

Bulletin No. 3020IM9806 February 1999 LaVergne, TN, USA (Replaces 3020IM9301R10/97 dated January 1998)

NOTICE

Read these instructions carefully and look at the equipment to become familiar with the device before trying to install, operate, or maintain it. The following special messages may appear throughout this bulletin to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

DANGER

Used where there is hazard of severe bodily injury or death. Failure to follow a "DANGER" instruction *will* result in *severe* bodily injury or death.

<u> WARNING</u>

Used where there is hazard of bodily injury or death. Failure to follow a "WARNING" instruction can result in bodily injury or death.

CAUTION

Used where there is hazard of equipment damage. Failure to follow a "CAUTION" instruction can result in damage to equipment.

Note: Provides additional information to clarify or simplify a procedure.

PLEASE NOTE: Electrical equipment should be serviced only by qualified electrical maintenance personnel, and this document should not be viewed as sufficient for those who are not otherwise qualified to operate, service, or maintain the equipment discussed. Although reasonable care has been taken to provide accurate and authoritative information in this document, no responsibility is assumed by Square D for any consequences arising out of the use of this material.

FCC NOTICE: This equipment complies with the requirements in Part 15 of FCC rules for a Class A computing device. Operation of this equipment in a residential area may cause unacceptable interference to radio and TV reception, requiring the operator to take whatever steps are necessary to correct the interference.

TECHNICAL SUPPORT

For technical support, contact the Power Management Operation Technical Support Center. Hours are 7:30 A.M. to 4:30 P.M., Central Time, Monday through Friday.

▶ Phone: (615) 287-3400

Fax: (615) 287-3404

BBS: (615) 287-3414

Email: PMOSUPRT@SquareD.com

POWERLOGIC, SY/MAX, SY/NET, SY/LINK, POWER-ZONE, VISI-VAC, ISO-FLEX and 回 are Registered Trademarks of Square D Company. SYSTEM MANAGER and CIRCUIT TRACKER are Trademarks of Square D Company.

Windows, Windows NT, and Windows 95 are Registered Trademarks of Microsoft Corporation. Other names are trademarks or service marks of their respective companies.

Please fill out, detach, and mail the postage paid card below. Fill out only one registration card, even if you have purchased multiple POWERLOGIC devices.

Registration Card

hh

Register your POWERLOGIC OR POWERLINK product today and get:

- Free expert technical phone support—just call (615) 287-3400
- Notice of product upgrades and new product releases
- Notice of special product offers and price discounts

Mailing Address					
City		State		Country	
Zip/Postal Code		Em	ail Address		
Telephone			Fax		
Product Purchased	d Through (Distributor) _			
Please tell us how	w many of	each of the f	ollowing prod	ucts you have	:
Circuit Monitors:	□ 1–5	6-20	21–50	51–100	1 00+
Power Meters:	□ 1−5	6-20	21–50	51–100	100+

CONTENTS

N

	1
What is the Circuit Monitor?	-
Expanded Memory	
Identifying the Series and Firmware Devisions	2
Model Numbers	
Ungrading Existing Circuit Monitors	
Momory Options Summary	
Safaty Processions	
Using This Bulletin	
Notational Conventions	
Topics Not Covered Here	
Related Documents	
Fax-On-Demand	
Installation and Operation Bulletin	
Insunation and Operation Duncture	
CHAPTER 2-METERING CAPABILITIES	
Real-Time Readings	
Min/Max Values	
Demand Readings	
Demand Power Calculation Methods	
Predicted Demand	
Peak Demand	
Generic Demand	
Voltage Demand	
Energy Readings	
Power Analysis Values	
CHAPTER 3-INPUT/OUTPUT CAPABILITIES	
Input/Output Modules	
Status Inputs	
Demand Synch Pulse Input	
Analog Inputs	
Analog Input Example	
Relay Output Operating Modes	
Niechanical Kelay Outputs	
Setpoint Controlled Kelay Functions	
2 Mire Bules Initiator	
2-wire Pulse Initiator	
o-wire ruise initiator	
Calculating the watthour-Per-Pulse value	
Analog Outputs	
Analog Output Example	

Contents

Setpoint Driven Alarms	
Setpoint-Controlled Relay Functions	
Event Logging	
Event Log Storage	
Deta Logging	
Data Logging	
Alarin-Driven Data Log Entries	
Organizing Data Log Files	
Storage Considerations	
Maintenance Log	
CHAPTER 6—WAVEFORM CAPTURE	
4-Cycle Waveform Capture	
Manual Waveform Capture	0
Automatic Waveform Capture	
Waveform Storage	
Extended Event Capture	
Manual Event Capture	
Automatic Event Capture—High-Speed Trigger	
Automatic Extended Capture—Initiated by a Standard Setpoi	nt
Extended Event Capture Storage	
I O	
CHAPTER 7—DISTURBANCE MONITORING	
Introduction	
Description	
Operation	
Multiple Waveform Setup	
SMS-3000, SMS-1500, or PMX-1500	
SMS-770, SMS-700, EXP-550, or EXP-500	
Sag/Swell Alarms	
Multiple Waveform Retrieval	
SMS-3000, SMS-1500, or PMX-1500	
SMS-770, SMS-700, EXP-550, or EXP-500	
High-Speed Event Log Entries	
CHAPTER 8—CM-2450, CM-2452 WITH PROGRAMMING LANGUA	GE
Introduction	
Description	
Application Examples	
Developer's Kit	
CHAPTER 9—ADVANCED TOPICS	
The Command Interface	
Command Codes	
Operating Kelays Using the Command Interface	
© 1000 Square D Company, All Pighte Recorded	

Contents

	Setting Up Relays for Remote (External) Control	
	Energizing a Relay	
	De-Energizing a Relay	
	Setting Up Relays for Circuit Monitor (Internal) Control	
	Overriding an Output Relay	
	Releasing an Overridden Relay	
	Setting Scale Factors For Extended Metering Ranges	
	Setting The Date and Time Using the Command Interface	
	Memory Allocation	
	Memory Example	
	How Power Factor is Stored	
	Changing the VAR Sign Convention	
	Conditional Energy	
	Command Interface Control	
	Status Input Control	
	Incremental Energy	
	Using Incremental Energy	
	Changing the Demand Calculation Method	
	Changing to the Block/Rolling Method	
	Setting Up a Demand Synch Pulse Input	
	Controlling the Demand Interval Over the Communications Link	
	Setting Up Individual Harmonic Calculations	
	Status Input Pulse Demand Metering	
	Pulse Counting Example	
)	PENDICES	
	Appendix A—Communication Cable Pinouts	81

AP

Appendix A—Communication Cable Pinouts	
Appendix B—Abbreviated Register Listing	
Appendix C-Calculating Log File Sizes	
Appendix D—Alarm Setup Information	
Appendix E Reading and Writing Registers from the Front Panel	125

