$ 244         162       Maximum value       -[A MAX (n) B]-       Finds the maximum value of n       4 $\checkmark$ 244         163       Minimum value       -[A MIN (n) B]-       Finds the maximum value of n       4 $\checkmark$ 245         163       Minimum value       -[A MIN (n) B]-       Finds the maximum value of C and       4 $\checkmark$ 245         164       Average value       -[A AVE (n) B]-       Finds the average value       4 $\checkmark$ 246         164       Average value       -[A AVE (n) B]-       Calculates the average value       4 $\checkmark$ 247         165       Function       -[A FG (n) B $\rightarrow$ C)-       Finds f(X) for given x=A, and stores the result in C.       5       77.7 - $\checkmark$ $\checkmark$ 247         165       Function       -[A FG (n) B $\rightarrow$ C)-       Finds f(X) for given x=A, and stores the z.x n registers starting with B.       5                                                                                                                                                                                                                                                                                                                                                   | 156        | Pre-derivative<br>real PID | $-[A \text{ PID3 } B \rightarrow C]-$ | Performs PID control. (pre-<br>derivative real PID algorithm),<br>Process value (PV): A<br>Set value (SV): A+1<br>PID parameters: B and after<br>Manipulation value (MV): C           | 4     | 85.0 -<br>428.0 | V            | $\checkmark$ | 237  |
| 161Lower limit-[A LL $B \rightarrow C$ ]-Lower limits the value of A by<br>B, and stores the result in C.4 $$ 243162Maximum value-[A MAX (n) B]-Finds the maximum value of n<br>registers data starting with A,<br>and stores the value in C and<br>the pointer in C+1.A $$ 244163Minimum value-[A MIN (n) B]-Finds the minimum value of n<br>registers data starting with A,<br>and stores the value in C and<br>the pointer in C+1.4 $$ 245164Average value-[A AVE (n) B]-Calculates the average value<br>of n registers data starting<br>with A, and stores the result in<br>C.4 $$ 246165Function<br>generator-[A FG (n) B $\rightarrow$ C]-Finds f(X) for given x=A, and<br>stores it in C. The function f(X)<br>is defined by parameters<br>stored in a table $2 \times n$ registers577.7 - $$ 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160        | Upper limit                | $-[A \cup L B \rightarrow C] -$       | Upper limits the value of <i>A</i> by <i>B</i> , and stores the result in <i>C</i> .                                                                                                  | 4     |                 |              | $\checkmark$ | 242  |
| 162Maximum value-[A MAX (n) B]-Finds the maximum value of n<br>registers data starting with A,<br>and stores the value in C and<br>the pointer in C+1.4 $\checkmark$ 244163Minimum value-[A MIN (n) B]-Finds the minimum value of n<br>registers data starting with A,<br>and stores the value in C and<br>the pointer in C+1.4 $\checkmark$ 245164Average value-[A AVE (n) B]-Calculates the average value<br>of n registers data starting<br>with A, and stores the result in<br>C.4 $\checkmark$ 246165Function<br>generator-[A FG (n) B]+ C]+Finds f(x) for given x=A, and<br>stores it in C. The function f(x)<br>is defined by parameters<br>stored in a table $2 \times n$ registers5777.7 - $\checkmark$ $\checkmark$ 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 161        | Lower limit                | $-[A LL B \rightarrow C] -$           | Lower limits the value of <i>A</i> by <i>B</i> , and stores the result in <i>C</i> .                                                                                                  | 4     |                 |              |              | 243  |
| 163Minimum value $-[A \text{ MIN } (n) B]$ -Finds the minimum value of $n$<br>registers data starting with $A$ ,<br>and stores the value in $C$ and<br>the pointer in $C+1$ .4 $$ 245164Average value $-[A \text{ AVE } (n) B]$ - $Calculates the average valueof n registers data startingwith A, and stores the result inC.4246165Functiongenerator-[A \text{ FG } (n) B] \rightarrow C]Finds f(x) for given x=A, andstores it in C. The function f(x)is defined by parametersstored in a table 2 \times n registers577.7 -142.1247$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 162        | Maximum value              | -[ A MAX (n) B ]-                     | Finds the maximum value of $n$ registers data starting with $A$ , and stores the value in $C$ and the pointer in $C+1$ .                                                              | 4     |                 |              | $\checkmark$ | 244  |
| 164Average value-[A AVE (n) B]-Calculates the average value of n registers data starting with A, and stores the result in C.4 $\checkmark$ 246165Function<br>generator-[A FG (n) B $\rightarrow$ C]-Finds f(x) for given x=A, and stores it in C. The function f(x) is defined by parameters stored in a table $2 \times n$ registers starting with B.577.7 - $\checkmark$ $\checkmark$ 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 163        | Minimum value              | -[ A MIN (n) B ]-                     | Finds the minimum value of $n$ registers data starting with $A$ , and stores the value in $C$ and the pointer in $C+1$ .                                                              | 4     |                 |              | $\checkmark$ | 245  |
| 165 Function<br>generator $-[A \ FG \ (n) \ B \rightarrow C] -$ Finds f(x) for given x=A, and<br>stores it in C. The function f(x)<br>is defined by parameters<br>stored in a table $2 \times n$ registers<br>starting with B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 164        | Average value              | -[ A AVE (n) B ]-                     | Calculates the average value<br>of <i>n</i> registers data starting<br>with <i>A</i> , and stores the result in<br><i>C</i> .                                                         | 4     |                 |              | $\checkmark$ | 246  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 165        | Function<br>generator      | $-[A FG (n) B \rightarrow C] -$       | Finds $f(x)$ for given $x=A$ , and<br>stores it in <i>C</i> . The function $f(x)$<br>is defined by parameters<br>stored in a table $2 \times n$ registers<br>starting with <i>B</i> . | 5     | 77.7 -<br>142.1 | $\checkmark$ | $\checkmark$ | 247  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                            |                                       |                                                                                                                                                                                       |       |                 |              |              |      |

#### **Conversion instructions**

| FUN | Name                          | Expression                           | Function                                                                                                                                                                                 | Steps  | Speed          | Available    |              | Page |
|-----|-------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|--------------|--------------|------|
| No. |                               |                                      |                                                                                                                                                                                          |        | (μs)           | T1           | T1S          |      |
| 062 | Hex to ASCII<br>conversion    | –[ A HTOA (n) B ]–                   | Converts the hexadecimal data of <i>n</i> words stating with <i>A</i> into ASCII characters, and stores them in <i>n</i> x2 registers starting with <i>B</i> .                           | 4      |                | 0            | $\checkmark$ | 179  |
| 063 | ASCII to Hex<br>conversion    | –[ A ATOH (n) B]–                    | Converts the ASCII<br>characters stored in <i>n</i><br>registers stating with <i>A</i> into<br>hexadecimal data, and stores<br>them in <i>n</i> /2 registers starting<br>with <i>B</i> . | 4      | 0              |              | $\checkmark$ | 180  |
| 180 | Absolute value                | -[A ABS B]-                          | Stores the absolute value of A in <i>B</i> .                                                                                                                                             | 3      | 5.0            | $\checkmark$ | $\checkmark$ | 249  |
| 182 | 2's complement                | -[A NEG B]-                          | Stores the 2's complement value of <i>A</i> in <i>B</i> .                                                                                                                                | 3      | 4.6            | $\checkmark$ | $\checkmark$ | 250  |
| 183 | Double-word<br>2's complement | -[ <i>A+1·A</i> DNEG <i>B+1·B</i> ]- | Stores the 2's complement value of A+1-A in B+1-B.                                                                                                                                       | 3      | 4.6            | $\checkmark$ | $\checkmark$ | 251  |
| 185 | 7-segment<br>decode           | -[A 7SEG B]-                         | Converts lower 4 bits of A into 7-segment code, and stores it in <i>B</i> .                                                                                                              | 3      | 43.9           | $\checkmark$ | $\checkmark$ | 252  |
| 186 | ASCII<br>conversion           | -[A ASC B]-                          | Converts the alphanumerics<br>(max. 16 characters) of <i>A</i> into<br>ASCII codes, and stores them<br>in registers starting with <i>B</i> .                                             | 3 - 10 | 29.8 -<br>49.6 | $\checkmark$ | $\checkmark$ | 254  |
| 188 | Binary<br>conversion          | -[A BIN B]-                          | Converts the BCD data in <i>A</i> into binary data, and stores it in <i>B</i> .                                                                                                          | 3      | 65.5           | $\checkmark$ | $\checkmark$ | 255  |
| 190 | BCD<br>conversion             | -[A BCD B]-                          | Converts the binary data in <i>A</i> into BCD data, and stores it in <i>B</i> .                                                                                                          | 3      | 55.6           | V            |              | 256  |
|     |                               |                                      |                                                                                                                                                                                          |        |                |              |              |      |

132 T1/T1S User's Manual



#### **Special I/O instructions**

| FUN | Name           | Expression                    | Function                                                    | Steps | Speed           | Avai         | lable        | Page |
|-----|----------------|-------------------------------|-------------------------------------------------------------|-------|-----------------|--------------|--------------|------|
| No. |                |                               |                                                             |       | (μS)            | T1           | T1S          |      |
| 235 | Direct I/O     | –[I/O ( <i>n</i> ) A]–        | Performs the immediate block                                | 3     | 20.7 +          | $\checkmark$ | $\checkmark$ | 257  |
|     |                |                               | I/O transfer of <i>n</i> registers starting with <i>A</i> . |       | 21.3 × <i>n</i> | )            |              |      |
| 236 | Expanded data  | $-[A XFER B \rightarrow C]-$  | Writes data into the built-in                               | 4     | 54.0            |              |              | 259  |
|     | transfer       |                               | EEPROM, or reads data from                                  |       | 1w read         |              |              |      |
|     |                |                               | the EEPROM. The transfer                                    |       | 7120            |              |              |      |
|     |                |                               | indirectly designated by A and                              |       | 16w             |              |              |      |
|     |                |                               | C. The transfer register size is                            |       | write           |              |              |      |
|     |                |                               | designated by B.                                            |       |                 |              |              |      |
| 237 | Special module | $-[A READ B \rightarrow C]-$  | Reads data from the special                                 | 4     | 126.0 +         |              | $\checkmark$ | 263  |
|     | data read      |                               | module indicated by A and                                   |       | 7.9 × N         |              |              |      |
|     |                |                               | stores the data in a table                                  |       | (N: size)       |              |              |      |
|     |                |                               | starting with C. The transfer                               |       |                 |              |              |      |
|     |                |                               | designated by <i>B</i> and <i>B+1</i> .                     |       |                 |              |              |      |
| 238 | Special module | $-[A WRITE B \rightarrow C]-$ | Writes data stored in a table                               | 4     | 126.0 +         |              |              | 265  |
|     | data write     |                               | starting with A into the special                            |       | 7.9 	imes N     |              |              |      |
|     |                |                               | module indicated by C. The                                  |       | (N: size)       |              |              |      |
|     |                |                               | transfer destination address                                |       |                 |              |              |      |
|     |                |                               | and size are designated by B                                |       |                 |              |              |      |
|     |                |                               | and <i>B+1</i> .                                            |       |                 |              |              |      |



MN

The index modification is available for some instructions. The values in the execution speed column show the execution time without index modification. If index modification is used, approx. 20  $\mu$ s is added per one indexed operand.

#### 7.2 Instruction specifications

The following pages in this section describe the detailed specifications of each instruction. On each page, the following items are explained.

6F3B0250

#### Expression

Shows the operands required for the instruction as italic characters.

#### Function

Explains the functions of the instruction with referring the operands shown on the Expression box.

#### **Execution condition**

Shows the execution condition of the instruction and the instruction output status.

#### Operand

Shows available register, device or constant value for each operand. For constant operand, available value range is described. If the constant column is just marked ( $\sqrt{}$ ), it means normal value range (-32768 to 32767 in 16-bit integer or -2147483648 to 2147483647 in 32-bit integer) is available.

Whether index modification for a register operand is usable or not is also shown for each operand.

#### Example

Explains the operation of the instruction by using a typical example.

#### Note

Explains supplementary information, limitations, etc. for the instruction.





 $\dashv$  /- NC contact

#### Expression

A Input →/- Output

#### Function

NC (normally closed) contact of device *A*. When the input is ON and the device *A* is OFF, the output is turned ON.

#### **Execution condition**

| Input | Operation                           | Output |  |
|-------|-------------------------------------|--------|--|
| OFF   | Regardless of the state of device A | OFF    |  |
| ON    | When device A is OFF                | ON     |  |
|       | When device A is ON                 | OFF    |  |

#### Operand

|   | Name   |   |              | De | vice |    |    |    | Register |        |    |   |   |   | Constant | Index |   |  |  |
|---|--------|---|--------------|----|------|----|----|----|----------|--------|----|---|---|---|----------|-------|---|--|--|
|   |        | Х | Υ            | R  | S    | Τ. | C. | XW | YW       | RW     | SW | Т | С | D | Ι        | J     | Κ |  |  |
| Α | Device |   | $\checkmark$ |    |      |    |    |    |          | $\leq$ |    |   |   |   |          |       |   |  |  |

6F3B0250

### Example

X0000 R0001 YØØ22 -£

Coil Y022 comes ON when the devices X000 and R001 are both OFF.

| X000 |                   |  |  |
|------|-------------------|--|--|
| Dood |                   |  |  |
| R001 |                   |  |  |
| Y022 |                   |  |  |
|      | $\langle \rangle$ |  |  |







YØØ22

( )

# $\neg \downarrow \vdash$ | Transitional contact (Falling edge)

#### Expression

Input ⊣↓⊢ Output

#### Function

When the input at last scan is ON and the input at this scan is OFF, the output is turned ON. This instruction is used to detect the input changing from ON to OFF.

#### **Execution condition**

| Input | Operation                                  | Output |  |
|-------|--------------------------------------------|--------|--|
| OFF   | When the input state at last scan is OFF   | OFF    |  |
|       | When the input state at last scan is ON    | ON V   |  |
| ON    | Regardless of the input state at last scan | OFF    |  |

#### Operand

No operand is required.

#### Example



Coil Y022 comes ON for only 1 scan when the device X000 comes OFF.



#### Note

- In case of T1, the maximum usable number in a program is 512. ( $\neg \uparrow \vdash$  and  $\neg \downarrow \vdash$  total)
- In case of T1S, the maximum usable number in a program is 2048.
   (⊣↑⊢ ⊣↓⊢ ⊣P⊢ ⊣N⊢ -(P)⊣ -(N)⊣ total)

T1/T1S User's Manual

|                                                                                                                               | 6F3B0250                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
|                                                                                                                               | 7. Instructions                                                             |
| ()⊣ Coil                                                                                                                      |                                                                             |
| Expression                                                                                                                    |                                                                             |
| A<br>Input –( )–                                                                                                              | 5                                                                           |
| <b>Function</b><br>Relay coil of device <i>A</i> .<br>When the input is ON, the device <i>A</i> is set to ON.                 | So                                                                          |
| Execution condition         Input       Operation         OFF       Sets device A to OFF         ON       Sets device A to ON | Output                                                                      |
| Operand     Device       Name     Device       X     Y     R       S     T.     C.       X     V     V                        | Register     Constant     Index       W     T     C     D     I     J     K |
| Example                                                                                                                       |                                                                             |
|                                                                                                                               | Y0025                                                                       |
| Coil Y025 comes ON when the devices X000 is ON.                                                                               |                                                                             |
| X000 Y025                                                                                                                     |                                                                             |
|                                                                                                                               |                                                                             |
| 2                                                                                                                             |                                                                             |
| 5                                                                                                                             | Basic Hardware and Function <b>139</b>                                      |

★>Forced coil

#### Expression

A Input <sub>米</sub>()⊣

#### Function

Regardless of the input sate the state of device A is retained.

#### **Execution condition**

| Input | Operation    | Output |
|-------|--------------|--------|
| OFF   | No operation | -      |
| ON    | No operation |        |
|       |              |        |

#### Operand

|   | Name   | Device |   |   |   |    |    |    | Register |    |     |   |   |   |   |   |   | Constant | Index |
|---|--------|--------|---|---|---|----|----|----|----------|----|-----|---|---|---|---|---|---|----------|-------|
|   |        | Х      | Y | R | S | Τ. | C. | XW | YW       | RW | SW  | T | С | D | I | J | Κ |          |       |
| Α | Device |        |   |   |   |    |    |    |          | ~  | r . |   |   |   |   |   |   |          |       |

6F3B0250

#### Example



Device Y025 retains the preceding state regardless of the devices X000 state.



#### Note

• The forced coil is a debugging function. The state of a forced coil device can be set ON or OFF by the programming tool.

T1/T1S User's Manual

|                                                                                                                                                          | 6F3B0250                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
|                                                                                                                                                          | 7. Instructions                     |
| - I - Inverter                                                                                                                                           |                                     |
| Expression                                                                                                                                               |                                     |
| Input ⊣I⊢ Output                                                                                                                                         | S                                   |
| Function<br>When the input is OFF, the output is turned ON, and when the inp<br>This instruction inverts the link state.                                 | ut is ON, the output is turned OFF. |
| Input         Operation         Output           OFF         Inverts the input state         ON           ON         Inverts the input state         OFF |                                     |
| Operand<br>No operand is required.                                                                                                                       |                                     |
| Example                                                                                                                                                  |                                     |
|                                                                                                                                                          | Y0022                               |
| Y022 comes ON when X000 is OFF, and Y022 comes OFF w                                                                                                     | hen X000 is ON.                     |
| X000                                                                                                                                                     |                                     |
| Y022                                                                                                                                                     |                                     |
|                                                                                                                                                          |                                     |
| S.                                                                                                                                                       |                                     |
|                                                                                                                                                          |                                     |
|                                                                                                                                                          |                                     |

-(I)⊣ Invert coil

#### Expression

A Input –(I)⊣

#### Function

When the input is OFF, the device *A* is set to ON, and when the input is ON, the device *A* is set to OFF. This instruction inverts the input state and store it in the device *A*.

6F3B0250

#### **Execution condition**

| Input | Operation            | Output |
|-------|----------------------|--------|
| OFF   | Sets device A to ON  |        |
| ON    | Sets device A to OFF |        |
|       |                      |        |

#### Operand

|   | Name   | Device |   |   |   |    |    |    | Register |    |    |   |   |   |   |   |   | Constant | Index |
|---|--------|--------|---|---|---|----|----|----|----------|----|----|---|---|---|---|---|---|----------|-------|
|   |        | Х      | Υ | R | S | Τ. | C. | XW | YW       | RW | SW | T | С | D | Ι | J | Κ |          |       |
| Α | Device |        |   |   |   |    |    |    |          |    |    |   |   |   |   |   |   |          |       |

### Example



```
Y025 comes ON when X000 is OFF, and Y025 comes OFF when X000 is ON.
```






| Input | Ope                        | ration                |   | Outpu |
|-------|----------------------------|-----------------------|---|-------|
| OFF   | Regardless of the state of | device A              |   | OFF   |
| ON    | State of device A is OFF   |                       |   | OFF   |
|       | State of device A is ON    | A is OFF at last scan |   | ON    |
|       |                            | A is ON at last scan  | ~ | OFF   |

#### Operand

|   | Name   |   |   | Dev | vice | Device |    |    |    |    |    |   | Register |   |   |   |   |  |  |  |  |
|---|--------|---|---|-----|------|--------|----|----|----|----|----|---|----------|---|---|---|---|--|--|--|--|
|   |        | Х | Υ | R   | S    | Τ.     | С. | XW | YŴ | RW | SW | Т | С        | D | Ι | J | Κ |  |  |  |  |
| Α | Device |   |   |     |      |        |    |    |    |    |    |   |          |   |   |   |   |  |  |  |  |

## Example



R100 comes ON for only 1 scan when X000 is ON and X003 changes to ON.



#### Note

6F3B0250

 $\neg | \mathbf{N} \vdash |$  Negative pulse contact

## Expression

A Input ⊣N⊢ Output

## Function

When the input is ON and the device *A* is changed from ON to OFF (ON at last scan and OFF at this scan), the output is turned ON.

6F3B0250

T1S on

This instruction is used to detect the device changing from ON to OFF.

## **Execution condition**

| Input | Ope                        | ration                | Output |
|-------|----------------------------|-----------------------|--------|
| OFF   | Regardless of the state of | device A              | OFF    |
| ON    | State of device A is OFF   | A is OFF at last scan | OFF    |
|       |                            | A is ON at last scan  | ON     |
|       | State of device A is ON    |                       | OFF    |

## Operand

|   | Name   |   | Device |   |   |    |    |    |    |    |    | Reg | ister |   |   |   | Constant | Index |
|---|--------|---|--------|---|---|----|----|----|----|----|----|-----|-------|---|---|---|----------|-------|
|   |        | Х | Υ      | R | S | Τ. | C. | XW | YŴ | RW | SW | Т   | С     | D | J | Κ |          |       |
| Α | Device |   |        |   |   |    |    |    |    | )  |    |     |       |   |   |   |          |       |

## Example



R100 comes ON for only 1 scan when X000 is ON and X003 changes to OFF.



#### Note

The maximum usable number in a program is 2048.
 (→↑+ →↓+ →P+ →N+ -(P)+ -(N)+ total)



-(N) H Negative pulse coil

## Expression

A Input −(N)⊣

## Function

When the input is changed form ON to OFF, the device *A* is set to ON for 1 scan time. This instruction is used to detect the input changing from ON to OFF.

#### **Execution condition**

| Input | Operation                                         | Output |
|-------|---------------------------------------------------|--------|
| OFF   | When the input at last scan is OFF, sets A to OFF |        |
|       | When the input at last scan is ON, sets A to ON   |        |
| ON    | Sets device A to OFF                              |        |

#### Operand

|   | Name   |   | Device |   |   |    |    |    |    |    |    | Reg | ister |   |   |   |   | Constant | Index |
|---|--------|---|--------|---|---|----|----|----|----|----|----|-----|-------|---|---|---|---|----------|-------|
|   |        | Х | Υ      | R | S | Τ. | C. | XW | YW | RW | SW | Т   | С     | D | Ι | J | Κ |          |       |
| Α | Device |   |        |   |   |    |    |    |    |    |    |     |       |   |   |   |   |          |       |

6F3B0250

T1S onl

## Example



R101 comes ON for only 1 scan when X000 is changed from ON to OFF.



## Note

b

The maximum usable number in a program is 2048.
 (⊣↑⊢ ⊣↓⊢ ⊣P⊢ ⊣N⊢ –(P)⊣ –(N)⊣ total)

()

#### TON ON delay timer

#### Expression

Input – [ A TON B ] – Output

#### Function

When the input is changed from OFF to ON, timer updating for the timer register B is started. The elapsed time is stored in B. When the specified time by A has elapsed after the input came ON, the output and the timer device corresponding to B are turned ON. (Timer updating is stopped) When the input is changed from ON to OFF, B is cleared to 0, and the output and the timer device are turned OFF.

The available data range for operand A is 0 to 32767.

### **Execution condition**

| Input | Operation                                          | Output |
|-------|----------------------------------------------------|--------|
| OFF   | No operation (timer is not updating)               | OFF    |
| ON    | Elapsed time < preset time (timer is updating)     | OFF    |
|       | Elapsed time ≥ preset time (timer is not updating) | ON     |

#### Operand

|   | Name         |   | Device |   |   |    |    |    |              |    |    | Reg | ister |   |      |   | Constant  | Index |
|---|--------------|---|--------|---|---|----|----|----|--------------|----|----|-----|-------|---|------|---|-----------|-------|
|   |              | Х | Υ      | R | S | Τ. | C. | XW | YW           | RW | SW | Т   | С     | D | J    | Κ |           |       |
| Α | Preset time  |   |        |   |   |    |    | V  | $\checkmark$ |    |    |     |       |   | <br> |   | 0 - 32767 |       |
| В | Elapsed time |   |        |   |   |    |    |    |              |    |    |     |       |   |      |   |           |       |

#### Example





## Expression

Input —[ A TOF B]— Output

## Function

When the input is changed from OFF to ON, the output and the timer device corresponding to the timer register *B* are set to ON. When the input is changed from ON to OFF, timer updating for *B* is started. The elapsed time is stored in *B*. When the specified time by *A* has elapsed after the input came OFF, the output and the timer device are turned OFF. (Timer updating is stopped) The available data range for operand *A* is 0 to 32767.

#### **Execution condition**

| Input | Operation                                               | Output |
|-------|---------------------------------------------------------|--------|
| OFF   | Elapsed time < preset time (timer is updating)          | ON     |
|       | Elapsed time $\geq$ preset time (timer is not updating) | OFF    |
| ON    | No operation (timer is not updating)                    | ON     |

## Operand

|   | Name         | Device |   |   |   |    |    |              |              |    |    | Reg | ister |              |   |   |   | Constant  | Index |
|---|--------------|--------|---|---|---|----|----|--------------|--------------|----|----|-----|-------|--------------|---|---|---|-----------|-------|
|   |              | Х      | Υ | R | S | Τ. | C. | XW           | YW           | RW | SW | Т   | С     | D            | Ι | J | Κ |           |       |
| Α | Preset time  |        |   |   |   |    |    | $\checkmark$ | $\checkmark$ |    |    |     |       | $\checkmark$ |   |   |   | 0 - 32767 |       |
| В | Elapsed time |        |   |   |   |    |    |              |              |    |    |     |       |              |   |   |   |           |       |

## Example



Y021 (and the timer device T.002) is turned OFF 1 second after X000 came OFF.



## Note

Time is set in 10 ms units for; T1: T000 to T031 (0 to 327.67 s) T1S: T000 to T063 (0 to 327.67 s)

6F3B0250

- Time is set in 100 ms units for; T1: T032 to T063 (0 to 3276.7 s) T1S: T064 to T255 (0 to 3276.7 s)
- Multiple timer instructions (TON, TOF or SS) with the same timer register are not allowed.

YØØ21

()

SS | Single shot timer

## Expression

Input – [ A SS B ]– Output

## Function

When the input is changed from OFF to ON, the output and the timer device corresponding to the timer register *B* are set to ON, and timer updating for *B* is started. The elapsed time is stored in *B*. When the specified time by *A* has elapsed after the input came ON, the output and the timer device are turned OFF. (Timer updating is stopped)

The available data range for operand A is 0 to 32767.

## **Execution condition**

| Input | Operation                                          | Output |
|-------|----------------------------------------------------|--------|
| OFF   | Elapsed time < preset time (timer is updating)     | ON     |
|       | Elapsed time ≥ preset time (timer is not updating) | OFF    |
| ON    | Elapsed time < preset time (timer is updating)     | ON     |
|       | Elapsed time ≥ preset time (timer is not updating) | OFF    |

tøø3`

### Operand

|   | Name         |   |   | Dev | vice |    |    |    |              |    |    | Reg | ister |   |  |   |   | Constant  | Index |
|---|--------------|---|---|-----|------|----|----|----|--------------|----|----|-----|-------|---|--|---|---|-----------|-------|
|   |              | Х | Υ | R   | S    | Τ. | C. | XW | YW           | RW | SW | Т   | С     | D |  | J | Κ |           |       |
| Α | Preset time  |   |   |     |      |    |    | V  | $\checkmark$ |    |    |     |       |   |  |   |   | 0 - 32767 |       |
| В | Elapsed time |   |   |     |      |    |    |    |              |    |    |     |       |   |  |   |   |           |       |

#### Example

| X0000 L|----| |----[00100

Y021 (and the timer device T.003) is turned OFF 1 second after X000 came ON.



SS

#### Note

- Time is set in 10 ms units for; T1: T000 to T031 (0 to 327.67 s) T1S: T000 to T063 (0 to 327.67 s)
- Time is set in 100 ms units for; T1: T032 to T063 (0 to 3276.7 s) T1S: T064 to T255 (0 to 3276.7 s)
- Multiple timer instructions (TON, TOF or SS) with the same timer register are not allowed.

CNT Counter

## Expression

| Count input  | - C CNT Q - Output | .0 |
|--------------|--------------------|----|
| Enable input |                    |    |
|              |                    |    |

## Function

While the enable input is ON, this instruction counts the number of the count input changes from OFF to ON. The count value is stored in the counter register *B*. When the count value reaches the set value *A*, the output and the counter device corresponding to *B* are turned ON. When the enable input comes OFF, *B* is cleared to 0 and the output and the counter device are turned OFF. The available data range for operand *A* is 0 to 65535.

6F3B0250

## **Execution condition**

| Enable | Operation                                    | Output |
|--------|----------------------------------------------|--------|
| input  |                                              |        |
| OFF    | No operation ( <i>B</i> is cleared to 0)     | OFF    |
| ON     | Count value ( $B$ ) < set value ( $A$ )      | OFF    |
|        | Count value ( $B$ ) $\geq$ set value ( $A$ ) | ON     |
|        |                                              |        |

## Operand

|   | Name        |   |   | Dev | vice |    |    |              |              |              |    | Reg | ister |   |   |   |   | Constant  | Index |
|---|-------------|---|---|-----|------|----|----|--------------|--------------|--------------|----|-----|-------|---|---|---|---|-----------|-------|
|   |             | Х | Υ | R   | S    | Τ. | C. | XW           | YW           | RW           | SW | Т   | С     | D | Ι | J | Κ |           |       |
| Α | Set value   |   |   |     |      |    |    | $\checkmark$ | $\checkmark$ | $\checkmark$ |    |     |       |   |   |   |   | 0 - 65535 |       |
| В | Count value |   |   |     |      |    |    |              |              |              |    |     |       |   |   |   |   |           |       |

## Example



| MCS<br>MCR | Master control set / reset |  |
|------------|----------------------------|--|
|            |                            |  |

## Expression

Input -[ MCS ]-|----[ MCR ]-

#### **Function**

When the MCS input is ON, ordinary operation is performed. When the MCS input is OFF, the state of left power rail between MCS and MCR is turned OFF.

| Executi                   | ion condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| MCS                       | Operation Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
| input                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |
| OFF                       | Sets OFF the left power rail until MCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |
| ON                        | Ordinary operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |
| <b>Operan</b><br>No opera | nd<br>and is required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |
| Examp                     | le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |
| 1<br>2<br>3<br>4          | K0000<br>↓ ↓<br>(0001<br>↓ ↓<br>(0002<br>↓ ↓<br>↓ ↓<br>(MCI<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>(MCI)<br>( | 3 ]-<br>21<br>22<br>22<br>8 ]- |

When X000 is OFF, Y021 and Y022 are turned OFF regardless of the states of X001 and X002.



## Note

- MCS and MCR must be used as a pair.
- Nesting is not allowed.

| JCR | JCS<br>JCR | Jump control set / reset | 0 |
|-----|------------|--------------------------|---|
|-----|------------|--------------------------|---|

6F3B0250

## Expression

| Input | -[JCS]      |
|-------|-------------|
|       | ├── [ JCR } |

## Function

When the JCS input is ON, instructions between JCS and JCR are skipped (not executed). When the JCS input is OFF, ordinary operation is performed.

| Executi                                  | ion condition                |           |        |                                    |
|------------------------------------------|------------------------------|-----------|--------|------------------------------------|
| JCS                                      |                              | Operation | Output |                                    |
| input                                    |                              |           |        |                                    |
| OFF                                      | Ordinary operation           |           | _      |                                    |
| ON                                       | Skips until JCR              |           | _      |                                    |
| <b>Operan</b><br>No opera                | <b>d</b><br>and is required. |           |        |                                    |
| Examp                                    | le                           |           | 5.0    |                                    |
| 1<br> <br> <br> <br> <br> <br> <br> <br> | 0000<br>   <br>0001<br>      |           |        | [JCS ]-<br>Y0021<br>( )<br>[JCR ]- |

When X000 is ON, the rung 2 circuit is skipped, therefore Y021 is not changed its state regardless of the X001 state. When X000 is OFF, Y021 is controlled by the X001 state.

## Note

- JCS and JCR must be used as a pair.
- Nesting is not allowed.



# The second se

6F3B0250

 $H \in \mathsf{END} H$ 

## Function

Indicates the end of main program or sub-program. Instructions after the END instruction are not executed. At least one END instruction is necessary in a program.

## **Execution condition**

| Input | Operation | Output |    |
|-------|-----------|--------|----|
| _     | _         | - /    |    |
| -     | -         |        | () |
|       |           |        |    |

## Operand

No operand is required.

## Example

Fend ] 135

## Note

M

- For debugging purpose, 2 or more END instructions can be written in a program.
- Instructions after END instruction are not executed. Those steps are, however, counted as used steps.

| FUN 018 | MOV | Data transfer |
|---------|-----|---------------|
|---------|-----|---------------|

## Expression

Input –[ A MOV B ]– Output

## Function

When the input is ON, the data of A is stored in B.

## **Execution condition**

| Input | Operation    | Output |     |
|-------|--------------|--------|-----|
| OFF   | No execution | OFF    | · · |
| ON    | Execution    | ON     |     |
|       |              |        |     |

6F3B0250

## Operand

|   | Name        |   | Device |   |   |    |    |    | evice Register |              |              |              |   |   |   |   |   | Constant | Index        |
|---|-------------|---|--------|---|---|----|----|----|----------------|--------------|--------------|--------------|---|---|---|---|---|----------|--------------|
|   |             | Х | Υ      | R | S | Τ. | C. | XW | YW             | RW           | SW           | Ч            | Ċ | D | Ι | J | Κ |          |              |
| Α | Source      |   |        |   |   |    |    |    |                |              | X            | Ż            |   |   |   |   |   |          | $\checkmark$ |
| В | Destination |   |        |   |   |    |    |    |                | $\checkmark$ | $\checkmark$ | $\checkmark$ |   |   |   |   |   |          | $\checkmark$ |

## Example 1 (constant to register)

## | RØØ1Ø

└──┤├──[ 12345 MOV D0100]--

When R010 is ON, a constant data (12345) is stored in D0100 and the output is turned ON.

## Example 2 (register to register)

X0005

—| |—-[SW030 MOV RW045\_

When X005 is ON, the data of SW30 is stored in RW45 and the output is turned ON. If SW30 is 500, the data 500 is stored in RW45.

## Example 3 (index modification)



When R050 is changed from OFF to ON, the data of RW08 is stored in the index register I and the data of D(0000+I) is stored in YW10. If RW08 is 300, the data of D0300 is stored in YW10.

# FUN 019DMOVDouble-word data transfer

## Expression

Input -[ A+1·A MOV B+1·B ]- Output

## Function

When the input is ON, the double-word (32-bit) data of  $A+1 \cdot A$  is stored in double-word register  $B+1 \cdot B$ . The data range is -2147483648 to 2147483647.

## **Execution condition**

| Input | Operation    | Output    |
|-------|--------------|-----------|
| OFF   | No execution | OFF       |
| ON    | Execution    | ON STATES |
|       |              |           |

## Operand

|   | Name        |   | Device |   |   |    |    |              | Register     |              |              |              |   |   |   |   |   |  | Index        |
|---|-------------|---|--------|---|---|----|----|--------------|--------------|--------------|--------------|--------------|---|---|---|---|---|--|--------------|
|   |             | Х | Υ      | R | S | Τ. | C. | XW           | YW           | RW           | SW           | Ē            | С | D | Ι | J | Κ |  |              |
| Α | Source      |   |        |   |   |    |    | $\checkmark$ |              | $\checkmark$ | $\checkmark$ | $\checkmark$ |   |   |   |   |   |  | $\checkmark$ |
| В | Destination |   |        |   |   |    |    |              | $\checkmark$ | V            |              |              |   |   |   |   |   |  | $\checkmark$ |

## Example

│ R0011 1 ---- [D0101•D0100 DMOV RW017•RW016]----

When R011 is ON, a double-word data of D0101·D0100 is stored in RW17·RW16 and the output is turned ON. If D0101·D0100 is 1234567, the data 1234567 is stored in RW17·RW16.

M

| FUN 020 | NOT | Invert transfer |
|---------|-----|-----------------|
|---------|-----|-----------------|

## Expression

Input –[ A NOT B ]– Output

## Function

When the input is ON, the bit-inverted data of A is stored in B.

## **Execution condition**

| Input | Operation    | Output |  |
|-------|--------------|--------|--|
| OFF   | No execution | OFF    |  |
| ON    | Execution    | ON     |  |
|       |              |        |  |

6F3B0250

## Operand

|   | Name        | Device |   |   |   |    |    | Register     |    |              |              |              |   |   |   |   |   | Constant | Index        |
|---|-------------|--------|---|---|---|----|----|--------------|----|--------------|--------------|--------------|---|---|---|---|---|----------|--------------|
|   |             | Х      | Υ | R | S | Τ. | C. | XW           | YW | RW           | SW           | T            | Ċ | D | Ι | J | Κ |          |              |
| Α | Source      |        |   |   |   |    |    | $\checkmark$ |    |              | V            |              |   |   |   |   |   |          | $\checkmark$ |
| В | Destination |        |   |   |   |    |    |              |    | $\checkmark$ | $\checkmark$ | $\checkmark$ |   |   |   |   |   |          | $\checkmark$ |

## Example

│ R0005 1 ---- | F=--[R₩030 NOT D0200]----

When R010 is ON, the bit-inverted data of RW30 is stored in D0200 and the output is turned ON. If RW30 is H4321, the bit-inverted data (HBCDE) is stored in D0200.



| FUN 022 XCHG E | Data exchange |
|----------------|---------------|
|----------------|---------------|

## Expression

Input –[ A XCHG B ]– Output

## Function

When the input is ON, the data of *A* and the data of *B* is exchanged.

### **Execution condition**

| Input | Operation    | Output |  |
|-------|--------------|--------|--|
| OFF   | No execution | OFF    |  |
| ON    | Execution    | ON     |  |
|       |              |        |  |

## Operand

|   | Name           |   | Device |   |   |    |    |    | Register |              |              |              |   |   |   |   |   | Constant | Index        |
|---|----------------|---|--------|---|---|----|----|----|----------|--------------|--------------|--------------|---|---|---|---|---|----------|--------------|
|   |                | Х | Υ      | R | S | Τ. | C. | XW | YW       | RW           | SW           | Ч            | С | D | Ι | J | Κ |          |              |
| Α | Operation data |   |        |   |   |    |    |    |          |              | X            | Ż            |   |   |   |   |   |          | $\checkmark$ |
| В | Operation data |   |        |   |   |    |    |    |          | $\checkmark$ | $\checkmark$ | $\checkmark$ |   |   |   |   |   |          |              |

## Example

h

│ R0005 1}----{R₩023 XCHG D0100]----

When R005 is ON, the data of RW23 and D0100 is exchanged. If the original data of RW23 is 23456 and that of D0100 is 291, the operation result is as follows.



| FUN 024 | TINZ | Table initialize |
|---------|------|------------------|
|---------|------|------------------|

## Expression

Input –[ A TINZ (n) B ]– Output

## Function

When the input is ON, the data of A is stored in n registers starting with B. The allowable range of the table size n is 1 to 1024 words.