FIGURES

1-	1 Circuit monitor series/firmware revision sticker	4
2-	1 Power factor min/max example	. 11
2	2 Default VAR sign convention	. 11
2-	3 Alternate VAR sign convention	. 11
3-	1 Demand synch pulse timing	. 19
3	2 Analog input example	. 21
3-	3 2-wire pulse train	. 27
3-	4 3-wire pulse train	. 27
3-	5 Analog output example	. 30
4-	1 Sample event log entry	. 32
4-	2 How the circuit monitor handles setpoint-driven alarms	. 32
6-	1 Flowchart illustrating automatic waveform capture	42
6-	2 Status input S2 connected to external high-speed relay	. 45
<u></u>	© 1999 Square D Company All Rights Reserved	iii
2		

6-3	12-cycle event capture example initiated from a high-speed input S2	
7-1	A fault near plant D that is cleared by the utility circuit breaker can still affect	
	plants A, B, and C, resulting in a voltage sag	50
7-2	Voltage sag caused by a remote fault and lasting 5 cycles	
7-3	POWERLOGIC System Manager SMS-3000 Onboard Data Storage dialog box	
7-4	POWERLOGIC System Manager SMS-770 Onboard Data Storage setup dialog box	
7-5	60-cvcle extended event capture displayed in SMS-3000	
7-6	Three back-to-back 12-cycle waveform captures of a V sag	56
7-7	High-speed event log entries	57
9-1	Memory allocation example (CM-2350)	70
9-2	Power factor register format	
9-3	Default VAR sign convention	
9-4	Ontional VAR sign convention	
9-5	Pulse demand metering example	
<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Tuise dentatio increming example	
TABLES		
1-1	Summary of circuit monitor instrumentation	
1-2	Class 3020 circuit monitors	
1-3	Circuit monitor feature comparison	
1-4	Circuit monitor model numbers	4
1-5	Memory upgrade kit part numbers	5
1-6	Series 2000 circuit monitor memory options	5
2-1	Real-time readings	9
2-2	Demand readings	
2-3	Energy readings	
2-4	Power analysis values	
3-1	Input/Output Modules	
5-1	Values stored in maintenance log	40
7-1	Circuit monitor electromagnetic phenomena measurement capability	
7-2	Multiple 12-cvcle waveform capture	
7-3	CM-2350 and CM-2450 12-cycle waveform capture memory allocation	55
7-4	CM-2452 12-cycle waveform capture memory allocation	55
9-1	Memory configuration example	
•		
•		
iv	© 1999 Square D Company All Rights Reserved	

Chapter 1—Introduction

CHAPTER 1—INTRODUCTION

C

CHAPTER CONTENTS

This chapter offers a general description of the circuit monitor, describes important safety precautions, tells how to best use this bulletin, and lists related documents. Topics are discussed in the following order:

What is the Circuit Monitor?	1
Expanded Memory	3
Requirements for Using	4
Identifying the Series and Firmware Revisions	4
Model Numbers	4
Upgrading Existing Circuit Monitors	5
Memory Options Summary	5
Safety Precautions	6
Using This Bulletin	6
Notational Conventions	6
Topics Not Covered Here	7
Related Documents	7
Fax-On-Demand	7
Installation and Operation Bulletin	8

Note: This edition of the circuit monitor instruction bulletin describes features available in series G4 or later and firmware version 17.009 (or higher). Series 2000 circuit monitors with older series numbers or firmware versions will not include all features described in this instruction bulletin. If you have Series 2000 circuit monitors that do not have the latest firmware version and you want to upgrade their firmware, contact your local Square D representative for information on purchasing the Class 3020 Type CM-2000U Circuit Monitor Firmware Upgrade Kit.

The POWERLOGIC® Circuit Monitor is a multifunction, digital instrumentation, data acquisition and control device. It can replace a variety of meters, relays, transducers and other components. The circuit monitor is equipped with RS-485 communications for integration into any power monitoring and control system. However, POWERLOGIC System Manager application software—written specifically for power monitoring and control—best supports the circuit monitor's advanced features.

The circuit monitor is a true rms meter capable of exceptionally accurate measurement of highly nonlinear loads. A sophisticated sampling technique enables accurate, true rms measurement through the 31st harmonic. Over 50 metered values plus extensive minimum and maximum data can be viewed from the six-digit LED display. Table 1-1 on page 3 provides a summary of circuit monitor instrumentation.

The circuit monitor is available in several models to meet a broad range of power monitoring and control applications. Table 1-2 on page 3 lists the circuit monitor models. Table 1-3 compares the features available by model.

Circuit monitor capabilities can be expanded using add-on modules that mount on the back of the circuit monitor. A voltage/power module and several input/output modules are available. See **Input/Output Capabilities** in Chapter 3 for a description of the available I/O modules.

© 1999 Square D Company All Rights Reserved

WHAT IS THE CIRCUIT MONITOR?

Using POWERLOGIC application software, users can upgrade circuit What is the Circuit Monitor? monitor firmware through either the RS-485 or front panel optical communi-(cont.) cations ports. This feature can be used to keep all circuit monitors up to date with the latest system enhancements. Some of the circuit monitor's many features include: True rms metering (31st harmonic) Accepts standard CT and PT inputs Certified ANSI C12.16 revenue accuracy High accuracy—0.2% current and voltage Over 50 displayed meter values Min/Max displays for metered data Power quality readings—THD, K-factor, crest factor Real time harmonic magnitudes and angles Current and voltage sag/swell detection and recording On-board clock/calendar Easy front panel setup (password protected) RS-485 communications standard Front panel, RS-232 optical communications port standard Modular, field-installable analog and digital I/O 1 ms time stamping of status inputs for sequence-of-events recording I/O modules support programmable KYZ pulse output Setpoint-controlled alarm/relay functions On-board event and data logging Waveform and event captures, user-selectable for 4, 12, 36, 48, or 60 cycles 64 and 128 point/cycle waveform captures High-speed, triggered event capture Programming language for application specific solutions Downloadable firmware System connections 3-phase, 3-wire Delta - 3-phase, 4-wire Wye - Metered or calculated neutral - Other metering connections Optional voltage/power module for direct connection to 480Y/277V Optional control power module for connecting to 18-60 Vdc control power Wide operating temperature range standard (-25 to $+70^{\circ}$ C) UL Listed, CSA certified, and CE marked MV-90[™] billing compatible Pre-configured data log and alarms • © 1999 Square D Company All Rights Reserved

Chapter 1—Introduction

Table 1-1 Summary of Circuit Monitor Instrumentation **Real-Time Readings Energy Readings** Accumulated Energy, Real
 Accumulated Energy, Reactive • Current (per phase, N, G, 3Ø) Voltage (L-L, L-N) • Accumulated Energy, Apparent* • Real Power (per phase, 3Ø) Bidirectional Readings* • Reactive Power (per phase, 3Ø) • Apparent Power (per phase, 3Ø) **Power Analysis Values*** • Power Factor (per phase, 3Ø) Frequency • Crest Factor (per phase) • Temperature (internal ambient)* • K-Factor Demand (per phase) • THD (current and voltage) • Displacement Power Factor (per phase, 3Ø) • Fundamental Voltages (per phase) • K-Factor (per phase) • Fundamental Currents (per phase) Demand Readings • Fundamental Real Power (per phase) Demand Current (per-phase present, peak) • Fundamental Reactive Power (per phase) Demand Voltage (per-phase present, peak)* Harmonic Power • Average Power Factor (3Ø total)* Unbalance (current and voltage) • Demand Real Power (3Ø total) Phase Rotation • Demand Reactive Power (3Ø total)* • Harmonic Magnitudes & Angles (per phase) • Demand Apparent Power (3Ø total) Coincident Readings* * Available via communications only. Predicted Demands*

Table 1-2 Class 3020 Circuit Monitors

Туре	Description
CM-2050	Instrumentation, 1% accuracy
CM-2150	Instrumentation, 0.2% accuracy, data logging, alarm/relay functions
CM-2250	Waveform capture, plus CM-2150 features
CM-2350	Instrumentation, waveform capture, 0.2% accuracy
CM-2450	Programmable for custom applications, plus-2350 features

Table 1-3 Circuit Monitor Feature Comparison

Feature	CM-2050	CM-2150	CM-2250	CM-2350	CM-2450
Full Instrumentation	×	×	×	×	×
RS-485 Comm Port	×	×	×	×	×
Front Panel Optical Comm Port	×	×	×	×	×
1% Accuracy Class	×				
0.2% Accuracy Class		×	×	×	×
Alarm/Relay Functions		×	×	×	×
On-board Data Logging		×	×	×	×
Downloadable Firmware		×	×	×	×
Date/Time for Each Min/Max		×	×	×	×
Waveform Capture			×	×	×
Extended Event Capture			×	×	×
Extended Memory (up to 1.1 Meg.)*		×	×	×	×
Sag/Swell Detection				×	×
Programmable for Custom Applications					×

* Standard memory: CM-2150, CM-2250, CM-2350, and CM-2450 = 100K; CM-2452 = 356K

EXPANDED MEMORY

New Series G4 (or higher) circuit monitor models CM-2150 and higher now are factory-equipped with 100 kilobytes (100K) of nonvolatile memory. (Earlier Series G3 models CM-2150 and CM-2250 shipped with 11K of memory, models CM-2350 and CM-2450 with 100K of memory.)

4

Bulletin No. 3020IM9806 February 1999			5
EXPANDED MEMORY (cont.)	For applications whe circuit monitor with resulting in 612K or base memory plus th also available for mo Circuit Monitors , pa	ere additional memory is r an optional 512K or 1024k 1124K, respectively, total r ae expansion card memory ost earlier circuit monitors. age 5.	equired, you can order a C memory expansion card, nonvolatile memory (100K c). Memory upgrade kits are See Upgrading Existing
Requirements for Using Expanded Memory	System Manager soft Service Update 1, or sion card memory of Earlier versions of Sy Series G3 and earlier Also, your circuit mo- later to take advanta to determine the firm To determine if your downloadable firmw in Chapter 4 of the C To obtain the latest a representative (see N	tware version 3.02 with Se 3.1 (or higher) is required the 100K of memory stan ystem Manager software w memory capacity) of avait onitor must be equipped w ge of expanded memory. In ware version shipped with circuit monitor firmware w are, see Viewing Configu <i>ircuit Monitor Installation an</i> wailable firmware revision <i>lote,</i> page 1.)	rvice Update 1, 3.02a with to take advantage of expan- dard on G4 circuit monitors. vill recognize only 11K (the lable memory. vith fitmware version 17.009 or The following section tells how h your circuit monitor. version has been updated with ration Data in Protected Mode ad Operation Bulletin.
Identifying the Series and Firmware Revisions	The circuit monitor sticker on the top of sticker.	eries and firmware revision the circuit monitor enclose	on numbers are printed on a are. Figure 1-1 shows a sample
	Firmware Figure 1-1.	Series Series: G20 Series: G20 U6 REV: 10 U33 REV: 10 U33 REV: 10 Circuit monitor series/firma	C 5-16.007 16.007 <i>ware revision sticker</i>
Model Numbers	Circuit monitor mod are differentiated fro added to the model r expansion option is a CM-2350, and CM-24 has been replaced by price than the CM-24 upgraded as detailed	els equipped with an option m standard models by a su number (table 1-4). As sho available for model number 150. The CM-2452 circuit n the CM-2450-512k, which 152. However, existing CM 1 on the following page.	onal memory expansion card uffix—either -512k or -1024k— wn in the table, the memory rs CM-2150, CM-2250, nonitor is now obsolete and has more memory at a lower 2-2452 circuit monitors can be
		Table 1-4 Circuit Monitor Model	Numbers
	Standard Models	Models with 512k Option	Models with 1024k Option
	3020 CM-2050	N/A	N/A
	3020 CM-2150	3020 CM-2150-512k	3020 CM-2150-1024k
	3020 CM-2250	3020 CM-2250-512k	3020 CM-2250-1024k
	3020 CM-2350	3020 CM-2350-512k	3020 CM-2350-1024k
	3020 CM-2450	3020 CM-2450-512k	3020 CM-2450-1024k

- © 1999 Square D Company All Rights Reserved -

Upgrading Existing Circuit Monitors

Memory upgrade kits are available for field installation by a qualified electrician. No special tools are required.

DANGER

HAZARD OF ELECTRIC SHOCK, BURN, OR EXPLOSION

Only qualified electrical workers should install a memory upgrade kit in a circuit monitor. Perform the upgrade only after reading the installation instructions shipped with the upgrade kit. Before removing the cover of the circuit monitor to install the memory board:

- · Disconnect all voltage inputs to the circuit monitor
- Short the CT secondaries
- De-energize the control power inputs

Failure to observe this precaution will result in death or serious injury.

For Series G3 and earlier circuit monitors, the memory upgrade kit can be installed only in circuit monitor models CM-2350 and CM-2450.

Note: Model CM-2452 was factory-equipped with 100K of memory and a 256K memory expansion card, for a total of 356K of memory. The 256K card can be removed and replaced with a 512K or 1024K expansion card, for total memory of either 612K or 1124K.

The memory upgrade kit can be installed in Series G4 models CM-2150 and higher. Memory upgrade kits are available with either the 512k or 1024k memory card (see table 1-5). No special tools are required for installation.

Table 1-5 Memory Upgrade Kit Part Numbers		
	Part Number	Description
	3020 CM-MEM-512K	512K Memory Upgrade Kit for Series 2000 Circuit Monitors
	3020 CM-MEM-1024K	1024K Memory Upgrade Kit for Series 2000 Circuit Monitors

Memory Options Summary

Table 1-6 summarizes the memory options now available for Series 2000 Circuit Monitors. To obtain price and availability on circuit monitors with expanded memory and circuit monitor memory upgrade kits, contact your local sales representative.

Table 1-6 Series 2000 Circuit Monitor Memory Options

			Total Memo	ry Capacity		
Model Number		Series G3 or Ea	arlier		Series G4 or L	ater
	Standard	512K Expansion	1024K Expansion	Standard	512K Expansion	1024K Expansion
CM-2050	N/A	N/A	N/A	N/A	N/A	N/A
CM-2150	11K	N/A	N/A	100K	612K	1124K
CM-2250	11K	N/A	N/A	100K	612K	1124K
CM-2350	100K	612K	1124K	100K	612K	1124K
CM-2450	100K	612K	1124K	100K	612K	1124K
CM-2452	356K	612K ①	1124K ①		Obsolete	

CM-2452 256K memory expansion card removed and replaced with 512K or 1024K memory expansion card.