#### **Execution condition**

| Input | Operation    | Output   |
|-------|--------------|----------|
| OFF   | No execution | OFF      |
| ON    | Execution    | ON STATE |
|       |              |          |

-[ 00000 TINZ(0100)D0200]

## Operand

|   | Name                    |   | Device |   |   |    |    |    | Register |              |              |                   |   |   |   |   |   |              | Index |
|---|-------------------------|---|--------|---|---|----|----|----|----------|--------------|--------------|-------------------|---|---|---|---|---|--------------|-------|
|   |                         | Х | Υ      | R | S | Τ. | C. | XW | YW       | RW           | SW           | F                 | С | D | Ι | J | Κ |              |       |
| Α | Source                  |   |        |   |   |    |    |    |          | $\checkmark$ | $\checkmark$ | $\neg \downarrow$ |   |   |   |   |   | $\checkmark$ |       |
| n | Table size              |   |        |   |   |    |    |    |          |              |              |                   |   |   |   |   |   | 1 - 1024     |       |
| В | Start of<br>destination |   |        |   |   |    |    |    | V        | X            | $\checkmark$ | $\checkmark$      |   |   |   |   |   |              |       |

6F3B0250

T1S on

## Example

1

```
R0010
```

When R010 is ON, a constant data (0) is stored in 100 registers starting with D0200 (D0200 to D0299) and the output is turned ON.





T1S on

| FUN 025   TMOV | Table transfer |
|----------------|----------------|
|----------------|----------------|

## Expression

Input –[ A TMOV (n) B ]– Output

## Function

When the input is ON, the data of *n* registers starting with *A* are transferred to *n* registers starting with *B* in a block. The allowable range of the table size *n* is 1 to 1024 words.

#### **Execution condition**

| Input | Operation    | Output       |
|-------|--------------|--------------|
| OFF   | No execution | OFF          |
| ON    | Execution    | ÔN STATISTIC |
|       |              |              |

## Operand

|   | Name                    |   | Device |   |   |    |    |    | Register     |              |              |              |              |              |   |   |   | Constant | Index |
|---|-------------------------|---|--------|---|---|----|----|----|--------------|--------------|--------------|--------------|--------------|--------------|---|---|---|----------|-------|
|   |                         | Х | Y      | R | S | Τ. | C. | XW | YW           | RW           | SW           | T            | С            | D            | Ι | J | Κ |          |       |
| Α | Start of source         |   |        |   |   |    |    |    |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |   |   |   |          |       |
| n | Table size              |   |        |   |   |    |    |    |              |              |              |              |              |              |   |   |   | 1 - 1024 |       |
| В | Start of<br>destination |   |        |   |   |    |    |    | $\checkmark$ | X            | $\sim$       |              |              | $\checkmark$ |   |   |   |          |       |

## Example

R0010

```
When R010 is ON, the data of D0500 to D0509 (10 registers) are block transferred to D1000 to D1009, and the output is turned ON.
```



## Note

J'

• The source and destination tables can be overlapped.

-[D0500 TMOV (0010)D1000]

## Expression

Input –[ A TNOT (n) B ]– Output

## Function

When the input is ON, the data of *n* registers starting with *A* are bit-inverted and transferred to *n* registers starting with *B* in a block. The allowable range of the table size n is 1 to 1024 words.

## **Execution condition**

| Input | Operation    | Output |           |
|-------|--------------|--------|-----------|
| OFF   | No execution | OFF    |           |
| ON    | Execution    | ÓN     | <b>()</b> |
|       |              |        |           |

## Operand

| ~ p \ | and a                |   |        |   |   |    |    |    |              |              |              |              |   |   |   |   |   |          |       |
|-------|----------------------|---|--------|---|---|----|----|----|--------------|--------------|--------------|--------------|---|---|---|---|---|----------|-------|
|       | Name                 |   | Device |   |   |    |    |    | Register     |              |              |              |   |   |   |   |   | Constant | Index |
|       |                      | Х | Υ      | R | S | Τ. | C. | XW | YW           | RW           | SW           | T            | С | D | Ι | J | Κ |          |       |
| Α     | Start of source      |   |        |   |   |    |    |    | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\neg$       |   |   |   |   |   |          |       |
| n     | Table size           |   |        |   |   |    |    |    |              |              |              |              |   |   |   |   |   | 1 - 1024 |       |
| В     | Start of destination |   |        |   |   |    |    |    | V            | N            | $\sim$       | $\checkmark$ |   |   |   |   |   |          |       |

## Example

RØØ10 -[D0600 TNOT (0005)D0865]}

When R010 is ON, the data of D0600 to D0604 (5 registers) are bit-inverted and transferred to D0865 to D0869, and the output is turned ON.

5 registers

| D0600 | H00FF |              | D0865 | HFF00 |
|-------|-------|--------------|-------|-------|
| D0601 | H0000 | Bit-invert   | D0866 | HFFFF |
| D0602 | H1234 | and transfer | D0867 | HEDCB |
| D0603 | H5555 | <b></b>      | D0868 | HAAAA |
| D0604 | H89AB |              | D0869 | H7654 |
|       |       |              |       | /     |

## Note

• The source and destination tables can be overlapped.

T1/T1S User's Manual

6F3B0250

T1S only

| FUN 027 | + | Addition |
|---------|---|----------|
|         |   |          |

### Expression

Input  $-[A + B \rightarrow C]$  – Output

## Function

When the input is ON, the data of A and the data of B are added, and the result is stored in C. If the result is greater than 32767, the upper limit value 32767 is stored in C, and the output is turned ON. If the result is smaller than -32768, the lower limit value -32768 is stored in C, and the output is turned ON.

## **Execution condition**

| OFF No execution                           | OFF |
|--------------------------------------------|-----|
|                                            |     |
| ON Execution (normal)                      | OFF |
| Execution (overflow or underflow occurred) | ON  |

## Operand

|   | Name   |   | Device |   |   |    |    |              | Register     |              |              |   |   |   |   |   |   | Constant | Index        |
|---|--------|---|--------|---|---|----|----|--------------|--------------|--------------|--------------|---|---|---|---|---|---|----------|--------------|
|   |        | Х | Υ      | R | S | Τ. | C. | XW           | YW           | RW           | SW           | Т | С | D | Ι | J | Κ |          |              |
| Α | Augend |   |        |   |   |    |    | V            | $\mathbf{V}$ | $\checkmark$ |              |   |   |   |   |   |   |          | $\checkmark$ |
| В | Addend |   |        |   |   |    | -  | $\checkmark$ | $\checkmark$ |              |              |   |   |   |   |   |   |          | $\checkmark$ |
| С | Sum    |   |        |   |   |    |    |              | $\checkmark$ | $\checkmark$ | $\checkmark$ |   |   |   |   |   |   |          | $\checkmark$ |

## Example

| R0005 |   | R1000 D01107   | R0010 |
|-------|---|----------------|-------|
|       | + | 01000 → D0110] | ()    |

When R005 is ON, the data of D0100 and the constant data 1000 is added, and the result is stored in D0110.

If the data of D0100 is 12345, the result 13345 is stored in D0110, and R010 is turned OFF.

D0100 <u>12345</u> + → D0110 <u>13345</u> R010 is OFF Constant <u>1000</u>

If the data of D0100 is 32700, the result exceeds the limit value, therefore 32767 is stored in D0110, and R010 is turned ON.



| FUN 028 | _ | Subtraction |  | $\bigcirc$ | ) |
|---------|---|-------------|--|------------|---|
|---------|---|-------------|--|------------|---|

6F3B0250

## Expression

Input  $-[A - B \rightarrow C]$  – Output

## Function

When the input is ON, the data of *B* is subtracted from the data of *A*, and the result is stored in *C*. If the result is greater than 32767, the upper limit value 32767 is stored in *C*, and the output is turned ON. If the result is smaller than -32768, the lower limit value -32768 is stored in *C*, and the output is turned ON.

## **Execution condition**

| Input | Operation                                  | Output |
|-------|--------------------------------------------|--------|
| OFF   | No execution                               | OFF    |
| ON    | Execution (normal)                         | OFF    |
|       | Execution (overflow or underflow occurred) | ON     |

## Operand

|   | Name       |   | Device |   |   |    |    |                   | Register     |    |   |   |   |   |   |   | Constant     | Index        |
|---|------------|---|--------|---|---|----|----|-------------------|--------------|----|---|---|---|---|---|---|--------------|--------------|
|   |            | Х | Υ      | R | S | Τ. | C. | XW YW             | RW           | SW | Т | С | D | Ι | J | Κ |              |              |
| Α | Minuend    |   |        |   |   |    |    | $\sqrt{\sqrt{1}}$ | $\checkmark$ |    |   |   |   |   |   |   |              |              |
| В | Subtrahend |   |        |   |   |    | -  | $\sqrt{\sqrt{1}}$ | $\checkmark$ |    |   |   |   |   |   |   | $\checkmark$ | $\checkmark$ |
| С | Difference |   |        |   |   |    |    | V                 | $\checkmark$ |    |   |   |   |   |   |   |              |              |

## Example

| R0005      |   |                | R0010 |
|------------|---|----------------|-------|
| 1 → TD0200 | _ | 02500 → RW050] | ()    |
|            |   |                |       |

When R005 is ON, the constant data 2500 is subtracted from the data of D0200, and the result is stored in RW50.

If the data of D0200 is 15000, the result 12500 is stored in RW50, and R010 is turned OFF.

D0200 15000 − − → RW50 12500 R010 is OFF Constant 2500

If the data of D0200 is -31000, the result is smaller than the limit value, therefore -32768 is stored in RW50, and R010 is turned ON.

| D0100 <u>-31000</u><br>Constant <u>2500</u> | ☐ Underflow<br>_ — — → RW50<br>_ | -32768 | R010 is ON |
|---------------------------------------------|----------------------------------|--------|------------|
| <b>162</b> T1/T1S User's Manual             |                                  |        |            |

|--|

## Expression

Input  $-[A * B \rightarrow C+1 \cdot C]$  - Output

## Function

When the input is ON, the data of A is multiplied by the data of B, and the result is stored in doublelength register  $C+1 \cdot C$ .

## **Execution condition**

| Input | Operation    | Output |
|-------|--------------|--------|
| OFF   | No execution | OFF    |
| ON    | Execution    | ON O   |

#### Operand

|   | Name         |   | Device |   |   |    |    |              | Register     |              |              |              |              |   |   |   |   | Constant | Index        |
|---|--------------|---|--------|---|---|----|----|--------------|--------------|--------------|--------------|--------------|--------------|---|---|---|---|----------|--------------|
|   |              | Х | Υ      | R | S | Τ. | C. | XW           | YW           | RW           | SW           | H            | С            | D | - | J | Κ |          |              |
| Α | Multiplicand |   |        |   |   |    |    | $\checkmark$ |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |   |   |   |   |          | $\checkmark$ |
| В | Multiplier   |   |        |   |   |    |    | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |              |              |   |   |   |   |          | $\checkmark$ |
| С | Product      |   |        |   |   |    |    |              |              | $\checkmark$ | $\sim$       |              | $\checkmark$ |   |   |   |   |          | $\checkmark$ |

#### Example

M

|   | DUQQE | DB101-D01007   |   |
|---|-------|----------------|---|
| * | כששאת | + Peter. Peree | 1 |

When R005 is ON, the data of D0050 is multiplied by the data of RW05, and the result is stored in double-length register D0101 D0100 (upper 16-bit in D0101 and lower 16-bit in D0100).

If the data of D0050 is 1500 and the data of RW05 is 20, the result 30000 is stored in D0101.D0100.



| FUN 030 | / | Division |   | $\bigcirc$ |  |
|---------|---|----------|---|------------|--|
|         |   |          | - |            |  |

6F3B0250

## Expression

Input  $-[A / B \rightarrow C]$  - Output

## Function

When the input is ON, the data of A is divided by the data of B, and the quotient is stored in C and the remainder in C+1.

## **Execution condition**

| Input | Operation                       | Output | ERF |
|-------|---------------------------------|--------|-----|
| OFF   | No execution                    | OFF    |     |
| ON    | Normal execution ( $B \neq 0$ ) | ON     | U   |
|       | No execution $(B = 0)$          | OFF    | Set |

## Operand

|   | Name     |   | Device |   |   |    |    |    | Register     |              |                         |   |              |   |   |   |   | Constant     | Index |
|---|----------|---|--------|---|---|----|----|----|--------------|--------------|-------------------------|---|--------------|---|---|---|---|--------------|-------|
|   |          | Х | Υ      | R | S | Τ. | C. | XW | YW           | RW           | SW                      | Т | С            | D | - | J | Κ |              |       |
| Α | Dividend |   |        |   |   |    |    |    | $\checkmark$ |              | 1                       |   |              |   |   |   |   | $\checkmark$ |       |
| В | Divisor  |   |        |   |   |    |    |    |              | $\checkmark$ | $\overline{\mathbf{A}}$ |   | $\checkmark$ |   |   |   |   |              |       |
| С | Quotient |   |        |   |   |    |    |    | $\mathbb{V}$ | $\checkmark$ | ∕ √                     |   |              |   |   |   |   |              |       |

## Example

| R0005 | , | 00225 A BI027] |  |
|-------|---|----------------|--|
|       |   |                |  |
| I     |   |                |  |

When R005 is ON, the data of RW22 is divided by the constant data 325, and the quotient is stored in RW27 and the remainder is stored in RW28.

If the data of RW22 is 2894, the quotient 8 is stored in RW27 and the remainder 294 is stored in RW28.



## Note

- If divisor (operand *B*) is 0, ERF (instruction error flag = S051) is set to ON.
- The ERF (S051) can be reset to OFF by user program, e.g. -[ RST S051 ]-.
- If the index register K is used as operand C, the remainder is ignored.
- If operand A is -32768 and operand B is -1, the data -32768 is stored in C and 0 is stored in C+1.

## Expression

Input  $-[A+1\cdot A D+ B+1\cdot B \rightarrow C+1\cdot C]$  – Output

## Function

When the input is ON, the double-word data of  $A+1 \cdot A$  and  $B+1 \cdot B$  are added, and the result is stored in  $C+1 \cdot C$ . The data range is -2147483648 to 2147483647.

If the result is greater than 2147483647, the upper limit value 2147483647 is stored in  $C+1\cdot C$ , and the output is turned ON. If the result is smaller than -2147483648, the lower limit value -2147483648 is stored in  $C+1\cdot C$ , and the output is turned ON.

#### **Execution condition**

| Input | Operation                                  | Output |
|-------|--------------------------------------------|--------|
| OFF   | No execution                               | OFF    |
| ON    | Execution (normal)                         | OFF    |
|       | Execution (overflow or underflow occurred) | ON     |

#### Operand

|   | Name   |   |   | Dev | vice |    |    |              |              |    |              | Reg          | ister |   |   |   |   | Constant | Index |
|---|--------|---|---|-----|------|----|----|--------------|--------------|----|--------------|--------------|-------|---|---|---|---|----------|-------|
|   |        | Х | Υ | R   | S    | Τ. | C. | XWN          | ΥY           | RW | SW           | Т            | С     | D | Ι | J | Κ |          |       |
| Α | Augend |   |   |     |      |    |    | $\checkmark$ | $\checkmark$ |    | $\checkmark$ | $\checkmark$ |       |   |   |   |   |          |       |
| В | Addend |   |   |     |      |    |    | V            | Ż            |    | $\checkmark$ | $\checkmark$ |       |   |   |   |   |          |       |
| С | Sum    |   |   |     |      |    |    |              | $\checkmark$ |    |              |              |       |   |   |   |   |          |       |

## Example

| RØØØ5  |               |    |            |   |              | RØØ10 |
|--------|---------------|----|------------|---|--------------|-------|
| 1┝─┤├─ | -[D0011•D0010 | D+ | 0000100000 | ÷ | D0101.D0100] | -()   |
|        |               |    |            |   |              |       |

When R005 is ON, the data of D0011.D0010 and the constant data 100000 is added, and the result is stored in D0101.D0100.

If the data of D0011.D0010 is 300000, the result 400000 is stored in D0101.D0100, and R010 is turned OFF. (No overflow/underflow)



| FUN 032 D– Double-word subtraction |
|------------------------------------|
|------------------------------------|

6F3B0250

## Expression

Input –[  $A+1 \cdot A \quad D-B+1 \cdot B \rightarrow C+1 \cdot C$  ]– Output

## Function

When the input is ON, the double-word data of  $B+1 \cdot B$  is subtracted from  $A+1 \cdot A$ , and the result is stored in  $C+1 \cdot C$ . The data range is -2147483648 to 2147483647.

If the result is greater than 2147483647, the upper limit value 2147483647 is stored in  $C+1 \cdot C$ , and the output is turned ON. If the result is smaller than -2147483648, the lower limit value -2147483648 is stored in  $C+1 \cdot C$ , and the output is turned ON.

## Execution condition

| Input | Operation                                  | Output |
|-------|--------------------------------------------|--------|
| OFF   | No execution                               | OFF    |
| ON    | Execution (normal)                         | OFF    |
|       | Execution (overflow or underflow occurred) | ON     |

## Operand

|   | Name       |   |   | Dev | vice |    |    |    |                         |              | Γ  | Reg | ister |   |   |   |   | Constant | Index |
|---|------------|---|---|-----|------|----|----|----|-------------------------|--------------|----|-----|-------|---|---|---|---|----------|-------|
|   |            | Х | Υ | R   | S    | Τ. | С. | XW | YW                      | RW           | SW | Т   | С     | D | - | J | Κ |          |       |
| Α | Minuend    |   |   |     |      |    |    |    | $\checkmark$            | $\checkmark$ |    |     |       |   |   |   |   |          |       |
| В | Subtrahend |   |   |     |      |    |    |    | $\checkmark$            | $\checkmark$ |    |     |       |   |   |   |   |          |       |
| С | Difference |   |   |     |      |    |    |    | $\overline{\mathbf{v}}$ |              |    |     |       |   |   |   |   |          |       |

## Example

| R0005        |                |   | D0102-D01027 | R0010 |
|--------------|----------------|---|--------------|-------|
| TD0101.D0100 | n- 10022.10054 | 7 | 20102-00102  |       |

When R005 is ON, the double-word data of RW25 RW24 is subtracted from the double-word data of D0101 D0100, and the result is stored in D0103 D0102.

If the data of D0101.D0100 is 1580000 and the data of RW25.RW24 is 80000, the result 1500000 is stored in D0103.D0102, and R010 is turned OFF. (No overflow/underflow)



| FUN 035 | +C | Addition with carry |
|---------|----|---------------------|
|---------|----|---------------------|

## Expression

Input  $-[A + C B \rightarrow C]$  - Output

## Function

When the input is ON, the data of *A*, *B* and the carry flag (CF = S050) are added, and the result is stored in *C*. If carry is occurred in the operation, the carry flag is set to ON. If the result is greater than 32767 or smaller than -32768, the output is turned ON.

This instruction is used to perform unsigned addition or double-length addition.

## **Execution condition**

| Input |             | Operation  |                |     |       |  |  |  |  |  |
|-------|-------------|------------|----------------|-----|-------|--|--|--|--|--|
| OFF   | No executio | OFF        | -              |     |       |  |  |  |  |  |
| ON    | Execution   | Normal     | No carry       | OFF | Reset |  |  |  |  |  |
|       |             |            | Carry occurred | OFF | Set   |  |  |  |  |  |
|       |             | Overflow / | No carry       | ON  | Reset |  |  |  |  |  |
|       |             | underflow  | ON             | Set |       |  |  |  |  |  |

#### Operand

|   | Name   |   |   | Dev | vice |    |     |              |              |    |              | Reg | ister |   |   |   |   | Constant | Index        |
|---|--------|---|---|-----|------|----|-----|--------------|--------------|----|--------------|-----|-------|---|---|---|---|----------|--------------|
|   |        | Х | Υ | R   | S    | Τ. | C.4 | XW           | YW           | RW | SW           | Т   | С     | D | Ι | J | Κ |          |              |
| Α | Augend |   |   |     |      |    |     | $\checkmark$ | $\checkmark$ |    | $\checkmark$ |     |       |   |   |   |   |          | $\checkmark$ |
| В | Addend |   |   |     |      |    |     | V            | $\checkmark$ |    | $\checkmark$ |     |       |   |   |   |   |          | $\checkmark$ |
| С | Sum    |   |   |     |      |    |     |              |              |    |              |     |       |   |   |   |   |          |              |

## Example

| R0013      |            |              |   |        |
|------------|------------|--------------|---|--------|
| 1   [RSTC] | D0100 +C   | RW020        | ÷ | D0200] |
|            |            | <b>PU021</b> | _ | D02017 |
| Γ          | -100101 +C | N#021        | 7 | D0201_ |

When R013 is ON, the data of double-length registers D0101·D0100 and RW21·RW20 are added, and the result is stored in D0201·D0200. The RSTC is a instruction to reset the carry flag before starting the calculation.

If the data of D0101.D0100 is 12345678 and RW21.RW20 is 54322, the result 12400000 is stored in D0201.D0200.



| FUN 036 | -C | Subtraction with carry |
|---------|----|------------------------|
|---------|----|------------------------|

## Expression

Input  $-[A - C B \rightarrow C]$  - Output

## Function

When the input is ON, the data of *B* and the carry flag (CF = S050) are subtracted from *A*, and the result is stored in *C*. If borrow is occurred in the operation, the carry flag is set to ON. If the result is greater than 32767 or smaller than -32768, the output is turned ON.

6F3B0250

This instruction is used to perform unsigned subtraction or double-length subtraction.

## **Execution condition**

| Input |             | Operation  |                 |  |     |       |  |  |  |
|-------|-------------|------------|-----------------|--|-----|-------|--|--|--|
| OFF   | No executio | 'n         |                 |  | OFF | -     |  |  |  |
| ON    | Execution   | Normal     | No borrow       |  | OFF | Reset |  |  |  |
|       |             |            | Borrow occurred |  | OFF | Set   |  |  |  |
|       |             | Overflow / | No borrow       |  | ON  | Reset |  |  |  |
|       |             | underflow  | Borrow occurred |  | ON  | Set   |  |  |  |

## Operand

|   | Name       |   | Device |   |   |    |    |              |              | Register |    |   |   |   | Constant | Index |   |  |  |
|---|------------|---|--------|---|---|----|----|--------------|--------------|----------|----|---|---|---|----------|-------|---|--|--|
|   |            | Х | Υ      | R | S | Τ. | C. | XW           | YW           | RW       | SW | Т | С | D | Ι        | J     | Κ |  |  |
| Α | Minuend    |   |        |   |   |    |    | $\checkmark$ | $\checkmark$ |          |    |   |   |   |          |       |   |  |  |
| В | Subtrahend |   |        |   |   |    |    | $\checkmark$ | $\checkmark$ |          |    |   |   |   |          |       |   |  |  |
| С | Difference |   |        |   |   |    |    |              |              |          |    |   |   |   |          |       |   |  |  |

## Example

| R0013      |           |       |   |        |
|------------|-----------|-------|---|--------|
| 1   [RSTC] | D0200 -C  | RW022 | → | D0210] |
|            | -D0201 -C | RU023 | → | D02117 |
|            |           |       |   | 20011] |

When R013 is ON, the data of double-length register RW23·RW22 is subtracted from the data of D0201·D0200, and the result is stored in D0211·D0210. The RSTC is a instruction to reset the carry flag before starting the calculation.

If the data of D0201.D0200 is 12345678 and RW23.RW22 is 12340000, the result 5678 is stored in D0211.D0210.



T1S or

| FUN 039 | U* | Unsigned multiplication |
|---------|----|-------------------------|
|---------|----|-------------------------|

## Expression

Input –[  $A \cup B \rightarrow C+1 \cdot C$  ]– Output

## Function

When the input is ON, the unsigned data of A and B are multiplied, and the result is stored in double-length register  $C+1 \cdot C$ . The data range of A and B is 0 to 65535 (unsigned 16-bit data)

## **Execution condition**

| Input | Operation    | Output |
|-------|--------------|--------|
| OFF   | No execution | OFF    |
| ON    | Execution    | ON     |
|       | ·            |        |

#### Operand

|   | Name         |   | Device |   |   |    |    | Register |              |              |                         |              |   |   |   |   | Constant | Index        |              |
|---|--------------|---|--------|---|---|----|----|----------|--------------|--------------|-------------------------|--------------|---|---|---|---|----------|--------------|--------------|
|   |              | Х | Υ      | R | S | Τ. | C. | XW       | YW           | RW           | SW                      | H            | С | D | Ι | J | Κ        |              |              |
| Α | Multiplicand |   |        |   |   |    |    |          |              | $\checkmark$ | $\checkmark$            | $\checkmark$ |   |   |   |   |          | $\checkmark$ | $\checkmark$ |
| В | Multiplier   |   |        |   |   |    |    |          | $\checkmark$ |              | $\checkmark$            |              |   |   |   |   |          | $\checkmark$ | $\checkmark$ |
| С | Product      |   |        |   |   |    |    |          |              | $\checkmark$ | $\overline{\mathbf{A}}$ |              |   |   |   |   |          |              |              |

#### Example

| 11. |        | 09191-091997   |
|-----|--------|----------------|
| 0*  | UMAGOO | 2 D0101.D01007 |
|     |        |                |

When R010 is ON, the data of D0050 is multiplied by the data of RW05, and the result is stored in double-length register D0101. D0100 (upper 16-bit in D0101 and lower 16-bit in D0100).

If the data of D0050 is 52500 and the data of RW05 is 30, the result 1575000 is stored in D0101.D0100.

D0050 <u>52500</u> RW05 <u>30</u> × → D0101·D0100 <u>1575000</u>

## Note

• This instruction handles the register data as unsigned integer.

NN,

| 7. Instructio | ns |                   |          |
|---------------|----|-------------------|----------|
|               |    |                   |          |
| FUN 040       | U/ | Unsigned division | T1S only |
|               |    |                   | -        |

6F3B0250

## Expression

Input  $-[A \cup B \rightarrow C]$  - Output

## Function

When the input is ON, the unsigned data of A is divided by the unsigned data of B, and the quotient is stored in C and the remainder in C+1. The data range of A and B is 0 to 65535 (unsigned 16-bit data)

## **Execution condition**

| Input | Operation                       | Output | ERF |
|-------|---------------------------------|--------|-----|
| OFF   | No execution                    | OFF    |     |
| ON    | Normal execution ( $B \neq 0$ ) | ON     |     |
|       | No execution $(B = 0)$          | OFF    | Set |

## Operand

|   | Name     |   | Device |   |   |    |    | Register |              |              |                         |   |   |   |   | Constant | Index |  |  |
|---|----------|---|--------|---|---|----|----|----------|--------------|--------------|-------------------------|---|---|---|---|----------|-------|--|--|
|   |          | Х | Υ      | R | S | Τ. | C. | XW       | YW           | RW           | SW                      | Т | С | D | - | J        | Κ     |  |  |
| Α | Dividend |   |        |   |   |    |    |          | $\checkmark$ | ~            | 1                       |   |   |   |   |          |       |  |  |
| В | Divisor  |   |        |   |   |    |    |          |              | $\checkmark$ | $\overline{\mathbf{A}}$ |   |   |   |   |          |       |  |  |
| С | Quotient |   |        |   |   |    |    |          | $\mathbf{V}$ | $\checkmark$ | ∕ √                     |   |   |   |   |          |       |  |  |

## Example

| R0010 | 112 |                |
|-------|-----|----------------|
|       | U/  | 00000 → D0000] |

When R010 is ON, the data of D0030 is divided by the constant data 300, and the quotient is stored in D0050 and the remainder is stored in D0051.

If the data of D0030 is 54321, the quotient 181 is stored in D0050 and the remainder 21 is stored in D0051.

| D0030 54321  |        |     |             |
|--------------|--------|-----|-------------|
| ÷            | → RW27 | 181 | (quotient)  |
| Constant 300 | RW28   | 21  | (remainder) |

## Note

- If divisor (operand B) is 0, ERF (instruction error flag = S051) is set to ON.
  The ERF (S051) can be reset to OFF by user program, e.g. –[ RST S051 ]–.
- If the index register K is used as operand C, the remainder is ignored.
- This instruction handles the register data as unsigned integer.

FUN 041 DIV Unsigned double/single division

## Expression

Input  $-[A+1 \cdot A \text{ DIV } B \rightarrow C]$  - Output

## Function

When the input is ON, the double-word data of  $A+1 \cdot A$  is divided by the data of B, and the quotient is stored in C and the remainder in C+1. The data range of  $A+1 \cdot A$  is 0 to 4294967295, and the data range of B and C is 0 to 65535.

If the quotient is greater than 65535 (overflow), the limit value 65535 is stored in C, 0 is stored in C+1, and the instruction error flag (ERF = S051) is set to ON.

## **Execution condition**

| Input | Operation                     | Output | ERF |
|-------|-------------------------------|--------|-----|
| OFF   | No execution                  | OFF    | -   |
| ON    | Normal execution $(B \neq 0)$ | ON     | _   |
|       | Overflow $(B \neq 0)$         | ON     | Set |
|       | No execution $(B = 0)$        | OFF    | Set |

## Operand

|   |          |   |   |    |      |    |    |              |              |              | /  |     |              |   |   |   |   |          |       |
|---|----------|---|---|----|------|----|----|--------------|--------------|--------------|----|-----|--------------|---|---|---|---|----------|-------|
|   | Name     |   |   | De | vice |    |    |              |              |              | ·  | Reg | ister        |   |   |   |   | Constant | Index |
|   |          | Х | Υ | R  | S    | Τ. | C. | XW           | ΥW           | RW           | SW | Т   | С            | D | - | J | Κ |          |       |
| Α | Dividend |   |   |    |      |    |    | V            | $\checkmark$ | $\checkmark$ |    |     | $\checkmark$ |   |   |   |   |          |       |
| В | Divisor  |   |   |    |      |    |    | $\checkmark$ | $\checkmark$ |              |    |     |              |   |   |   |   |          |       |
| С | Quotient |   |   |    |      |    |    |              | `√           | $\checkmark$ |    |     |              |   |   |   |   |          |       |

## Example

| R0010 |   |        | R0014 |
|-------|---|--------|-------|
| 1     | → | D10007 | ( )   |
|       |   | 1000]  |       |

When R010 is ON, the double-word data of D0201.D0200 is divided by the constant data 4000, and the quotient is stored in D1000 and the remainder is stored in D1001.

If the data of D0201-D0200 is 332257, the quotient 83 is stored in D1000 and the remainder 257 is stored in D1001.



## Note

If divisor (operand *B*) is 0, ERF (instruction error flag = S051) is set to ON. The ERF (S051) can be reset to OFF by user program, e.g. -[ RST S051 ]-.

This instruction handles the register data as unsigned integer.

| FUN 043 | +1 | Increment |
|---------|----|-----------|
|---------|----|-----------|

## Expression

Input -[+1 A]- Output

## Function

When the input is ON, the data of A is increased by 1 and stored in A.

## **Execution condition**

| Input | Operation    | Output |  |
|-------|--------------|--------|--|
| OFF   | No execution | OFF    |  |
| ON    | Execution    | ON     |  |
|       |              |        |  |

6F3B0250

## Operand

|   | Name           |   |   | De | vice |    |    |    |    |              |              | Reg | ister |   |   |   |   | Constant | Index |
|---|----------------|---|---|----|------|----|----|----|----|--------------|--------------|-----|-------|---|---|---|---|----------|-------|
|   |                | Х | Y | R  | S    | Τ. | С. | XW | YW | RW           | SW           | Ч   | С     | D | Ι | J | Κ |          |       |
| Α | Operation data |   |   |    |      |    |    |    |    | $\checkmark$ | $\checkmark$ | N   |       |   |   |   |   |          |       |

## Example

X0004 { +1 D0050} ╢╟

At the rising edge of X004 changes from OFF to ON, the data of D0050 is increased by 1 and stored in D0050.

If the data of D0050 is 750 before the execution, it will be 751 after the execution.



## Note

• There is no limit value for this instruction. When the data of operand A is 32767 before the execution, it will be -32768 after the execution.

T1/T1S User's Manual

|                                                                                                          | 7. Instructions |
|----------------------------------------------------------------------------------------------------------|-----------------|
| FUN 045 –1 Decrement                                                                                     |                 |
| Expression                                                                                               | . 6             |
| <b>Function</b><br>When the input is ON, the data of <i>A</i> is decreased by 1 and stored in <i>A</i> . | 2               |

6F3B0250

## **Execution condition**

| Input | Operation    | Output |
|-------|--------------|--------|
| OFF   | No execution | OFF    |
| ON    | Execution    | ON     |
|       |              |        |

## Operand

| _ |                |   |   |     |      |    |    |    |          |    | -      |           |        |              |              |              |              |  |              |
|---|----------------|---|---|-----|------|----|----|----|----------|----|--------|-----------|--------|--------------|--------------|--------------|--------------|--|--------------|
|   | Name           |   |   | Dev | vice |    |    |    | Register |    |        |           |        |              |              |              |              |  | Index        |
|   |                | Х | Υ | R   | S    | Τ. | C. | XW | YW       | RW | SW     | Ч         | с<br>С | D            | —            | L            | Κ            |  |              |
| Α | Operation data |   |   |     |      |    |    |    |          |    | $\sim$ | $\lambda$ |        | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ |

## Example

X0005 -|↑|----[ -**1 D0050**]

At the rising edge of X005 changes from OFF to ON, the data of D0050 is decreased by 1 and stored in D0050.

If the data of D0050 is 1022 before the execution, it will be 1021 after the execution.



## Note

• There is no limit value for this instruction. When the data of operand A is -32768 before the execution, it will be 32767 after the execution.

M

|  | FUN 048 | AND | AND |
|--|---------|-----|-----|
|--|---------|-----|-----|

## Expression

Input –[ A AND  $B \rightarrow C$  ]– Output

## Function

When the input is ON, this instruction finds logical AND of A and B, and stores the result in C.

6F3B0250

## **Execution condition**

| Input | Operation    | Output |  |
|-------|--------------|--------|--|
| OFF   | No execution | OFF    |  |
| ON    | Execution    | ON     |  |
|       |              |        |  |

## Operand

|   | Name   |   |   | Dev | vice |    |    |    |              |              |              | Constant     | Index |   |   |   |   |  |              |
|---|--------|---|---|-----|------|----|----|----|--------------|--------------|--------------|--------------|-------|---|---|---|---|--|--------------|
|   |        | Х | Y | R   | S    | Τ. | C. | XW | YW           | RW           | SW           | Ч            | C     | D | Ι | J | Κ |  |              |
| Α | Source |   |   |     |      |    |    |    |              |              | $\checkmark$ | Ż            |       |   |   |   |   |  | $\checkmark$ |
| В | Source |   |   |     |      |    |    |    |              | $\checkmark$ | $\checkmark$ | $\checkmark$ |       |   |   |   |   |  | $\checkmark$ |
| С | AND    |   |   |     |      |    |    |    | $\checkmark$ | N            | ~            |              |       |   |   |   |   |  |              |

## Example

| AND  | UFFQQ | 5 DBG207 |  |
|------|-------|----------|--|
| עווח | nrroo |          |  |

When R012 is ON, logical AND operation is executed for the data of RW12 and the constant data HFF00, and the result is stored in D0030.

If the data of RW12 is H3456, the result H3400 is stored in D0030.



6F3B0250

Input  $-[A \text{ OR } B \rightarrow C]$  - Output

## Function

When the input is ON, this instruction finds logical OR of A and B, and stores the result in C.

## **Execution condition**

| Input | Operation    | Output |
|-------|--------------|--------|
| OFF   | No execution | OFF    |
| ON    | Execution    | ON     |
|       |              |        |

## Operand

|   | Name   |   | Device |   |   |    |    |    |              | Register     |              |              |   |   |   |   |   | Constant | Index |
|---|--------|---|--------|---|---|----|----|----|--------------|--------------|--------------|--------------|---|---|---|---|---|----------|-------|
|   |        | Х | Υ      | R | S | Τ. | C. | XW | YW           | RW           | SW           | H            | C | D | Ι | J | Κ |          |       |
| Α | Source |   |        |   |   |    |    |    |              |              | $\checkmark$ | N            |   |   |   |   |   |          |       |
| В | source |   |        |   |   |    |    |    |              | $\checkmark$ | $\checkmark$ | $\checkmark$ |   |   |   |   |   |          |       |
| С | OR     |   |        |   |   |    |    |    | $\checkmark$ |              | 1            |              |   |   |   |   |   |          |       |

## Example

| R0012    |    |       |          |  |
|----------|----|-------|----------|--|
| 1 [RW013 | OR | RW020 | → D0031] |  |
|          |    |       |          |  |

When R012 is ON, logical OR operation is executed for the data of RW13 and RW20, and the result is stored in D0031.

If the data of RW13 is H5678 and RW20 is H4321, the result H5779 is stored in D0031.



| FUN 052 | EOR | Exclusive OR |
|---------|-----|--------------|
|---------|-----|--------------|

## Expression

Input –[ A EOR  $B \rightarrow C$  ]– Output

## Function

When the input is ON, this instruction finds exclusive OR of A and B, and stores the result in C.

6F3B0250

## **Execution condition**

| Input | Operation    | Output |  |
|-------|--------------|--------|--|
| OFF   | No execution | OFF    |  |
| ON    | Execution    | ON     |  |
|       |              |        |  |

## Operand

|   | Name         |   |   | De | vice |    |    |    |              |              |              | Reg               | ister |   |   |   |   | Constant | Index        |
|---|--------------|---|---|----|------|----|----|----|--------------|--------------|--------------|-------------------|-------|---|---|---|---|----------|--------------|
|   |              | Х | Υ | R  | S    | Τ. | C. | XW | YW           | RW           | SW           | Ч                 | C     | D | Ι | J | Κ |          |              |
| Α | Source       |   |   |    |      |    |    |    |              |              | V            | N                 |       |   |   |   |   |          |              |
| В | source       |   |   |    |      |    |    |    |              | $\checkmark$ | $\checkmark$ | $\neg \downarrow$ |       |   |   |   |   |          | $\checkmark$ |
| С | Exclusive OR |   |   |    |      |    |    |    | $\checkmark$ | 1            | 7            |                   |       |   |   |   |   |          |              |

## Example

| FOD | 10200 | htggg |  |
|-----|-------|-------|--|
| LON | 00200 |       |  |

When R012 is ON, exclusive OR operation is executed for the data of D1000 and D0300, and the result is stored in D1000.

If the data of D1000 is H5678 and D0300 is H4321, the result H1559 is stored in D1000.



T1S on

| FUN 056 | MAVE | Moving average |
|---------|------|----------------|
|---------|------|----------------|

## Expression

Input –[ A MAVE (n)  $B \rightarrow C$  ]– Output

## Function

When the input is ON, this instruction calculates the average value of the latest *n* scan's register *A* data, and stores it in *C*. The allowable range of *n* is 1 to 64.

This instruction is useful for filtering the analog input signal.

The latest *n* scan's data of *A* are stored in *n* registers starting with *B*, and *C+1* are used as pointer.

## **Execution condition**

| Input | Operation    | Output |
|-------|--------------|--------|
| OFF   | No execution | OFF    |
| ON    | Execution    | ON     |

#### Operand

| Index | Constant     | Register |   |   |   |   |   |              |            |              |              | vice | Dev |   | Name |   |   |                               |        |
|-------|--------------|----------|---|---|---|---|---|--------------|------------|--------------|--------------|------|-----|---|------|---|---|-------------------------------|--------|
|       |              | Κ        | J | Ι | D | С | Т | SW           | RW         | YW           | XW           | C.   | Τ.  | S | R    | Υ | Х |                               |        |
|       | $\checkmark$ |          |   |   |   |   |   | $\checkmark$ |            | $\checkmark$ | $\checkmark$ |      |     |   |      |   |   | Input data                    | Α      |
|       | 1 - 64       |          |   |   |   |   |   | 1            |            |              |              |      |     |   |      |   |   | Data size                     | n      |
|       |              |          |   |   |   |   |   |              |            | $\checkmark$ |              |      |     |   |      |   |   | Start of table                | В      |
|       |              |          |   |   |   |   |   |              |            | $\checkmark$ | 7            |      |     |   |      |   |   | Output data                   | С      |
| -     |              |          |   |   |   |   |   | $\sqrt{1}$   | $\sqrt{1}$ | $\sqrt{}$    |              |      |     |   |      |   |   | Start of table<br>Output data | B<br>C |

## Example

2

| 1-LXW004 | MAVE (05) | D0900 → D0010 |
|----------|-----------|---------------|
|          |           |               |

The latest 5 scan's data of XW04 is stored in D0900 to D0904 (5 registers), and the average value of them is calculated and stored in D0010.

D0011 is used as internal work data.

|          | XW04 | D0010 |                                          |
|----------|------|-------|------------------------------------------|
| 1st scan | 1000 | 200   | = (1000) / 5                             |
| 2nd scan | 1005 | 401   | = (1000 + 1005) / 5                      |
| 3rd scan | 1009 | 603   | = (1000 + 1005 + 1009) / 5               |
| 4th scan | 1012 | 805   | = (1000 + 1005 + 1009 + 1012) / 5        |
| 5th scan | 1007 | 1006  | = (1000 + 1005 + 1009 + 1012 + 1007) / 5 |
| 6th scan | 1004 | 1007  | = (1005 + 1009 + 1012 + 1007 + 1004) / 5 |
| 7th scan | 998  | 1006  | = (1009 + 1012 + 1007 + 1004 + 998) / 5  |
| 8th scan | 994  | 1003  | = (1012 + 1007 + 1004 + 998 + 994) / 5   |
|          |      |       |                                          |

| FUN 061 | DFL | Digital Filter |
|---------|-----|----------------|
|         |     |                |

## Expression

Input –[ A DFL  $B \rightarrow C$  ]– Output

## Function

When the input is ON, this instruction calculates the following formula to perform digital filtering for input data *A* by filter constant by *B*, and stores the result in *C*.

6F3B0250

T1S on

$$y_n = (1 - FL) \times x_n + FL \times y_{n-1}$$

Here;  $x_n$  is input data specified by A

FL is filter constant, 1/10000 of data specified by B (data range: 0 to 9999)

 $y_n$  is output data to be stored in C

yn-1 is output data at last scan

This instruction is useful for filtering the analog input signal. C+1 is used for internal work data.

## **Execution condition**

| Input | Operation                                               | Output |
|-------|---------------------------------------------------------|--------|
| OFF   | No execution                                            | OFF    |
| ON    | Execution (FL is limited within the range of 0 to 9999) | • ON   |

## Operand

|   | Name            | Device |   |   |   |    |    |              |              | Constant | Index        |   |   |   |   |   |   |  |  |
|---|-----------------|--------|---|---|---|----|----|--------------|--------------|----------|--------------|---|---|---|---|---|---|--|--|
|   |                 | Х      | Υ | R | S | Τ. | C. | XW           | YW           | RW       | SW           | Т | С | D | Ι | J | Κ |  |  |
| Α | Input data      |        |   |   |   |    |    | $\checkmark$ | $\checkmark$ |          |              |   |   |   |   |   |   |  |  |
| В | Filter constant |        |   |   |   |    |    | V            |              |          |              |   |   |   |   |   |   |  |  |
| С | Output data     |        |   |   |   |    |    |              |              |          | $\checkmark$ |   |   |   |   |   |   |  |  |

## Example

1-[XW004 DFL D0100 - D0110]

The filtered data of XW04 is stored in D0110. (D0111 is used for internal work data)


T1S or

### FUN 062 HTOA Hex to ASCII conversion

### Expression

Input –[ A HTOA (n) B ]– Output

### Function

When the input is ON, the hexadecimal data of n registers starting with A is converted into ASCII characters and stored in B and after. The uppermost digit of source A is stored in lower byte of destination B, and followed in this order. The allowable range of n is 1 to 32.

### **Execution condition**

| Input | Operation    | Output |
|-------|--------------|--------|
| OFF   | No execution | OFF    |
| ON    | Execution    | ON     |
|       |              |        |

### Operand

|   | Name        |   | Device |   |   |    |    | Register |              |              |    |   |   |   |   |   | Constant | Index  |  |
|---|-------------|---|--------|---|---|----|----|----------|--------------|--------------|----|---|---|---|---|---|----------|--------|--|
|   |             | Х | Υ      | R | S | Τ. | C. | XW       | YW           | RW           | SW | ۲ | С | D | Ι | J | Κ        |        |  |
| Α | Source      |   |        |   |   |    |    |          | $\checkmark$ |              | V  |   |   |   |   |   |          |        |  |
| n | Data size   |   |        |   |   |    |    |          |              |              |    |   |   |   |   |   |          | 1 - 32 |  |
| В | Destination |   |        |   |   |    |    |          | V            | $\checkmark$ |    |   |   |   |   |   |          |        |  |

### Example

RØØ10 HTOA (04) D0220 -[D0100

When R010 is ON, 4 words data of D0100 to D0103 are converted into ASCII characters, and stored in 8 words registers starting with D0200.

|       | F 0   |           |       | F 8       | 7 0       |
|-------|-------|-----------|-------|-----------|-----------|
| D0100 | H0123 |           | D0220 | "1" (H31) | "0" (H30) |
| D0101 | H4567 | Converted | D0221 | "3" (H33) | "2" (H32) |
| D0102 | H89AB | >         | D0222 | "5" (H35) | "4" (H34) |
| D0103 | HCDEF |           | D0223 | "7" (H37) | "6" (H36) |
|       |       |           | D0224 | "9" (H39) | "8" (H38) |
| •     |       |           | D0225 | "B" (H42) | "A" (H41) |
|       |       |           | D0226 | "D" (H44) | "C" (H43) |
|       |       |           | D0227 | "F" (H46) | "E" (H45) |

### Note

• If index register (I, J or K) is used for the operand A, only n = 1 is allowed. Otherwise, boundary error will occur.

### FUN 063ATOHASCII to Hex conversion

### Expression

Input -[ A ATOH (n) B ]- Output

### Function

When the input is ON, the ASCII characters stored in *n* registers starting with *A* is converted into hexadecimal data and stored in *B* and after. The lower byte of source *A* is stored as uppermost digit of destination *B*, and followed in this order. The allowable ASCII character in the source table is "0" (H30) to "9" (H39) and "A" (H41) to "F" (H46). The allowable range of *n* is 1 to 64.

### **Execution condition**

| Input | Operation                            | Output ERF |
|-------|--------------------------------------|------------|
| OFF   | No execution                         | OFF –      |
| ON    | Normal execution                     | ON –       |
|       | Conversion data error (no execution) | OFF Set    |
|       |                                      |            |

### Operand

|   | Name        |   | Device |   |   |    |    |              |              |              |    | Reg | ister |   |   |   |   | Constant     | Index |
|---|-------------|---|--------|---|---|----|----|--------------|--------------|--------------|----|-----|-------|---|---|---|---|--------------|-------|
|   |             | Х | Υ      | R | S | Τ. | C. | XW           | YW           | RW           | SW | Т   | С     | D | Ι | J | Κ |              |       |
| Α | Source      |   |        |   |   |    |    | $\checkmark$ | $\checkmark$ | $\checkmark$ | √  |     |       |   |   |   |   | $\checkmark$ |       |
| n | Data size   |   |        |   |   |    | -  |              |              |              |    |     |       |   |   |   |   | 1 - 64       |       |
| В | Destination |   |        |   |   |    |    |              | $\checkmark$ |              |    |     |       |   |   |   |   |              |       |

### Example

| •          |                  |       |
|------------|------------------|-------|
| RØØ11      |                  | R0022 |
| 1 - [D0300 | ATOH (08) RW040] | ()    |
|            |                  |       |

When R011 is ON, the ASCII characters stored in 8 words of D0300 to D0307 are converted into hexadecimal data, and stored in 4 words registers starting with RW040.

Converted

|       | F   | 8     | 7                  |
|-------|-----|-------|--------------------|
| D0300 | "1" | (H31) | " <b>0</b> " (H30) |
| D0301 | "3" | (H33) | "2" (H32)          |
| D0302 | "5" | (H35) | "4" (H34)          |
| D0303 | "7" | (H37) | "6" (H36)          |
| D0304 | "9" | (H39) | "8" (H38)          |
| D0305 | "B" | (H42) | "A" (H41)          |
| D0306 | "D" | (H44) | "C" (H43)          |
| D0307 | "F" | (H46) | "E" (H45)          |
|       |     |       |                    |

| F     |
|-------|
| H0123 |
| H4567 |
| H89AB |
| HCDEF |
|       |

6F3B0250

T1S on

### Note

- If index register (I, J or K) is used for the operand A, only n = 1 is allowed.
- If *n* is odd number, lower 2 digits of the last converted data will not be fixed, Use even for *n*.

| FUN 064   TEST   Bit t | test |
|------------------------|------|
|------------------------|------|

### Expression

Input –[ A TEST B ]– Output

### Function

When the input is ON, this instruction finds logical AND of *A* and *B*. Then if the result is not 0, sets the output to ON.

### **Execution condition**

| Input |              | Operation                | Output |           |
|-------|--------------|--------------------------|--------|-----------|
| OFF   | No execution | n                        | OFF    |           |
| ON    | Execution    | When the result is not 0 | ÓN     | <b>()</b> |
|       |              | When the result is 0     | OFF    |           |

### Operand

|   | Name      | Device |   |   |   |    | Register |    |              |              |              |   |   |   |   | Constant | Index |  |              |
|---|-----------|--------|---|---|---|----|----------|----|--------------|--------------|--------------|---|---|---|---|----------|-------|--|--------------|
|   |           | Х      | Y | R | S | Τ. | C.       | XW | YW           | RW           | SW           | Ч | С | D | Ι | J        | Κ     |  |              |
| Α | Source    |        |   |   |   |    |          |    | $\checkmark$ | $\checkmark$ | N            |   |   |   |   |          |       |  | $\checkmark$ |
| В | Test data |        |   |   |   |    |          |    |              |              | $\checkmark$ |   |   |   |   |          |       |  | $\checkmark$ |

### Example



Logical AND operation is executed for the data of RW07 and the constant data H0FFF, and if the result is not 0, R00A is turned ON. (R00A is turned ON when any device from R070 to R07B is ON.)

If the data of RW07 is H4008, R00A is turned ON.



| FUN 068 | SHR1 | 1 bit shift right |
|---------|------|-------------------|
|---------|------|-------------------|

### Expression

Input –[ SHR1 A ]– Output

### Function

When the input is ON, the data of register A is shifted 1 bit to the right (LSB direction). 0 is stored in the left most bit (MSB). The pushed out bit state is stored in the carry flag (CF = S050). After the operation, if the right most bit (LSB) is ON, the output is turned ON.

6F3B0250

### **Execution condition**

| Input |              | Operation      | Output | CF           |
|-------|--------------|----------------|--------|--------------|
| OFF   | No execution | n              | OFF    | 0-           |
| ON    | Execution    | When LSB = 1   | ON     | Set or reset |
|       |              | When LSB = $0$ | OFF    | Set or reset |

### Operand

|   | Name           |   |   | De | vice |    |    |    | Register |    |        |   |   |   |   |   |   | Constant | Index |
|---|----------------|---|---|----|------|----|----|----|----------|----|--------|---|---|---|---|---|---|----------|-------|
|   |                | Х | Υ | R  | S    | Τ. | C. | XW | YW       | RW | SW     | Т | С | D | Ι | J | Κ |          | ĺ     |
| Α | Operation data |   |   |    |      |    |    |    |          |    | $\sim$ |   |   |   |   |   |   |          |       |

### Example



When X007 is changed from OFF to ON, the data of RW15 is shifted 1 bit to the right.



| FUN 069 | SHL1 | 1 bit shift left |
|---------|------|------------------|
|---------|------|------------------|

### Expression

Input –[ SHL1 A ]– Output

### Function

When the input is ON, the data of register A is shifted 1 bit to the left (MSB direction). 0 is stored in the right most bit (LSB). The pushed out bit state is stored in the carry flag (CF = S050). After the operation, if the left most bit (MSB) is ON, the output is turned ON.

### **Execution condition**

| Input |              | Operation      | Output | CF           |
|-------|--------------|----------------|--------|--------------|
| OFF   | No execution | n              | OFF    | 0-           |
| ON    | Execution    | When MSB = 1   | ON     | Set or reset |
|       |              | When $MSB = 0$ | OFF    | Set or reset |

### Operand

|   | Name           |   |   | De | vice |    |    |    | Register |    |        |   |   |   |   |   |   |  | Index |
|---|----------------|---|---|----|------|----|----|----|----------|----|--------|---|---|---|---|---|---|--|-------|
|   |                | Х | Υ | R  | S    | Τ. | C. | XW | YW       | RW | SW     | Т | С | D | Ι | J | Κ |  |       |
| Α | Operation data |   |   |    |      |    |    |    |          |    | $\sim$ |   |   |   |   |   |   |  |       |

### Example



When X008 is changed from QFF to ON, the data of RW15 is shifted 1 bit to the left.



| FUN 070 | SHR | n bit shift right |
|---------|-----|-------------------|
|---------|-----|-------------------|

### Expression

Input  $-[A \text{ SHR } n \rightarrow B]$  - Output

### Function

When the input is ON, the data of register *A* is shifted *n* bits to the right (LSB direction) including the carry flag (CF = S050), and stored in *B*. 0 is stored in upper *n* bits. After the operation, if the right most bit (LSB) is ON, the output is turned ON.

6F3B0250

### **Execution condition**

| Input |              | Operation    | Output | CF           |
|-------|--------------|--------------|--------|--------------|
| OFF   | No execution | on           | OFF    | -            |
| ON    | Execution    | When LSB = 1 | ON     | Set or reset |
|       |              | When LSB = 0 | OFF    | Set or reset |

### Operand

|   | Name        |   |   | Dev | vice |    |    |    |              |    |        | Reg | ister |   |   |   |   | Constant     | Index        |
|---|-------------|---|---|-----|------|----|----|----|--------------|----|--------|-----|-------|---|---|---|---|--------------|--------------|
|   |             | Х | Υ | R   | S    | Τ. | C. | XW | YW           | RW | SW     | Т   | С     | D | Ι | J | Κ |              |              |
| Α | Source      |   |   |     |      |    |    |    |              |    | $\sim$ |     |       |   |   |   |   | $\checkmark$ |              |
| n | Shift bits  |   |   |     |      |    |    |    |              |    |        |     |       |   |   |   |   | 1 - 16       |              |
| В | Destination |   |   |     |      |    |    |    | $\checkmark$ |    |        |     |       |   |   |   |   |              | $\checkmark$ |

### Example

| X0007 |    |   |                | R000: | 1 |
|-------|----|---|----------------|-------|---|
| 1 1   |    | ~ | <b>RU020</b> 7 | (``   |   |
|       | 11 | 7 | NMOCO_         | ()    |   |

When X007 is changed from OFF to ON, the data of RW18 is shifted 5 bits to the right and the result is stored in RW20.



| FUN 071 | SHL | n bit shift left |
|---------|-----|------------------|
|---------|-----|------------------|

### Expression

Input –[ A SHL  $n \rightarrow B$  ]– Output

### Function

When the input is ON, the data of register *A* is shifted *n* bits to the left (MSB direction) including the carry flag (CF = S050), and stored in *B*. 0 is stored in lower *n* bits. After the operation, if the left most bit (MSB) is ON, the output is turned ON.

### **Execution condition**

| Input |             | Operation    | Output | CF           |
|-------|-------------|--------------|--------|--------------|
| OFF   | No executio | on           | OFF    | <b>—</b>     |
| ON    | Execution   | When MSB = 1 | ON     | Set or reset |
|       |             | When MSB = 0 | OFF    | Set or reset |

### Operand

|   | Name        |   |   | Dev | vice |    |    |              |        |    |        | Reg | ister |   |   |   |   | Constant | Index |
|---|-------------|---|---|-----|------|----|----|--------------|--------|----|--------|-----|-------|---|---|---|---|----------|-------|
|   |             | Х | Υ | R   | S    | Τ. | C. | XW           | YW     | RW | SW     | Т   | С     | D | Ι | J | Κ |          |       |
| Α | Source      |   |   |     |      |    |    | $\checkmark$ |        |    | $\sim$ |     |       |   |   |   |   |          |       |
| n | Shift bits  |   |   |     |      |    |    |              |        |    | /      |     |       |   |   |   |   | 1 - 16   |       |
| В | Destination |   |   |     |      |    |    |              | $\sim$ |    |        |     |       |   |   |   |   |          |       |

### Example

| X0008 |            |       |                | R0002 |   |
|-------|------------|-------|----------------|-------|---|
| 1     |            | CU 03 | <b>RU020</b> 7 | ()()  | 1 |
|       | JIL TUMOIO |       | N#020]         |       | ] |

When X008 is changed from OFF to ON, the data of RW18 is shifted 3 bits to the left and the result is stored in RW20.



| FUN 074 | SR | Shift register |
|---------|----|----------------|
|---------|----|----------------|

### Expression

| Data input   | –∫d SR          | Q – Output |
|--------------|-----------------|------------|
| Shift input  | -s ( <i>n</i> ) |            |
| Enable input | –LE             | A          |

### Function

While the enable input is ON, this instruction shifts the data of the bit table, size *n* starting with *A*, 1 bit to the left (upper address direction) when the shift input is ON. The state of the data input is stored in *A*. The pushed out bit state is stored in the carry flag (CF = S050). When the enable input is OFF, all bits in the table and the carry flag are reset to OFF.

6F3B0250

### Execution condition

| LACCULI |                                  |                 |          |              |
|---------|----------------------------------|-----------------|----------|--------------|
| Enable  | Operation                        | Output          | CF       |              |
| input   |                                  |                 |          |              |
| OFF     | Resets all bits in the bit table |                 | OFF      | Reset        |
| ON      | When the shift input is ON       | Shift execution | Last bit | Set or reset |
|         | When the shift input is OFF      | No execution    | state    | _            |
|         |                                  |                 |          |              |

### Operand

|   | Name           |   |              | Dev | vice |    |    |    |    |    |    | Reg | ister |   |   |   |   | Constant | Index |
|---|----------------|---|--------------|-----|------|----|----|----|----|----|----|-----|-------|---|---|---|---|----------|-------|
|   |                | Х | Y            | R   | S    | Τ. | C. | XW | YW | RW | SW | Т   | С     | D | Ι | J | Κ |          |       |
| Α | Leading device |   | $\checkmark$ |     |      |    | (  |    |    |    |    |     |       |   |   |   |   |          |       |
| n | Device size    |   |              |     |      |    |    |    |    |    |    |     |       |   |   |   |   | 1 - 64   |       |

### Example



32 devices starting with R100 (R100 to R11F) is specified as a shift register.

When R010 is OFF, the data of the shift register is reset to 0. (R100 to R11F are reset to OFF) The carry flag (CF = S050) is also reset to OFF.

While R010 is ON, the data of the shift register is shifted 1 bit to the upper address direction when X009 is changed from OFF to ON. At the same time, the state of X008 is stored in the leading bit (R100).

The output (R011) indicates the state of the last bit (R11F).

T1/T1S User's Manual





### Note

- When the shift input is ON, the shift operation is performed every scan. Use a transitional contact for the shift input to detect the state changing.
- For the data input and the shift input, direct linking to a connecting point is not allowed. In this case, insert a dummy contact (always ON special device = S04F, etc.) just before the input.



### FUN 075 **Bi-directional shift register** DSR

### Expression

| Data input      | - □ DSR Q - Output |
|-----------------|--------------------|
| Shift input     | - s ( <i>n</i> )   |
| Enable input    | -E                 |
| Direction input | -[L A ]            |

### Function

While the enable input (E) is ON, this instruction shifts the data of the bit table, size *n* starting with *A*, 1 bit when the shift input (S) is ON. The shift direction is determined by the state of the direction input (L).

6F3B0250

When L is OFF, the direction is right (lower address direction).

When L is ON, the direction is left (upper address direction).

The state of the data input (D) is stored in the highest bit if right shift, and stored in the lowest bit A if left shift. The pushed out bit state is stored in the carry flag (CF = S050).

When the enable input (E) is OFF, all bits in the table and the carry flag are reset to OFF.

### **Execution condition**

| -//0 |      |            |                 |                       |                   |              |
|------|------|------------|-----------------|-----------------------|-------------------|--------------|
| Ena  | able |            | C               | peration              | Output            | CF           |
| in   | put  |            |                 |                       |                   |              |
| 0    | FF   | Resets all | bits in the bit | table                 | OFF               | Reset        |
| C    | N    | S = ON     | L = ON          | Shift left execution  | Highest bit state | Set or reset |
|      |      |            | L = OFF         | Shift right execution | Lowest bit state  | Set or reset |
|      |      | S = OFF    | No executio     | n                     | Highest bit state | _            |

-0

### Operand

|   | Name           |   | Device       |              |   |    |    | Register |    |    |    |   |   | Constant | Index |   |   |        |  |
|---|----------------|---|--------------|--------------|---|----|----|----------|----|----|----|---|---|----------|-------|---|---|--------|--|
|   |                | Х | Υ            | R            | S | ۲. | C. | XW       | YW | RW | SW | Т | С | D        | I     | J | Κ |        |  |
| Α | Leading device |   | $\checkmark$ | $\checkmark$ | 4 |    |    |          |    |    |    |   |   |          |       |   |   |        |  |
| n | Device size    |   |              | X            |   |    |    |          |    |    |    |   |   |          |       |   |   | 1 - 64 |  |

### Example



9 devices starting with R200 (R200 to R208) is specified as a shift register. When R010 is OFF, the data of the shift register is reset to 0. (R200 to R208 are reset to OFF) The carry flag (CF = S050) is also reset to OFF.

While R010 is ON the following operation is enabled.

- When X00A is ON (shift left), the data of the shift register is shifted 1 bit to the upper address direction when X009 is changed from OFF to ON. At the same time, the state of X008 is stored in the leading bit (R200). The output (R012) indicates the state of the highest bit (R208).
- When X00A is OFF (shift right), the data of the shift register is shifted 1 bit to the lower address direction when X009 is changed from OFF to ON. At the same time, the state of X008 is stored in the highest bit (R208). The output (R012) indicates the state of the lowest bit (R200).

The figure below shows an operation example.



### Note

- When the shift input is ON, the shift operation is performed every scan. Use a transitional contact for the shift input to detect the state changing.
- For the data input, the shift input and the enable input, direct linking to a connecting point is not allowed. In this case, insert a dummy contact (always ON special device = S04F, etc.) just before the input. Refer to Note of Shift register FUN 074.

| FUN 078 | RTR1 | 1 bit rotate right |
|---------|------|--------------------|
|---------|------|--------------------|

### Expression

Input –[ RTR1 A ]– Output

### Function

When the input is ON, the data of register A is rotated 1 bit to the right (LSB direction). The pushed out bit state is stored in the left most bit (MSB) and in the carry flag (CF = S050). After the operation, if the right most bit (LSB) is ON, the output is turned ON.

### **Execution condition**

| Input |             | Operation    | Output | CF           |
|-------|-------------|--------------|--------|--------------|
| OFF   | No executio | n            | OFF    | -            |
| ON    | Execution   | When LSB = 1 | ON     | Set or reset |
|       |             | When LSB = 0 | OFF    | Set or reset |

### Operand

|   | Name           |   | Device |   |   |    |    |    | Register |    |        |   |   |   |   | Constant | Index |  |  |
|---|----------------|---|--------|---|---|----|----|----|----------|----|--------|---|---|---|---|----------|-------|--|--|
|   |                | Х | Υ      | R | S | Τ. | C. | XW | YW       | RW | SW     | Т | С | D | Ι | J        | Κ     |  |  |
| Α | Operation data |   |        |   |   |    |    |    |          |    | $\sim$ |   |   |   |   |          |       |  |  |

### Example



When X007 is changed from OFF to ON, the data of RW15 is rotated 1 bit to the right.

The figure below shows an operation example.



T1/T1S User's Manual

6F3B0250

| FUN 079 | RTL1 | 1 bit rotate left |
|---------|------|-------------------|
|---------|------|-------------------|

### Expression

Input –[ RTL1 *A* ]– Output

### **Function**

When the input is ON, the data of register A is rotated 1 bit to the left (MSB direction). The pushed out bit state is stored in the right most bit (LSB) and in the carry flag (CF = S050). After the operation, if the left most bit (MSB) is ON, the output is turned ON.

### **Execution condition**

| Input |              | Operation      | Output | CF           |
|-------|--------------|----------------|--------|--------------|
| OFF   | No execution | on             | OFF    | <b>—</b>     |
| ON    | Execution    | When MSB = 1   | ON     | Set or reset |
|       |              | When $MSB = 0$ | OFF    | Set or reset |

### Operand

|   | Name           |   |   | De | vice |    |    |    |    |    |        | Reg | ister |   |   |   |   | Constant | Index |
|---|----------------|---|---|----|------|----|----|----|----|----|--------|-----|-------|---|---|---|---|----------|-------|
|   |                | Х | Υ | R  | S    | Τ. | C. | XW | YW | RW | SW     | Т   | С     | D | Ι | J | Κ |          | ĺ     |
| Α | Operation data |   |   |    |      |    |    |    |    |    | $\sim$ |     |       |   |   |   |   |          |       |

### Example



When X008 is changed from QFF to ON, the data of RW15 is rotated 1 bit to the left.



| FUN 080 | RTR | n bit rotate right |
|---------|-----|--------------------|
|---------|-----|--------------------|

### Expression

Input –[ A RTR  $n \rightarrow B$  ]– Output

### Function

When the input is ON, the data of register *A* is rotated *n* bits to the right (LSB direction), and stored in *B*. After the operation, if the right most bit (LSB) is ON, the output is turned ON.

6F3B0250

### **Execution condition**

| Input |              | Operation      | Output CF        |
|-------|--------------|----------------|------------------|
| OFF   | No execution | n              | OFF _            |
| ON    | Execution    | When LSB = 1   | ON Set or reset  |
|       |              | When $LSB = 0$ | OFF Set or reset |

### Operand

|   | Name        |   |   | Dev | vice |    |    |    |              |              |    | Reg | ister |   |   |   |   | Constant | Index        |
|---|-------------|---|---|-----|------|----|----|----|--------------|--------------|----|-----|-------|---|---|---|---|----------|--------------|
|   |             | Х | Υ | R   | S    | Τ. | C. | XW | YW           | RW           | SW | Г   | С     | D | Ι | J | Κ |          |              |
| Α | Source      |   |   |     |      |    |    |    | $\checkmark$ |              | V  |     |       |   |   |   |   |          | $\checkmark$ |
| n | Shift bits  |   |   |     |      |    |    |    |              |              |    |     |       |   |   |   |   | 1 - 16   |              |
| В | Destination |   |   |     |      |    |    |    | $\sim$       | $\checkmark$ |    |     |       |   |   |   |   |          |              |

### Example

| X0007        |            |        | R0001 |
|--------------|------------|--------|-------|
| 1   ↑  [R₩01 | B RTR Ø5 → | RW020] | ()()  |
|              |            |        |       |

When X007 is changed from OFF to ON, the data of RW18 is rotated 5 bits to the right and the result is stored in RW20.



| FUN 081 | RTL | n bit rotate left |
|---------|-----|-------------------|
|---------|-----|-------------------|

### Expression

Input  $-[A \text{ RTL } n \rightarrow B]$  - Output

### Function

When the input is ON, the data of register *A* is rotated *n* bits to the left (MSB direction), and stored in *B*. After the operation, if the left most bit (MSB) is ON, the output is turned ON.

### **Execution condition**

| Input |              | Operation    | Output CF        |
|-------|--------------|--------------|------------------|
| OFF   | No execution | n            | OFF _            |
| ON    | Execution    | When MSB = 1 | ON Set or reset  |
|       |              | When MSB = 0 | OFF Set or reset |

### Operand

|   | Name        |   |   | Dev | vice |    |    |    |                         |              |    | Reg | ister |   |   |   |   | Constant | Index |
|---|-------------|---|---|-----|------|----|----|----|-------------------------|--------------|----|-----|-------|---|---|---|---|----------|-------|
|   |             | Х | Υ | R   | S    | Τ. | C. | XW | YW                      | RW           | SW | Ч   | С     | D | Ι | J | Κ |          |       |
| Α | Source      |   |   |     |      |    |    |    | $\checkmark$            | $\checkmark$ | V  |     |       |   |   |   |   |          |       |
| n | Shift bits  |   |   |     |      |    |    |    |                         |              |    |     |       |   |   |   |   | 1 - 16   |       |
| В | Destination |   |   |     |      |    |    |    | $\overline{\mathbf{v}}$ | $\checkmark$ |    |     |       |   |   |   |   |          |       |

### Example

| X0008          |          |        | R0002 |
|----------------|----------|--------|-------|
| 1   ↑   [RW018 | RTL Ø3 → | RW020] | ()    |
|                |          |        |       |

When X008 is changed from OFF to ON, the data of RW18 is rotated 3 bits to the left and the result is stored in RW20.



### Expression

Input –[ A MPX (n)  $B \rightarrow C$  ]– Output

### Function

When the input is ON, the data of the register which is designated by *B* in the table, size *n* starting with *A*, is transferred to *C*.

6F3B0250

### **Execution condition**

| Input | Operation                   | Output |
|-------|-----------------------------|--------|
| OFF   | No execution                | OFF    |
| ON    | Normal execution            | OFF    |
|       | Pointer over (no execution) | ON     |

### Operand

| _ |                |   |   |   |   |    |    |    |              |              |    |     |              |              |   |   |   |          |       |
|---|----------------|---|---|---|---|----|----|----|--------------|--------------|----|-----|--------------|--------------|---|---|---|----------|-------|
|   | Name           |   |   |   |   |    |    |    |              |              |    | Reg | ister        |              |   |   |   | Constant | Index |
|   |                | Х | Y | R | S | Τ. | C. | XW | YW           | RW           | SW | Ч   | С            | D            | Ι | J | Κ |          |       |
| Α | Start of table |   |   |   |   |    |    |    | $\checkmark$ | $\checkmark$ | X  |     | $\checkmark$ | $\checkmark$ |   |   |   |          |       |
| n | Table size     |   |   |   |   |    |    |    |              |              |    |     |              |              |   |   |   | 1 - 64   |       |
| В | Pointer        |   |   |   |   |    |    | V  | $\mathbf{v}$ | $\checkmark$ |    |     | $\checkmark$ |              |   |   |   | 0 - 63   |       |
| С | Destination    |   |   |   |   |    | -  | K  | $\sim$       |              |    |     |              |              |   |   |   |          |       |

### Example

| R0010      |     | 0            |        | R0012 |
|------------|-----|--------------|--------|-------|
| 1   [D0500 | MPX | (10) RW030 → | D0005] |       |

When R010 is ON, the register data which is designated by RW30 is read from the table D0500 to D0509 (10 registers size), and stored in D0005.

If the data of RW30 is 7, D0507 data is transferred to D0005.



### Note

- If the pointer data designates outside the table (10 or more in the above example), the transfer is not executed and the output comes ON.
  - The table must be within the effective range of the register address.

| FUN 091 | DPX | Demultiplexer |
|---------|-----|---------------|
|---------|-----|---------------|

### Expression

Input –[ A DPX (n)  $B \rightarrow C$  ]– Output

### Function

When the input is ON, the data of *A* is transferred to the register which is designated by *B* in the table, size *n* starting with *C*.

### **Execution condition**

| Input | Operation                   | Output |
|-------|-----------------------------|--------|
| OFF   | No execution                | OFF    |
| ON    | Normal execution            | OFF    |
|       | Pointer over (no execution) | ON     |

### Operand

|   | Name           |   |   |   |   |    |    |    |              |              |    | Reg | ister |   |   |   |   | Constant | Index |
|---|----------------|---|---|---|---|----|----|----|--------------|--------------|----|-----|-------|---|---|---|---|----------|-------|
|   |                | Х | Υ | R | S | Τ. | C. | XW | YW           | RW           | SW | Ч   | С     | D | Ι | J | Κ |          |       |
| Α | Source         |   |   |   |   |    |    |    | $\checkmark$ | $\checkmark$ | X  |     |       |   |   |   |   |          |       |
| n | Table size     |   |   |   |   |    |    |    |              |              |    |     |       |   |   |   |   | 1 - 64   |       |
| В | Pointer        |   |   |   |   |    |    | V  | V            | $\checkmark$ |    |     |       |   |   |   |   | 0 - 63   |       |
| С | Start of table |   |   |   |   |    | -  | K  | $\sim$       |              |    |     |       |   |   |   |   |          |       |

### Example

| R0011    |     |              |        | R0013 |
|----------|-----|--------------|--------|-------|
| 1 [XW004 | DPX | (10) RW030 → | D0500] | ()    |

When R011 is ON, the data of XW04 is transferred to the register which is designated by RW30 in the table D0500 to D0509 (10 registers size).

If the data of RW30 is 8, XW04 data is transferred to D0508.



### Note

- If the pointer data designates outside the table (10 or more in the above example), the transfer is not executed and the output comes ON.
  - The table must be within the effective range of the register address.

| FUN 096 | > | Greater than |  |  |
|---------|---|--------------|--|--|
|---------|---|--------------|--|--|

6F3B0250

### Expression

Input -[A > B] - Output

### Function

When the input is ON, the data of *A* and the data of *B* are compared, and if *A* is greater than *B*, the output is turned ON.

### **Execution condition**

| Input |              | Operation  | Output |                       |
|-------|--------------|------------|--------|-----------------------|
| OFF   | No execution |            | OFF    |                       |
| ON    | Execution    | A > B      | ON     | <b>U</b> <sup>r</sup> |
|       |              | $A \leq B$ | OFF    |                       |

### Operand

|   | Name           |   |   | Dev | vice |    |    |              |              |              |    | Reg | ister |   |   |   |   | Constant | Index        |
|---|----------------|---|---|-----|------|----|----|--------------|--------------|--------------|----|-----|-------|---|---|---|---|----------|--------------|
|   |                | Х | Υ | R   | S    | Τ. | C. | XW           | YW           | RW           | SW | Т   | С     | D | Ι | J | Κ |          |              |
| Α | Compared       |   |   |     |      |    |    | $\checkmark$ | $\checkmark$ |              | 1  |     |       |   |   |   |   |          | $\checkmark$ |
|   | data           |   |   |     |      |    |    |              |              |              |    |     |       |   |   |   |   |          |              |
| В | Reference data |   |   |     |      |    |    | V            | $\checkmark$ | $\checkmark$ |    |     |       |   |   |   |   |          |              |

### Example

R000C R0020 025007 FDØ125 >

When R00C is ON, the data of D0125 is compared with the constant data 2500, and if the data of D0125 is greater than 2500, R020 is turned ON.

If the data of D0125 is 3000, the comparison result is true. Consequently, R020 is turned ON.

| D0125     | 3000         | Þ      | Constant 2500            | >                    | R020 is ON                |    |
|-----------|--------------|--------|--------------------------|----------------------|---------------------------|----|
| If the da | ata of D0125 | is -10 | 0, the comparison result | t is false. Conseque | ently, R020 is turned OFF | ۶. |
| D0125     | -100         | $\leq$ | Constant 2500            | >                    | R020 is OFF               |    |

### Note

6

• This instruction deals with the data as signed integer (-32768 to 32767).

6F3B0250

### Expression

Input  $-[A \ge B]$  Output

### Function

When the input is ON, the data of *A* and the data of *B* are compared, and if *A* is greater than or equal to *B*, the output is turned ON.

### **Execution condition**

| Input |              | Operation | Output |   |
|-------|--------------|-----------|--------|---|
| OFF   | No execution |           | OFF    |   |
| ON    | Execution    | $A \ge B$ | ON     | U |
|       |              | A < B     | OFF    |   |

### Operand

|   | Name           |   |   | Dev | vice |    |    |    |              |              |    | Reg | ister |   |   |   |   | Constant     | Index |
|---|----------------|---|---|-----|------|----|----|----|--------------|--------------|----|-----|-------|---|---|---|---|--------------|-------|
|   |                | Х | Υ | R   | S    | Τ. | C. | XW | YW           | RW           | SW | Т   | С     | D | Ι | J | Κ |              |       |
| Α | Compared       |   |   |     |      |    |    |    | $\checkmark$ | N            | 7  |     |       |   |   |   |   | $\checkmark$ |       |
|   | data           |   |   |     |      |    |    |    |              |              |    |     |       |   |   |   |   |              |       |
| В | Reference data |   |   |     |      |    |    |    | $\checkmark$ | $\checkmark$ |    |     |       |   |   |   |   |              |       |

### Example

R000C R0020 D00207 FD2500 >=

When R00C is ON, the data of D0125 is compared with the data of D0020, and if the data of D0125 is greater than or equal to the data of D0020, R020 is turned ON.