	A DANGER
	HAZARD OF BODILY INJURY OR EQUIPMENT DAMAGE
	 Only qualified electrical workers should install this equipment. Such work should be performed only after reading this entire set of instructions.
	 The successful operation of this equipment depends upon proper handling, installation, and operation. Neglecting fundamental installation requirements may lead to personal injury as well as damage to electrical equipment or other property.
	• Before performing visual inspections, tests, or maintenance on this equipment, disconnect all sources of electric power. Assume that all circuits are live until they have been completely de-energized, tested, grounded, and tagged. Pay particular attention to the design of the power system. Consider all sources of power, including the possibility of backfeeding.
	Failure to observe this precaution will result in death, serious injury, or equipment damage.
JSING THIS BULLETIN	This document provides information on the circuit monitor's general to advanced features. The document consists of a table of contents, nine chap- ters, and several appendices. Chapters longer than a few pages begin with a chapter table of contents. To locate information on a specific topic, refer to the table of contents at the beginning of the document, or the table of con- tents at the beginning of a specific chapter.
Iotational Conventions	This document uses the following notational conventions:
	• Procedures . Each procedure begins with an italicized statement of the task, followed by a numbered list of steps. Procedures require you to take action.
	• Bullets . Bulleted lists, such as this one, provide information but not procedural steps. They do not require you to take action.
	• Cross-References . Cross-references to other sections in the document appear in boldface. Example: see Analog Inputs in Chapter 3 .
N	

Topics Not Covered Here

This bulletin does not describe the installation and operation of the circuit monitor. For these instructions, see the *Circuit Monitor Installation and Operation Bulletin* (No. 3020IM9807). Some of the circuit monitor's advanced features, such as on-board data log and event log files, must be set up over the communications link using POWERLOGIC application software. This bulletin describes these advanced features, but it does not tell how to set them up. For instructions on setting up these advanced features, refer to the appropriate application software instruction bulletin listed below.

Computer Operating System	Software	Instruction Bulletin Order No.
Windows NT [®]	SMS-3000 System Administrator's Guide (client/server)	3080IM9602
Windows NT [®]	SMS-3000 User's Manual (client/server)	3080IM9601
Windows NT/Windows [®] 95	System Manager Standalone (SMS-1500/PMX-1500/SMS-12	1) 3080IM9702
Windows 3.1	SMS-770/700	3080IM9305
Windows 3.1	EXP-550/500	3080IM9501
DOS	PSW-101	3080IM9302
RELATED DOCUMENTS	Several optional add-on modules are available for use monitor. Each module is shipped with an instruction b installation and use of the product. Available add-on m circuit monitor are listed below.	with the circuit ulletin detailing nodules for the
	Instruction Bulletin Title	Reference No. ^①
	POWERLOGIC Control Power Module (CPM-48)	3090IM9305
	POWERLOGIC Ride-Through Module	3090IM9701
	• I/O Modules (IOM-11/44/18)	3020IM9304
	• 1/O Modules (IOM-4411/4444)	3020IM9401
	Voltage/Power Module	3090IM9302
	Optical Communications Interface (OCI-2000)	3090IM9303
X	• Ethernet Communications Module (ECM-2000/ECM-RM)	3020IB9818
Fax-On-Demand	In addition, the software and add-on module instruction this chapter are available through D-Fax, the Square D system. Phone 1-800-557-4556 [®] and request a POWERI Monitoring index. Then call back and order the docum specifying the Fax Document Number(s) from the inde will be faxed to your fax machine. This service is access week, 24 hours a day.	on bulletins listed in fax-on-demand LOGIC/Power ent(s) you want by x. The document(s) sible seven days a

D Reference numbers listed are the original document numbers. If a document has been revised, the listed number will be followed by a revision number, for example R10/97.

In some instances, this toll-free number may not work if dialed from outside of the United States. In such instances, phone 1-919-217-6344 to speak to the D-Fax administrator.

Installation and Operation

POWERLOGIC Circuit Monitor Installation and Operation Bulletin (No. **Bulletin** 3020IM9807), which includes information on the following topics: • Hardware Description • Mounting and Grounding the Circuit Monitor Wiring CTs, PTs, and Control Power • Communications Wiring • Configuring the Circuit Monitor Setting up Alarm/Relay Functions Viewing Active Alarms ٠ • Circuit Monitor Dimensions Specifications • Installing Terminal Strip Covers The installation and operation manual is included with each circuit monitor. Additional copies can be obtained the following two ways: • Download an electronic version (Acrobat PDF format) from the POWERLOGIC web site at www.powerlogic.com. • Order a printed copy from the Square D Literature Center at 1-800-888-2448. Ask for document #3020IM9807. © 1999 Square D Company All Rights Reserved

For information necessary to install and operate the circuit monitor, see the

Chapter 2—Metering Capabilities

CHAPTER 2—METERING CAPABILITIES

CHAPTER CONTENTS	Real-Time Readings	9
	Min/Max values	. 10
	Demand Readings	. 12
	Demand Power Calculation Methods	. 12
	Predicted Demand	. 13
	Peak Demand	. 13
	Generic Demand	14
	Energy Readings	. 14
	Power Analysis Values	. 15

REAL-TIME READINGS

The circuit monitor measures currents and voltages and reports rms values for all three phases and neutral/ground current. In addition, the circuit monitor calculates power factor, real power, reactive power, and more. Table 2-1 lists the real-time readings and their reportable ranges.

Table 2-1 Real-Time Readings

Current Per-Phase Neutral Ground ① 3-Phase Average Apparent rms ① Current Unbalance ① Voltage	0 to 32,767 A 0 to 32,767 A
Per-Phase Neutral Ground ① 3-Phase Average Apparent rms ① Current Unbalance ① Voltage	0 to 32,767 A 0 to 32,767 A 0 to 32,767 A 0 to 32,767 A 0 to 32,767 A
Neutral Ground ① 3-Phase Average Apparent rms ① Current Unbalance ① Voltage	0 to 32,767 A 0 to 32,767 A 0 to 32,767 A 0 to 32,767 A
Ground ① 3-Phase Average Apparent rms ① Current Unbalance ① Voltage	0 to 32,767 A 0 to 32,767 A 0 to 32,767 A
3-Phase Average Apparent rms ① Current Unbalance ① Voltage	0 to 32,767 A 0 to 32,767 A
Apparent rms ① Current Unbalance ① Voltage	0 to 32,767 A
Current Unbalance ① Voltage	· · · · · · · · · · · · · · · · · · ·
Voltage	0 to 100%
Line-to-Line, Per-Phase	0 to 3,276,700 V
Line-to-Neutral, Per-Phase	0 to 3,276,700 V
3-Phase Average	0 to 3,276,700 V
Voltage Unbalance ①	0 to 100%
Real Power	
3-Phase Total	0 to +/- 3,276.70 MW
Per-Phase	0 to +/- 3,276.70 MW
Reactive Power	
3-Phase Total	0 to +/- 3,276.70 MVAr
Per-Phase	0 to +/- 3,276.70 MVAr
Apparent Power	
3-Phase Total	0 to 3,276.70 MVA
Per-Phase	0 to 3.276.70 MVA
Power Factor (True)	
3-Phase Total	-0.010 to 1.000 to +0.010
Per-Phase	-0.010 to 1.000 to +0.010
Power Factor (Displacement)	
3-Phase Total ①	-0.010 to 1.000 to +0.010
Per-Phase ①	-0.010 to 1.000 to +0.010
Frequency	
50/60 Hz	23.00 to 67.00 Hz
400 Hz	350.00 to 450.00 Hz
Temperature (Internal Ambient) ①	-100.00°C to +100.00°C
 Via communications only. 	