If the data of D0125 is 3000 and that of D0020 is 3000, the comparison result is true. Consequently, R020 is turned ON.

| D0125 | 3000 ≥ | D0020 | 3000 | > | R020 is ON |
|-------|--------|-------|------|---|------------|
|-------|--------|-------|------|---|------------|

If the data of D0125 is -1500 and that of D0020 is 0, the comparison result is false. Consequently, R020 is turned OFF.



### Note

This instruction deals with the data as signed integer (-32768 to 32767).

| FUN 098 | = | Equal | $\mathbf{O}$ |
|---------|---|-------|--------------|
|         |   |       |              |

6F3B0250

### Expression

Input -[A = B] - Output

### Function

When the input is ON, the data of *A* and the data of *B* are compared, and if *A* is equal to *B*, the output is turned ON.

### **Execution condition**

| Input |              | Operation  | Output |   |
|-------|--------------|------------|--------|---|
| OFF   | No execution |            | OFF    |   |
| ON    | Execution    | A = B      | ON     | U |
|       |              | $A \neq B$ | OFF    |   |

### Operand

|   | Name           |   |   | Dev | vice |    |    |              |              |              |    | Reg |   | Constant | Index |   |   |  |              |
|---|----------------|---|---|-----|------|----|----|--------------|--------------|--------------|----|-----|---|----------|-------|---|---|--|--------------|
|   |                | Х | Υ | R   | S    | Τ. | C. | XW           | YW           | RW           | SW | Т   | С | D        | Ι     | J | Κ |  |              |
| Α | Compared       |   |   |     |      |    |    | $\checkmark$ | $\checkmark$ |              | 1  |     |   |          |       |   |   |  | $\checkmark$ |
|   | data           |   |   |     |      |    |    |              |              |              |    |     |   |          |       |   |   |  |              |
| В | Reference data |   |   |     |      |    |    | V            | $\checkmark$ | $\checkmark$ |    |     |   |          |       |   |   |  | $\checkmark$ |

### Example

R0020 R000C D00307 FD0125

When R00C is ON, the data of D0125 is compared with the data of D0030, and if the data of D0125 is equal to the data of D0030, R020 is turned ON.

If the data of D0125 is 3000 and that of D0020 is 3000, the comparison result is true. Consequently, R020 is turned ON.

| D0125 | 3000 = | D0030 | 3000 |  | R020 is ON |
|-------|--------|-------|------|--|------------|
|-------|--------|-------|------|--|------------|

If the data of D0125 is -1500 and that of D0020 is 0, the comparison result is false. Consequently, R020 is turned OFF.



### Note

This instruction deals with the data as signed integer (-32768 to 32767).

T1/T1S User's Manual

 $\square$ 

|                 |            |           | 7. Instructions |
|-----------------|------------|-----------|-----------------|
|                 |            |           |                 |
| FUN 099         | $\diamond$ | Not equal |                 |
| Expression      |            |           | •               |
| Input -[ A <> E | 3]– Output |           | S               |

6F3B0250

### Function

When the input is ON, the data of *A* and the data of *B* are compared, and if *A* is not equal to *B*, the output is turned ON.

### **Execution condition**

| Input |              | Operation  | Output |   |
|-------|--------------|------------|--------|---|
| OFF   | No execution |            | OFF    |   |
| ON    | Execution    | $A \neq B$ | ON     | U |
|       |              | A = B      | OFF    |   |

### Operand

|   | Name             |   |   | Dev | vice |    |    |    | Register     |              |    |              |   |   |   |   |   | Constant     | Index        |
|---|------------------|---|---|-----|------|----|----|----|--------------|--------------|----|--------------|---|---|---|---|---|--------------|--------------|
|   |                  | Х | Υ | R   | S    | Τ. | C. | XW | YW           | RW           | SW | Ч            | С | D | Ι | J | Κ |              |              |
| A | Compared<br>data |   |   |     |      |    |    |    | $\checkmark$ |              | *  | $\checkmark$ |   |   |   |   |   | $\checkmark$ | $\checkmark$ |
| В | Reference data   |   |   |     |      |    |    | V  | V            | $\checkmark$ |    |              |   |   |   |   |   | $\checkmark$ |              |

### Example

R0020 R000C 00000] FD0125  $\langle \rangle$ 

When R00C is ON, the data of D0125 is compared with the constant data 0, and if the data of D0125 is not 0, R020 is turned ON.

If the data of D0125 is 10, the comparison result is true. Consequently, R020 is turned ON.

| D0125     | 10             | ŧ        | Constant   | 0            |             | •       | R020 is ON       |     |
|-----------|----------------|----------|------------|--------------|-------------|---------|------------------|-----|
| lf the da | ta of D0125 i: | s 0, the | comparison | result is fa | lse. Conseq | uently, | R020 is turned O | FF. |
| D0125     | 0              | =        | Constant   | 0            |             | •       | R020 is OFF      |     |

### Note

This instruction deals with the data as signed integer (-32768 to 32767).
 Basic Hardwa

| FUN 100 < Less than |
|---------------------|
|---------------------|

6F3B0250

### Expression

Input -[A < B] - Output

### Function

When the input is ON, the data of A and the data of B are compared, and if A is less than B, the output is turned ON.

### **Execution condition**

| Input |              | Operation | Output |   |
|-------|--------------|-----------|--------|---|
| OFF   | No execution |           | OFF    |   |
| ON    | Execution    | A < B     | ON     | U |
|       |              | $A \ge B$ | OFF    |   |

### Operand

|   | Name           |   |   | Dev | vice |    |    |              |              |              |    | Reg |   | Constant | Index |   |   |  |              |
|---|----------------|---|---|-----|------|----|----|--------------|--------------|--------------|----|-----|---|----------|-------|---|---|--|--------------|
|   |                | Х | Υ | R   | S    | Τ. | C. | XW           | YW           | RW           | SW | Т   | С | D        | Ι     | J | Κ |  |              |
| Α | Compared       |   |   |     |      |    |    | $\checkmark$ | $\checkmark$ |              | 1  |     |   |          |       |   |   |  | $\checkmark$ |
|   | data           |   |   |     |      |    |    |              |              |              |    |     |   |          |       |   |   |  |              |
| В | Reference data |   |   |     |      |    |    | V            | $\checkmark$ | $\checkmark$ |    |     |   |          |       |   |   |  | $\checkmark$ |

### Example

| R000C    |          | R0020 |
|----------|----------|-------|
| 1 [D0125 | < D0040] | ()    |
|          |          |       |

When R00C is ON, the data of D0125 is compared with the data of D0040, and if the data of D0125 is less than the data of D0040, R020 is turned ON.

If the data of D0125 is 10 and that of D0040 is 15, the comparison result is true. Consequently, R020 is turned ON.

D0125 D0040 15 R020 is ON

If the data of D0125 is 0 and that of D0040 is -50, the comparison result is false. Consequently, R020 is turned OFF.

D0125 0 ≥ D0040 0 → R020 is OFF

### Note

This instruction deals with the data as signed integer (-32768 to 32767).

T1/T1S User's Manual

|--|

### Expression

Input  $-[A \iff B]$  - Output

### Function

When the input is ON, the data of *A* and the data of *B* are compared, and if *A* is less than or equal to *B*, the output is turned ON.

### **Execution condition**

| Input |              | Operation  | Output |   |
|-------|--------------|------------|--------|---|
| OFF   | No execution |            | OFF    |   |
| ON    | Execution    | $A \leq B$ | ON     | U |
|       |              | A > B      | OFF    |   |

### Operand

|   | Name           |   | Device |   |   |    |    |    | Register     |              |    |   |   |   |   |   | Constant | Index        |  |
|---|----------------|---|--------|---|---|----|----|----|--------------|--------------|----|---|---|---|---|---|----------|--------------|--|
|   |                | Х | Υ      | R | S | Τ. | C. | XW | YW           | RW           | SW | Т | С | D | Ι | J | Κ        |              |  |
| Α | Compared       |   |        |   |   |    |    |    |              |              | 1  |   |   |   |   |   |          | $\checkmark$ |  |
|   | data           |   |        |   |   |    |    |    |              |              |    |   |   |   |   |   |          |              |  |
| В | Reference data |   |        |   |   |    |    | V  | $\checkmark$ | $\checkmark$ |    |   |   |   |   |   |          |              |  |

### Example

R000C R0020 <= -00100] TD0125

When R00C is ON, the data of D0125 is compared with the constant data -100, and if the data of D0125 is less than or equal to -100, R020 is turned ON.

If the data of D0125 is -150, the comparison result is true. Consequently, R020 is turned ON.

| D012   | 5      | -150        | <        | Constant [ | -100      |           |              | R020 is ON        |       |
|--------|--------|-------------|----------|------------|-----------|-----------|--------------|-------------------|-------|
| If the | data d | of D0125 is | s 0, the | comparisc  | on result | is false. | Consequently | v, R020 is turnec | I OFF |
| D012   | 5      | 0           | $\geq$   | Constant   | -100      |           |              | R020 is OFF       |       |

### Note

• This instruction deals with the data as signed integer (-32768 to 32767).



### 7. Instructions FUN 102 D> Double-word greater than Expression

Input  $-[A+1 \cdot A D > B+1 \cdot B]$  - Output

### Function

When the input is ON, the double-word data of  $A+1 \cdot A$  and  $B+1 \cdot B$  are compared, and if  $A+1 \cdot A$  is greater than  $B+1 \cdot B$ , the output is turned ON.

### **Execution condition**

| Input |              | Operation                      | Output |
|-------|--------------|--------------------------------|--------|
| OFF   | No execution |                                | OFF    |
| ON    | Execution    | $A+1 \cdot A > B+1 \cdot B$    | ON     |
|       |              | $A+1 \cdot A \leq B+1 \cdot B$ | OFF    |

### Operand

|   | Name           |   | Device |   |   |    |    |    | Register |              |    |   |   |   |   |   | Constant | Index        |  |
|---|----------------|---|--------|---|---|----|----|----|----------|--------------|----|---|---|---|---|---|----------|--------------|--|
|   |                | Х | Y      | R | S | Τ. | C. | XW | YW       | RW           | SW | Т | С | D | Ι | J | Κ        |              |  |
| Α | Compared       |   |        |   |   |    |    |    | V        |              | V  |   |   |   |   |   |          | $\checkmark$ |  |
|   | data           |   |        |   |   |    |    |    |          |              |    |   |   |   |   |   |          |              |  |
| В | Reference data |   |        |   |   |    |    |    | V        | $\checkmark$ |    |   |   |   |   |   |          |              |  |

### Example

| ۳N | 00002000007 | R0014 |   |
|----|-------------|-------|---|
| 27 | 0000200000  |       | 1 |

When R010 is ON, the data of D0101.D0100 is compared with the constant data 200000, and if the data of D0101.D0100 is greater than 200000, R014 is turned ON.

If the data of D0101.D0100 is 250000, the comparison result is true. Consequently, R014 is turned ON.

D0101·D0100 250000 > Constant 200000 → R014 is ON

If the data of D0101·D0100 is -100, the comparison result is false. Consequently, R014 is turned OFF.

D0101.D0100

Constant 200000

R014 is OFF

6F3B0250

### Note

This instruction deals with the data as double-word integer (-2147483648 to 2147483647).

T1/T1S User's Manual

-100

 $\leq$ 

6F3B0250

### Expression

Input  $-[A+1 \cdot A D \ge B+1 \cdot B]$  - Output

### Function

When the input is ON, the double-word data of  $A+1 \cdot A$  and  $B+1 \cdot B$  are compared, and if  $A+1 \cdot A$  is greater than or equal to  $B+1 \cdot B$ , the output is turned ON.

### **Execution condition**

| Input |              | Operation                     | Output |   |
|-------|--------------|-------------------------------|--------|---|
| OFF   | No execution |                               | OFF    |   |
| ON    | Execution    | $A+1 \cdot A \ge B+1 \cdot B$ | ON     | U |
|       |              | $A+1\cdot A < B+1\cdot B$     | OFF    |   |

### Operand

|   | Name           |   | Device |   |   |    |    |    | Register |              |    |   |   |   |   |   | Constant | Index        |  |
|---|----------------|---|--------|---|---|----|----|----|----------|--------------|----|---|---|---|---|---|----------|--------------|--|
|   |                | Х | Y      | R | S | Τ. | C. | XW | YW       | RW           | SW | Т | С | D | Ι | J | Κ        |              |  |
| Α | Compared       |   |        |   |   |    |    |    | V        |              | V  |   |   |   |   |   |          | $\checkmark$ |  |
|   | data           |   |        |   |   |    |    |    |          |              |    |   |   |   |   |   |          |              |  |
| В | Reference data |   |        |   |   |    |    |    | V        | $\checkmark$ |    |   |   |   |   |   |          |              |  |

### Example

| R0010             |                   | R0014 |
|-------------------|-------------------|-------|
| 1 → D0101 · D0100 | D>= D0251.D0250]- | ()(   |
|                   |                   |       |

When R010 is ON, the double-word data of D0101·D0100 is compared with the double-word data of D0251·D0250, and if the data of D0101·D0100 is greater than or equal to the data of D0251·D0250, R014 is turned ON.

If the data of D0101.D0100 is 250000 and D0251.D0250 is 200000, R014 is turned ON.

| D0101.D0100 250000              | $\geq$ | D0251.D0250   | 200000           | >         | R014 is ON  |
|---------------------------------|--------|---------------|------------------|-----------|-------------|
| If the data of D0101.D0100 is - | 100 an | d D0251.D0250 | is 0, R014 is tu | urned OFF |             |
| D0101.D0100 -100                | <      | D0251.D0250   | 0                |           | R014 is OFF |
| Note                            |        |               |                  |           |             |

### • This instruction deals with the data as double-word integer (-2147483648 to 2147483647).

| FUN 104 | D= | Double-word equal |
|---------|----|-------------------|
|---------|----|-------------------|

### Expression

Input  $-[A+1 \cdot A D = B+1 \cdot B]$  - Output

### Function

When the input is ON, the double-word data of  $A+1 \cdot A$  and  $B+1 \cdot B$  are compared, and if  $A+1 \cdot A$  is equal to  $B+1 \cdot B$ , the output is turned ON.

6F3B0250

### **Execution condition**

| Input |              | Operation                      | Output |   |
|-------|--------------|--------------------------------|--------|---|
| OFF   | No execution |                                | OFF    |   |
| ON    | Execution    | $A+1 \cdot A = B+1 \cdot B$    | ON     | 0 |
|       |              | $A+1 \cdot A \neq B+1 \cdot B$ | OFF    |   |

### Operand

|   | Name           |   | Device |   |   |    |    |              |              | Register     |              |   |   |   |   |   |   |              | Index |
|---|----------------|---|--------|---|---|----|----|--------------|--------------|--------------|--------------|---|---|---|---|---|---|--------------|-------|
|   |                | Х | Υ      | R | S | Τ. | C. | XW           | YW           | RW           | SW           | Т | С | D | Ι | J | Κ |              |       |
| Α | Compared       |   |        |   |   |    |    |              |              | ~            | $\checkmark$ |   |   |   |   |   |   | $\checkmark$ |       |
|   | data           |   |        |   |   |    |    |              |              |              |              |   |   |   |   |   |   |              |       |
| В | Reference data |   |        |   |   |    |    | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |   |   |   |   |   |   | $\checkmark$ |       |

### Example

| R0010            |    | R0014  |   |
|------------------|----|--------|---|
| 1 → FD0101•D0100 | D= | <br>() | 4 |
|                  |    |        |   |

When R010 is ON, the double-word data of D0101·D0100 is compared with the double-word data of D0251·D0250, and if the data of D0101·D0100 is equal to the data of D0251·D0250, R014 is turned ON.

If the data of D0101-D0100 is 250000 and D0251-D0250 is 250000, R014 is turned ON.

| D0101.D0100        | 250000         | =     | D0251.D0250   | 250000           | >         | R014 is ON  |
|--------------------|----------------|-------|---------------|------------------|-----------|-------------|
| If the data of D01 | 01·D0100 is -1 | 00 an | d D0251·D0250 | is 0, R014 is ti | urned OFF |             |
| D0101.D0100        | -100           | ≠     | D0251.D0250   | 0                |           | R014 is OFF |

### Note

• This instruction deals with the data as double-word integer (-2147483648 to 2147483647).

T1/T1S User's Manual

| FUN 105 D<> Double-word not equal |
|-----------------------------------|
|-----------------------------------|

### Expression

Input  $-[A+1 \cdot A D \iff B+1 \cdot B]$  - Output

### Function

When the input is ON, the double-word data of  $A+1 \cdot A$  and  $B+1 \cdot B$  are compared, and if  $A+1 \cdot A$  is not equal to  $B+1 \cdot B$ , the output is turned ON.

### **Execution condition**

| Input |              | Operation                      | Output |   |
|-------|--------------|--------------------------------|--------|---|
| OFF   | No execution |                                | OFF    |   |
| ON    | Execution    | $A+1 \cdot A \neq B+1 \cdot B$ | ON     | U |
|       |              | $A+1 \cdot A = B+1 \cdot B$    | OFF    |   |

### Operand

|   | Name           |   | Device |   |   |    |    |              |              |              |              | Reg | ister |   |   |   |   | Constant     | Index |
|---|----------------|---|--------|---|---|----|----|--------------|--------------|--------------|--------------|-----|-------|---|---|---|---|--------------|-------|
|   |                | Х | Υ      | R | S | Τ. | C. | XW           | YW           | RW           | SW           | Т   | С     | D | Ι | J | Κ |              |       |
| Α | Compared       |   |        |   |   |    |    | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |     |       |   |   |   |   |              |       |
|   | data           |   |        |   |   |    |    |              |              |              |              |     |       |   |   |   |   |              |       |
| В | Reference data |   |        |   |   |    |    | $\checkmark$ | $\checkmark$ | $\checkmark$ | ″ √          |     |       |   |   |   |   | $\checkmark$ |       |

### Example

|                              | R0014 |  |
|------------------------------|-------|--|
| V<> 06521,00520 <sup>-</sup> |       |  |

When R010 is ON, the double-word data of D0101·D0100 is compared with the double-word data of D0251·D0250, and if the data of D0101·D0100 is not equal to the data of D0251·D0250, R014 is turned ON.

If the data of D0101-D0100 is 250000 and D0251-D0250 is 200000, R014 is turned ON.

| D0101.D0100 250000               | ≠     | D0251.D0250   | 250000        |             | R014 is ON  |
|----------------------------------|-------|---------------|---------------|-------------|-------------|
| If the data of D0101.D0100 is -1 | 00 an | d D0251.D0250 | is -100, R014 | is turned C | OFF.        |
| D0101.D0100 -100                 | =     | D0251.D0250   | -100          |             | R014 is OFF |
|                                  |       |               |               |             |             |

### Note

• This instruction deals with the data as double-word integer (-2147483648 to 2147483647).

## 6F3B0250 7. Instructions FUN 106 D<</td> Double-word less than Expression

Input  $-[A+1 \cdot A D < B+1 \cdot B]$  - Output

### Function

When the input is ON, the double-word data of  $A+1 \cdot A$  and  $B+1 \cdot B$  are compared, and if  $A+1 \cdot A$  is less than  $B+1 \cdot B$ , the output is turned ON.

### **Execution condition**

| Input |              | Operation                     | Output |   |
|-------|--------------|-------------------------------|--------|---|
| OFF   | No execution |                               | OFF    |   |
| ON    | Execution    | $A+1\cdot A < B+1\cdot B$     | ON     | 0 |
|       |              | $A+1 \cdot A \ge B+1 \cdot B$ | OFF    |   |

### Operand

|   | Name           |   | Device |   |   |    |    |    | Register |              |    |   |   |   |   |   |   | Constant     | Index |
|---|----------------|---|--------|---|---|----|----|----|----------|--------------|----|---|---|---|---|---|---|--------------|-------|
|   |                | Х | Y      | R | S | Τ. | C. | XW | YW       | RW           | SW | Т | С | D | Ι | J | Κ |              |       |
| Α | Compared       |   |        |   |   |    |    |    | V        |              | V  |   |   |   |   |   |   | $\checkmark$ |       |
|   | data           |   |        |   |   |    |    |    |          |              |    |   |   |   |   |   |   |              |       |
| В | Reference data |   |        |   |   |    |    |    | V        | $\checkmark$ |    |   |   |   |   |   |   |              |       |

### Example

| R0010              |    | $\mathbf{O}$ | R0014 |
|--------------------|----|--------------|-------|
| 1                  | D/ | 0000427780   | (\    |
| T   [ [DOTOT-DOTOO | D/ |              |       |
|                    |    |              |       |

When R010 is ON, the data of D0101.D0100 is compared with the constant data 427780, and if the data of D0101.D0100 is less than 427780, R014 is turned ON.

If the data of D0101.D0100 is 250000, R014 is turned ON.

D0101.D0100 250000 < Constant 427780 → R014 is ON If the data of D0101.D0100 is 430000, R014 is turned OFF.

D0101·D0100 430000 ≥ Constant 427780 → R014 is OFF

### Note

**U6** 

• This instruction deals with the data as double-word integer (-2147483648 to 2147483647).

6F3B0250

### Expression

Input  $-[A+1 \cdot A D \le B+1 \cdot B]$  Output

### Function

When the input is ON, the double-word data of  $A+1 \cdot A$  and  $B+1 \cdot B$  are compared, and if  $A+1 \cdot A$  is less than or equal to  $B+1 \cdot B$ , the output is turned ON.

### **Execution condition**

| Input |              | Operation                      | Output |
|-------|--------------|--------------------------------|--------|
| OFF   | No execution |                                | OFF    |
| ON    | Execution    | $A+1 \cdot A \leq B+1 \cdot B$ | ON     |
|       |              | $A+1\cdot A > B+1\cdot B$      | OFF    |

### Operand

|   | Name           |   | Device |   |   |    |    |    | Register |              |    |   |   |   |   |   |   | Constant     | Index |
|---|----------------|---|--------|---|---|----|----|----|----------|--------------|----|---|---|---|---|---|---|--------------|-------|
|   |                | Х | Y      | R | S | Τ. | C. | XW | YW       | RW           | SW | Т | С | D | Ι | J | Κ |              |       |
| Α | Compared       |   |        |   |   |    |    |    | V        |              | V  |   |   |   |   |   |   | $\checkmark$ |       |
|   | data           |   |        |   |   |    |    |    |          |              |    |   |   |   |   |   |   |              |       |
| В | Reference data |   |        |   |   |    |    |    | V        | $\checkmark$ |    |   |   |   |   |   |   |              |       |

### Example

| R0010             |              | R0014  |   |
|-------------------|--------------|--------|---|
| 1    [D0101•D0100 | D<= 00000000 | )0]( ) | 1 |
|                   |              |        |   |

When R010 is ON, the data of D0101.D0100 is compared with the constant data 0, and if the data of D0101.D0100 is less than or equal to 0, R014 is turned ON.

If the data of D0101.D0100 is -1, R014 is turned ON.

| D0101.D0100 | -1 | $\leq$ | Constant | 0 | <br>R014 is ON |
|-------------|----|--------|----------|---|----------------|
|             |    |        |          |   |                |

If the data of D0101 D0100 is 10000, R014 is turned OFF.

D0101.D0100 10000 > Constant

### 

### Note

• This instruction deals with the data as double-word integer (-2147483648 to 2147483647).

R014 is OFF

|                  |                               |                                            |                               |                  |                 |                   |                 |                |              |              |       |              |              |      |              |              |              | 6F.                 | 380250       |
|------------------|-------------------------------|--------------------------------------------|-------------------------------|------------------|-----------------|-------------------|-----------------|----------------|--------------|--------------|-------|--------------|--------------|------|--------------|--------------|--------------|---------------------|--------------|
| . h              | nst                           | ructio                                     | ns                            |                  |                 |                   |                 |                |              |              |       |              |              |      |              |              |              |                     |              |
|                  |                               |                                            |                               |                  |                 |                   |                 |                |              |              |       |              |              |      |              |              |              |                     |              |
| FL               | JN                            | 108                                        | U                             | >                | U               | Insigi            | ned             | grea           | ater         | tha          | an    |              |              |      |              |              |              | T1S o               | nly          |
| Ехр              | res                           | sion                                       |                               |                  |                 |                   |                 |                |              |              |       |              |              |      |              |              |              | •                   |              |
| Inpu             | ut —[                         | A U> B                                     | ]– O                          | utput            |                 |                   |                 |                |              |              |       |              |              |      |              |              |              | 5                   |              |
| un<br>/he<br>utp | ctic<br>n th<br>ut is<br>cuti | on<br>le input i<br>la turned (<br>ion con | s ON<br>ON.<br>I <b>ditic</b> | , the            | data            | of A ai           | nd the          | e data         | a of         | <i>B</i> ar  | e co  | mpa          | ired,        | anc  | d if ≄       | l is g       | great        | ter than <i>B</i> , | the          |
| Inp              | out                           |                                            |                               |                  | Ор              | eration           |                 |                |              |              | С     | utpu         | t            |      |              | /            |              |                     |              |
|                  | F<br>N                        | No exec                                    | ution                         | Δ.               | D               |                   |                 |                |              |              |       | OFF          |              | 7    | 7            |              |              |                     |              |
| 0                | IN                            |                                            | ווכ                           | Α ><br>Δ <       | B               |                   |                 |                |              |              |       |              |              |      |              |              |              |                     |              |
| Dpe              | ran                           | <b>d</b><br>Name                           | X                             | Y                | Dev<br>R        | /ice<br>S   T     | . C.            | XW             | YW           | RW           | sw    | Regi<br>T    | ister<br>C   | D    |              | J            | K            | Constant            | Index        |
| Α                | Con<br>data                   | npared<br>a                                |                               |                  |                 |                   |                 | V              | $\checkmark$ |              | 1     | $\checkmark$ | $\checkmark$ |      | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$        | $\checkmark$ |
| В                | Refe                          | erence da                                  | ata                           |                  |                 |                   |                 |                | V            | $\checkmark$ |       |              |              |      |              |              |              | $\checkmark$        |              |
| ixa              | mpl                           | le<br>1000C<br>⊣ ├[1                       | 0125                          | ; U>             | 40              | 000]-             | 9               |                |              |              |       |              |              |      |              |              |              | <b>R0020</b>        | _            |
|                  |                               |                                            |                               |                  |                 | • (               |                 |                |              |              |       |              |              |      |              |              |              |                     |              |
|                  | Whe<br>of D                   | en R00C<br>0125 is                         | is O<br>great                 | N, the<br>er tha | e data<br>an 40 | a of D(<br>000, F | )125 i<br>020 i | s cor<br>s tur | npai<br>ned  | red \<br>ON. | with  | the o        | cons         | tant | dat          | a 40         | 000          | , and if the        | e data       |
|                  | lf th                         | e data o                                   | f D01                         | 25 is            | 5200            | 00, the           | comp            | oariso         | on re        | esult        | is tr | ue. (        | Cons         | sequ | uent         | ly, R        | 2020         | is turned           | ON.          |
|                  | D01                           | 25 5                                       | 2000                          | 0                | 7               | Cons              | stant [         | 400            | 00           |              |       |              |              | •    | R            | 020          | is C         | N                   |              |
|                  | lf th                         | e data o                                   | F D01                         | 25 is            | 2100            | 0, the            | comp            | ariso          | on re        | esult        | is fa | lse.         | Con          | seq  | uen          | tly, F       | R020         | ) is turned         | OFF.         |
|                  | D01                           | 25 2                                       | 1000                          |                  | $\leq$          | Cons              | stant [         | 400            | 00           |              |       |              |              | •    | R            | 020          | is C         | )FF                 |              |
| Note             | Э                             |                                            | -                             |                  | 4b 4b           | o doto            |                 | oian           | od in        | tog          | or (0 | to G         | 552          | 5)   |              |              |              |                     |              |

• This instruction deals with th 208 T1/T1S User's Manual

|                         |                         |                   |                        |                |                |         |                 |                     |              |        |                   |       |       |        | 6F3             | 3B0250 |
|-------------------------|-------------------------|-------------------|------------------------|----------------|----------------|---------|-----------------|---------------------|--------------|--------|-------------------|-------|-------|--------|-----------------|--------|
|                         |                         |                   |                        |                |                |         |                 |                     |              |        |                   |       |       | 7. I   | nstructi        | ons    |
| FLIN                    | 100                     |                   |                        | Inci           | iano           | dar     | aator t         | han                 | ora          |        | <u></u>           |       |       | ]      | <b>T</b> 40 -   |        |
|                         |                         | 0>                | <u> </u>               | 0113           | igne           | u yr    |                 | ΠαΠ                 |              | que    | 41                |       |       |        | 1150            | niy    |
| Expres                  | ssion                   |                   |                        |                |                |         |                 |                     |              |        |                   |       |       |        | •               |        |
| Input –                 | $[A \ge B]$             | ]– Out            | tput                   |                |                |         |                 |                     |              |        |                   |       |       |        | 0               |        |
| <b>Functi</b><br>When t | <b>on</b><br>he input i | s ON.             | the data               | of A           | and t          | he da   | ata of <i>B</i> | are co              | ompa         | red.   | and               | if A  | is a  | reate  | er than or      | equal  |
| o <i>B</i> , the        | e output i              | s turne           | ed ON.                 |                |                |         |                 |                     |              | ,      |                   |       |       |        |                 |        |
| Execut                  | tion con                | ditior            | า                      |                |                |         |                 |                     | 0.1          |        |                   |       |       |        |                 |        |
| Input<br>OFF            | No exec                 | ution             | 0                      | perati         | on             |         |                 |                     | Outpu<br>OFF | It     |                   |       |       |        |                 |        |
| ON                      | Executio                | on                | $A \ge B$              |                |                |         |                 |                     | ON<br>OFF    |        | $\mathcal{O}^{*}$ |       |       |        |                 |        |
|                         |                         |                   |                        |                |                |         |                 |                     |              | 7      | •                 |       |       |        |                 |        |
| Operai                  | nd<br>Name              |                   | De                     | evice          |                |         |                 | X                   | Rea          | ister  |                   |       |       |        | Constant        | Index  |
| 4 00                    |                         | Х                 | Y R                    | S              | Τ.             | C. X\   | W YW R          | WSW                 | / T          | C      | D                 | l     | J     | K      |                 |        |
| dat                     | inpared<br>ta           |                   |                        |                |                |         |                 |                     | N N          | N      | N                 | N     | N     | N      | N               | Ň      |
| B Re                    | ference da              | ata               |                        |                |                |         |                 | $\sqrt{\sqrt{1-1}}$ |              | N      |                   |       |       |        |                 |        |
| Examp                   | ole                     |                   |                        |                |                |         | ×.              |                     |              |        |                   |       |       |        |                 |        |
|                         | RØØØC                   |                   |                        |                | _              | 2       |                 |                     |              |        |                   |       |       |        | R0020           |        |
|                         | ( <b>I</b>              | 10125             | ע =<ט                  | 0020           | C              | Y       |                 |                     |              |        |                   |       |       |        | ( )             | 1      |
| Wh                      | en R00C                 | is ON             | I. the da              | ta of          | D012           | 5 is c  | ompare          | ed with             | the          | data   | of D              | 0002  | 20. a | ind if | the data        | of     |
| D0 <sup>-</sup>         | 125 is gre              | eater tl          | han or e               | qual           | to the         | data    | of D00          | 20, R(              | )20 is       | s turi | ned               | ON.   | -, -  |        |                 |        |
| lf th<br>Coi            | ne data o<br>nsequent   | f D012<br>ly, R02 | 25 is 400<br>20 is tur | 000 a<br>ned ( | nd tha<br>DN.  | at of [ | D0020 is        | s 4000              | )0, th       | e co   | mpa               | riso  | n re  | sulti  | s true.         |        |
| D0 <sup>-</sup>         | 125 4                   | 0000              | $\langle \rangle$      | D              | 0020           | 4(      | 0000            |                     |              |        | •                 | R     | 020   | is C   | N               |        |
| lf th<br>Coi            | ne data o<br>nsequent   | f D012<br>ly, R02 | 25 is 150<br>20 is tur | )00 a<br>ned ( | nd tha<br>DFF. | at of [ | D0020 is        | s 2000              | )0, th       | e co   | mpa               | riso  | n re  | sulti  | s false.        |        |
| D0 <sup>-</sup>         | 125 1                   | 5000              | <                      | D              | 0020           | 20      | 0000            |                     |              |        | ►                 | R     | 020   | is C   | FF              |        |
| Note                    | $\langle $              | 7                 |                        |                |                |         |                 |                     |              |        |                   |       |       |        |                 |        |
| • This                  | instructio              | on deal           | ls with th             | ne da          | ta as          | unsig   | gned into       | eger (              | 0 to 6       | 6553   | 5).               |       |       |        |                 |        |
| $\boldsymbol{\Delta}$   |                         |                   |                        |                |                |         |                 |                     |              |        |                   |       |       |        |                 |        |
| 1                       |                         |                   |                        |                |                |         |                 |                     |              |        |                   |       |       |        |                 |        |
|                         |                         |                   |                        |                |                |         |                 |                     | Ras          | sic H  | ardv              | vare  | and   | 1 Fur  | nction <b>2</b> | 09     |
|                         |                         |                   |                        |                |                |         |                 |                     | Das          |        | aruv              | val e |       | a i ui |                 |        |

| 7. Instructio   | ons        |                |          |
|-----------------|------------|----------------|----------|
|                 |            |                |          |
| FUN 110         | U=         | Unsigned equal | T1S only |
| Expression      |            |                | •        |
| Input –[ A U= E | 3]– Output |                | 5        |
|                 |            |                |          |

6F3B0250

### Function

When the input is ON, the data of *A* and the data of *B* are compared, and if *A* is equal to *B*, the output is turned ON.

### **Execution condition**

| Input |              | Operation  | Output |
|-------|--------------|------------|--------|
| OFF   | No execution |            | OFF    |
| ON    | Execution    | A = B      | ON ON  |
|       |              | $A \neq B$ | OFF    |

### Operand

|   | Name           |   |   | De | vice |    |    |    | Register     |              |    |   |   |   |   |   |   | Constant     | Index        |
|---|----------------|---|---|----|------|----|----|----|--------------|--------------|----|---|---|---|---|---|---|--------------|--------------|
|   |                | Х | Υ | R  | S    | Τ. | C. | XW | YW           | RW           | SW | Т | С | D | - | J | Κ |              |              |
| Α | Compared       |   |   |    |      |    |    |    |              |              | 1  |   |   |   |   |   |   | $\checkmark$ | $\checkmark$ |
|   | data           |   |   |    |      |    |    |    |              |              |    |   |   |   |   |   |   |              |              |
| В | Reference data |   |   |    |      |    |    |    | $\checkmark$ | $\checkmark$ |    |   |   |   |   |   |   | $\checkmark$ |              |

### Example

|    | Госора | R0020 |
|----|--------|-------|
| U= |        |       |

When R00C is ON, the data of D0125 is compared with the data of D0030, and if the data of D0125 is equal to the data of D0030, R020 is turned ON.

If the data of D0125 is 35000 and that of D0020 is 35000, the comparison result is true. Consequently, R020 is turned ON.

| D0125 | 35000 = | D0030 | 35000 |  | R020 is ON |
|-------|---------|-------|-------|--|------------|
|-------|---------|-------|-------|--|------------|

If the data of D0125 is 1500 and that of D0020 is 4000, the comparison result is false. Consequently, R020 is turned OFF.

D0125 1500 ≠ D0030 4000 → R020 is OFF

### Note

This instruction deals with the data as unsigned integer (0 to 65535).

T1/T1S User's Manual

|                                        |                           |                        |                 |            |                   |                            |                      |                                                                                                             |             | 6F3                | B0250           |
|----------------------------------------|---------------------------|------------------------|-----------------|------------|-------------------|----------------------------|----------------------|-------------------------------------------------------------------------------------------------------------|-------------|--------------------|-----------------|
|                                        |                           |                        |                 |            |                   |                            |                      |                                                                                                             | 7. Ir       | structi            | ons             |
| FUN 11                                 | 11                        | U<>                    | Unsig           | ned no     | t equal           |                            |                      |                                                                                                             | ]           | T1S or             |                 |
| Input –[ A                             | U<> B]                    | ]– Output              |                 |            |                   |                            |                      |                                                                                                             |             |                    |                 |
| Function<br>When the i<br>output is tu | input is (<br>urned Of    | ON, the d<br>N.        | ata of A a      | and the da | ata of <i>B</i> a | re compa                   | ared, a              | nd if A is r                                                                                                | not ec      | qual to <i>B</i> , | the             |
| Execution                              | n cond                    | ition                  | Operation       |            |                   | Quito                      | <u> </u>             |                                                                                                             |             |                    |                 |
| OFF N<br>ON E                          | lo execut<br>xecution     | ion $A \neq A$ $A = A$ | B<br>B          | 1          |                   | Output<br>OFF<br>ON<br>OFF |                      |                                                                                                             |             |                    |                 |
| Operand                                |                           |                        |                 |            |                   | $\sim$                     |                      |                                                                                                             |             |                    |                 |
| A Compa<br>data<br>B Refere            | ame<br>ared<br>ence data  | X Y<br>a               | Device<br>R S 1 |            |                   | Reg<br>/ SW T<br>√ √       | jister<br>C [<br>√ ∽ | $\begin{array}{c c c} \mathbf{D} & \mathbf{I} & \mathbf{J} \\ \hline & &  &  \\ \hline & &  &  \end{array}$ | κ<br>√<br>√ | Constant<br>√<br>√ | Index<br>√<br>√ |
| Example                                |                           |                        |                 |            |                   |                            |                      |                                                                                                             |             |                    |                 |
| I<br>I<br>When                         | 00C<br>├──_[D0<br>R00C is | 125 U<>                | 00000]-         | 0125 is c  | compared          | with the                   | consta               | int data 0,                                                                                                 | andi        | <b>R0020</b>       | of              |
| D0125                                  | 5 is not C                | ), R020 is             | turned O        | N.         |                   |                            |                      |                                                                                                             |             |                    |                 |
| If the c                               | data of D                 | 00125 is 4             | 11000, the      | e compari  | ison resu         | lt is true.                | Conse                | equently, R                                                                                                 | 020         | is turned (        | ON.             |
| D0125                                  | 5 410                     | 000 ≠                  | Con             | istant 🦳   | 0                 |                            |                      | R020                                                                                                        | is O        | N                  |                 |
| If the c                               | data of D                 | 00125 is (             | ), the com      | nparison r | result is f       | alse. Con                  | seque                | ntly, R020                                                                                                  | is tu       | rned OFF.          |                 |
| D0125                                  | , 🖌                       | 0 =                    | - Con           | stant      | 0                 |                            |                      | R020                                                                                                        | is O        | FF                 |                 |
| Note <ul> <li>This ins</li> </ul>      | truction                  | deals with             | n the data      | as unsig   | ined integ        | ger (0 to 6                | 65535)               |                                                                                                             |             |                    |                 |
| 2                                      |                           |                        |                 |            |                   |                            |                      |                                                                                                             |             |                    |                 |

### 6F3B0250 7. Instructions Unsigned less than FUN 112 U< T1S or Expression Input -[ A U< B ]- Output Function When the input is ON, the data of A and the data of B are compared, and if A is less than B, the output is turned ON. **Execution condition** Input Operation Output OFF No execution OFF ON Execution A < BON $A \ge B$ OFF Operand Device Register Constant Index Name XW YW RW SW R S C. С Κ Х Y Т т D Compared $\sqrt{}$ $\sqrt{}$ Α $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ V $\sqrt{}$ $\sqrt{}$ data B Reference data $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ Example RØØ2Ø RØØØC TD0125 UK D00407 When R00C is ON, the data of D0125 is compared with the data of D0040, and if the data of D0125 is less than the data of D0040, R020 is turned ON. If the data of D0125 is 43000 and that of D0040 is 45000, the comparison result is true. Consequently, R020 is turned ON. D0125 43000 D0040 45000 R020 is ON If the data of D0125 is 50000 and that of D0040 is 50000, the comparison result is false. Consequently, R020 is turned OFF. D0125 50000 $\geq$ D0040 50000 R020 is OFF Note This instruction deals with the data as unsigned integer (0 to 65535).

T1/T1S User's Manual

|   |                    |                                   |                           |                        |                          | 01300230             |
|---|--------------------|-----------------------------------|---------------------------|------------------------|--------------------------|----------------------|
| Γ |                    |                                   |                           |                        | 7                        | 7. Instructions      |
|   |                    |                                   |                           |                        |                          |                      |
|   | FUN <sup>2</sup>   | 113 U<                            |                           | less than or           | equal                    | T1S only             |
|   | Express            | sion                              |                           |                        |                          |                      |
|   | Input –[           | A U<= B]− O                       | utput                     |                        |                          | S                    |
|   | Functio            | n                                 |                           |                        | 0                        |                      |
|   | When the B, the ou | e input is ON,<br>Itput is turned | the data of A and the ON. | e data of <i>B</i> are | compared, and if A is le | ess than or equal to |
|   | Executi            | on condition                      | n                         |                        |                          |                      |
|   | Input              |                                   | Operation                 |                        | Output                   |                      |
|   | OFF                | No execution                      | 1                         |                        | OFF                      |                      |
|   | ON                 | Execution                         | $A \leq B$                |                        | ON                       |                      |
|   |                    |                                   | A > B                     |                        | OFF                      |                      |

### Operand

|   | Name           | Device |   |   |   |    |    | Register |              |              |    |   |   |   |   |   | Constant | Index        |  |
|---|----------------|--------|---|---|---|----|----|----------|--------------|--------------|----|---|---|---|---|---|----------|--------------|--|
|   |                | Х      | Υ | R | S | Τ. | C. | XW       | YW           | RW           | SW | Т | С | D | Ι | J | Κ        |              |  |
| Α | Compared       |        |   |   |   |    |    |          |              |              | 1  |   |   |   |   |   |          | $\checkmark$ |  |
|   | data           |        |   |   |   |    |    |          |              |              |    |   |   |   |   |   |          |              |  |
| В | Reference data |        |   |   |   |    |    | V        | $\mathbf{V}$ | $\checkmark$ |    |   |   |   |   |   |          |              |  |

### Example

R000C R0020 U<= 35000] TD0125 -

When R00C is ON, the data of D0125 is compared with the constant data 35000, and if the data of D0125 is less than or equal to 35000, R020 is turned ON.

If the data of D0125 is 35000, the comparison result is true. Consequently, R020 is turned ON.

| D0125      | 35000         | Ł        | Constant 35000       | >                    | R020 is ON         |
|------------|---------------|----------|----------------------|----------------------|--------------------|
| If the dat | a of D0125 is | s 0, the | comparison result is | false. Consequently, | R020 is turned OFF |
| D0125      | 38000         | >        | Constant 35000       |                      | R020 is OFF        |

### Note

• This instruction deals with the data as unsigned integer (0 to 65535).

65280250

# 7. Instructions FUN 114 SET Device/register set Expression Input -[SET A]- Output Function

6F3B0250

When the input is ON, the device A is set to ON if A is a device, or the data HFFFF is stored in the register A if A is a register.

### **Execution condition**

| Input | Operation    | Output |
|-------|--------------|--------|
| OFF   | No execution | OFF    |
| ON    | Execution    | ON.    |
|       |              |        |

### Operand

| Name                  | Device                        |                                 |                                                       |                                          |                                                                              |                                                                    |                                                                                                                                                    | Register                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                            | Index                                                                                                                                                                                                                                              |
|-----------------------|-------------------------------|---------------------------------|-------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | Х                             | Υ                               | R                                                     | S                                        | Τ.                                                                           | C.                                                                 | XW                                                                                                                                                 | YW                                                                                                                                                                                               | RW SW                                                                                                                                                                                                 | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ι                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Κ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                    |
| Device or<br>register |                               |                                 | $\checkmark$                                          |                                          |                                                                              |                                                                    |                                                                                                                                                    | V                                                                                                                                                                                                | V V                                                                                                                                                                                                   | $\neg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                    |
|                       | Name<br>Device or<br>register | Name X<br>Device or<br>register | Name     X     Y       Device or     √       register | NameDevXYRDevice or $\sqrt{1}$ registerV | NameDeviceXYRSDevice or $\sqrt{1}$ $\sqrt{1}$ register $\sqrt{1}$ $\sqrt{1}$ | NameDeviceXYRSDevice or $\sqrt{1}$ $\sqrt{1}$ registerV $\sqrt{1}$ | NameDeviceXYRST.C.Device or $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ register $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ | NameDeviceXYRST.C.XWDevice or $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ register $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ | Name         Device           X         Y         R         S         T.         C.         XW         YW           Device or<br>register         √         √         √         √         √         √ | Name         Device         Image: Constraint of the state of the s | Name         Device         Reg           X         Y         R         S         T.         C.         XW         YW         RW         SW         T           Device or<br>register         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √ | Name         Device         Register           X         Y         R         S         T.         C.         XW         YW         RW         SW         T         C           Device or<br>register         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √ | Name         Device         Register           X         Y         R         S         T.         C.         XW         YW         RW         SW         T         C         D           Device or<br>register         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √ | Name         Device         Register           X         Y         R         S         T.         C.         XW YW RW SW         T         C         D         I           Device or<br>register         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √         √< | Name         Device         Register           X         Y         R         S         T.         C.         XW         YW         RW         SW         T         C         D         I         J           Device or<br>register </td <td>Name         Device         Register           X         Y         R         S         T.         C.         XW         YW         RW         SW         T         C         D         I         J         K           Device or register                                                                                                &lt;</td> <td>Name         Device         Register         Constant           X         Y         R         S         T.         C.         XW         YW         RW/SW         T         C         D         I         J         K           Device or register</td> | Name         Device         Register           X         Y         R         S         T.         C.         XW         YW         RW         SW         T         C         D         I         J         K           Device or register                                                                                                < | Name         Device         Register         Constant           X         Y         R         S         T.         C.         XW         YW         RW/SW         T         C         D         I         J         K           Device or register |

### Example 1 (device set)

When R010 is ON, R025 is set to ON. The state of R025 is remained even if R010 comes OFF.

### Example 2 (register set)

R0010

1 --- | ---- [ SET RW020\_

When R010 is ON, the data HFFFF is stored in RW20. (R200 to R20F are set to ON) The state of RW20 is remained even if R010 comes OFF.


6F3B0250

Input -[ RST A ]- Output

### Function

When the input is ON, the device A is reset to OFF if A is a device, or the data 0 is stored in the register A if A is a register.

### **Execution condition**

| Input | Operation    | Output |
|-------|--------------|--------|
| OFF   | No execution | OFF    |
| ON    | Execution    | ON.    |

### Operand

|   | Name      |   |   | Dev | vice         |    |    | Register |    |       |              |              |   |   |   |   | Constant | Index |
|---|-----------|---|---|-----|--------------|----|----|----------|----|-------|--------------|--------------|---|---|---|---|----------|-------|
|   |           | Х | Υ | R   | S            | Τ. | C. | XW       | YW | RW SV | / T          | С            | D | Ι | J | Κ |          |       |
| Α | Device or |   |   |     | $\checkmark$ |    |    |          |    |       | $\checkmark$ | $\checkmark$ |   |   |   |   |          |       |
|   | register  |   |   |     |              |    |    |          |    |       |              |              |   |   |   |   |          |       |

### Example 1 (device reset)

RØØ11 | |----[ RST R0005]

When R011 is ON, R005 is reset to OFF. The state of R025 is remained even if R011 comes OFF.

### Example 2 (register reset)

M

When R011 is ON, the data 0 is stored in RW20. (R200 to R20F are reset to OFF) The state of RW20 is remained even if R011 comes OFF.

### Expression

Input -[ SETC ]- Output

### Function

When the input is ON, the carry flag (CF = S050) is set to ON.

### **Execution condition**

| Input | Operation    | Output | CF  |
|-------|--------------|--------|-----|
| OFF   | No execution | OFF    |     |
| ON    | Execution    | ON     | Set |
|       |              |        |     |

6F3B0250

### Operand

No operand is required.

### Example

RØØ11 -|1|----[SETC] 1 ┥┝

When R011 is changed from OFF to ON, the carry flag S050 is set to ON.



|                      |                                    |                                  | 6F3B0250             |
|----------------------|------------------------------------|----------------------------------|----------------------|
|                      |                                    | 7. In                            | structions           |
|                      |                                    |                                  | $\tilde{\mathbf{Q}}$ |
| FUN 119              | RSTC Reset carry                   |                                  | V                    |
| Expression           |                                    |                                  | •                    |
| Input[ RSTC ]-       | - Output                           |                                  | 2                    |
| Function             |                                    | 0                                |                      |
| When the input i     | s ON, the carry flag (CF = S050) i | s reset to OFF.                  |                      |
| Execution cor        | dition                             |                                  |                      |
| OFF No exec          | Operation                          |                                  |                      |
| ON Execution         | on                                 | ON Reset                         |                      |
|                      |                                    | N.O.                             |                      |
| Operand              |                                    |                                  |                      |
| ivo operand is re    | equirea.                           |                                  |                      |
| Example              |                                    |                                  |                      |
| · • <b>- •</b> • • • |                                    |                                  |                      |
| R0010                |                                    | $\sim$                           |                      |
| 1                    |                                    | $\cdot \sigma$                   | 1                    |
| I                    |                                    | -                                | I                    |
| When R010            | is changed from OFF to ON, the     | carry flag S050 is reset to OFF. |                      |
|                      | 0                                  | *<br>*                           |                      |
|                      |                                    |                                  |                      |
|                      |                                    |                                  |                      |
|                      | $\mathbf{G}$                       |                                  |                      |
|                      |                                    |                                  |                      |
|                      |                                    |                                  |                      |
|                      |                                    |                                  |                      |
|                      |                                    |                                  |                      |
|                      | $\mathbf{V}$                       |                                  |                      |
|                      |                                    |                                  |                      |
| •                    | >                                  |                                  |                      |
|                      |                                    |                                  |                      |
|                      |                                    |                                  |                      |
|                      |                                    |                                  |                      |
| 47                   |                                    |                                  |                      |
|                      |                                    |                                  |                      |
|                      |                                    | Basic Hardware and Fund          | ction <b>217</b>     |
|                      |                                    | Dasic natuwate and Full          |                      |



### Expression

Input -[A ENC (n) B] - Output

### Function

When the input is ON, this instruction finds the bit position of the most significant ON bit in the bit table, size  $2^n$  bits starting with 0 bit (LSB) of *A*, and stores it in *B*.

6F3B0250

### **Execution condition**

| OFF     No execution     OFF       ON     Normal execution     ON       There is no ON bit (no execution)     OFF     Set | Input | Operation                         | Output | ERF      |
|---------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------|--------|----------|
| ON Normal execution ON C                                                                                                  | OFF   | No execution                      | OFF    |          |
| There is no ON bit (no execution)                                                                                         | ON    | Normal execution                  | ON     | <b>G</b> |
|                                                                                                                           |       | There is no ON bit (no execution) | OFF    | Set      |

### Operand

|   | Name           |   | Device |   |   |    |    |              | Register     |              |    |   |   |   |   |   |   | Constant | Index |
|---|----------------|---|--------|---|---|----|----|--------------|--------------|--------------|----|---|---|---|---|---|---|----------|-------|
|   |                | Х | Υ      | R | S | Τ. | C. | XW           | YW           | RW           | SW | Т | С | D | Ι | J | Κ |          |       |
| Α | Start of table |   |        |   |   |    |    | $\checkmark$ | $\checkmark$ |              |    |   |   |   |   |   |   |          |       |
| n | Table size     |   |        |   |   |    |    |              |              |              |    |   |   |   |   |   |   | 1 - 8    |       |
| В | Encode result  |   |        |   |   |    |    |              | $\checkmark$ | $\checkmark$ | √  |   |   |   |   |   |   |          |       |

### Example

| R0010<br>1 FRU005 | FNC  | (5) | D00107 |
|-------------------|------|-----|--------|
|                   | LIIC | (3) | 00010  |

 $2^5$  (=32) bits starting with 0 bit of RW05 (R050 to R06F) are defined as the bit table. When R010 is ON, the most significant ON (1) bit position in the bit table is searched, and the position is stored in D0010.

The following figure shows an operation example.



### Note

• If there is no ON bit in the bit table, the instruction error flag (ERF = S051) is set to ON.

T1/T1S User's Manual

| FUN 121 | DEC | Decode |
|---------|-----|--------|
|---------|-----|--------|

### Expression

Input -[A DEC (n) B] - Output

### Function

When the input is ON, this instruction sets the bit position which is designated by lower *n* bits of *A* to ON in the bit table, size  $2^n$  bits starting with 0 bit (LSB) of *B*, and resets all other bits to OFF.

### **Execution condition**

| Input | Operation    | Output |            |
|-------|--------------|--------|------------|
| OFF   | No execution | OFF    |            |
| ON    | Execution    | ÓN     | <b>(</b> ) |
|       |              |        |            |

### Operand

|   | Name           |   | Device |   |   |    |    |    | Register     |              |              |        |              |   |   |   |   | Constant | Index |
|---|----------------|---|--------|---|---|----|----|----|--------------|--------------|--------------|--------|--------------|---|---|---|---|----------|-------|
|   |                | Х | Υ      | R | S | Τ. | C. | XW | YW           | RW           | SW           | T      | С            | D | Ι | J | Κ |          |       |
| A | Decode source  |   |        |   |   |    |    |    |              | $\checkmark$ | $\checkmark$ | $\neg$ | $\checkmark$ |   |   |   |   |          |       |
| n | Table size     |   |        |   |   |    |    |    |              |              |              |        |              |   |   |   |   | 1 - 8    |       |
| В | Start of table |   |        |   |   |    |    |    | $\checkmark$ |              | $\sim$       |        | $\checkmark$ |   |   |   |   |          |       |

### Example

 $2^{5}$  (=32) bits starting with 0 bit of RW05 (R050 to R06F) are defined as the bit table.

When R011 is ON, the bit position designated by lower 5 bits of D0011 in the bit table is set to ON, and all other bits in the table are reset to OFF.

The following figure shows an operation example.



| 7 Instructio    | ne         |           |          |
|-----------------|------------|-----------|----------|
|                 | /115       |           |          |
| FUN 122         | BC         | Bit count | T1S only |
| Expression      |            |           |          |
| Input -[ A BC ] | B]– Output |           | Co       |

6F3B0250

### Function

When the input is ON, this instruction counts the number of ON (1) bits of A, and stores the result in B.

### **Execution condition**

| Input | Operation    | Output |  |
|-------|--------------|--------|--|
| OFF   | No execution | OFF    |  |
| ON    | Execution    | ON     |  |
|       |              |        |  |

### Operand

|   | Name       |   |   | De | vice |    |    |    |    |              |              | Reg          | ister |   |   |   |   | Constant | Index |
|---|------------|---|---|----|------|----|----|----|----|--------------|--------------|--------------|-------|---|---|---|---|----------|-------|
|   |            | Х | Υ | R  | S    | Τ. | C. | XW | YW | RW           | SW           | T            | C     | D | Ι | J | Κ |          |       |
| Α | Source     |   |   |    |      |    |    |    |    |              | V            |              |       |   |   |   |   |          |       |
| В | Count data |   |   |    |      |    |    |    |    | $\checkmark$ | $\checkmark$ | $\checkmark$ |       |   |   |   |   |          |       |

### Example

When R020 is ON, the number of ON (1) bits of the register RW032 is counted, and the result is stored in D0102.

The following figure shows an operation example.



6F3B0250

### Expression

Input –[ CALL N. *n* ]– Output

### Function

When the input is ON, this instruction calls the subroutine number *n*.

### **Execution condition**

| Input | Operation    | Output |
|-------|--------------|--------|
| OFF   | No execution | OFF    |
| ON    | Execution    | ON     |
|       |              |        |

### Operand

|   | Name       |   |   | Dev | /ice |    |    |    |    |    |    | Reg | ister |   |   |   |   | Constant | Index |
|---|------------|---|---|-----|------|----|----|----|----|----|----|-----|-------|---|---|---|---|----------|-------|
|   |            | Х | Υ | R   | S    | Τ. | С. | XW | YW | RW | S٧ | 1 1 | C     | D | Ι | J | Κ |          |       |
| n | Subroutine |   |   |     |      |    |    |    |    |    |    |     |       |   |   |   |   | √ (Note) |       |
|   | number     |   |   |     |      |    |    |    |    |    |    |     |       |   |   |   |   |          |       |

### Example

X0007 [CALL N.008]

When X007 is ON, the subroutine number 8 is called. When the program execution is returned from the subroutine, the output is turned ON.



- The possible subroutine number is 0 to 15 (T1) or 0 to 255 (T1S).
- Refer to the SUBR instruction (FUN 137).
- In case of T1, nesting of subroutines is not allowed. That is, the CALL instruction cannot be used in a subroutine.
- In case of T1S, nesting of subroutines is possible. (up to 3 levels)
- The CALL instruction can be used in an interrupt program. However, it is not allowed that the same subroutine is called from an interrupt program and from main program.

### 6F3B0250 7. Instructions **FUN 129** RET Subroutine return Expression |---[ RET ]-| Function This instruction indicates the end of a subroutine. When program execution is reached this instruction, it is returned to the original CALL instruction. **Execution condition** Input Operation Output Execution -Operand No operand is required. Example -[ RET 25 Main program Subroutine

-[ SUBR (008)]-

-[ RET ]-

### Note

• Refer to the SUBR instruction (FUN 137).

| |---[ CALL N.008 ]

- The RET instruction can be programmed only in the program type 'Subroutine'.
- The RET instruction must be connected directly to the left power rail.



### FUN 132FORFOR (FOR-NEXT loop)

### Expression

Input –[FOR *n*]– Output

### Function

When the input is ON, the program segment between FOR and NEXT is executed *n* times repeatedly in a scan.

When the input is OFF, the repetition is not performed. (the segment is executed once)

### **Execution condition**

| Input | Operation     | Output |
|-------|---------------|--------|
| OFF   | No repetition | OFF    |
| ON    | Repetition    | ON     |
|       |               |        |

### Operand

|   | Name       |   |   | Dev | vice |    |    |    |              |    |    | Reg          | ister |   |   |   |              | Constant  | Index |
|---|------------|---|---|-----|------|----|----|----|--------------|----|----|--------------|-------|---|---|---|--------------|-----------|-------|
|   |            | Х | Υ | R   | S    | Τ. | C. | XW | YW           | RW | SW | T            | С     | D | Ι | J | Κ            |           |       |
| n | Repetition |   |   |     |      |    |    |    | $\checkmark$ |    | V  | $\checkmark$ |       |   |   |   | $\checkmark$ | 1 - 32767 |       |
|   | times      |   |   |     |      |    |    |    |              |    |    |              |       |   |   |   |              |           |       |

### Example

|   | R0005                                                   |  |
|---|---------------------------------------------------------|--|
| 1 | ⊢-                                                      |  |
| 2 |                                                         |  |
| 2 | This segment is executed 30 times repeatedly in a scan. |  |
| 3 |                                                         |  |
|   |                                                         |  |
| 4 | -[MEXT]                                                 |  |
| I |                                                         |  |

When R005 is ON, the program segment between FOR and NEXT is executed 30 times in a scan.



### FUN 133NEXTNEXT (FOR-NEXT loop)

### Expression

Input -[ NEXT ]- Output

### Function

This instruction configures a FOR-NEXT loop.

If the input is OFF, The repetition is forcibly broken. and the program execution is moved to the next instruction.

6F3B0250

### **Execution condition**

| Input                     | Operation                      | Output |
|---------------------------|--------------------------------|--------|
| OFF                       | Forcibly breaks the repetition | OFF    |
| ON                        | Repetition                     | ON     |
| <b>Operan</b><br>No opera | i <b>d</b><br>and is required. |        |
| Examp                     | le                             |        |
| 1                         | . 00000 WOLL T                 |        |
|                           |                                |        |
| 2⊢                        | ⊣ ├[ FOR 00030]                |        |
| R                         | 10005 I I                      |        |
| 3⊢                        | ⊣├{D0000 MOV D0500}{ +1 F }    |        |
| 4-[                       | NEXT]                          |        |

When R005 is ON, the program segment between FOR and NEXT is executed 30 times in a scan. In the above example, the rung 3 is executed 30 times. As a result, the data of D0000 to D029 are transferred to D0500 to D0529. (Block transfer)

- The FOR instruction must be used with a corresponding NEXT instruction one by one.
- Nesting of the FOR-NEXT loop is not allowed. That is, the FOR instruction cannot be used in a FOR-NEXT loop.
- The FOR and NEXT instructions cannot be programmed on the same rung.
- The following connection is not allowed.

FOR n1 -[ NEXT ]-T1/T1S User's Manual

| FUN 137                                                                                                     |                                                                       |                                                            |                                        |                                                       |                                                      |                                                                   |                                                      |                              |                       | 7. lı         | nstructi   | ons   |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------|------------------------------|-----------------------|---------------|------------|-------|
|                                                                                                             | SUBR                                                                  | Sub                                                        | rout                                   | tine er                                               | ntry                                                 |                                                                   |                                                      |                              |                       | ]             |            |       |
| Expression                                                                                                  |                                                                       |                                                            |                                        |                                                       |                                                      |                                                                   |                                                      |                              |                       | -             |            |       |
| -[ SUBR ( <i>n</i> ) ]                                                                                      | -                                                                     |                                                            |                                        |                                                       |                                                      |                                                                   |                                                      |                              |                       |               | 5          |       |
|                                                                                                             |                                                                       |                                                            |                                        |                                                       |                                                      |                                                                   |                                                      |                              |                       |               |            |       |
| This instruction in                                                                                         | dicates the                                                           | e beggir                                                   | ng of                                  | a subro                                               | outine.                                              |                                                                   |                                                      | 4                            |                       | 0             | 7          |       |
| Execution conc                                                                                              | dition                                                                |                                                            |                                        |                                                       |                                                      |                                                                   |                                                      |                              | 5                     |               |            |       |
| Input<br>- Executior                                                                                        | 1                                                                     | Operat                                                     | ion                                    |                                                       |                                                      | Outpu<br>–                                                        | <u>ut</u>                                            |                              |                       |               |            |       |
| Operand                                                                                                     |                                                                       |                                                            |                                        |                                                       |                                                      |                                                                   | 7                                                    |                              |                       |               |            |       |
| Name                                                                                                        |                                                                       | Device                                                     |                                        |                                                       |                                                      |                                                                   | ister                                                |                              |                       |               | Constant   | Ind   |
| n Subroutine                                                                                                | <u>X Y</u>                                                            | RS                                                         | 1.                                     | C. XW                                                 |                                                      |                                                                   |                                                      |                              | J                     | ĸ             | √ (Note)   |       |
| number                                                                                                      |                                                                       |                                                            |                                        |                                                       |                                                      |                                                                   |                                                      |                              |                       |               |            |       |
| The begging                                                                                                 |                                                                       | loutine                                                    | num                                    |                                                       | inuicat                                              | eu.                                                               |                                                      |                              |                       |               |            |       |
| Mair                                                                                                        | n program                                                             | ٠.                                                         | C                                      | 5                                                     | S                                                    | ubroutine                                                         |                                                      |                              |                       |               |            |       |
|                                                                                                             | CALL N.008                                                            |                                                            |                                        |                                                       | -[ SU                                                | BR (008)]—                                                        |                                                      |                              |                       |               |            |       |
|                                                                                                             |                                                                       | X                                                          |                                        | <.                                                    |                                                      |                                                                   |                                                      |                              |                       |               |            |       |
|                                                                                                             |                                                                       | $\mathbf{\cup}$                                            |                                        |                                                       |                                                      | <br>[ RF                                                          | тц                                                   |                              |                       |               |            |       |
|                                                                                                             |                                                                       |                                                            |                                        |                                                       | 1                                                    | L · · ·                                                           |                                                      |                              |                       |               |            |       |
|                                                                                                             | 2                                                                     |                                                            |                                        |                                                       |                                                      |                                                                   |                                                      |                              |                       |               |            |       |
| Note                                                                                                        | X                                                                     | )                                                          | ia 0                                   |                                                       | -<br>-<br>-                                          |                                                                   | 10)                                                  |                              |                       |               |            |       |
| Note<br>• The possible si<br>• Refer to the CA                                                              | ubroutine<br>ALL instruc                                              | number<br>ction (Fl                                        | is 0<br>JN 1                           | to 15 (1<br>28) and                                   | 1) or 0<br>the RI                                    | to 255 (T<br>T instruct                                           | lS).<br>ion (FU                                      | N 12                         | 9).                   |               |            |       |
| Note The possible si Refer to the CA The SUBR inst Nesting of sub-                                          | ubroutine<br>ALL instruction ca<br>routine is in                      | number<br>ction (Fl<br>n be pro<br>not allov               | is 0<br>JN 1<br>ograr<br>ved.          | to 15 (1<br>28) and<br>nmed c<br>That is.             | 1) or C<br>I the RI<br>only in t<br>the CA           | to 255 (T<br>ET instruct<br>ne prograr<br>LL instruc              | lS).<br>ion (FU<br>n type '<br>tion car              | N 12<br>Subr                 | 9).<br>outin<br>be u: | ne'.<br>sed i | in a subro | utine |
| Note<br>• The possible si<br>• Refer to the CA<br>• The SUBR inst<br>• Nesting of subi<br>• No other instru | ubroutine<br>ALL instruction ca<br>routine is in<br>ction cann        | number<br>ction (Fl<br>in be pro<br>not allov<br>not be pl | is 0<br>JN 1<br>ograr<br>ved.<br>lacec | to 15 (1<br>28) anc<br>nmed c<br>That is,<br>d on the | 1) or 0<br>I the RI<br>only in t<br>the CA<br>rung c | to 255 (T<br>ET instruct<br>ne prograr<br>LL instruc<br>f the SUB | lS).<br>ion (FU<br>n type '<br>ttion car<br>R instru | N 12<br>Subre<br>nnot l      | 9).<br>outin<br>be us | ne'.<br>sed i | in a subro | utine |
| Note<br>• The possible st<br>• Refer to the CA<br>• The SUBR inst<br>• Nesting of subi<br>• No other instru | ubroutine<br>ALL instruct<br>routine is r<br>ction can                | number<br>ction (Fl<br>n be pro<br>not allov<br>not be pl  | is 0<br>JN 1<br>ograr<br>ved.<br>laced | to 15 (T<br>28) and<br>mmed c<br>That is,<br>d on the | 1) or C<br>I the RI<br>only in t<br>the CA<br>rung c | to 255 (T<br>ET instruct<br>ne prograr<br>LL instruc<br>f the SUB | lS).<br>ion (FU<br>n type '<br>tion car<br>R instru  | N 12<br>Subre<br>nnot l      | 9).<br>outin<br>be u: | ne'.<br>sed i | in a subro | utine |
| Note<br>• The possible si<br>• Refer to the C4<br>• The SUBR inst<br>• Nesting of subi<br>• No other instru | ubroutine<br>ALL instruct<br>ruction can<br>routine is n<br>ction can | number<br>ction (Fl<br>in be pro<br>not allov<br>not be pl | is 0<br>JN 1<br>ograr<br>ved.<br>laced | to 15 (1<br>28) and<br>nmed c<br>That is,<br>d on the | 1) or 0<br>I the RI<br>only in t<br>the CA<br>rung c | to 255 (T<br>T instruct<br>he prograr<br>LL instruc<br>f the SUB  | lS).<br>ion (FU<br>n type '<br>tion car<br>R instru  | N 12<br>Subrannot I<br>ction | 9).<br>outin<br>be u: | ne'.<br>sed i | in a subro | utine |
| Note<br>• The possible si<br>• Refer to the CA<br>• The SUBR inst<br>• Nesting of subi<br>• No other instru | ubroutine<br>ALL instruction can<br>routine is in<br>action can       | number<br>ction (Fl<br>in be pro<br>not allov<br>not be pl | is 0<br>JN 1<br>ograr<br>ved.<br>lacec | to 15 (1<br>28) and<br>nmed c<br>That is,<br>d on the | 1) or 0<br>I the RI<br>only in t<br>the CA<br>rung c | to 255 (T<br>ET instruct<br>ne prograr<br>LL instruc<br>f the SUB | lS).<br>ion (FU<br>n type '<br>tion car<br>R instru  | N 12<br>Subrennot I          | 9).<br>outin<br>be us | ne'.<br>sed i | in a subro | utine |

6F3B0250

# 7. Instructions FUN 140 EI Enable interrupt Expression Input -[EI]- Output Function When the input is ON, this instruction enables the execution of user designated interrupt operation, i.e. timer interrupt program and I/O interrupt programs.

6F3B0250

### **Execution condition**

| Input    | Operation               |                     | Output |
|----------|-------------------------|---------------------|--------|
| OFF      | No execution            |                     | OFF    |
| ON       | Execution               |                     | ÔN.    |
| Operan   | d                       |                     |        |
| No opera | and is required.        |                     |        |
| Examp    | le                      |                     |        |
| 1-1      | DI _                    |                     |        |
| z⊢[      | )00000 MOV D1000){D0001 | MOV D1001]          |        |
| 3–[      | EI ]                    | $\overline{\Omega}$ |        |

In the above example, the D1 instruction disables the interrupt. Then the EI instruction enables the interrupt again. As a result, the rung 2 instructions can be executed without interruption between each instructions.

- Refer to the DI instruction (FUN 141).
- If an interrupt factor is occurred during the interrupt disabled state, the interrupt is kept waiting and it will be executed just after the EI instruction is executed.
- The EI instruction can be used only in the main program.



### Expression

Input -[ DI ]- Output

### Function

When the input is ON, this instruction disables the execution of user designated interrupt operation, i.e. timer interrupt program and I/O interrupt programs.

### **Execution condition**

| Input | Operation    | Output    |
|-------|--------------|-----------|
| OFF   | No execution | OFF       |
| ON    | Execution    | ON STATES |

### Operand

No operand is required.

### Example



In the above example, the interrupt is disabled when R000 is ON, and it is enabled when R000 is OFF.

- Refer to the EI instruction (FUN 140).
- If an interrupt factor is occurred during the interrupt disabled state, the interrupt is kept waiting and it will be executed just after the EI instruction is executed.
- The DI instruction can be used only in the main program.

### 6F3B0250 7. Instructions FUN 142 IRET Interrupt return Expression |---[ IRET ]-| **Function** This instruction indicates the end of an interrupt program. When program execution reaches this instruction, it returns to the original location of the main program (or subroutine). **Execution condition** Input Operation Output Execution -Operand No operand is required. Example RØØØØ R0010 -f An interrupt program (Timer interrupt, 1/O interrupt #1, #2, #3 or #4)

{IRET}

### Note

10

- The IRET instruction can be used only in an interrupt program.
- There is no specific instruction which indicates the beginning of the interrupt program.

### FUN 143 WDT Watchdog timer reset

### Expression

Input –[WDT *n* ]– Output

### Function

When the input is ON, this instruction extend the scan time over detection time by 200 ms. Normally, T1/T1S detects the scan time-over if a scan is not finished within 200 ms. This instruction can be used to extend the detection time.

### **Execution condition**

| Input | Operation    | Output |
|-------|--------------|--------|
| OFF   | No execution | OFF    |
| ON    | Execution    | ON     |
|       |              |        |

### Operand

|   | Name        | Device |   |   |   |    |    |    | Register |    |    |   |   |   |   |   |   | Constant | Index |
|---|-------------|--------|---|---|---|----|----|----|----------|----|----|---|---|---|---|---|---|----------|-------|
|   |             | Х      | Υ | R | S | Τ. | C. | XW | YW       | RW | SW | ۲ | С | D | Ι | J | Κ |          |       |
| n | Extend time |        |   |   |   |    |    |    |          |    |    |   |   |   |   |   |   | 1 - 100  |       |
|   |             |        |   |   |   |    |    |    |          |    |    |   |   |   |   |   |   |          |       |

### Example



When R020 is ON, the scan time detection time is extended by 200 ms. The operand *n* has no effect on the extended time. It is fixed as 200 ms.



### Note

• As for the upper T-series PLCs, the operand *n* specifies the extended time. However in the T1/T1S, it is fixed as 200 ms regardless of the operand *n*.

### FUN 144 STIZ Step sequence initialize

### Expression

Input –[ STIZ (*n*) A ]– Output

### Function

When the input is ON, *n* devices starting with *A* are reset to OFF, and *A* is set to ON. This instruction is used to initialize a series of step sequence. The step sequence is useful to describe a sequential operation.

6F3B0250

### **Execution condition**

| Input | Operation                                 | Output |
|-------|-------------------------------------------|--------|
| OFF   | No execution                              | OFF    |
| ON    | Execution at the rising edge of the input | ON     |

### Operand

| _ |              |   |        |              |   |    |    |    |          |    |    |   |   |   |   |   |   |        |       |
|---|--------------|---|--------|--------------|---|----|----|----|----------|----|----|---|---|---|---|---|---|--------|-------|
|   | Name         |   | Device |              |   |    |    |    | Register |    |    |   |   |   |   |   |   |        | Index |
|   |              | Х | Υ      | R            | S | Τ. | C. | XW | YW       | RW | SW | ۲ | С | D | - | J | Κ |        |       |
| n | Size of step |   |        |              |   |    |    |    |          |    |    |   |   |   |   |   |   | 1 - 64 |       |
|   | sequence     |   |        |              |   |    |    |    |          |    |    |   |   |   |   |   |   |        |       |
| Α | Start device |   |        | $\checkmark$ |   |    |    |    |          |    |    |   |   |   |   |   |   |        |       |

### Example

R0020

-[ STIZ (10) R0400]

When R020 is changed from OFF to ON, R400 is set to ON and subsequent 9 devices (R401 to R409) are reset to OFF.

This instruction initializes a series of step sequence, 10 devices starting with R400.



- The STIZ instruction is used together with STIN (FUN 145) and STOT (FUN 146) instructions to configure the step sequence.
- The STIZ instruction is executed only when the input is changed from OFF to ON.





### FUN 146 STOT Step sequence output

### Expression

Input –[ STOT A ]–

### Function

When the input is ON, the device A is set to ON and the devices of STIN instructions on the same rung are reset to OFF.

6F3B0250

### **Execution condition**

| Input | Operation    | Output |            |
|-------|--------------|--------|------------|
| OFF   | No execution | -      |            |
| ON    | Execution    |        | <b>(</b> ) |
|       |              |        |            |

### Operand

|   | Name        | Device |   |   |   |    |    | Register |    |    |    |   |   |   |   |   |   | Constant | Index |
|---|-------------|--------|---|---|---|----|----|----------|----|----|----|---|---|---|---|---|---|----------|-------|
|   |             | Х      | Υ | R | S | Τ. | C. | XW       | YW | RW | SW | T | С | D | Ι | J | Κ |          |       |
| Α | Step device |        |   |   |   |    |    |          |    |    |    |   |   |   |   |   |   |          |       |

### Example

See example on STIN (FUN 145) instruction.

T1/T1S User's Manual

### Note

- The STIZ, STIN and STOT instructions are used together to configure the step sequence.
- Two or more STOT instructions can be placed on one rung to perform simultaneous sequences.



• Two or more STIN instructions can be placed on one rung in parallel or in series to perform loop or convergence of sequences. (Max. 11 STIN instructions on one rung)



• To perform the conditional branch (sequence selection), separate the rungs as follows. This limitation is applied to T1 version 1.00 only.



| FUN 147   F/F   Flip-flop |
|---------------------------|
|---------------------------|

### Expression

| Set input   | –S | F/F | Q – Output |
|-------------|----|-----|------------|
| Reset input | –R | Α   |            |

### Function

When the set input is ON, the device *A* is set to ON. When the reset input is ON, the device *A* is reset to OFF. When both the set and reset inputs are OFF, the device *A* remains the state. If both the set and reset inputs are ON, the device *A* is reset to OFF.

The state of the output is the same as the device *A*.