10

Min/Max Values	The circuit monitor stores minimum and maximum values for all real-time readings in nonvolatile memory. In addition, the circuit monitor (except model CM-2050) stores the date and time associated with each minimum and each maximum.
	Minimums and maximums for front panel values can be viewed on the circuit monitor's LED display. All min/max values—including those not displayable from the front panel—can be reset from the circuit monitor's front panel. See Resetting Demand, Energy and Min/Max Values in Chapter 4 of the <i>Circuit Monitor Installation and Operation Bulletin</i> for reset instructions.
	Using POWERLOGIC application software you can:
	• View all min/max values and their associated dates and times
	 Upload min/max values—and their associated dates and times—from the circuit monitor and save them to disk
	Reset all min/max values
	For instructions on viewing, saving, and resetting min/max data using POWERLOGIC software, refer to the instruction bulletin included with the software.
Power Factor Min/Max Conventions	All running min/max values, with the exception of power factor, are arithmetic minimums and maximums. For example, the minimum phase A-B voltage is simply the lowest value in the range 0 to 3,276,700 V that has occurred since the min/max values were last reset. In contrast, power factor min/max values—since the meter's midpoint is unity—are not true arithmetic minimums and maximums. Instead, the minimum value represents the measurement closest to -0 on a continuous scale of -0 to 1.00 to +0. The maximum value is the measurement closest to +0 on the same scale.
	Figure 2-1 shows the min/max values in a typical environment, assuming a positive power flow. In figure 2-1, the minimum power factor is7 (lagging) and the maximum is .8 (leading). It is important to note that the minimum power factor need not be lagging, and the maximum power factor need not be leading. For example, if the power factor values ranged from75 to95, then the minimum power factor would be75 (lagging) and the maximum power factor values ranged from +.9 to +.95, the minimum would be +.95 (leading) and the maximum would be +.90 (leading).
	See Changing the VAR Sign Convention in Chapter 9 for instructions on changing the sign convention over the communications link.
N	

- © 1999 Square D Company All Rights Reserved

Chapter 2—Metering Capabilities

NN

Figure 2-3: Alternate VAR sign convention

DEMAND READINGS

The circuit monitor provides a variety of demand readings, including coincident readings and predicted demands. Table 2-2 lists the available demand readings and their reportable ranges.

Table 2-2 Demand Readin	gs
Demand Reading	Reportable Range
Demand Current, Per-Phase,	
3Ø Avg., Neutral	
Present	0 to 32,767 A
Peak	0 to 32,767 A
Demand Voltage, Per-phase & 3Ø Avg.	
L–N, L–L	
Present	0 to 32,767 V
Minimum	0 to 32,767 V
Peak	0 to 32,767 V
Avg. Power Factor (True), 3Ø Total	
Present ①	-0.010 to 1.000 to +0.010
Coincident w/ kW Peak ①	-0.010 to 1.000 to +0.010
Coincident w/ kVAR Peak ①	-0.010 to 1.000 to +0.010
Coincident w/ kVA Peak 1	-0.010 to 1.000 to +0.010
Demand Real Power, 3Ø Total	
Present	0 to +/-3,276.70 MW
Predicted ①	0 to +/-3,276.70 MW
Peak	0 to +/-3,276.70 MW
Coincident kVA Demand ①	0 to 3,276.70 MVA
Coincident kVAR Demand ①	0 to +/-3,276.70 MVAR
Demand Reactive Power, 3Ø Total	
Present	0 to +/-3,276.70 MVAr
Predicted ®	0 to +/-3,276.70 MVAr
Peak	0 to +/-3,276.70 MVAr
Coincident kVA Demand ()	0 to 3,276.70 MVA
Coincident kW Demand ()	0 to +/-3,276.70 MW
Demand Apparent Power, 3Ø Total	
Present	0 to 3,276.70 MVA
Predicted (1)	0 to 3,276.70 MVA
Peak	U to 3,276.70 MVA
Coincident kW Demand (1)	0 to +/-3,276.70 MW
Coincident kVAR Demand ①	0 to +/-3,276.70 MVAR

① Via communications only.

To be compatible with electric utility billing practices, the circuit monitor provides the following types of demand power calculations:

- Thermal Demand
- Block Interval Demand with Rolling Sub-Interval
- External Pulse Synchronized Demand

The default demand calculation method is Thermal Demand. The Thermal Demand Method and the External Synch Pulse method can be set up from the circuit monitor faceplate. (See **Setting the Demand Interval** in **Chapter 4** of the *Circuit Monitor Installation and Operation Bulletin* for setup instructions.) Other demand calculation methods can be set up over the communications link. A brief description of each demand method follows.

© 1999 Square D Company All Rights Reserved

Demand Power Calculation Methods

Chapter 2—Metering Capabilities

Demand Power Calculation Methods (cont.)

Thermal Demand:

The thermal demand method calculates the demand based on a thermal response and updates its demand calculation every 15 seconds on a sliding window basis. The user can select the demand interval from 5 to 60 minutes in 5 minute increments. See **Setting the Demand Interval** in **Chapter 4** of the *Circuit Monitor Installation and Operation Bulletin* for instructions.

Block Interval Demand:

The block interval demand mode supports a standard block interval and an optional subinterval calculation for compatibility with electric utility electronic demand registers.

In the standard block interval mode, the user can select a demand interval from 5 to 60 minutes in 5-minute increments, (See **Setting the Demand Interval** in **Chapter 4** of the *Circuit Monitor Installation and Operation Bulletin* for instructions.) The demand calculation is performed at the end of each interval. The present demand value displayed by the circuit monitor is the value for the last completed demand interval.

Block Interval Demand with Sub-Interval Option:

When using the block interval method, a demand subinterval can be defined. The user must select both a block interval and a subinterval length. The block interval must be divisible by an integer number of subintervals. (A common selection would be a 15-minute block interval with three 5-minute subintervals.) The block interval demand is recalculated at the end of every subinterval. If the user programs a subinterval of 0, the demand calculation updates every 15 seconds on a sliding window basis.

External Pulse Synchronized Demand:

The circuit monitor can be configured to accept—through status input S1 a demand synch pulse from another meter. The circuit monitor then uses the same time interval as the other meter for each demand calculation. See **Demand Synch Pulse Input** in **Chapter 3** for additional details.

The circuit monitor calculates predicted demand for kW, kVAr, and kVA. The predicted demand is equal to the average power over a one-minute interval. The predicted demand is updated every 15 seconds.

The circuit monitor maintains, in nonvolatile memory, a running maximum—called "peak demand"—for each average demand current and average demand power value. It also stores the date and time of each peak demand. In addition to the peak demand, the circuit monitor stores the coinciding average (demand) 3-phase power factor. The average 3-phase power factor is defined as "demand kW/demand kVA" for the peak demand interval.

Peak demand values can be reset from the circuit monitor front panel, or over the communications link using POWERLOGIC application software. To reset peak demand values from the circuit monitor front panel, see **Resetting Demand, Energy, and Min/Max Values** in **Chapter 4** of the *Circuit Monitor Installation and Operation Bulletin*.

Predicted Demand

Peak Demand

Generic Demand	The circuit monitor has the capability to perform a thermal demand calcula- tion on 20 user-specified quantities. The user can select the demand interval from 5–60 minutes in 5-minute increments. For each quantity, the present, minimum, and maximum demand values are stored. The date and time of the minimums and maximums for the first ten demand quantities are also stored.
	To set up the demand calculation for a specific quantity, write the corre- sponding register number for that quantity in the register range of 2205–2224. The generic demand interval can be configured by writing the desired interval in register 2201. (For a complete list of all registers and their descrip- tions pertaining to generic demand, see the register list in Appendix B, beginning with register number 2200. For instructions on reading and writing to registers, see the software instruction manual.)
	Minimum and maximum generic demand values can be reset by using POWERLOGIC application software. The minimum and maximum values can be reset by resetting the peak current demand values or through the command interface using command 5112 (see Command Interface in Chapter 9). Com- mand 5112 will reset only the generic demand minimums and maximums.
Voltage Demand	The circuit monitor is pre-configured to perform a demand calculation on voltage using the generic demand capability. Generic demand registers 2230-2253 automatically contain the values of the present voltage demand values, along with the corresponding minimums and maximums. The date and time for the minimum and peak voltage demands are located in registers 1900–1941. These quantities can be viewed using POWERLOGIC application software.

ENERGY READINGS

The circuit monitor provides energy values for kWH and kVARH, which can be displayed on the circuit monitor, or read over the communications link.

\$

Energy Reading, 3-Phase	Reportable Range ①	Reportable Front Panel	Front Panel Display 2
Accumulated Energy			
Real (Signed/Absolute)	0 to 9,999,999,999,999,999 WHR	000.000 kWH to	000.000 kWH to 000,000 MWh;
Reactive (Signed/Absolute)	0 to 9,999,999,999,999,999 VARH	999,999 MWh	000.000 kVAR to 000,000 MVARh
Real (In)	0 to 9,999,999,999,999,999 WHR		
Real (Out)	0 to 9,999,999,999,999,999 WHR		
Reactive (In)	0 to 9,999,999,999,999,999 VARH		
Reactive (Out)	0 to 9,999,999,999,999,999 VARH		
Apparent	0 to 9,999,999,999,999,999 VAH		
Accumulated Energy, Conditional			
Real (In)	0 to 9,999,999,999,999,999 WHR		
Real (Out)	• 0 to 9,999,999,999,999,999 WHR	Not	Not
Reactive (In)	0 to 9,999,999,999,999,999 VARH	Applicable	Applicable
Reactive (Out)	0 to 9,999,999,999,999,999 VARH		
Apparent	0 to 9,999,999,999,999,999 VAH		
Accumulated Energy, Incremental			
Real (In)	0 to 999,999,999,999 WHR		
Real (Out)	0 to 999,999,999,999 WHR		
Reactive (In)	0 to 999,999,999,999 VARH		
Reactive (Out)	0 to 999,999,999,999 VARH		
Apparent	0 to 999,999,999,999 VAH		

Table 2-3 Energy Readings

Via communications only.
 You can configure the resolution to display energy on the front panel or allow it to auto-range (default). See Appendix B, register 2027, page 97.

GENERIC DEMAND (CONT.)

The circuit monitor can accumulate these energy values in one of two modes: signed or unsigned (absolute). In signed mode, the circuit monitor considers the direction of power flow, allowing the accumulated energy magnitude to both increase and decrease. In unsigned mode, the circuit monitor accumulates energy as positive, regardless of the direction of power flow; in other words, the energy value increases, even during reverse power flow. The default accumulation mode is unsigned. Accumulated energy can be viewed from the front panel display. The resolution of the energy value will automatically change through the range of 000.000 kWh to 000,000 MWh (000.000 kVARh to 000,000 kVARh), or it can be fixed. (See Appendix B, register 2027 on page 97.)

The circuit monitor provides additional energy readings that are available over the communications link only. They are:

- **Directional accumulated energy readings**. The circuit monitor calculates and stores in nonvolatile memory accumulated values for energy (kWH) and reactive energy (kVARH) both into and out of the load. The circuit monitor also calculates and stores apparent energy (kVAH).
- **Conditional accumulated energy readings**. Using these values, energy accumulation can be turned off or on for special metering applications. Accumulation can be turned on over the communications link, or activated from a status input change. The circuit monitor stores the date and time of the last reset of conditional energy in nonvolatile memory.
- Incremental accumulated energy readings. The real, reactive and apparent incremental energy values reflect the energy accumulated during the last incremental energy period. You can define the increment start time and time interval. Incremental energy values can be logged in circuit monitor memory (models CM-2150 and up) and used for load-profile analysis.

The circuit monitor provides a number of power analysis values that can be used to detect power quality problems, diagnose wiring problems, and more. Table 2-4 on page 16 summarizes the power analysis values.

THD—Total Harmonic Distortion (THD) is a quick measure of the total distortion present in a waveform. It provides a general indication of the "quality" of a waveform. The circuit monitor uses the following equation to calculate THD:

THD =
$$\frac{\sqrt{H_2^2 + H_3^2 + H_4^2 + \dots}}{H_1}$$
 x 100%

thd—An alternate method for calculating Total Harmonic Distortion, used widely in Europe. The circuit monitor uses the following equation to calculate thd:

thd =
$$\frac{\sqrt{H_2^2 + H_3^2 + H_4^2 + \dots}}{\text{Total rms}} \times 100\%$$

K-Factor—K-Factor is a simple numerical rating used to specify transformers for nonlinear loads. The circuit monitor uses the following formula to calculate K-Factor:

$$\mathsf{K} = \frac{\mathsf{SUM} (\mathsf{I}_{\mathsf{h}})^2 \mathsf{h}^2}{\mathsf{I}_{\mathsf{rms}}^2}$$

POWER ANALYSIS VALUES

POWER ANALYSIS VALUES (Cont.)

Displacement Power Factor—For purely sinusoidal loads, the power factor calculation kW/kVA is equal to the cosine of the angle between the current and voltage waveforms. For harmonically distorted loads, the true power factor equals kW/kVA—but this may not equal the angle between the fundamental components of current and voltage. The displacement power factor is based on the angle between the fundamental components of current and voltage.

Harmonic Values—The individual per-phase harmonic magnitudes and angles through the 31st harmonic are determined for all currents and voltages in model numbers 2350 and higher circuit monitors. The harmonic magnitudes can be formatted as either a percentage of the fundamental (default), or a percentage of the rms value. Refer to Chapter 9-Advanced Topics for information on how to configure the harmonic calculations.