### **Execution condition**

| Set   | Reset | Operation                               | Output |
|-------|-------|-----------------------------------------|--------|
| input | input |                                         |        |
| OFF   | OFF   | No execution (A remains previous state) | Same   |
|       | ON    | Resets A to OFF                         | as A   |
| ON    | OFF   | Sets A to ON                            |        |
|       | ON    | Resets A to OFF                         |        |

### Operand

|   | Name   | Device 💊 |   |   |   |    | Register |    |    |    |    |   |   |   | Constant | Index |   |  |  |
|---|--------|----------|---|---|---|----|----------|----|----|----|----|---|---|---|----------|-------|---|--|--|
|   |        | Х        | Υ | R | S | Τ. | C.       | XW | YW | RW | SW | Т | С | D |          | J     | Κ |  |  |
| A | Device |          |   |   |   |    |          |    |    |    |    |   |   |   |          |       |   |  |  |

### Example



When X003 is ON, R10E is set to ON. When X004 is ON, R10E is reset to OFF. If both are ON, R10E is reset to OFF.

An example timing diagram is shown below.

| X003 |  |  |
|------|--|--|
| X004 |  |  |
| R10E |  |  |

### Note

For the set input, direct linking to a connecting point is not allowed. In this case, insert a dummy contact (always ON = S04F, etc.) just before the input. Refer to Note of Shift register FUN 074.

### 7. Instructions FUN 149 U/D Up-down counter Expression

6F3B0250

### Direction input $-\begin{bmatrix} U & U/D & Q \\ C & & \\ Enable input & -\begin{bmatrix} E & A \end{bmatrix}$ Output

### Function

While the enable input is ON, this instruction counts the number of the count input changes from OFF to ON. The count direction (up count or down count) is selected by the state of the direction input. The count value is stored in the counter register *A*. The count value range is 0 to 65535.

- Up count when the direction input is ON
- Down count when the direction input is OFF

When the enable input is OFF, the counter register A is cleared to 0.

### **Execution condition**

| Enable | Operation                                        | Output |
|--------|--------------------------------------------------|--------|
| input  |                                                  |        |
| OFF    | No operation (A is cleared to 0)                 | OFF    |
| ON     | Count value is not limit value (0 or 65535)      | OFF    |
|        | Count value is limit value and count input is ON | ON     |

### Operand

|   | Name        | Device |   |   |   |    |    |    | Register |    |    |   |   |   |   |   |   |  | Index |
|---|-------------|--------|---|---|---|----|----|----|----------|----|----|---|---|---|---|---|---|--|-------|
|   |             | Х      | Υ | R | S | Τ. | C. | XW | YW       | RW | SW | Т | С | D | Ι | J | Κ |  |       |
| Α | Count value |        |   |   |   |    |    | 5  |          |    |    |   |   |   |   |   |   |  |       |

### Example



T1S or

| FUN 154   CLND   Set calendar |
|-------------------------------|
|-------------------------------|

### Expression

Input –[ A CLND ]– Output

### Function

When the input is ON, the built-in clock/calendar is set to the date and time specified by 6 registers starting with *A*. If an invalid data is contained in the registers, the operation is not executed and the output is turned ON.

### Execution condition

| Input | Operation                        | Output |
|-------|----------------------------------|--------|
| OFF   | No operation                     | OFF    |
| ON    | Execution (data is valid))       | OFF    |
|       | No execution (data is not valid) | ON     |

### Operand

|   | Name           |   | Device |   |   |    |    |    | Register |    |        |   |   |   |   |   | Constant | Index |  |
|---|----------------|---|--------|---|---|----|----|----|----------|----|--------|---|---|---|---|---|----------|-------|--|
|   |                | Х | Y      | R | S | Τ. | C. | XW | YW       | RW | SW     | Т | С | D | Ι | J | Κ        |       |  |
| Α | Start of table |   |        |   |   |    |    |    |          |    | $\sim$ |   |   |   |   |   |          |       |  |

### Example

When R020 is ON, the clock/calendar is set according to the data of D0050 to D0055, and the output is OFF (R0031 is OFF).

If D0050 to D0055 contains invalid data, the setting operation is not executed and the output is turned ON (R0031 comes ON).



### Note

• The day of the week is automatically.

|--|

### Expression

Input –[ A CLDS B ]– Output

### Function

When the input is ON, this instruction subtracts the date and time stored in 6 registers starting with *A* from the current date and time, and stores the result in 6 registers starting with *B*. If an invalid data is contained in the registers, the operation is not executed and the output is turned ON.

### **Execution condition**

| Input | Operation                        | Output |
|-------|----------------------------------|--------|
| OFF   | No operation                     | OFF    |
| ON    | Execution (data is valid))       | OFF    |
|       | No execution (data is not valid) | ON     |

### Operand

|   | Name       |   |   | Dev | /ice |    |    |    | Register     |              |    |   |   |   |   |   |   | Constant | Index |
|---|------------|---|---|-----|------|----|----|----|--------------|--------------|----|---|---|---|---|---|---|----------|-------|
|   |            | Х | Υ | R   | S    | Τ. | C. | XW | YW           | RW           | SW | Т | С | D | Ι | J | Κ |          |       |
| Α | Subtrahend |   |   |     |      |    |    | V  |              | $\checkmark$ |    |   |   |   |   |   |   |          |       |
| В | Result     |   |   |     |      |    |    |    | $\checkmark$ |              |    |   |   |   |   |   |   |          |       |

### Example

|  | R0035 |
|--|-------|
|  |       |

When R020 is ON, the date and time data recorded in D0050 to D0055 are subtracted from the current date and time of clock/calendar, and the result is stored in D0100 to D0105. In normal operation, the output is OFF (R0035 is OFF). If D0050 to D0055 contains invalid data,

the operation is not executed and the output is turned ON (R0035 comes ON).

### Current date & time

| • |       |       |       | F 0   |           | F 0   |          |
|---|-------|-------|-------|-------|-----------|-------|----------|
|   | H0098 |       | D0050 | H0097 | D0100     | H0000 | (Year)   |
|   | H0001 |       | D0051 | H0010 | D0101     | H0003 | (Month)  |
|   | H0015 | minus | D0052 | H0010 | <br>D0102 | H0007 | (Day)    |
|   | H0017 |       | D0053 | H0015 | D0103     | H0001 | (Hour)   |
|   | H0000 |       | D0054 | H0030 | D0104     | H0030 | (Minute) |
|   | H0000 |       | D0055 | H0000 | D0105     | H0000 | (Second) |
| 1 |       |       |       |       |           |       |          |

### Note

• Future date and time cannot be used as subtrahend A.

In the calculation result, it means that 1 year is 365 days and 1 month is 30 days.

T1S only

MV e<sub>n-1</sub> D<sub>n-1</sub> PV<sub>n-1</sub> SV<sub>n-1</sub> Ir Dr MV<sub>n</sub> C Δt

### 7. Instructions

| FUN 156 | PID3 | Pre-derivative real PID |
|---------|------|-------------------------|
|---------|------|-------------------------|

### Expression

Input –[ A PID3  $B \rightarrow C$  ]– Output

### Function

Performs PID (Proportional, Integral, Derivative) control which is a fundamental method of feed-back control. (Pre-derivative real PID algorithm) This PID3 instruction has the following features.

- For derivative action, incomplete derivative is used to suppress interference of high-frequency noise and to expand the stable application range,
- Controllability and stability are enhanced in case of limit operation for MV, by using digital PID algorithm succeeding to benefits of analog PID.
- Auto, cascade and manual modes are supported in this instruction.
- Digital filter is available for PV.
- Direct / reverse operation is selectable.

### **Execution condition**

| Input | Operation                          |              | Output    |
|-------|------------------------------------|--------------|-----------|
| OFF   | Initialization                     |              | OFF       |
| ON    | Execute PID every setting interval | <b>O'</b> () | ON when   |
|       |                                    |              | execution |

### Operand

|   | Name               |   |   | Dev | vice | ice |    |              | -  |              |              | Reg | ister |              |   |   |   | Constant | Index |
|---|--------------------|---|---|-----|------|-----|----|--------------|----|--------------|--------------|-----|-------|--------------|---|---|---|----------|-------|
|   |                    | Х | Y | R   | S    | Τ.  | C. | XW           | YW | RW           | SW           | Т   | С     | D            | I | J | Κ |          |       |
| A | Top of input data  |   |   |     |      | Ţ.  |    |              |    |              | $\checkmark$ |     |       | $\checkmark$ |   |   |   |          |       |
| В | Top of parameter   |   |   |     |      |     |    | $\checkmark$ |    | $\checkmark$ |              |     |       |              |   |   |   |          |       |
| С | Top of output data |   |   |     |      |     |    |              |    |              |              |     |       |              |   |   |   |          |       |

|     | Input data                   |      | Control parameter      | er             |     | Output data           |
|-----|------------------------------|------|------------------------|----------------|-----|-----------------------|
| A   | Process input value PVC      | В    | Proportional gain      | K <sub>P</sub> | С   | Manipulation value    |
| A+1 | A-mode set value ASV         | B+1  | Integral time          | T              | C+1 | Last error            |
| A+2 | C-mode set value CSV         | B+2  | Derivative time        | T <sub>D</sub> | C+2 | Last derivative value |
| A+3 | M-mode MV input MMV          | B+3  | Dead-band              | GP             | C+3 | Last PV               |
| A+4 | MV tracking input <b>TMV</b> | B+4  | A-mode initial SV      | ISV            | C+4 | Last SV               |
| A+5 | Mode setting MODE            | B+5  | Input filter constant  | FT             | C+5 | Integral remainder    |
|     |                              | B+6  | ASV differential limit | DSV            | C+6 | Derivative remainder  |
|     |                              | B+7  | MMV differential limit | DMMV           | C+7 | Internal MV           |
|     | A-mode: Auto mode            | B+8  | Initial status         | STS            | C+8 | Internal counter      |
|     | C-mode: Cascade mode         | B+9  | MV upper limit         | МН             | C+9 | Control interval      |
|     | M-mode: Manual mode          | B+10 | MV lower limit         | ML             |     |                       |
|     |                              | B+11 | MV differential limit  | DMV            |     |                       |

*B+12* Control interval setting



n



6F3B0250

PID algorithm:

 $\Delta MV_n = K_P \cdot (\Delta P_n + \Delta I_n + \Delta D_n)$  $MV_n = MV_{n-1} \pm \Delta MV_n$ 

n = 0.1 (Fixed)

Here,

 $\Delta \mathbf{P}_n = \mathbf{e}_n - \mathbf{e}_{n-1}$  $e_{\text{n}}=SV_{\text{n}}-PV_{\text{n}}$ (If  $GP \neq 0$ , Gap is applied)  $\Delta I_n = \frac{\mathbf{e}_n \cdot \Delta t + \mathbf{I} \mathbf{r}}{\mathbf{T}_1}$ (If  $T_1 = 0$ , then  $\Delta I_n = 0$ )  $\Delta D_n = \frac{T_D \cdot (PV_{n-1} - PV_n) - \Delta t \cdot D_{n-1} + Dr}{T_D \cdot (PV_{n-1} - PV_n) - \Delta t \cdot D_n}$  $\Delta t + \eta \cdot T_D$  $\mathsf{D}_n = \mathsf{D}_{n-1} + \Delta \mathsf{D}_n$ 

### **Parameter details**

В

B+1

B+2

B+3

B+4

B+5

B+6

B+7

Process input value PVC (0.00 to 100.00 %) Α Auto mode set value ASV (0.00 to 100.00 %) A+1 A+2 Cascade mode set value CSV (0.00 to 100.00 %) Manual mode MV MMV (-25.00 to 125.00 %) A+3 MV tracking input TMV (-25.00 to 125.00 %) A+4 A+5 Mode setting MODE

Proportional gain  $K_P$  (0.00 to 327.67)

Derivative time  $T_D$  (0.000 to 32.767 min.)

Gap (dead-band) GP (0.00 to 10.00 %)

Input filter constant FT (0.000 to 0.999)

Integral time  $T_1$  (0.000 to 32.767 min.,  $\Delta I_n=0$  if  $T_1=0$ )

Auto mode initial set value ISV (0.00 to 100.00 %)

MMV differential limit DMMV (0.00 to 100.00 %/Δt)

ASV differential limit DSV (0.00 to 100.00 %/Δt)

- Data range: 0 to 10000 Data range: 0 to 10000 Data range: 0 to 10000
- Data range: -2500 to 12500
- Data range: -2500 to 12500

Operation mode

- 00: Manual mode
- 01: Auto mode
- 10: Cascade mode
- 11: (Reserve)

Tracking designation

- 0: No
- 1: Yes

Data range: 0 to 32767 Data range: 0 to 32767 Data range: 0 to 32767 Data range: 0 to 1000 Data range: 0 to 10000 Data range: 0 to 999 Data range: 0 to 10000 Data range: 0 to 10000

Basic Hardware and Function 239



6F3B0250

Set value differential limit DSV, manipulation value upper/lower limit MH/ML and differential limit DMV are effective.

Bump-less changing from auto mode to manual mode is available. (Manual mode manipulation value MMV is over-written by current MV automatically.  $MMV \leftarrow MV$ )

T1/T1S User's Manual

Manual mode

In this mode, the manipulation value MV can be directly controlled by the input value of MMV. MV differential limit for manual mode DMMV is effective. MH/ML and DMV are not effective. When mode is changed from manual to auto or cascade, the operation is started from the current MV.

Cascade mode

This is a mode for PID cascade connection. PID is executed with CSV as set value. Different from the auto mode, set value differential limit is not effective. Manipulation value upper/lower limit MH/ML and differential limit DMV are effective. Bump-less changing from cascade mode to manual mode is available. (Manual mode manipulation value MMV is over-written by current MV automatically. MMV  $\leftarrow$  MV) And, bump-less changing from cascade mode to auto mode is available. (Auto mode set value ASV is

over-written by current CSV automatically. ASV  $\leftarrow$  CSV)

• MV tracking

This function is available in auto and cascade modes. When the tracking designation (A+5 bit 2) is ON, tracking input TMV is directly output as MV.

Manipulation value upper/lower limit MH/ML is effective, but differential limit DMV is not effective. When the tracking designation is changed to OFF, the operation is started from the current MV.

- PID3 instruction is only usable on the main-program.
- PID3 instruction must be used under the constant scan mode. The constant scan interval can be selected in the range of 10 to 200 ms, 10 ms increments.
- The data handled by the PID3 instruction are % units. Therefore, process input value PVC, manipulation value MV, etc., should be converted to % units (scaling), before and/or after the PID3 instruction. For this purpose, the function generator instruction (FUN165 FG) is convenient.

## FUN 160 UL Upper limit T1S only Expression Input -[A UL $B \rightarrow C$ ]- Output Input -[A UL $B \rightarrow C$ ]- Output

### Function

When the input is ON, the following operation is executed. (Upper limit for *A* by *B* If  $A \le B$ , then C = A. If A > B, then C = B.

### **Execution condition**

| Input | Operation                            | Output |
|-------|--------------------------------------|--------|
| OFF   | No operation                         | OFF    |
| ON    | Execution: not limited ( $A \le B$ ) | OFF    |
|       | Execution: limited $(A > B)$         | ON     |

### Operand

|   | Name           |   | Device |   |   |    |    |              |              | 4            |                         | Reg |   | Constant | Index |   |   |  |              |
|---|----------------|---|--------|---|---|----|----|--------------|--------------|--------------|-------------------------|-----|---|----------|-------|---|---|--|--------------|
|   |                | Х | Y      | R | S | Τ. | С. | XW           | YW           | RW           | SW                      | Т   | С | D        | I     | J | Κ |  |              |
| Α | Operation data |   |        |   |   |    |    | V            |              | $\checkmark$ | $\overline{\mathbf{A}}$ |     |   |          |       |   |   |  | $\checkmark$ |
| В | Upper limit    |   |        |   |   |    |    | $\checkmark$ | $\mathbf{V}$ | $\checkmark$ |                         |     |   |          |       |   |   |  | $\checkmark$ |
| С | Destination    |   |        |   |   |    |    |              | $\checkmark$ |              |                         |     |   |          |       |   |   |  | $\checkmark$ |

### Example

| R0030      | 0                 | R0040 |
|------------|-------------------|-------|
| 1   [RW018 | UL D1200 → R₩021] |       |

When R030 is ON, the upper limit operation is executed for the data of RW018 by the data of D1200, and the result is stored in RW021.



When RW018 is 3000 and D1200 is 4000, 3000 is stored in RW021 and R0040 is OFF. When RW018 is 4500 and D1200 is 4000, the limit value 4000 is stored in RW021 and R0040 is ON.

### Note

2

This instruction deals with the data as signed integer (-32768 to 32767).



When R031 is ON, the lower limit operation is executed for the data of RW019 by the data of D1220, and the result is stored in RW022.



When RW019 is -1000 and D1220 is -1800, -1000 is stored in RW022 and R0041 is OFF. When RW019 is 800 and D1220 is 1200, the limit value 1200 is stored in RW022 and R0041 is ON.

### Note

This instruction deals with the data as signed integer (-32768 to 32767).

### Expression

Input –[ A MAX (n) B ]– Output

### Function

When the input is ON, this instruction searches for the maximum value from the table of size n words starting with A, and stores the maximum value in B and the pointer indicating the position of the maximum value in B+1. The allowable range of the table size n is 1 to 64.

6F3B0250

T1S on

### **Execution condition**

| Input | Operation    | Output |
|-------|--------------|--------|
| OFF   | No execution | OFF    |
| ON    | Execution    | ON     |
|       |              |        |

### Operand

|   | Name           |   | Device |   |   |    |    |    | Register     |              |    |   |              |   |   |   |   | Constant | Index |
|---|----------------|---|--------|---|---|----|----|----|--------------|--------------|----|---|--------------|---|---|---|---|----------|-------|
|   |                | Х | Υ      | R | S | Τ. | C. | XW | YW           | RW           | SW | Т | С            | D | Ι | J | Κ |          |       |
| Α | Start of table |   |        |   |   |    |    |    | $\checkmark$ |              | V  |   | $\checkmark$ |   |   |   |   |          |       |
| n | Table size     |   |        |   |   |    |    |    |              |              |    |   |              |   |   |   |   | 1 - 64   |       |
| В | Result         |   |        |   |   |    |    |    | V            | $\checkmark$ |    |   |              |   |   |   |   |          |       |

### Example

RØØ10 MAX (10) D0500 -[D0200

When R010 is ON, the maximum value is found from the register table D0200 to D0209 (10 words), and the maximum value is stored in D0500 and the pointer is stored in D0501.



- This instruction deals with the data as signed integer (-32768 to 32767).
- If there are two or more maximum value in the table, the lowest pointer is stored.
- If Index register K is used as operand *B*, the pointer data is discarded.

T1S of

| FUN 163   MIN   M | inimum value |
|-------------------|--------------|
|-------------------|--------------|

### Expression

Input –[ A MIN (n) B ]– Output

### Function

When the input is ON, this instruction searches for the minimum value from the table of size n words starting with A, and stores the minimum value in B and the pointer indicating the position of the minimum value in B+1. The allowable range of the table size n is 1 to 64.

### **Execution condition**

| Input | Operation    | Output |
|-------|--------------|--------|
| OFF   | No execution | OFF    |
| ON    | Execution    | ON     |
|       |              |        |

### Operand

|   | Name           |   | Device |   |   |    |    |    | Register     |              |    |   |   |   |   |   |   | Constant | Index |
|---|----------------|---|--------|---|---|----|----|----|--------------|--------------|----|---|---|---|---|---|---|----------|-------|
|   |                | Х | Υ      | R | S | Τ. | C. | XW | YW           | RW           | SW | Т | С | D | Ι | J | Κ |          |       |
| Α | Start of table |   |        |   |   |    |    |    | $\checkmark$ |              | V  |   |   |   |   |   |   |          |       |
| n | Table size     |   |        |   |   |    |    |    |              |              |    |   |   |   |   |   |   | 1 - 64   |       |
| В | Result         |   |        |   |   |    |    |    | V            | $\checkmark$ |    |   |   |   |   |   |   |          |       |

### Example

RØØ11 MIN (10) D<u>05</u>10] -[D0200

When R011 is ON, the minimum value is found from the register table D0200 to D0209 (10 words), and the minimum value is stored in D0510 and the pointer is stored in D0511.



- This instruction deals with the data as signed integer (-32768 to 32767).
- If there are two or more minimum value in the table, the lowest pointer is stored.
- If Index register K is used as operand *B*, the pointer data is discarded.

| FUN 164 | AVE | Average value |
|---------|-----|---------------|
|---------|-----|---------------|

### Expression

Input –[ A AVE (n) B ]– Output

### **Function**

When the input is ON, this instruction calculates the average value of the data stored in the *n* registers starting with A, and stores the average value in B. The allowable range of the table size n is 1 to 64.

6F3B0250

T1S on

### **Execution condition**

| Input | Operation    | Output |   |
|-------|--------------|--------|---|
| OFF   | No execution | OFF    |   |
| ON    | Execution    | ÓN     | 0 |
|       |              |        |   |

(10) D0520]

### Operand

|   | Name           |   |   | De | vice |    |    |              | Register     |              |              |        |   |   |   |   |   | Constant | Index |
|---|----------------|---|---|----|------|----|----|--------------|--------------|--------------|--------------|--------|---|---|---|---|---|----------|-------|
|   |                | Х | Υ | R  | S    | Τ. | C. | XW           | YW           | RW           | SW           | T      | С | D | Ι | J | Κ |          |       |
| Α | Start of table |   |   |    |      |    |    | $\checkmark$ |              | $\checkmark$ | $\checkmark$ | $\neg$ |   |   |   |   |   |          |       |
| n | Table size     |   |   |    |      |    |    |              |              |              |              |        |   |   |   |   |   | 1 - 64   |       |
| В | Result         |   |   |    |      |    |    |              | $\checkmark$ |              | $\checkmark$ |        |   |   |   |   |   |          |       |

### Example

### R0012 1

-[D0200]

AVE

When R012 is ON, the average value of the data stored in the register table D0200 to D0209 (10 words), and the average value is stored in D0520.



| FUN 165 | FG  | Function generator  |
|---------|-----|---------------------|
|         | - 0 | i unotion generator |

### Expression

Input  $-[A FG (n) B \rightarrow C]$  - Output

### Function

When the input is ON, this instruction finds the function value f(x) for *A* as *x*, and stores it in *C*. The function f(x) is defined by the parameters stored in  $2 \times n$  registers starting with *B*.

### **Execution condition**

| Input | Operation    | Output |   |
|-------|--------------|--------|---|
| OFF   | No execution | OFF    |   |
| ON    | Execution    | ON     | U |
|       |              |        |   |

### Operand

| • p • | and a          |   |   |    |      |    |    |    |        |              |                         |              |   |   |   |   |          |        |  |
|-------|----------------|---|---|----|------|----|----|----|--------|--------------|-------------------------|--------------|---|---|---|---|----------|--------|--|
|       | Name           |   |   | De | vice |    |    |    |        |              | Reg                     | ister        |   |   |   |   | Constant | Index  |  |
|       |                | Х | Υ | R  | S    | Τ. | C. | XW | YW     | RW           | SW                      | F            | С | D | Ι | J | Κ        |        |  |
| Α     | Input value x  |   |   |    |      |    |    |    |        | $\checkmark$ | $\checkmark$            | $\checkmark$ |   |   |   |   |          |        |  |
| n     | Parameter size |   |   |    |      |    |    |    |        |              |                         |              |   |   |   |   |          | 1 - 32 |  |
| В     | Start of       |   |   |    |      |    |    |    |        | $\checkmark$ | $\overline{\mathbf{A}}$ |              |   |   |   |   |          |        |  |
|       | parameters     |   |   |    |      |    |    |    |        |              |                         |              |   |   |   |   |          |        |  |
| С     | Function value |   |   |    |      |    | -  | K  | $\sim$ |              |                         |              |   |   |   |   |          |        |  |
|       | f(x)           |   |   |    |      |    |    |    |        |              |                         |              |   |   |   |   |          |        |  |

### Example

M

| 1 | î         | -[-02000        | MOV   | D0e00H           | -00100 | MOV | <b>D0601</b> ]{[ | 00100 M | IOV D0602]— |  |
|---|-----------|-----------------|-------|------------------|--------|-----|------------------|---------|-------------|--|
|   | F         | -[ 02000        | MOV 1 | DØ603]-          |        |     |                  |         |             |  |
|   | F         | -[-01800        | MOU   | D0604 <u>}</u> [ | -00300 | MOV | <b>D0605</b> ]{  | 00300 M | 10V D0606]— |  |
|   | F         | L 01800         | MOV I | DØ607]-          |        |     |                  |         |             |  |
| 2 | R0010<br> | - <b>[XW004</b> | FG    | (04)             | D0600  | ÷   | D0100]—          |         |             |  |

When R010 is ON, the FG instruction finds the function value f(x) for x = XW004, and stores the result in D0100.

The function f(x) is defined by  $2 \times 4 = 8$  parameters stored in D0600 to D0607. In this example, these parameters are set at the first scan.

### Parameter table

4 registers for x parameters and subsequent 4 registers for corresponding f(x) parameters

6F3B0250



The FG instruction interpolators f(x) value for x based on the n parameters of  $(x_b y_i)$ . For example, if XW04 is 1500 (x = 1500), the result 1405 (f(x) = 1405) is stored in D0100.



- The order of the *x* parameters should be  $x_1 \le x_2 \le ... \le x_i \le ... \le x_n$ . In the above example, the data of D0600 to D0603 should be D0600 \le D0601 \le D0602 \le D0603.
- If x is smaller than x<sub>1</sub>, y<sub>1</sub> is given as f(x). In this example, D0604 data (-1800) is stored in D0100 if XW04 is smaller than D0600 (-2000).
- If x is greater than  $x_n$ ,  $y_n$  is given as f(x). In this example, D0607 data (1800) is stored in D0100 if XW04 is greater than D0603 (2000).
- The valid data range is -32768 to 32767.

T1/T1S User's Manual

| FUN 180 | ABS | Absolute value |
|---------|-----|----------------|
|---------|-----|----------------|

### Expression

Input -[ A ABS B ]- Output

### Function

When the input is ON, this instruction finds the absolute value of operand A, and stores it in B.

### **Execution condition**

| Input | Operation    | Output |  |
|-------|--------------|--------|--|
| OFF   | No execution | OFF    |  |
| ON    | Execution    | ON     |  |
|       |              |        |  |

### Operand

|   | Name        |   | Device |   |   |    |    |    |    | Register     |              |              |   |   |   |   |   | Constant | Index |
|---|-------------|---|--------|---|---|----|----|----|----|--------------|--------------|--------------|---|---|---|---|---|----------|-------|
|   |             | Х | Υ      | R | S | Τ. | C. | XW | YW | RW           | SW           | T            | С | D | Ι | J | Κ |          |       |
| Α | Source      |   |        |   |   |    |    |    |    |              | $\checkmark$ |              |   |   |   |   |   |          |       |
| В | Destination |   |        |   |   |    |    |    |    | $\checkmark$ |              | $\checkmark$ |   |   |   |   |   |          |       |

### Example

│ X0006 1 ---- (R₩038 ABS D0121]----

When X006 is ON, the absolute value of RW38 is stored in D0121. For example, if RW38 is -12000, the absolute value 12000 is stored in D0121.



### Note

• The data range of A is -32768 to 32767. If the data of A is -32768, 32767 is stored in B.

### Expression

Input –[ A NEG B ]– Output

### Function

When the input is ON, this instruction finds the 2's complement value of A, and stores it in B.

### **Execution condition**

| Input | Operation    | Output |     |
|-------|--------------|--------|-----|
| OFF   | No execution | OFF    |     |
| ON    | Execution    | ON     | 70  |
|       |              |        | ▼ / |

6F3B0250

### Operand

|   | Name        |   |   | De | vice |    |    | Register |    |              |              |              |   |   |   |   |   | Constant | Index |
|---|-------------|---|---|----|------|----|----|----------|----|--------------|--------------|--------------|---|---|---|---|---|----------|-------|
|   |             | Х | Υ | R  | S    | Τ. | C. | XW       | YW | RW           | SW           | T            | c | D | Ι | J | Κ |          |       |
| Α | Source      |   |   |    |      |    |    |          |    | $\checkmark$ | $\checkmark$ | N            |   |   |   |   |   |          |       |
| В | Destination |   |   |    |      |    |    |          |    | $\checkmark$ | $\checkmark$ | $\checkmark$ |   |   |   |   |   |          |       |

### Example

X0007 **RW039** NEG D0122

When X007 is ON, the 2's complement value (sign inverted data) of RW39 is stored in D0122. For example, if RW38 is 4660, the 2's complement value -4660 is stored in D0122.

2's complement data is calculated as follows.



### Note

• The data range of A is -32768 to 32767. If the data of A is -32768, the same data -32768 is stored in B.

T1/T1S User's Manual
# FUN 183DNEGDouble-word 2's complement

#### Expression

Input  $-[A+1 \cdot A \text{ DNEG } B+1 \cdot B]$  - Output

#### Function

When the input is ON, this instruction finds the 2's complement value of double-word data  $A+1 \cdot A$ , and stores it in  $B+1 \cdot B$ .

#### **Execution condition**

| Input | Operation    | Output |  |
|-------|--------------|--------|--|
| OFF   | No execution | OFF    |  |
| ON    | Execution    | ON C   |  |

#### Operand

|   | Name        |   |   | Dev | vice |    |    |    | Register     |              |    |              |   |   |   |   | Constant | Index |  |
|---|-------------|---|---|-----|------|----|----|----|--------------|--------------|----|--------------|---|---|---|---|----------|-------|--|
|   |             | Х | Υ | R   | S    | Τ. | C. | XW | YW           | RW           | SW | Ļ            | С | D | - | J | Κ        |       |  |
| Α | Source      |   |   |     |      |    |    |    |              | $\checkmark$ |    | $\checkmark$ |   |   |   |   |          |       |  |
| В | Destination |   |   |     |      |    |    |    | $\checkmark$ |              |    |              |   |   |   |   |          |       |  |

#### Example

X0007 1 ---- [R₩041•R₩040 DNEG D0151•D0150]

When X007 is ON, the 2's complement value (sign inverted data) of double-word register RW41 RW40 is stored in double-word register D0151 D0150.

For example, if RW41·RW40 is -1234567890, the 2's complement value 1234567890 is stored in D0151·D0150.

#### Note

• The data range of *A+1*·*A* is -2147483648 to 2147483647. If the data of *A+1*·*A* is -2147483648, the same data -2147483648 is stored in *B+1*·*B*.

h

| FUN 185 7SEG | 7 segment decode |
|--------------|------------------|
|--------------|------------------|

#### Expression

Input -[ A 7SEG B]- Output

#### **Function**

When the input is ON, this instruction converts the lower 4 bits data of A into the 7 segment code, and stores it in B. The 7 segment code is normally used for a numeric display LED.

#### **Execution condition**

| Input | Operation    | Output |
|-------|--------------|--------|
| OFF   | No execution | OFF    |
| ON    | Execution    | ÓN     |
|       |              |        |

#### Operand

|   | Name        |   |   | Dev | vice |    |    | Register |              |              |              |                   |   |              |   | Constant | Index |  |  |
|---|-------------|---|---|-----|------|----|----|----------|--------------|--------------|--------------|-------------------|---|--------------|---|----------|-------|--|--|
|   |             | Х | Υ | R   | S    | Τ. | C. | XW       | YW           | RW           | SW           | T                 | С | D            | Ι | J        | Κ     |  |  |
| Α | Source      |   |   |     |      |    |    |          |              | $\checkmark$ | $\checkmark$ | $\neg \downarrow$ |   | $\checkmark$ |   |          |       |  |  |
| В | Destination |   |   |     |      |    |    |          | $\checkmark$ |              | V            |                   |   | $\checkmark$ |   |          |       |  |  |

#### Example

X0000 **{RW015 7SEG RW010**}

When X000 is ON, the lower 4 bits data of RW15 is converted into the 7 segment code, and the result is stored in lower 8 bits of RW10. 0 is stored in upper 8 bits of RW10.

For example, if RW15 is H0009, the corresponding 7 segment code H006F is stored in RW10.



The 7 segment code conversion table is shown on the next page.

T1/T1S User's Manual

6F3B0250

| _ |         |                  |               |     |    |       |              |       |         |     |      |          |     |
|---|---------|------------------|---------------|-----|----|-------|--------------|-------|---------|-----|------|----------|-----|
|   | Operand | A (lower 4 bits) | 7 segment LED |     | 0  | beran | d <i>B</i> ( | lowe  | · 8 bit | ts) |      | Displa   | ay  |
|   | Hex     | Binary           | composition   | B7  | B6 | B5    | B4           | B3    | B2      | B1  | B0   |          |     |
|   | 0       | 0000             |               | 0   | 0  | 1     | 1            | 1     | 1       | 1   | 1    |          |     |
|   | 1       | 0001             |               | 0   | 0  | 0     | 0            | 0     | 1       | 1   | 0    |          |     |
|   | 2       | 0010             |               | 0   | 1  | 0     | 1            | 1     | 0       | 1   | 1    |          |     |
|   | 3       | 0011             | DO            | 0   | 1  | 0     | 0            | 1     | 1       | 1   | 1    | <u> </u> |     |
|   | 4       | 0100             |               | 0   | 1  | 1     | 0            | 0     | 1       | 1   | 0    | 4        |     |
|   | 5       | 0101             | B5//B1        | 0   | 1  | 1     | 0            | 1     | 1       | 0   | 1    | <u></u>  |     |
|   | 6       | 0110             | / B6 /        | 0   | 1  | 1     | 1            | 1     | 1       | 0   | 1    | <u> </u> |     |
|   | 7       | 0111             | B4/ /         | 0   | 0  | 1     | 0            | 0     | 1       | 1   | 1    | 'i<br>   |     |
|   | 8       | 1000             | B4   B2       | 0   | 1  | 1     | 1            | 1     | 1       | 1   | 1    | <u> </u> |     |
|   | 9       | 1001             | <br>B3        | 0   | 1  | 1     | 0            |       | , 1     | 1   | 1    | <u> </u> |     |
|   | A       | 1010             | 20            | 0   | 1  | 1     | 1            | 0     | 1       | 1   | 1    | H        |     |
|   | В       | 1011             |               | 0   | 1  | 1     | 1            | 1     | 1       | 0   | 0    | <u> </u> |     |
|   | С       | 1100             |               | 0   | 0  | 1     |              | 1     | 0       | 0   | 1    | Ľ        |     |
|   | D       | 1101             |               | 0   | 1  | 0     | ▶ 1          | 1     | 1       | 1   | 0    |          |     |
|   | E       | 1110             |               | 0 ( | 1  | 1     | 1            | 1     | 0       | 0   | 1    |          |     |
|   | F       | 1111             |               | 0   | 1  | 1     | 1            | 0     | 0       | 0   | 1    | i-       |     |
|   | 2       |                  |               |     |    |       |              |       |         |     |      |          |     |
| N | •       |                  |               |     |    | Ba    | sic ⊦        | lardv | vare    | and | Fund | tion     | 253 |

| FUN 186 | ASC | ASCII conversion |
|---------|-----|------------------|
|---------|-----|------------------|

#### Expression

Input -[ A ASC B ]- Output

#### Function

When the input is ON, this instruction converts the alphanumeric characters into the ASCII codes, and stores them in the register table starting with *B*. (16 characters maximum)

6F3B0250

#### **Execution condition**

| Input | Operation    | Output |
|-------|--------------|--------|
| OFF   | No execution | OFF    |
| ON    | Execution    | ÓN.    |
|       |              |        |

#### Operand

| Ope |             |   |   |    |      |    |    |    |              |    |    |   |   |   |   |   |   |          |       |
|-----|-------------|---|---|----|------|----|----|----|--------------|----|----|---|---|---|---|---|---|----------|-------|
|     | Name        |   |   | De | vice |    |    |    | Register     |    |    |   |   |   |   |   |   | Constant | Index |
|     |             | Х | Υ | R  | S    | Τ. | C. | XW | YW           | RW | SW | T | C | D | Ι | J | Κ |          |       |
| Α   | Characters  |   |   |    |      |    |    |    |              |    |    |   |   |   |   |   |   |          |       |
| В   | Start of    |   |   |    |      |    |    |    | $\checkmark$ |    | 4  |   |   |   |   |   |   |          |       |
|     | destination |   |   |    |      |    |    |    |              |    |    |   |   |   |   |   |   |          |       |

#### Example

```
│ RØØ3Ø
1┝━━┤ ├━━━{[' ABCDEFGH I J KLMN
```

ASC 00200]-

When R030 is ON, the characters 'ABCDEFGHIJKLMN' is converted into the ASCII codes, and the result is stored in 8 registers starting with lower 8 bits (byte) of D0200 (D0200 to D0207).

|       | High    | Low                                   |                           |
|-------|---------|---------------------------------------|---------------------------|
|       | F 8     | 7 0                                   |                           |
| D0200 | H42 (B) | H41 (A)                               |                           |
| D0201 | H44 (D) | H43 (C)                               |                           |
| D0202 | H46 (F) | H45 (E)                               |                           |
| D0203 | H48 (H) | H47 (G)                               |                           |
| D0204 | H4A (J) | H49 (I)                               |                           |
| D0205 | H4C (L) | H4B (K)                               |                           |
| D0206 | H4E (N) | H4D (M)                               |                           |
| D0207 |         | , , , , , , , , , , , , , , , , , , , | Previous data is remained |
|       |         |                                       |                           |

#### Note

• Only the number of bytes converted are stored. The rest are not changed. In the above example, 14 characters are converted into 14 bytes of ASCII code, and these ASCII codes are stored in 7 registers (D0200 to D0206). The data of D0207 remains unchanged.

| FUN 188 | BIN | Binary conver | sion |
|---------|-----|---------------|------|
|---------|-----|---------------|------|

#### Expression

Input –[ A BIN B ]– Output

#### Function

When the input is ON, this instruction converts the 4 digits of BCD data of A into binary, and stores in B. If any digit of A contains non-BCD code (other than H0 through H9), the conversion is not executed and the instruction error flag (ERF = S051) is set to ON.