Power Analysis Valu	es
Value	Reportable Range
THD-Voltage, Current	
3-phase, per-phase, neutral	0 to 3,276.7%
thd-Voltage, Current	
3-phase, per-phase, neutral	0 to 3,276.7%
K-Factor (per phase)	0.0 to 100.0
K-Factor Demand (per phase) ①	0.0 to 100.0
Crest Factor (per phase) ①	0.0 to 100.0
Displacement P.F. (per phase, 3-phase) ①	-0.010 to 1.000 to +0.010
Fundamental Voltages (per phase) ①	
Magnitude	0 to 3,276,700 V
Angle	0.0 to 359.9°
Fundamental Currents (per phase) ①	
Magnitude	0 to 32,767 A
Angle	0.0 to 359.9°
Fundamental Real Power (per phase, 3-phase) ①	0 to 327,670 kW
Fundamental Reactive Power (per phase) ①	0 to 327,670 kVAR
Harmonic Power (per phase, 3-phase) 1	0 to 327,670 kW
Phase Rotation ①	ABC or CBA
Unbalance (current and voltage) ①	0.0 to 100%
Individual Harmonic Magnitudes ①	0 to 327.67%
Individual Harmonic Angles ①	0.0° to 360.0°

Table 2-4

1 Via communications only.

Chapter 3—Input/Output Capabilities

CHAPTER 3—INPUT/OUTPUT CAPABILITIES

CHAPTER CONTE	NTS Input/Output Modules		
	Status Inputs	·····	
	Demand Synch Pulse Input		
	Analog Inputs		
	Analog Input Example		
	Relay Output Operating Modes		
	Mechanical Relay Outputs		
	Setpoint Controlled Relay Functions		
	Solid State KYZ Pulse Output		
	2-Wire Pulse Initiator		
	3-Wire Pulse Initiator		
	Calculating the Watthour-per-pulse Value		
	Analog Outputs		
	Analog Output Example		
INPUT/OUTPUT M	ODULES The circuit monitor supports a variety of input/output option	ons throu	igh the
	use of optional add-on I/O modules. The I/O modules attact	h to the b	back of
	the circuit monitor. Each I/O module provides some or all o	of the foll	owing:
	Status Inputs		C
	Mechanical Relay Outputs		
	Solid State KYZ Pulse Output		
	Analog Inputs		
	Analog Outputs		
	Table 3-1 lists the available I/O Modules. The remainder of the transformation I	his chapte	er
	describes the I/O capabilities. For module installation instruction h	tions and	1 detailed
	recinical specifications, refer to the appropriate instruction of page 6 of the Circuit Monitor Installation and Operation Bullet	in)	see list on
	page o of the Circuit Monitor Installation and Operation Bullet	<i>m</i>).	
	I able 3-1		
	inputoutput modules]
		Max. C	ontrol
		Power	Burden
Class Type	Description	When ION	/I Present
2020 1014 14	status IN 1 KVZ pulso OLIT	120 V	24UV
3020 ION-11 1	status IN, T KTZ pulse OUT	11 VA	15 VA
3020 IOM-44 4	status IN, 1 KYZ pulse OUT, 3 Form-C relay OUT	14 VA	20 VA
3020 IOM-4411-01 4	status IN, 1 KYZ pulse OUT, 3 Form-C relay OUT. 1 Analog IN [®] . 1 Analog OUT (0–1 mA)	20 VA	25 VA
3020 IOM-4411-20 4	status IN, 1 KYZ pulse OUT, 3 Form-C relay OUT, 1 Analog IN ⁰ , 1 Analog OUT (4–20 mA)	20 VA	25 VA
3020 IOM-4444-01 4	status IN, 1 KYZ pulse OUT, 3 Form-C relay OUT, 4 Analog IN ⁰ , 4 Analog OUT (0–1 mA)	21 VA	27 VA
3020 IOM-4444-20 4	status IN, 1 KYZ pulse OUT, 3 Form-C relay OUT, 4 Analog IN ⁰ , 4 Analog OUT (4–20 mA)	21 VA	27 VA

[®] Analog Inputs are 0–5 Vdc. Each analog input can be independently configured to accept a 4-20 mA input by connecting an external jumper wire. See Analog Inputs in this chapter for more information.

STATUS INPUTS The circuit monitor's I/O modules offer 1, 4, or 8 status inputs (see table 3-1 on the previous page). Status inputs can be used to detect breaker status, count pulses, count motor starts, and so on. The following are important points about the circuit monitor's status inputs: • The circuit monitor maintains a counter of the total transitions for each status input. • Status input S2 is a high-speed status input. Input S2 can be tied to an external relay used to trigger the circuit monitor's 12-cycle event capture feature (see Extended Event Capture in Chapter 6). Note: The IOM-11 module does not have an input S2. • Status input transitions can be logged as events in the circuit monitor's on-board event log. • Status input transition events are date and time stamped. For the IOM-11, IOM-18, and IOM-44, the date and time are accurate to within one second. For the IOM-4411 and IOM-4444, all status input transition events are time stamped with resolution to the millisecond, for sequence of events recording. • Status input S1 can be configured to accept a demand synch pulse from a utility demand meter (see Demand Synch Pulse Input on the next page). • Status inputs can be configured to control conditional energy (see **Conditional Energy** in **Chapter 9** for more information). • Status inputs can be used to count KYZ pulses for demand and energy calculation. By mapping multiple inputs to the same counter register, the circuit monitor can totalize pulses from multiple inputs (see Status Input Pulse Demand Metering in Chapter 9 for more information).

DEMAND SYNCH PULSE INPUT

The circuit monitor can be configured to accept—through status input S1—a demand synch pulse from another demand meter. By accepting the demand synch pulses, the circuit monitor can make its demand interval "window" match the other meter's demand interval "window." The circuit monitor does this by "watching" status input S1 for a pulse from the other demand meter. When it sees a pulse, it starts a new demand interval and calculates the demand for the preceding interval. The circuit monitor then uses the same time interval as the other meter for each demand calculation. Figure 3-1 illustrates this point.

When in this mode, the circuit monitor will not start or stop a demand interval without a pulse. The maximum allowable time between pulses is 60 minutes. If 61 minutes pass before a synch pulse is received, the circuit monitor throws out the demand calculations and begins a new calculation when the next pulse is received. Once in synch with the billing meter, the circuit monitor can be used to verify peak demand charges.

Important facts about the circuit monitor's demand synch feature are listed below:

- The demand synch feature can be activated from the circuit monitor's front panel. To activate the feature, enter a demand interval of zero. (See **Setting the Demand Interval** in **Chapter 4** of the *Circuit Monitor Installation and Operation Bulletin* for instructions.)
- When the circuit monitor's demand interval is set to zero, the circuit monitor automatically looks to input S1 for the demand synch pulse. The synch pulse output on the other demand meter *must* be wired to circuit monitor input S1. (Refer to the appropriate I/O Module instruction bulletin for wiring instructions.)
- The maximum allowable interval between pulses is 60 minutes.