#### **Execution condition**

| Input | Operation        | Output ERE |
|-------|------------------|------------|
| OFF   | No execution     | OFF        |
| ON    | Normal execution | ON –       |
|       | BCD data error   | OFF Set    |

#### Operand

|   | Name                    |   | Device |   |   |    |    |    | Register     |              |              |              |              |              |   |              | Constant     | Index            |  |
|---|-------------------------|---|--------|---|---|----|----|----|--------------|--------------|--------------|--------------|--------------|--------------|---|--------------|--------------|------------------|--|
|   |                         | Х | Y      | R | S | Τ. | C. | XW | YW           | RW           | SW           | Т            | С            | D            | Ι | J            | Κ            |                  |  |
| A | Source (BCD)            |   |        |   |   |    |    | V  | V            | N            | $\sim$       | $\checkmark$ |              |              |   |              | $\checkmark$ | H0000 -<br>H9999 |  |
| В | Destination<br>(Binary) |   |        |   |   |    |    |    | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |   | $\checkmark$ | $\checkmark$ |                  |  |

#### Example

RØØ17 -[RW028

When R017 is ON, the BCD data of RW28 is converted into binary data, and the result is stored in D0127.

For example, if RW28 is H1234, the binary data 1234 is stored in D0127.



**BIN D0127** 

#### Note

• If any digit of operand A contains non-BCD data, e.g. H13A6, the conversion is not executed and the instruction error flag (ERF = S051) is set to ON.

| FUN 190 | BCD | BCD conversion |
|---------|-----|----------------|
|---------|-----|----------------|

#### Expression

Input –[ A BCD B ]– Output

#### Function

When the input is ON, this instruction converts the binary data of A into BCD, and stores in B. If the data of A is not in the range of 0 to 9999, the conversion is not executed and the instruction error flag (ERF = S051) is set to ON.

6F3B0250

#### **Execution condition**

| Input | Operation         | Output ERF |
|-------|-------------------|------------|
| OFF   | No execution      | OFF        |
| ON    | Normal execution  | ON –       |
|       | Binary data error | OFF Set    |

#### Operand

| <b>Op</b> | i ana                |   |        |   |   |    |    |    |              |              |              |              |   |   |   |              |              |          |       |
|-----------|----------------------|---|--------|---|---|----|----|----|--------------|--------------|--------------|--------------|---|---|---|--------------|--------------|----------|-------|
|           | Name                 |   | Device |   |   |    |    |    | Register     |              |              |              |   |   |   |              |              | Constant | Index |
|           |                      | Х | Υ      | R | S | Τ. | C. | XW | YW           | RW           | SW           | Т            | С | D | Ι | J            | Κ            |          |       |
| A         | Source<br>(Binary)   |   |        |   |   |    |    | V  | V            | N            | $\checkmark$ | $\checkmark$ |   |   |   | $\checkmark$ | $\checkmark$ | 0 - 9999 |       |
| В         | Destination<br>(BCD) |   |        |   |   |    | •  |    | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |   |   |   | $\checkmark$ | $\checkmark$ |          |       |

#### Example

R0019 [D0211

When R019 is ON, the data of D0211 is converted into 4-digit BCD, and the result is stored in RW22.

For example, if D0211 is 5432, the BCD data H5432 is stored in RW22.



BCD RW022

#### Note

56

• If the data of A is smaller than 0 or greater than 9999, the conversion is not executed and the instruction error flag (ERF = S051) is set to ON.

| FUN 235 I/O Direct I/O | ) |
|------------------------|---|
|------------------------|---|

#### Expression

Input -[I/O(n) A] - Output

#### Function

When the input is ON, this instruction immediately updates the external input (XW) and output (YW) registers which are in the range of *n* registers starting with *A*.

- For XW register ... reads the data from corresponding input circuit
- · For YW register ... writes the data into corresponding output circuit

#### **Execution condition**

| Input | Operation    | Output |          |
|-------|--------------|--------|----------|
| OFF   | No execution | OFF    |          |
| ON    | Execution    | ON     | <i>y</i> |

#### Operand

|   | Name          | Device |   |   |   |    |    |    | Register     |    |    |   |   |   |   | Constant | Index |        |  |
|---|---------------|--------|---|---|---|----|----|----|--------------|----|----|---|---|---|---|----------|-------|--------|--|
|   |               | Х      | Υ | R | S | Τ. | C. | XW | YW           | RW | S₩ | Т | С | D | Ι | J        | Κ     |        |  |
| n | Register size |        |   |   |   |    |    |    |              |    |    |   |   |   |   |          |       | 1 - 32 |  |
| Α | Start of      |        |   |   |   |    |    |    | $\checkmark$ |    | ,  |   |   |   |   |          |       |        |  |
|   | registers     |        |   |   |   |    | -  |    |              |    |    |   |   |   |   |          |       |        |  |

#### Example

R0010 -[ I/0

When R010 is ON, the 4 registers starting with XW00 (XW00 to YW03) are updated immediately.



(04) XW000

#### Note

• In the T1/T1S, the following register/device range is only effective for this Direct I/O instruction.

|        | Input on basic unit | Output on basic unit | Option card   | T2 I/O modules |
|--------|---------------------|----------------------|---------------|----------------|
|        |                     |                      |               |                |
| T1-16  | X000 - X007         | Y020 - Y027          | _             |                |
| T1-28  | X000 - X00D         | Y020 - Y02D          | -             |                |
| T1-40  | X000 - X007         | Y020 - Y027          | Not effective | Effective      |
| T1-40S | X000 - X007         | Y020 - Y027          | Not effective | Effective      |

• The Direct I/O instruction can be programmed in the main program and in the interrupt program. If this instruction is programmed in both, the instruction in the main program should be executed in interrupt disable state. Refer to EI (FUN 140) and DI (FUN 141) instructions.

# FUN 236XFERExpanded data transfer

#### Expression

Input –[ A XFER  $B \rightarrow C$  ]– Output

#### Function

When the input is ON, data block transfer is performed between the source which is indirectly designated by A and A+1 and the destination which is indirectly designated by C and C+1. The transfer size (number of words) is designated by B.

The transfer size is 1 to 256 words. (except for writing into EEPROM) Data transfer between the following objects are available.

- CPU register (RW or D) ↔ EEPROM (D register)
- CPU register (RW or D) ↔ T1S RS-485 port (T1S only)

#### **Execution condition**

| OFF         No execution         OFF         -           ON         Normal execution         ON         -           When error is occurred (see Note)         ON         Sec | Input | Operation                         | Output | ERF |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------|--------|-----|
| ON Normal execution ON –<br>When error is occurred (see Note) ON Set                                                                                                         | OFF   | No execution                      | OFF    | _   |
| When error is occurred (see Note)                                                                                                                                            | ON    | Normal execution                  | ON     | _   |
|                                                                                                                                                                              |       | When error is occurred (see Note) | • ON   | Set |

#### Operand

| Name                     |                                                                          |                                                                                                                             | Dev                           | vice                                                                  |                                                                        |                                                                                 | Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             | Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Index                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    |
|--------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | Х                                                                        | Υ                                                                                                                           | R                             | S                                                                     | Τ.                                                                     | C.                                                                              | XW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | YW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Т                                                                                                    | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D                                                                                                                       | Ι                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | J                                                                                                                                                                                                                                                                                                                                           | Κ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                    |
| Source                   |                                                                          |                                                                                                                             |                               |                                                                       |                                                                        |                                                                                 | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\checkmark$                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\checkmark$                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                    |
| Transfer size            |                                                                          |                                                                                                                             |                               |                                                                       |                                                                        |                                                                                 | $\overline{\mathbf{x}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                    |
| Destination<br>parameter |                                                                          |                                                                                                                             |                               | •                                                                     | C                                                                      | 5                                                                               | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                    |
|                          | Name<br>Source<br>parameter<br>Transfer size<br>Destination<br>parameter | Name     X       Source     x       parameter     x       Transfer size     x       Destination     x       parameter     x | Name     X     Y       Source | NameDevXYRSource<br>parameter-Transfer size-Destination<br>parameter- | NameDeviceXYRSSource<br>parameterTransfer sizeDestination<br>parameter | NameDeviceXYRST.Source<br>parameterIIITransfer sizeIIDestination<br>parameterII | NameDeviceXYRST.C.Source<br>parameterIIIITransfer sizeIIIIDestination<br>parameterIII <tdiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii< td=""><td>Name     Device       X     Y     R     S     T.     C.     XW       Source     Image: Additional system of the system of</td><td>Name     Device       X     Y     R     S     T.     C.     XW     YW       Source     Image: Additional system       Transfer size     Image: Additional system       Destination     Image: Additional system     Image: Additional system     Image: Additional system     Image: Additional system     Image: Additional system</td><td>Name     Device       X     Y     R     S     T.     C.     XW     YW     RW       Source     Image: Additional system       Transfer size     Image: Additional system       Destination     Image: Additional system     Image: Additional system     Image: Additional system     Image: Additional system     Image: Additional system</td><td>NameDeviceXYRST.C.XWYWRWSWSource<br/>parameterIIIVVVVTransfer sizeIIVVVVDestination<br/>parameterIIVVV</td><td>Name     Device     Reg       X     Y     R     S     T.     C.     XW/YW     RW     SW     T       Source     Image: Constraint of the second secon</td><td>NameDeviceRegisterXYRST.C.XW/YWRWSWTCSource<br/>parameterIIIVVVVVVTransfer sizeIIVVVVVVVDestination<br/>parameterIIIVVVVV</td><td>Name     Device     Register       X     Y     R     S     T.     C.     XW/YW     RW     SW     T     C     D       Source parameter     Image: Constraint of the second se</td><td>Name     Device     Register       X     Y     R     S     T.     C.     XW/YW     RW     SW     T     C     D     I       Source parameter     I     I     I     I     I     I     I     I     I       Transfer size     I     I     I     I     I     I     I     I       Destination parameter     I     I     I     I     I     I     I</td><td>Name     Device     Register       X     Y     R     S     T.     C.     XW/YW     RW/SW     T     C     D     I     J       Source parameter     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V</td><td>Name     Device     Register       X     Y     R     S     T.     C.     XW/YW     RW/SW     T     C     D     I     J     K       Source parameter     I     I     I     I     I     I     I     J     K       Transfer size     I     I     I     I     I     I     I     I       Destination parameter     I     I     I     I     I     I     I</td><td>NameDeviceRegisterConstantXYRST.C.XWYWRWSWTCDIJKSource<br/>parameterIIVVVVVVVVIIIIJKTransfer sizeIVVVVVVVVVIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII<!--</td--></td></tdiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii<> | Name     Device       X     Y     R     S     T.     C.     XW       Source     Image: Additional system of the system of | Name     Device       X     Y     R     S     T.     C.     XW     YW       Source     Image: Additional system       Transfer size     Image: Additional system       Destination     Image: Additional system     Image: Additional system     Image: Additional system     Image: Additional system     Image: Additional system | Name     Device       X     Y     R     S     T.     C.     XW     YW     RW       Source     Image: Additional system       Transfer size     Image: Additional system       Destination     Image: Additional system     Image: Additional system     Image: Additional system     Image: Additional system     Image: Additional system | NameDeviceXYRST.C.XWYWRWSWSource<br>parameterIIIVVVVTransfer sizeIIVVVVDestination<br>parameterIIVVV | Name     Device     Reg       X     Y     R     S     T.     C.     XW/YW     RW     SW     T       Source     Image: Constraint of the second secon | NameDeviceRegisterXYRST.C.XW/YWRWSWTCSource<br>parameterIIIVVVVVVTransfer sizeIIVVVVVVVDestination<br>parameterIIIVVVVV | Name     Device     Register       X     Y     R     S     T.     C.     XW/YW     RW     SW     T     C     D       Source parameter     Image: Constraint of the second se | Name     Device     Register       X     Y     R     S     T.     C.     XW/YW     RW     SW     T     C     D     I       Source parameter     I     I     I     I     I     I     I     I     I       Transfer size     I     I     I     I     I     I     I     I       Destination parameter     I     I     I     I     I     I     I | Name     Device     Register       X     Y     R     S     T.     C.     XW/YW     RW/SW     T     C     D     I     J       Source parameter     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V | Name     Device     Register       X     Y     R     S     T.     C.     XW/YW     RW/SW     T     C     D     I     J     K       Source parameter     I     I     I     I     I     I     I     J     K       Transfer size     I     I     I     I     I     I     I     I       Destination parameter     I     I     I     I     I     I     I | NameDeviceRegisterConstantXYRST.C.XWYWRWSWTCDIJKSource<br>parameterIIVVVVVVVVIIIIJKTransfer sizeIVVVVVVVVVIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII </td |

#### **Parameters**

|     | Source parameter |     | Transfer size and status    |     | Destination parameter |
|-----|------------------|-----|-----------------------------|-----|-----------------------|
| Α   | Туре             | В   | Transfer size               | С   | Туре                  |
| A+1 | Leading address  | B+1 | Status flag for RS-485 port | C+1 | Leading address       |
| _   |                  | B+2 | (max. 2 words)              | _   |                       |
|     |                  |     |                             |     |                       |

| Register type       | Type code | Leading address | Transfer size                |
|---------------------|-----------|-----------------|------------------------------|
| RW register (RAM)   | H0003     | 0 to 63 (T1)    | 1 to 64 (T1)                 |
| -                   |           | 0 to 255 (T1S)  | 1 to 256 (T1S)               |
| D register (RAM)    | H0004     | 0 to 1023 (T1)  | 1 to 256                     |
|                     |           | 0 to 4095 (T1S) |                              |
| D register (EEPROM) | H0020     | 0 to 511 (T1)   | 1 to 16 (if destination, T1) |
|                     |           | 0 to 2047 (T1S) | 1 to 32 (if destination,T1S) |
|                     |           |                 | 1 to 256 (if source)         |
| T1S RS-485 port     | H0030     | 0 (fixed)       | 1 to 256                     |

#### CPU register ↔ built-in EEPROM

In the EEPROM, the D registers are divided into pages as follows.



When R020 is changed from OFF to ON, 10 words of RAM data (D0700 to D0709) are written into the EEPROM (D0016 to D0025).

D1000 (H0004) and D1001 (700) indicate the leading register of the source table (D0700 in RAM). D1002 (10) indicates the transfer size (10 words = 10 registers). D1003 (H0020 = 32) and D1004 (16) indicate the leading register of the destination table (D0016 in EEPROM).

#### Note

- The XFER instruction is not executed as error in the following cases. In these cases, the instruction
  error flag (ERF = S051) is set to ON. If the ERF is set to ON once, it remains ON until resetting to
  OFF by user program.
  - (1) When the number of words transferred exceeds limit.
  - (2) When the source/destination table of transfer is out of the valid range.
  - (3) When the transfer combination is invalid.
- The EEPROM has a life limit for data writing into an address. It is 100,000 times. Pay attention not to exceed the limit. (EEPROM alarm flag = S007 is not updated by this instruction)
- Once data writing into the EEPROM is executed, EEPROM access (read/write) is prohibited for the duration of 10 ms. Therefore, minimum 10 ms interval is necessary for data writing.
- The XFER instruction can be programmed in the main program and in the interrupt program. If this instruction is programmed in both, the instruction in the main program should be executed in interrupt disable state. Refer to EI (FUN 140) and DI (FUN 141) instructions.

T1/T1S User's Manual

6F3B0250

#### CPU register ↔ T1S RS-485 port (T1S only)

#### <Receiving>

When the instruction input is ON, one set of message (from start character to the trailing code) which is received by the RS-485 port is read from the receive buffer, and stored in the CPU registers. The transfer size is fixed to 256 words. The execution status and the message length (in bytes) are stored in the status flag.

The instruction input must be kept ON until the receiving operation is complete.

#### Example



When R0000 is ON, one set of received message is read and stored in D0100 and after.

Execution status: H0000 ... Normal complete

H0001 ... Communication error (parity error, framing error)

H0002 ... Message length over (more than 512 bytes)

H0003 ... Receive buffer over flow

H0004 ... Receive time-out (from start character to the trailing code)

| Baudrate           | Time-out setting |
|--------------------|------------------|
| 300, 600, 1200 bps | 30 seconds       |
| 2400 bps           | 15 seconds       |
| 4800 bps           | 7 seconds        |
| 9600 bps           | 3 seconds        |
| 19200 bps          | 1.5 seconds      |

Message length: 0 ...... No receive message

to 512 ... Message length in bytes

#### Note

- The XFER instruction is not executed as error in the following cases. In these cases, the instruction
  error flag (ERF = S051) is set to ON. If the ERF is set to ON once, it remains ON until resetting to
  OFF by user program.
  - (1) The leading address for the RS-485 port designation is other than 0.
  - (2) Transfer size is other than 256.
  - (3) Mode setting of the RS-485 port is not the free ASCII mode.
  - 4) This instruction is programmed in the sub-program #1.

#### <Transmitting>

When the instruction input is ON, one set of message which is stored in the source table (from start character to the trailing code) is transmitted through the RS-485 port. The execution status is stored in the status flag.

6F3B0250

The instruction input must be kept ON until the transmitting operation is complete.

#### Example



When R0001 is ON, one set of message (ended by the trailing code) stored in the range of D0500 to D0511 (12 words) is transmitted through the RS-485 port.

Execution status: H0000 ... Normal complete

H0001 ... During transmitting the message

H0002 ... Communication busy

H0003 ... During the reset operation

H0004 ... Send time-out (from start character to the trailing code)

H0005 ... Send message length error (no trailing code in the source table)

| Baudrate           | Time-out setting |
|--------------------|------------------|
| 300, 600, 1200 bps | 30 seconds       |
| 2400 bps           | 15 seconds       |
| 4800 bps           | 7 seconds        |
| 9600 bps           | 3 seconds        |
| 19200 bps          | 1.5 seconds      |

#### Note

- The XFER instruction is not executed as error in the following cases. In these cases, the instruction
  error flag (ERF = S051) is set to ON. If the ERF is set to ON once, it remains ON until resetting to
  OFF by user program.
  - (1) The leading address for the RS-485 port designation is other than 0.
  - (2) Transfer size is out of the range of 1 to 256.
  - (3) Mode setting of the RS-485 port is not the free ASCII mode.
  - (4) This instruction is programmed in the sub-program #1.

# FUN 237READSpecial module data read

#### Expression

Input –[ A READ  $B \rightarrow C$  ]– Output

#### Function

When the input is ON, this instruction reads data from the buffer memory of the special module that is designated by operand A, and stores them in registers starting with operand C.

The transfer source address (buffer memory address) is designated by operand B.

The transfer size (number of words) is designated by operand B+1.

This instruction is only effective for the T2 I/O modules connected to the T1-40 or T1-40S.

#### **Execution condition**

| Input | Operation                         | Output | ERF |
|-------|-----------------------------------|--------|-----|
| OFF   | No execution                      | OFF    | _   |
| ON    | Normal execution                  | ON     | _   |
|       | When error is occurred (see Note) | ON     | Set |
|       |                                   |        |     |

#### Operand

|   | Name           |   |   | Dev | /ice |    |    |              | Register     |    |    |   |   |   |   |   | Constant | Index   |  |
|---|----------------|---|---|-----|------|----|----|--------------|--------------|----|----|---|---|---|---|---|----------|---------|--|
|   |                | Х | Υ | R   | S    | Τ. | C. | XW           | YW           | RW | SW | Т | С | D | Ι | J | Κ        |         |  |
| Α | Special module |   |   |     |      |    | -  | $\checkmark$ | $\checkmark$ |    |    |   |   |   |   |   |          | H0004 - |  |
|   |                |   |   |     |      |    |    |              | K            |    |    |   |   |   |   |   |          | H0007   |  |
| В | Transfer       |   |   |     |      |    |    | V            | ~            |    |    |   |   |   |   |   |          |         |  |
|   | parameter      |   |   |     |      |    |    |              |              |    |    |   |   |   |   |   |          |         |  |
| С | Destination    |   |   |     |      |    |    |              |              |    |    |   |   |   |   |   |          |         |  |
| С | Destination    |   |   |     |      |    |    |              |              |    |    |   |   |   |   |   |          |         |  |

#### Example

When R010 is ON, the buffer memory data of the size indicated by RW51, starting with the address indicated by RW50 of the special module allocated to XW06, are read and stored in D0100 and after.



#### Note

- This instruction is only effective for the T2 I/O modules connected to the T1-40 or T1-40S by using the expansion rack.
- The special module can be designated not only by the assigned register, but also by the mounting position. The mounting position is designated by a constant data for the operand A as follows.



In the T1-40/T1-40S, 0 is only available for the unit number and 4 to 7 are available for the slot number. The first slot (left most slot) of the expansion rack is recognized as slot 4. Consequently, available designation is H0004 to H0007.

- The READ instruction is not executed as error in the following cases. In these cases, the instruction
  error flag (ERF = S051) is set to ON. If the ERF is set to ON once, it remains ON until resetting to
  OFF by user program.
  - (1) When the operand A is other than a valid constant (see above) or XW/YW register.
  - (2) When no answer error occurs with the designated special module.
  - (3) When the number of words transferred exceeds 256 words.
  - (4) When the source table of transfer is out of the valid range.
  - (5) When the destination table of transfer is out of the valid range.
- The READ instruction can be programmed in the main program and in the interrupt program. If this instruction is programmed in both, the instruction in the main program should be executed in interrupt disable state. Refer to EI (FUN 140) and DI (FUN 141) instructions.

# FUN 238WRITESpecial module data write

#### Expression

Input –[ A WRITE  $B \rightarrow C$  ]– Output

#### Function

When the input is ON, this instruction transfers data stored in registers starting with operand *A* into the buffer memory of the special module that is designated by operand *C*.

The destination address (buffer memory address) is designated by operand B.

The transfer size (number of words) is designated by operand B+1.

This instruction is only effective for the T2 I/O modules connected to the T1-40 or T1-40S.

#### **Execution condition**

| Input | Operation                         | Output ERF |  |
|-------|-----------------------------------|------------|--|
| OFF   | No execution                      | OFF –      |  |
| ON    | Normal execution                  | ON –       |  |
|       | When error is occurred (see Note) | ON Set     |  |
|       |                                   |            |  |

#### Operand

|   | Name           |   |   | Dev | vice |    |    |              | Register     |    |    |   |   |   |   |   |   | Constant | Index |
|---|----------------|---|---|-----|------|----|----|--------------|--------------|----|----|---|---|---|---|---|---|----------|-------|
|   |                | Х | Υ | R   | S    | Τ. | C. | XW           | YW           | RW | SW | Т | С | D | Ι | J | Κ |          |       |
| Α | Source         |   |   |     |      |    |    | $\checkmark$ | $\checkmark$ |    |    |   |   |   |   |   |   |          |       |
| В | Transfer       |   |   |     |      |    |    |              | $\checkmark$ |    |    |   |   |   |   |   |   |          |       |
|   | parameter      |   |   |     |      |    |    |              |              |    |    |   |   |   |   |   |   |          |       |
| С | Special module |   |   |     |      |    |    | $\checkmark$ |              |    |    |   |   |   |   |   |   | H0004 -  |       |
|   |                |   |   |     |      |    |    |              |              |    |    |   |   |   |   |   |   | H0007    |       |

#### Example

R0011

When R011 is ON, the register data of the size indicated by RW56, starting with D0200, are transferred to the buffer memory starting with the address indicated by RW55 of the special module allocated to YW08.



#### Note

- This instruction is only effective for the T2 I/O modules connected to the T1-40 or T1-40S by using the expansion rack.
- The special module can be designated not only by the assigned register, but also by the mounting position. The mounting position is designated by a constant data for the operand C as follows.



T1/T1S User's Manual

In the T1-40/T1-40S, 0 is only available for the unit number and 4 to 7 are available for the slot number. The first slot (left most slot) of the expansion rack is recognized as slot 4. Consequently, available designation is H0004 to H0007.

- The WRITE instruction is not executed as error in the following cases. In these cases, the
  instruction error flag (ERF = S051) is set to ON. If the ERF is set to ON once, it remains ON until
  resetting to OFF by user program.
  - (1) When the operand C is other than a valid constant (see above) or XW/YW register.
  - (2) When no answer error occurs with the designated special module.
  - (3) When the number of words transferred exceeds 256 words.
  - (4) When the source table of transfer is out of the valid range.
  - (5) When the destination table of transfer is out of the valid range.
- The WRITE instruction can be programmed in the main program and in the interrupt program. If this instruction is programmed in both, the instruction in the main program should be executed in interrupt disable state. Refer to EI (FUN 140) and DI (FUN 141) instructions.



### 8.1 Special I/O function overview

The T1/T1S supports the special I/O functions as listed below.

| Func      | tion name       | Function summary                                        | Remarks          |
|-----------|-----------------|---------------------------------------------------------|------------------|
| Variable  | input filter    | Input filter constant (ON/OFF delay time) can be set by | SW16 setting     |
| constant  |                 | user program. The setting range is 0 to 15 ms           | is necessary to  |
|           |                 | (1 ms units). Default value is 10 ms. This function is  | use this         |
|           |                 | applied for X000 to X007 (8 points as a block).         | function. (Note) |
| High      | Single phase    | Counts the number of pulses of single phase pulse       | Only one         |
| speed     | up-counter      | train. 2 channels of pulse input are available. The     | among these 4    |
| counter   |                 | countable pulse rate is up to 5 kHz for each channel.   | functions can    |
|           |                 | Channel 1 X000 count input, X002 reset input            | be selected.     |
|           |                 | Channel 2 X001 count input, X003 reset input            | SW16 is used     |
|           | Single phase    | Counts the number of pulses in a specified sampling     | to select the    |
|           | speed-          | time. The sampling time setting is 10 to 1000 ms (10    | function.        |
|           | counter         | ms units). 2 channels of pulse input are available. The | (Note)           |
|           |                 | countable pulse rate is up to 5 kHz for each channel.   |                  |
|           |                 | Channel 1 X000 count input                              |                  |
|           |                 | Channel 2 X001 count input                              |                  |
|           | Quadrature      | Counts the 2-phase pulses whose phases are shifted      |                  |
|           | bi-pulse        | 90° each other. Counts up when phase A precedes,        |                  |
|           | counter         | and counts down when phase B precedes. The              |                  |
|           |                 | countable pulse rate is up to 5 kHz.                    |                  |
|           |                 | Phase A X000                                            |                  |
|           |                 | Phase B X001                                            |                  |
|           |                 | Reset X002                                              |                  |
| Interrupt | input function  | Immediately activates the corresponding I/O interrupt   |                  |
|           |                 | program when the interrupt input is changed from OFF    |                  |
|           |                 | to ON (or ON to OFF). 2 points of interrupt input are   |                  |
|           |                 | available.                                              |                  |
|           | ۰.              | X002 Interrupt 1 (I/O interrupt program #3)             |                  |
|           |                 | X003 Interrupt 2 (I/O interrupt program #4)             |                  |
| Analog s  | etting function | The value of the analog setting adjuster is converted   | No function      |
|           | X               | into digital value (0 to 1000) and stored in the SW     | selection is     |
|           |                 | register. 2 adjusters are provided on the T1/T1S.       | required.        |
|           |                 | V0 SW30                                                 |                  |
|           |                 | V1 SW31                                                 |                  |
| Pulse ou  | tput function   | Variable frequency pulse train can be output. The       | Either one       |
|           | V               | available pulse rate is 50 to 5000 Hz (1 Hz units).     | between these    |
|           |                 | Y020 CW or Pulse (PLS)                                  | 2 functions can  |
|           | <b>*</b>        | Y021 CCW or Direction (DIR)                             | be used.         |
| PWM ou    | tput function   | Variable duty cycle pulse train can be output. The      | SW26 is used     |
|           | 7               | available ON duty setting is 0 to 100 % (1 % units).    | to select the    |
|           |                 | Y020 PWM output                                         | function. (Note) |

The above special I/O functions, except the variable input filter constant and analog setting functions, are available only in the DC input types.

NOTE

#### Mode setting for the special I/O functions

These functions, except the analog setting function, are selected by setting data into SW16 and SW26 by user program. These registers work as mode setting registers for the special I/O functions. The data setting for these registers, i.e. mode setting for the special I/O functions, is effective only at the first scan.

Note) In the explanation below, HSC and INT mean the high speed counter and the interrupt input functions respectively.





| Variable inpu    | t filter constant   | SW16                          |   |
|------------------|---------------------|-------------------------------|---|
| •                |                     | F E D C B A 9 8 7 6 5 4 3 2 1 | 0 |
| Use              |                     | 1 0 0 0 0 0                   | _ |
|                  |                     |                               |   |
| High speed c     | ounter              | SW16                          |   |
| •                |                     | F E D C B A 9 8 7 6 5 4 3 2 1 | 0 |
| Single phase     | Channel 1 only      | - 0 0 1 0 0 0 0 0 0 0 0 0 1   | 1 |
| up-counter       | Channel 2 only      | - 0 1 0 0 0 0 0 0 0 0 0 0 1   | 1 |
|                  | Both channels       | - 0 1 1 0 0 0 0 0 0 0 0 0 1   | 1 |
| Single phase     | Channel 1 only      | - 0 0 1 0 1 0 0 0 0 0 0 0 1   | 1 |
| speed-counter    | Channel 2 only      | - 0 1 0 0 1 0 0 0 0 0 0 0 1   | 1 |
|                  | Both channels       | - 0 1 1 0 1 0 0 0 0 0 0 0 1   | 1 |
| Quadrature bi-p  | oulse counter       | - 0 0 0 1 0 0 0 0 0 0 0 0 1   | 1 |
|                  |                     |                               |   |
| Interrupt inpu   | ut function         | SW16                          |   |
| •                |                     | F E D C B A 9 8 7 6 5 4 3 2 1 | 0 |
| Interrupt 1 only | Rising (OFF to ON)  | - 0 0 1 0 0 0 0 0 0 0 0 1 0   | 1 |
|                  | Falling (ON to OFF) | 0010000000100                 | 1 |

The table below summarizes the mode setting data of each function. In the table, '-' means do not care.

| Both interrupts | No.1 = Rising, No.2 = Rising   | - | 0 | 1 | 1 | 0 | 0 | 0 | 0  | 0   | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
|-----------------|--------------------------------|---|---|---|---|---|---|---|----|-----|---|---|---|---|---|---|---|
| 1 and 2         | No.1 = Rising, No.2 = Falling  | - | 0 | 1 | 1 | 0 | 0 | 0 | 0  | 1   | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
|                 | No.1 = Falling, No.2 = Rising  | - | 0 | 1 | 1 | 0 | 0 | 0 | 0  | 0   | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
|                 | No.1 = Falling, No.2 = Falling | _ | 0 | 1 | 1 | 0 | 0 | 0 | 0  | 1   | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
|                 |                                |   |   |   |   |   |   |   |    |     |   |   |   |   |   |   |   |
| Pulse output    | function                       |   |   |   |   |   |   | S | SW | /26 | 3 |   |   |   |   |   |   |
| -               | . ( )                          | F | Е | D | С | В | А | 9 | 8  | 7   | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| CW/CCW meth     | bod                            | _ | - | - | 0 | 0 | 0 | 0 | 0  | 0   | 0 | 0 | 0 | 0 | 0 | 1 | 1 |

1

0

| DWM output function              |   |   |       |   |   |   | 0 | 214 | 126 |   |   |   |   |   |   |   |
|----------------------------------|---|---|-------|---|---|---|---|-----|-----|---|---|---|---|---|---|---|
|                                  |   |   |       |   |   |   |   |     |     |   |   |   |   |   |   |   |
| Pulse/Direction (PLS/DIR) method | _ | - | <br>_ | 0 | 0 | 0 | 0 | 0   | 0   | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
|                                  |   |   |       | 0 | U | U | U | U   | U   | U | U | 0 | U | U |   |   |

| PWM output function | SW26 |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|---------------------|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|                     | F    | Е | D | С | В | А | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| Use                 |      | _ | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

For example, the following programs can be used to select the quadrature bi-pulse counter.

or

(H0803) ----[ 02051 MOV SW016]--

1

M

Interrupt 2 only Rising (OFF to ON)

Falling (ON to OFF)

0 0 0 0 0 0 1 0 0 0 0 1

0 1 0 0 0 0 0 1 0 0 0 0 0 1

#### 8.2 Variable input filter constant

#### Function

The input filter constant (ON/OFF delay time) of the leading 8 points X000 to X007 can be specified by user program within the range of 0 to 15 ms. The default is 10 ms. The setting value is recognized at the first scan. Therefore, it cannot be changed after the second scan.

#### **Related registers**

SW16 Function selection. Refer to section 8.1.

SW17 Input filter constant value



F: Input filter constant (0 to 15 ms)

Sample program

This program sets the input filter constant to 3 ms.

For the AC input types, this function works as extended delay time. On delay time = 25 ms + setting time Off delay time = 30 ms + setting time

T1/T1S User's Manual

NOTE

#### 8.3 High speed counter

#### 8.3.1 Single phase up-counter

#### Function

When the count input is changed from OFF to ON, the count value is increased by 1. When the count value reaches the set value, the count value is reset to 0, and I/O interrupt program is activated (if the interrupt enable flag is ON). The count value is reset to 0 when the reset input comes ON.

This counter operation is enabled while the soft-gate is ON. The count value is reset to 0 when the soft-gate is changed from ON to OFF.

The set value is set internally at the timing of the soft-gate changing from OFF to ON. When the soft-gate is OFF, the count value can be changed by writing the data into the set value register and setting the count preset flag to ON.

The count value range is H0000 to HFFFF (16-bit data).

#### Hardware condition

Count input (X000 and X001) ON/OFF pulse width: 100 μs or more (max. 5 kHz) Reset input (X002 and X003) ON/OFF duration: 2 ms or more

#### **Related registers**

SW16: Function selection. Refer to section 8.1.

| Function         | Registe   | r/device  | Remarks                          |
|------------------|-----------|-----------|----------------------------------|
| •                | Channel 1 | Channel 2 |                                  |
| Count input      | X000      | X001      | (Note)                           |
| Reset input      | X002      | X003      |                                  |
| Set value        | SW18      | SW20      | Data range: H0000 to HFFFF       |
| Count value      | SW22      | SW23      |                                  |
| Soft-gate        | S240      | S248      | Operation is enabled when ON     |
| Interrupt enable | S241      | S249      | Interrupt is enabled when ON     |
| Count preset     | S243      | S24B      | Used to preset the counter value |

Note) When both channels are used, X000 to X003 cannot be used as normal input devices. However, if either one channel is used, these inputs for unused channel can be used as normal input devices.

#### Interrupt assignment

Channel 1 ... I/O interrupt program #1 Channel 2 ... I/O interrupt program #2

#### Operation



In this example, 4099 (H1003) is set in SW16. As a result, the single phase up-counter (channel 1 only) is selected.

When R010 comes ON, the data 2000 is written into the set value register (SW18). While R010 is ON, the soft-gate (S240) and the interrupt enable flag (S241) are set to ON to enable the counter operation.

The counter works as a ring counter with the set value 2000. The count value is stored in SW22.

When R010 is OFF and R011 comes ON, the count value is preset to the data of D0100.

T1/T1S User's Manual

#### 8.3.2 Single phase speed-counter

#### Function

This function counts the number of changes of the count input from OFF to ON during the every specified sampling time. The count value in a sampling time is stored in the hold value register.

This counter operation is enabled while the soft-gate is ON. When the soft-gate is OFF, the hold value is cleared to 0.

The setting range of the sampling time is 10 to 1000 ms (10 ms units). The count value range is H0000 to HFFFF (16-bit).

#### Hardware condition

Count input (X000 and X001)

ON/OFF pulse width: 100 µs or more (max. 5 kHz)

#### **Related registers**

SW16: Function selection. Refer to section 8.1

| Function      | Register/device |           | Remarks                       |
|---------------|-----------------|-----------|-------------------------------|
|               | Channel 1       | Channel 2 |                               |
| Count input   | X000            | X001      | (Note 2)                      |
| Sampling time | SW18            | SW20      | Data range: 1 to 100 (Note 1) |
| Hold value    | SW22            | SW23      | Data range: H0000 to HFFFF    |
| Soft-gate     | S240            | S248      | Operation is enabled when ON  |

Note 1) The setting data range of the sampling time is 1 to 100. (10 ms multiplier)

Note 2) When both channels are used, X000 and X001 cannot be used as normal input devices. However, if either one channel is used, the input for unused channel can be used as normal input devices.

#### Interrupt assignment

No interrupt function.

N

#### Operation



#### 8.3.3 Quadrature bi-pulse counter

#### Function

This function counts up or down the quadrature bi-pulse (2-phase pulses whose phases are shifted 90° each other). Counts up when phase A precedes, and counts down when phase B precedes. Both rising and falling edges of each phase are counted. Consequently, 4 times count value against the pulse frequency is obtained.



When the count value reaches the comparison value 1 (or 2), the I/O interrupt program #1 (or #2) is activated (if the interrupt enable flag for each is ON).

This counter operation is enabled while the soft-gate is ON. The count value is reset to 0 when the soft-gate is changed from ON to OFF. The count value is also reset to 0 when the reset input comes ON.

When the soft-gate is OFF, the count value can be changed by writing the data into the comparison value 1 (or 2) register and setting the count preset flag 1 (or 2) to ON. The comparison value 1 and 2 can be changed even when the soft-gate is ON. The count value range is -2147483648 to 2147483647 (32-bit data).

#### Hardware condition

Phase A and phase B (X000 and X001) ON/OFF pulse width: 100 μs or more (max. 5 kHz) Reset input (X002) ON/OFF duration: 2 ms or more

#### **Related registers**

SW16: Function selection. Refer to section 8.1.

| Function           | Register/device | Remarks                               |
|--------------------|-----------------|---------------------------------------|
| Phase A            | X000            |                                       |
| Phase B            | X001            |                                       |
| Reset input        | X002            |                                       |
| Comparison value 1 | SW19.SW18       | Data range: -2147483648 to 2147483647 |
| Comparison value 2 | SW21.SW20       |                                       |
| Count value        | SW23·SW22       |                                       |
| Soft-gate          | S240            | Operation is enabled when ON          |
| Interrupt enable 1 | S241            | Interrupt 1 is enabled when ON        |
| Count preset 1     | S243            | Used to preset the count value        |
| Interrupt enable 2 | S249            | Interrupt 2 is enabled when ON        |
| Count preset 2     | S24B            | Used to preset the count value        |



#### Interrupt assignment

Comparison value 1 ... I/O interrupt program #1 Comparison value 2 ... I/O interrupt program #2

### Operation



#### Sample program

N



In this example, 2051 (H0803) is set in SW16. As a result, the quadrature bi-pulse counter is selected.

When R010 comes ON, the data 150000 is set into the comparison value 1 register (SW19·SW18), and 200000 is set into the comparison value 2 register (SW21·SW20). While R010 is ON, the soft-gate (S240), the interrupt enable flag 1 (S241) and the interrupt enable flag 2 (S249) are set to ON to enable the counter operation. The count value is stored in SW23·SW22.

When R010 is OFF and R011 comes ON, the count value is preset to the data of D0101.D0100.

#### 8.4 Interrupt input function

#### Function

When the signal state of the interrupt input is changed from OFF to ON (or ON to OFF), the corresponding I/O interrupt program is activated immediately. Up to 2 interrupt inputs can be used. The interrupt generation condition can be selected either rising edge (OFF to ON) or falling edge (ON to OFF) for each input. The I/O interrupt program #3 is corresponding to the interrupt input 1, and the I/O interrupt program #4 is corresponding to the interrupt input 2.

#### Hardware condition

Interrupt input (X002 and X003) ON/OFF pulse width: 100 μs or more

#### **Related registers**

SW16: Function selection. Refer to section 8.1.

| Interrupt input 1 | X002 |
|-------------------|------|
| Interrupt input 2 | X003 |

#### Interrupt assignment

Interrupt input 1 ... I/O interrupt program #3 Interrupt input 2 ... I/O interrupt program #4

#### Operation

T1/T1S User's Manual

| Interrupt input 1 |          |   |   |     |   | <br> |
|-------------------|----------|---|---|-----|---|------|
| Interrupt input 2 | <u>}</u> |   |   |     |   | <br> |
| Interrupt         |          | ĺ |   |     |   |      |
|                   | 3        | 4 | 3 | 3 4 | 1 |      |

The above operation example is the case of rising edge setting for both inputs.



In this example, 12357 (H3045) is set in SW16. As a result, the interrupt input function (2 points, rising for both) is selected.

When X002 is changed from OFF to ON, the interrupt program A is executed. When X003 is changed from OFF to ON, the interrupt program B is executed.



MM

Even if the Direct I/O instruction is used in the interrupt program, the corresponding input state (X002 or X003) cannot be confirmed. Because the interrupt is generated before internal updating of the input states.

#### 8.5 Analog setting function

#### Function

The value of the analog setting adjuster is converted into a digital value (0 to 1000) and stored in the SW register. 2 adjusters are provided. (V0 and V1) The SW register data can be used as timer presets or any parameters for function instructions.

#### **Related registers**

| Function    | Register | Remarks               |
|-------------|----------|-----------------------|
| Adjuster V0 | SW30     | Data range: 0 to 1000 |
| Adjuster V1 | SW31     | $\sim$                |
|             |          |                       |

#### Operation



The above example is a simple flicker circuit of Y020. In this example, the ON/OFF interval of Y020 can be controlled by the adjuster V0.

T1/T1S User's Manual

82

#### 8.6 Pulse output function

#### Function

This function is used to output a variable frequency pulse train. The controllable pulse frequency is 50 to 5000 Hz (1 Hz units).

The output mode can be selected either CW/CCW or Pulse/Direction (PLS/DIR). In the CW/CCW mode, CW pulse is output when the frequency setting is positive (50 to 5000), and CCW pulse is output when it is negative (-50 to -5000). In the PLS/DIR mode, DIR is OFF when the frequency setting is positive (50 to 5000), and DIR is ON when it is negative (-50 to -5000).



In the both modes, pulse output is enabled when the pulse enable flag is ON. While the pulse enable flag is ON, the pulse frequency can be changed by changing the frequency setting value. However, the pulse direction (the sign of the frequency setting) cannot be changed when the pulse enable flag is ON.

This function can be used to control the speed of a stepping motor, etc.

#### **Related registers**

SW26: Function selection. Refer to section 8.1.

| Function                     |         | Register/ | Remarks                               |
|------------------------------|---------|-----------|---------------------------------------|
| CW/CCW                       | PLS/DIR | device    |                                       |
| CW pulse                     | PLS     | Y020      |                                       |
| CCW pulse                    | DIR     | Y021      |                                       |
| Pulse enable flag            |         | S270      | Output is enabled when ON             |
| Frequency setting register   |         | SW28      | Data range: -5000 to -50, 50 to 5000  |
| Frequency setting error flag |         | S26F      | ON at error (reset OFF automatically) |

Note) The allowable value range of the frequency setting (SW28) is -5000 to -50 and 50 to 5000. If the value is out of this range or the sign is changed while the pulse enable flag (S270) is ON, the frequency setting error flag (S26F) comes ON. (Pulse output operation is continued with previous frequency setting)

#### Operation



#### 8.7 **PWM** output function

#### Function

This function is used to output a variable duty cycle pulse train. The controllable duty cycle is 0 to 100 % (1 % units).



The PWM output is enabled when the pulse enable flag is ON. While the pulse enable flag is ON, the duty cycle (ON duty) can be changed by changing the duty setting value (0 to 100).

The frequency setting is available in the range of 50 to 5000 Hz (1 Hz units) before turning ON the pulse enable flag. The frequency changing is not allowed while the pulse enable is ON.

Note that the minimum ON/OFF pulse duration is  $100 \ \mu$ s. Therefore, the controllable ON duty range is limited depending on the frequency setting as follows. If the ON duty setting value is not available (within 0 to 100), the pulse width error flag comes ON. (PWM output operation is continued but the duty cycle is not guaranteed)

| Frequency   | Cycle time | Available ON duty  |
|-------------|------------|--------------------|
| 50 - 100 Hz | 20 - 10 ms | 0 to 100 %         |
| 200 Hz      | 5 ms       | 0, 2 to 98, 100 %  |
| 1000 Hz     | 1 ms       | 0, 10 to 90, 100 % |
| 5000 Hz     | 200 μs     | 0, 50, 100 %       |

**Related registers** 

SW26: Function selection. Refer to section 8.1.

| Function                     | Register/ | Remarks                               |
|------------------------------|-----------|---------------------------------------|
|                              | device    |                                       |
| PWM pulse                    | Y020      |                                       |
| Pulse enable flag            | S270      | Output is enabled when ON             |
| Frequency setting register   | SW28      | Data range: 50 to 5000                |
| ON duty setting register     | SW29      | Data range: 0 to 100                  |
| Pulse width error flag       | S26D      | ON at error (reset OFF automatically) |
| ON duty setting error flag   | S26E      | ON at error (reset OFF automatically) |
| Frequency setting error flag | S26F      | ON at error (reset OFF automatically) |

Note) If the setting value of SW28 or SW29 is out of the allowable range, the frequency setting error flag (S26F) or the ON duty setting error flag (S26E) comes ON. (PWM output operation is continued with previous ON duty setting)

#### Operation



the pulse enable flag (S270) is turned OFF. Then the PWM output is stopped.

86 T1/T1S User's Manual


#### 9.1 Precautions during operation

When the T1/T1S is in operation, you should pay attention to the following items.

- (1) The programmer cable can be plugged or unplugged while the T1/T1S is in operation. When you try to do it, do not touch the connector pins. This may cause malfunction of the T1/T1S owing to static electricity.
- (2) Do not plug nor unplug the expansion cable during power on. This can cause damage to the equipment. Furthermore, to avoid malfunction of the T1/T1S owing to static electricity, do not touch the cable ends.
- (3) Do not touch any terminals while the T1/T1S is in operation, even if the terminals are not live parts. This may cause malfunction of the T1/T1S owing to static electricity.
- (4) Do not touch the expansion connector pins while the T1/T1S is in operation. This may cause malfunction of the T1/T1S owing to static electricity. Fix the expansion connector cover if the expansion connector is not used.
- (5) Do not insert your finger into the option card slot while the T1/T1S is in operation. This may cause malfunction of the T1/T1S owing to static electricity. Fix the option card slot cover securely.
- (6) Do not insert your finger into the expansion rack's ventilation hole during power on. This may cause malfunction of the T1/T1S owing to static electricity.

## 9.2 Daily checks

NNN

CAUTION 1. Pay special attention during the maintenance work to minimize the risk of electrical shock.

 Turn off power immediately if the T1/T1S or related equipment is emitting smoke or odor. Operation under such situation can cause fire or electrical shock.

To maintain the system and to prevent troubles, check the following items on daily basis.

| Item         |                | Check                       | Corrective measures                               |
|--------------|----------------|-----------------------------|---------------------------------------------------|
| Status LEDs  | PWR            | Lit when internal 5 V is    | If the LEDs are not normal, see                   |
|              | (power)        | normal.                     | 10. Troubleshooting.                              |
|              | RUN            | Lit when operating          |                                                   |
|              |                | normally.                   |                                                   |
|              | FLT (fault)    | Not lit when operating      |                                                   |
|              |                | normally.                   |                                                   |
| Mode control | Check that the | e mode control switch is in | Turn this switch to R (RUN) side.                 |
| switch       | R (RUN) side   | . Normal operation is       |                                                   |
|              | performed wh   | en this switch is in R      |                                                   |
|              | (RUN) side.    |                             |                                                   |
| Input LEDs   | Lit when the c | corresponding input is ON.  | <ul> <li>Check that the input terminal</li> </ul> |
|              |                |                             | screw is not loose.                               |
|              |                |                             | <ul> <li>Check that the input terminal</li> </ul> |
|              |                | <b>F</b>                    | block is not loose.                               |
|              |                |                             | Check that the input voltage is                   |
|              |                |                             | within the specified range.                       |
| Output LEDs  | Lit when the c | butput is ON and the        | Check that the output terminal                    |
|              | corresponding  | g load should operate.      | screw is not loose.                               |
| X            |                |                             | Check that the output terminal                    |
|              |                |                             | DIOCK IS NOT IOOSE.                               |
|              |                |                             | Check that the output voltage is                  |
|              |                |                             | within the specified range.                       |
|              |                |                             |                                                   |

## 9.3 Periodic checks

CAUTION 1. Pay special attention during the maintenance work to minimize the risk of electrical shock.

2. Turn off power immediately if the T1/T1S or related equipment is emitting smoke or odor. Operation under such situation can cause fire or electrical shock.

Check the T1/T1S based on the following items every six months. Also perform checks when the operating environment is changed.

| Item         | Check                                      | Criteria                           |
|--------------|--------------------------------------------|------------------------------------|
| Power supply | Measure the power voltage at the           | 85 - 132/170 - 264 Vac (AC PS)     |
|              | T1/T1S's power terminals.                  | 20.4 - 28.8 Vdc (DC PS)            |
|              | Check that the terminal screw is not       | Not loose                          |
|              | loose.                                     |                                    |
|              | Check that the power cable is not          | Not damaged                        |
|              | damaged.                                   |                                    |
| Installation | Check that the unit is installed securely. | Not loose, no play                 |
| condition    |                                            |                                    |
|              | Check that the option card is inserted     | Not loose, no play                 |
|              | securely. (if any)                         |                                    |
|              | Check that the expansion rack/unit is      | Not loose, no play                 |
|              | installed securely. (if any)               |                                    |
|              | Check that the expansion cable is          | Not loose, not damaged             |
|              | connected securely and the cable is not    |                                    |
|              | damaged. (if any)                          |                                    |
|              | Check that the I/O module on the           | Not loose, no play                 |
|              | expansion rack is inserted securely. (if   |                                    |
| X            | any)                                       |                                    |
| Input/output | Measure the input/output voltage at the    | The voltage must be within the     |
|              | 11/11S's terminals.                        | specified range.                   |
|              | Check the input status LEDs.               | The LED must light normally.       |
|              | Check the output status LEDs.              | The LED must light normally.       |
|              | Check that the terminal block is installed | Not loose, no play                 |
|              | securely.                                  |                                    |
|              | Check that the terminal screw is not       | Not loose, not contacting the next |
|              | loose and the terminal has a sufficient    | terminal                           |
|              | distance to the next terminal.             |                                    |
| •            | Check that the each I/O wire is not        | Not damaged                        |
|              | damaged.                                   |                                    |

(Periodic checks - continued)

| ltem             | Check                                   | Criteria                        |
|------------------|-----------------------------------------|---------------------------------|
| Environment      | Check that the temperature, humidity,   | Must be within the range of     |
|                  | vibration, dust, etc. are within the    | general specification.          |
|                  | specified range.                        |                                 |
| Programming tool | Check that the functions of the         | Monitoring and other operations |
|                  | programming tool are normal.            | are available.                  |
|                  | Check that the connector and cable are  | Not damaged                     |
|                  | not damaged.                            |                                 |
| User program     | Check that the T1/T1S program and the   | No compare error                |
|                  | master program (saved on a floppy disk, |                                 |
|                  | etc.) are the same.                     |                                 |

## 9.4 Maintenance parts

To recover from trouble quickly, it is recommended to keep the following spare parts.

| Item                | Quantity              | Remarks                                           |
|---------------------|-----------------------|---------------------------------------------------|
| T1/T1S basic unit   | 1                     | Prepare at least one to minimize the down-time of |
|                     |                       | the controlled system.                            |
| Programming tool    | 1                     | Useful for the troubleshooting procedure.         |
| Master program      | As required           | Saved on a floppy disk, etc.                      |
| Expansion rack or   | 1                     |                                                   |
| unit (if any)       |                       |                                                   |
| I/O module          | One of each type used |                                                   |
| (if any)            |                       |                                                   |
| Fuse for I/O module | One of each type used |                                                   |
| (if any)            |                       |                                                   |

These spare parts should not be stored in high temperature and/or humidity locations.

NNN





## 10.1 Troubleshooting procedure

CAUTION
 Pay special attention during the troubleshooting to minimize the risk of electrical shock.
 Turn off power immediately if the T1/T1S or related equipment is emitting smoke or odor. Operation under such situation can cause fire or electrical shock.
 Turn off power before removing or replacing units, modules, terminal blocks or wires. Failure to do so can cause electrical shock or damage to the T1 and related equipment.
 Contact Toshiba for repairing if the T1/T1S or related equipment is failed. Toshiba will not guarantee proper operation nor safety for unauthorized repairing.

If a trouble occurs, determine whether the cause lies in the mechanical side or in the control system (PLC) side. A problem may cause a secondary problem, therefore, try to determine the cause of trouble by considering the whole system.

If the problem is found in the T1/T1S, check the following points:



Also refer to section 10.1.6 for environmental problem.

## 10.1.1 Power supply check

If the PWR (power) LED is not lit after power on, check the following points.



## 10.1.2 CPU check

If the PWR (power) LED is lit but the RUN LED is not lit, check the following points.



### 10.1.3 Program check

Check the user program based on the following points if it is running but the operation does not work as intended.

- 1. Whether duplicated coils are not programmed.
- 2. Whether a coil device and a destination of a function instruction are not overlapping.
- 3. Whether the ON/OFF duration of an external input signal is not shorter than the T1/T1S's scan time.
- 4. Whether a register/device which is used in the main program is not operated erroneously in the interrupt program.

When you write/modify the program, it is necessary to execute the EEPROM write operation before turning off power to the T1. Otherwise the old program stored in the built-in EEPROM will be over-written, and your program modification will disappear.

## 10.1.4 Input check

If the program is running but the external input signal is not read normally, check the following points:



#### 10.1.5 Output check

If the output status monitored on the programming tool is normal but the external output device (load) is not operated normally, check the following points:



## 10.1.6 Environmental problem

If the following improper operations occur in the controlled system, check possible environmental factors.

- (1) If an improper operation occurs synchronously with the operation of I/O devices: The noise generated at ON/OFF of the output device (load) may be the cause of the problem. Take necessary measures mentioned in section 3.
- (2) If an improper operation occurs synchronously with the operation of surrounding equipment or high-frequency equipment: The noise induced in I/O signal lines may be the cause of the problem. The surge voltage, voltage fluctuations, or differences of grounding potentials may cause the problem, depending on the power supply system or the grounding system. Check the operation in accordance with the precautions in section 4. For some cases, isolation from the ground may lead to the stable operation.
- (3) If an improper operation occurs synchronously with the operation of machinery: The vibration of the equipment may cause the problem. Check that the installation status of the units and take necessary measures.
- (4) If a similar failure is repeated after the unit is replaced: Check that no metal debris or water drops has been entered into the unit/module.

Apart from the above points, consider climatic conditions. If the ambient temperature is beyond the specified range, stable operation of the system is not guaranteed.



#### 10.2 Self-diagnostic items

If an error is detected by the self-diagnostic check of the T1/T1S CPU, the error messages and the related information shown on the following pages will be recorded in the T1/T1S's event history table. If the error is severe and continuation of operation is not possible, the T1/T1S turns OFF all outputs and stops the operation (ERROR mode). The latest 15 error messages are stored in the event history table. This event history table can be displayed on the programming tool. (Power ON/OFF is also registered)

If the T1/T1S has entered into ERROR mode, connect the programming tool to the T1/T1S to confirm the error message in the event history table. This information is important to recover from a trouble. For the key operations on the programming tool to display the event history table, refer to the separate manual for the programming tool.

| (A       | n exampl             | e of the ev          | ent history)                     |               | 0      |        |                   |
|----------|----------------------|----------------------|----------------------------------|---------------|--------|--------|-------------------|
|          |                      | < Event Hist         | ory>                             |               |        |        |                   |
|          | Date                 | Time                 | Event                            | Count Info 1  | Info 2 | Info 3 | Mode              |
| 1.<br>2. | 98-02-21<br>98-02-21 | 16:48:01<br>15:55:26 | I/O no answer<br>System power on | 3 #00-04<br>1 |        |        | RUN Down<br>INIT. |
| 3.       | 98-02-21             | 12:03:34             | System power off                 | 1             |        |        | RUN               |
| 4.       | 98-01-15             | 09:27:12             | System power on                  |               |        |        | INIT.             |
| 5.       | 98-01-14             | 19:11:43             | System power off                 | 1             |        |        | HALT              |
| 6.       | 98-01-14             | 10:39:11             | No END/IRET error                | 3 M-001       | H0024  |        | HALT Down         |

In the event history table, No.1 message indicates the latest event recorded. Each column shows the following information.

- Date: The date when the error has detected (T1S only)
- Time: The time when the error has detected (T1S only)
- Event: Error message
- Count: Number of times the error has detected by retry action
- Info n: Related information to the error detected
- Mode: T1/T1S's operation mode in which the error has detected (INIT. means the power-up initialization)
- Down: Shows the T1/T1S has entered into ERROR mode by the error detected

If the T1/T1S is in the ERROR mode, operations to correct the program are not accepted.

In this case, execute the Error reset operation by the programming tool to return the HALT mode before starting the correction operation.

| EIIUI IIIessay       | e and relate                   | d informati                | on        | Special      | Meaning and countermeasures                                                                                                                                                                                                                                   |
|----------------------|--------------------------------|----------------------------|-----------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Event                | Info 1                         | Info 2                     | Info 3    | device       | -                                                                                                                                                                                                                                                             |
| Batt voltage drop    |                                |                            |           | S00F         | In the power-up initialization, data invalidit<br>RAM (back-up area) has been detected.<br>If retentive registers are used, these valid<br>are not guaranteed. (No error down)                                                                                |
| Boundary error       | Program<br>type -<br>block No. | Address<br>in the<br>block | FUN No.   | S064         | The register of index modification is other<br>than RW, T, C and D. (Error down)<br>The register designated by index modifica<br>has exceeded the allowable range. That<br>out of RW, T, C and D.<br>(No error down)<br>Check the value of the index register |
| Clock-calendar error |                                |                            |           | S00A         | The data of built-in calendar LSI is illegal.<br>(No error down)<br>Set the date and time. (T1S only)                                                                                                                                                         |
| Duplicate entry No.  | Program<br>type -<br>block No. | Address<br>in the<br>block | Entry No. |              | Multiple SUBR instructions which have th<br>same subroutine number are programme<br>(Error down)<br>Check the program.                                                                                                                                        |
| EEPROM BCC error     | lllegal<br>BCC                 |                            |           | S004<br>S013 | BCC error has been detected in the user<br>program of the EEPROM. (Error down)<br>Reload the program and execute EEPRC<br>write operation again.                                                                                                              |
| EEPROM warning       | Number<br>of excess<br>writing |                            | R         | S007         | The number of times of writing into EEPR<br>has exceeded the life (100,000 times). (N<br>error down)<br>Replace the unit because the data reliabil<br>of the EEPROM will decrease.                                                                            |
| I/O bus error        | Unit No.                       | Data                       | ,<br>O    | S005<br>S020 | An abnormality has been detected in I/O I<br>checking. (Error down)<br>Check the expansion cable connection ar<br>I/O module mounting status.                                                                                                                 |
| I/O mismatch         | Unit No<br>slot No.            | Register<br>No.            |           | S005<br>S021 | The I/O allocation information and the act<br>I/O configuration are not identical.<br>(Error down)<br>Check the I/O allocation and the option ca<br>mounting status.                                                                                          |
| I/O no answer        | Unit No<br>slot No.            | Register<br>No.            |           | S005<br>S022 | No response from the T2 I/O module has<br>been received. (Error down)<br>Check the I/O allocation, the expansion ca<br>connection and the T2 I/O module mount<br>status.                                                                                      |
| I/O parity error     | Unit No<br>slot No.            | Register<br>No.            |           | S005<br>S023 | I/O bus parity error has been detected in or<br>read/write for T2 I/O modules. (Error dow<br>Check the expansion cable connection ar<br>the T2 I/O module mounting status.                                                                                    |
| Illegal I/O reg      | Unit No<br>slot No.            | Register<br>No.            |           | S005<br>S021 | The allocated I/O register address exceed the limit, 32 words. (Error down)                                                                                                                                                                                   |

| Error message and related information |                                | Special                    | Meaning and countermeasures |                      |                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------|--------------------------------|----------------------------|-----------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Event                                 | Info 1                         | Info 2                     | Info 3                      | device               |                                                                                                                                                                                                                                                                                                                                                                                         |
| Illegal inst                          | Program<br>type -<br>block No. | Address<br>in the<br>block |                             | S006<br>S030<br>S060 | An illegal instruction has been detected in the program. (Error down)<br>Reload the program and execute EEPROM write operation again.                                                                                                                                                                                                                                                   |
| Illegal sys intrpt                    | Interrupt<br>address 1         | Interrupt<br>address 2     |                             |                      | Unregistered interrupt has occurred. (No<br>error down)<br>If the error occurs frequently, replace the unit.                                                                                                                                                                                                                                                                            |
| Invalid Fun inst                      | Program<br>type -<br>block No. | Address<br>in the<br>block | Fun No.                     |                      | A function instruction which is not supported<br>by the T1/T1S is programmed. (Error down)<br>Correct the program.                                                                                                                                                                                                                                                                      |
| Invalid program                       | Program<br>type -<br>block No. |                            |                             | "×                   | A basic ladder instruction which is not<br>supported by the T1/T1S is programmed.<br>(Error down)<br>Correct the program.<br>SUBR instruction is not programmed before<br>RET instruction. (Error down)<br>Correct the program.<br>An abnormality is detected in the program<br>management information. (Error down)<br>Reload the program and execute EEPROM<br>write operation again. |
| Loop nesting error                    | Program<br>type -<br>block No. | Address<br>in the<br>block |                             | 6                    | A FOR-NEXT loop is programmed inside<br>other FOR-NEXT loop. (Error down)<br>Correct the program.                                                                                                                                                                                                                                                                                       |
| Memory full                           |                                |                            | $\mathbf{X}$                |                      | The program exceeds the executable<br>memory capacity. (Error down)<br>Reduce the program steps.                                                                                                                                                                                                                                                                                        |
| No END/IRET error                     | Program<br>type -<br>block No. | Address<br>in the<br>block | 0                           |                      | The END instruction is not programmed in<br>the main program or in the sub-program.<br>(Error down)<br>Correct the program.<br>The IRET instruction is not programmed in<br>the interrupt program. (Error down)<br>Correct the program.                                                                                                                                                 |
| No RET error                          | Program<br>type -<br>block No. | Address<br>in the<br>block | Sub-r No.                   |                      | The RET instruction is not programmed in the<br>subroutine program. (Error down)<br>Correct the program.                                                                                                                                                                                                                                                                                |
| No sub-r entry                        | Program<br>type -<br>block No. | Address<br>in the<br>block | Sub-r No.                   |                      | The subroutine corresponding to CALL<br>instruction is not programmed. (Error down)<br>Correct the program.                                                                                                                                                                                                                                                                             |



| Error message      | and relate                     | d informatio               | n         | Special      | Meaning and countermeasures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------|--------------------------------|----------------------------|-----------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Event              | Info 1                         | Info 2                     | Info 3    | device       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Operand error      | Program<br>type -<br>block No. | Address<br>in the<br>block |           |              | A register/device which is not supported by<br>the T1/T1S is programmed. (Error down)<br><u>Correct the program.</u><br>The timer or counter register is duplicated in<br>the program. (Error down)<br><u>Correct the program.</u><br>The subroutine number programmed with<br>CALL or SUBR instruction is out of the range.<br>(Error down)<br>T1 0 to 15<br>T1S 0 to 255<br><u>Correct the program.</u><br>Index modification is programmed for<br>instructions in which the index modification is<br>not allowed. (Error down) |
| Pair inst error    | Program<br>type -<br>block No. | Address<br>in the<br>block | Q         | S S S        | The combination is illegal for MCS-MCR,<br>JCS-JCR or FOR-NEXT instructions. (Error<br>down)<br>Correct the program.<br>A MCS-MCR is programmed inside other<br>MCS-MCR segment. (Error down)<br>Correct the program.<br>A JCS-JCR is programmed inside other<br>JCS-JCR segment. (Error down)<br>Correct the program.                                                                                                                                                                                                            |
| Peripheral LSI err | Error<br>code                  | • C                        | 0         | S004<br>S016 | CPU hardware error has been detected in the<br>power-up initialization. (Error down and<br>programming tool cannot be connected)<br>Replace the unit if the error remains after<br>power OFF and ON again.                                                                                                                                                                                                                                                                                                                        |
| Program BCC error  | Illegal<br>BCC                 |                            |           | S006<br>S030 | BCC error has been detected in the user<br>program in the RAM. (Error down)<br>If the error remains after power OFF and ON<br>again, reload the program and execute<br>EEPROM write operation.                                                                                                                                                                                                                                                                                                                                    |
| RAM check error    | Error<br>address               | Error data                 | Test data | S004<br>S012 | In the power-up initialization, an error has<br>detected by RAM read/write checking. (Error<br>down)<br>Replace the unit if the error remains after<br>power OFF and ON again.                                                                                                                                                                                                                                                                                                                                                    |
| Scan time over     | Scan time                      |                            |           | S006<br>S031 | The scan time has exceeded 200 ms. (Error<br>down)<br>Correct the program to reduce the scan time<br>or use WDT instruction to extend the check<br>time.                                                                                                                                                                                                                                                                                                                                                                          |

| Error message and related information |                                |                            | Special   | Meaning and countermeasures |                                                                                                                                                                                                                                  |
|---------------------------------------|--------------------------------|----------------------------|-----------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Event                                 | Info 1                         | Info 2                     | Info 3    | device                      |                                                                                                                                                                                                                                  |
| Sys RAM check err                     | Error<br>address               | Error data                 | Test data | S004<br>S011                | In the power-up initialization, an error has<br>detected by system RAM read/write<br>checking. (Error down and programming tool<br>cannot be connected)<br>Replace the unit if the error remains after<br>power QEE and QN again |
| Sys ROM BCC error                     | Illegal<br>BCC                 |                            |           | S004<br>S010                | BCC error has been detected in the system<br>program in the ROM. (Error down and<br>programming tool cannot be connected)<br>Replace the unit if the error remains after<br>power OFF and ON again.                              |
| System power off                      |                                |                            |           |                             | Power OFF (no error)                                                                                                                                                                                                             |
| System power on                       |                                |                            |           |                             | Power ON (no error)                                                                                                                                                                                                              |
| Sub-r nesting err                     | Program<br>type -<br>block No. | Address<br>in the<br>block | Sub-r No. | X                           | T1:<br>CALL instruction is programmed in a<br>subroutine program. (Error down)<br>Correct the program.<br>T1S:<br>The nesting of subroutines exceeds 3 levels.<br>(Error down)<br>Correct the program.                           |
| WD timer error                        | Address 1                      | Address 2                  |           | S004<br>S01F                | The watchdog timer error has occurred.<br>(Error down)<br>If the error occurs frequently, replace the unit.                                                                                                                      |
|                                       |                                |                            | 3         |                             |                                                                                                                                                                                                                                  |



## A.1 List of models and types

## • Basic unit

| Model  | Power supply  | Input type  | Type code  | Part number |
|--------|---------------|-------------|------------|-------------|
| T1-16  | 100 - 240 Vac | Dry contact | T1-MDR16   | TDR116*6S   |
|        |               | 120 Vac     | T1-MAR16   | TAR116*6S   |
|        | 24 Vdc        | 24 Vdc      | T1-MDR16D  | TDR116*3S   |
| T1-28  | 100 - 240 Vac | 24 Vdc      | T1-MDR28   | TDR128*6S   |
|        |               | 120 Vac     | T1-MAR28   | TAR128*6S   |
|        | 24 Vdc        | 24 Vdc      | T1-MDR28D  | TDR128*3S   |
| T1-40  | 100 - 240 Vac | 24 Vdc      | T1-MDR40   | TDR140*6S   |
|        |               | 120 Vac     | T1-MAR40   | TAR140*6S   |
|        | 24 Vdc        | 24 Vdc      | T1-MDR40D  | TDR140*3S   |
| T1-40S | 100 - 240 Vac | 24 Vdc      | T1-MDR40S  | TDR140S6S   |
|        |               | 120 Vac     | T1-MAR40S  | TAR140S6S   |
|        | 24 Vdc        | 24 Vdc      | T1-MDR40SD | TDR140S3S   |

## • Option card

| Description                                      |           | Dort number |
|--------------------------------------------------|-----------|-------------|
| Description                                      | Type code | Part number |
| 16 points 24 Vdc input                           | DI116     | TDI116*BS   |
| 16 points 24 Vdc output                          | DO116     | TDO116*BS   |
| 8 points 24 Vdc input and 8 points 24 Vdc output | DD116     | TDD116*BS   |
| 2 channels analog input, 0 - 5 V/0 - 20 mA       | AD121     | TAD121*BS   |
| 2 channels analog input, ±10 V                   | AD131     | TAD131*BS   |
| 2 channels analog output, 0 - 20 mA              | DA121     | TDA121*BS   |
| 2 channels analog output, ±10 V                  | DA131     | TDA131*BS   |
| TOSLINE-F10 remote station                       | FR112     | TFR112*BS   |
|                                                  |           |             |

## • Expansion unit

| Description                                                           | Type code | Part number |
|-----------------------------------------------------------------------|-----------|-------------|
| 16 points 24 Vdc input and 16 points relay output (with 0.5 m cable)  | T1-EDR32  | TDR132E*S   |
| 16 points 120 Vac input and 16 points relay output (with 0.5 m cable) | T1-EAR32  | TAR132E*S   |

## • Expansion rack

| Desc                     | cription              | Type code | Part number |
|--------------------------|-----------------------|-----------|-------------|
| 2-slot for T2 I/O module | s (with 0.15 m cable) | BU152     | TBU152**S   |
| 4-slot for T2 I/O module | s (with 0.15 m cable) | BU154     | TBU154**S   |

#### • T2 I/O modules

| Description                                         |            | Type code               | Part number |            |
|-----------------------------------------------------|------------|-------------------------|-------------|------------|
| 16 points 24 Vdc/ac input                           |            | DI31                    | EX10*MDI31  |            |
| 32 points 24 Vdc input                              |            | DI32                    | EX10*MDI32  |            |
| 64 points 24 \                                      | /dc input  |                         | DI235       | TDI235**S  |
| 16 points 120                                       | Vac input  |                         | IN51        | EX10*MIN51 |
| 16 points 240 Vac input                             |            | IN61                    | EX10*MIN61  |            |
| 12 points relay output                              |            | RO61                    | EX10*MRO61  |            |
| 8 points isolated relay output                      |            | RO62                    | EX10*MRO62  |            |
| 16 points transistor output                         |            | DO31                    | EX10*MDO31  |            |
| 32 points transistor output                         |            | DO32                    | EX10*MDO32  |            |
| 64 points transistor output                         |            | DO235                   | TDO235**S   |            |
| 16 points transistor output (current source)        |            | DO233P                  | TDO233P*S   |            |
| 12 points triac output                              |            | AC61                    | EX10*MAC61  |            |
| 4 channel                                           | 8-bit      | 4 - 20 mA / 1 - 5 V 🛛 🔦 | AI21        | EX10*MAI21 |
| analog input                                        | resolution | 0 - 10 V                | AI31        | EX10*MAI31 |
|                                                     | 12-bit     | 4 - 20 mA / 1 - 5 V     | AI22        | EX10*MAI22 |
|                                                     | resolution | ±10 V                   | ĂI32        | EX10*MAI32 |
| 2 channel                                           | 8-bit      | 4 - 20 mA / 1 - 5 V /   | AO31        | EX10*MAO31 |
| analog                                              | resolution | 0 - 5 V / 0 - 10 V      |             |            |
| output                                              | 12-bit     | 4 - 20 mA / 1 - 5 V     | AO22        | EX10*MAO22 |
|                                                     | resolution | ±10 V                   | AO32        | EX10*MAO32 |
| 1 channel pulse input, 5/12 V, 100 kHz max.         |            | PI21                    | EX10*MPI21  |            |
| 1 axis position control, pulse output, 200 kHz max. |            | MC11                    | EX10*MMC11  |            |
| Communication interface, 1 port of RS-232C          |            | CF211                   | TCF211**S   |            |

## • Peripherals

| Description                                  | Type code     | Part number |
|----------------------------------------------|---------------|-------------|
| Handy programmer (with 2 m cable for T1/T1S) | HP911A        | THP911A*S   |
| T-PDS software (MS-DOS version)              | T-PDS         | TMM33I1SS   |
| T-PDS software (Windows version)             | T-PDS Windows | TMW33E1SS   |
| Program storage module                       | RM102         | TRM102**S   |
| Multi-drop adapter for computer link         | CU111         | TCU111**S   |

3

#### Cable and others

| Description                                      | Type code | Part number |
|--------------------------------------------------|-----------|-------------|
| T-PDS cable for T1/T1S, 5m length                | CJ105     | TCJ105*CS   |
| HP911A cable for T1/T1S, 2m length (spare parts) | CJ102     | TCJ102*CS   |
| RS-232C connector for computer link              | PT16S     | TPT16S*AS   |
| (with 2 m cable)                                 |           |             |
| Option card I/O connector for                    | PT15S     | TPT15S*AS   |
| DI116/DO116/DD116, soldering type                |           |             |
| Option card I/O connector for                    | PT15F     | TPT15F*AS   |
| DI116/DO116/DD116, flat cable type               |           |             |
| Expansion rack cable, 0.15 m (spare parts)       | CS1R2     | TCS1R2*CS   |
| Empty slot cover for expansion rack              |           | EX10*ABP1   |

#### A.2 Instruction index

#### Instruction name

1 bit rotate left 191 1 bit rotate right 190 1 bit shift left 183 1 bit shift right 182 2's complement 250 7-segment decode 252 Absolute value 249 Addition 161 Addition with carry 167 AND 174 ASCII conversion 254 ASCII to Hex conversion 180 Average value 246 BCD conversion 256 Bi-directional shift register 188 Binary conversion 255 Bit count 220 Bit test 181 Calendar operation 236 Coil 139 Counter 150 Data exchange 157 Data transfer 154 Decode 219 Decrement 173 Demultiplexer 195 Device/register reset 215 Device/register set 214 Digital filter 178 Direct I/O 257 Disable interrupt 227 Division 164 Double-word 2's complement 251 Double-word addition 165 Double-word data transfer 155 Double-word equal 204 Double-word greater than 202 Double-word greater than or equal 203 Double-word less than 206 Double-word less than or equal 207 Double-word not equal 205 Double-word subtraction 166 Enable interrupt 226 Encode **218** End 153 Equal 198

Exclusive OR 176 Expanded data transfer 25 Flip-flop 233 FOR 223 Forced coil 140 Function generator 247 Greater than 196 Greater than or equal Hex to ASCII conversion 179 Increment 172 Interrupt return 228 Invert coil 142 Invert transfer 156 Inverter 141 Jump control reset 152 Jump control set 152 Less than 200 Less than or equal 201 Lower limit 243 Master control reset 151 Master control set 151 Maximum value 244 Minimum value 245 Moving average 177 Multiplexer 194 Multiplication 163 n bit rotate left 193 n bit rotate right 192 n bit shift left 185 n bit shift right 184 NC contact 136 Negative pulse coil 146 Negative pulse contact 144 NEXT 224 NO contact 135 Not equal 199 OFF delay timer 148 ON delay timer 147 OR 175 Positive pulse coil 145 Positive pulse contact 143 Pre-derivative real PID 237 Reset carry 217 Set calendar 235 Set carry 216 Shift register 186

Single shot timer 149 Special module data read 263 Special module data write 265 Step sequence initialize 230 Step sequence input 231 Step sequence output 232 Subroutine call 221 Subroutine entry 225 Subroutine return 222 Subtraction 162 Subtraction with carry 168 Table initialize 158 Table invert transfer 160 Table transfer 159 Transitional contact (falling) 138 Transitional contact (rising) 137 Unsigned division 170 Unsigned double/single division 171 Unsigned equal 210 Unsigned greater than 208 Unsigned greater than or equal 209 Unsigned less than 212 Unsigned less than or equal 213 Unsigned multiplication 169 Unsigned not equal 211 Up-down counter 234 Upper limit 242 Watchdog timer reset 229









## TOSHIBA INTERNATIONAL (EUROPE) LTD.

1 Roundwood Avenue Stockley Park, Uxbridge Middlesex, ENGLAND UB11 1AR Tel: 0181-756-6000 Fax: 0181-848-4969

## TOSHIBA INTERNATIONAL CORPORATION

Industrial Division 13131 West Little York Road Houston, TX. 77041, USA Tel: 713-466-0277 Fax: 713-466-8773

# NN

#### TOSHIBA INTERNATIONAL CORPORATION PTY. LTD.

Unit 1, 9 Orion Road, Lane Cove N.S.W. 2066, AUSTRALIA Tel: 02-9768-6600 Fax: 02-9890-7542

## **TOSHIBA CORPORATION**

Industrial Equipment Department 1-1, Shibaura 1-chome, Minato-ku Tokyo 105, JAPAN Tel: 03-3457-4900 Fax: 03-5444-9268