Figure 3-1: Demand synch pulse timing

ANALOG INPUTS	The circuit monitor supports analog inputs through the use of optional input/output modules. I/O module IOM-4411 offers one analog input. I/O module IOM-4444 offers four analog inputs. Table 3-1, on page 17, lists the available input (output modules
	available input/output modules.
	This section describes the circuit monitor's analog input capabilities. For technical specifications and instructions on installing the modules, refer to the appropriate instruction bulletin (see list on page 6 of the <i>Circuit Monitor Installation and Operation Bulletin</i>).
	Each analog input can accept either a 0–5 Vdc voltage input, or a 4–20 mA dc current input. By default, the analog inputs accept a 0–5 Vdc input. To change an analog input to accept a 4-20 mA signal, the user must connect a jumper wire to the appropriate terminals on the input module. The jumper wire places a calibrated 250 ohm resistor (located inside the I/O module) into the circuit. When a 4-20 mA current is run through the resistor, the circuit monitor measures an input voltage of 1–5 volts across the resistor. Refer to the appropriate I/O module instruction bulletin for instructions on connecting the jumper wire.
	To setup analog inputs, application software is required. Using POWERLOGIC application software, the user must define the following values for each analog input:
	• Units —A six character label used to identify the units of the monitored analog value (for example, "PSI").
	• Input Type (0–5 V or 4–20 mA) —Tells the circuit monitor whether to use the default calibration constants, or the alternate calibration constants for the internal 250 ohm resistor.
	 Upper Limit—The value the circuit monitor reports when the input voltage is equal to 5 volts (the maximum input voltage).
	• Lower Limit —The value the circuit monitor reports when the input voltage is equal to the <i>offset voltage</i> , defined below.
	• Offset Voltage —The lowest input voltage (in hundredths of a volt) that represents a valid reading. When the input voltage is equal to this value, the circuit monitor reports the <i>lower limit</i> , defined above.
	• Precision —The precision of the measured analog value (for example, <i>tenths</i> of degrees Celsius). This value represents what power of 10 to apply to the upper and lower limits.
	The following are important facts regarding the circuit monitor's analog input capabilities:
*	• When the input voltage is below the offset voltage, the circuit monitor reports -32,768; POWERLOGIC application software indicates that the reading is invalid by displaying N/A or asterisks.
S	• When the input voltage is above five volts (the maximum input voltage) the circuit monitor reports the upper limit.
20	© 1999 Square D Company All Rights Reserved

RELAY OUTPUT OPERATING MODES

Before we describe the 10 available relay operating modes, it is important to understand the difference between a relay configured for *remote* (*external*) *control* and a relay configured for *circuit monitor* (*internal*) *control*.

Each mechanical relay output must be configured for one of the following

- 1. Remote (external) control—the relay is controlled either from a PC using POWERLOGIC application software, a programmable controller or, in the case of a CM-2450 or CM-2452, a custom program executing in the meter.
- 2. Circuit monitor (internal) control—the relay is controlled by the circuit monitor (models CM-2150 and above), in response to a set-point controlled alarm condition, or as a pulse initiator output

Once you've set up a relay for circuit monitor control (option 2 above), you can no longer operate the relay remotely. You can, though, temporarily override the relay, using POWERLOGIC application software.

The first three operating modes—normal, latched, and timed—function differently when the relay is *remotely* controlled versus *circuit monitor* controlled. The descriptions below point out the differences in remote versus circuit monitor control. Modes 4 through 10—all pulse initiation modes—are circuit monitor control modes, remote control does not apply to these modes.

1. Normal

Remotely Controlled: The user must energize the relay by issuing a command from a remote PC or programmable controller. The relay remains energized until a command to de-energize is issued from a remote PC or programmable controller, or until the circuit monitor loses control power.

Circuit Monitor Controlled: When an alarm condition assigned to the relay occurs, the relay is energized. The relay is not de-energized until *all* alarm conditions assigned to the relay have dropped out, or until the circuit monitor loses control power.

2. Latched

Remotely Controlled: The user must energize the relay by issuing a command from a remote PC or programmable controller. The relay remains energized until a command to de-energize is issued from a remote PC or programmable controller, or until the circuit monitor loses control power.

Circuit Monitor Controlled: When an alarm condition assigned to the relay occurs, the relay is energized. The relay remains energized—even after all alarm conditions assigned to the relay have dropped out—until a command to de-energize is issued from a remote PC or programmable controller, until the P1 alarm log is cleared from the front panel, or until the circuit monitor loses control power.

3. Timed

Remotely Controlled: The user must energize the relay by issuing a command from a remote PC or programmable controller. The relay remains energized until the timer expires, or until the circuit monitor loses control power. If a new command to energize the relay is issued before the timer expires, the timer restarts.

Circuit Monitor Controlled: When an alarm condition assigned to the relay occurs, the relay is energized. The relay remains energized for the duration of the timer. When the timer expires, if the alarm has dropped out, the relay will de-energize and remain de-energized. However, if the alarm is still active when the relay timer expires, the relay will de-energize and rapidly re-energize; this sequence will repeat until the alarm condition drops out.

4. Absolute kWH Pulse

This mode assigns the relay to operate as a pulse initiator with a user-defined number of kWH per pulse. In this mode, both forward and reverse real energy are treated as additive (as in a tie breaker).

5. Absolute kVARH Pulse

This mode assigns the relay to operate as a pulse initiator with a user-defined number of kVARH per pulse. In this mode, both forward and reverse reactive energy are treated as additive (as in a tie breaker).

6. kVAH Pulse

This mode assigns the relay to operate as a pulse initiator with a user-defined number of kVAH per pulse. Since kVA has no sign, there is only one mode for kVAH pulse.

7. kWH In Pulse

This mode assigns the relay to operate as a pulse initiator with a user-defined number of kWH per pulse. In this mode, only the kWH flowing *into* the load is considered.

8. kVARH In Pulse

This mode assigns the relay to operate as a pulse initiator with a user-defined number of kVARH per pulse. In this mode, only the kVARH flowing *into* the load is considered.

9. kWH Out Pulse

This mode assigns the relay to operate as a pulse initiator with a user-defined number of kWH per pulse. In this mode, only the kWH flowing *out of* the load is considered.

10. kVAR Out Pulse

This mode assigns the relay to operate as a pulse initiator with a user-defined number of kVARH per pulse. In this mode, only the kVARH flowing *out of* the load is considered.

MECHANICAL RELAY OUTPUTS

Input/Output module IOM-44 provides three Form-C 10 A mechanical relays that can be used to open or close circuit breakers, annunciate alarms, and more. Table 3-1 on page 17 lists the available Input/Output modules (optional).

Circuit monitor mechanical output relays can be configured to operate in one of 10 operating modes:

- Normal
- Latched (electrically held)
- Timed
- Absolute kWH pulse
- Absolute kVArH pulse
- kVAH pulse
- kWH in pulse
- kVARH in pulse
- kWH out pulse
- kVAr out pulse

See the previous section for a description of the modes.

The last seven modes in the above list are for pulse initiator applications. Keep in mind that all circuit monitor Input/Output modules provide one solid-state KYZ pulse output rated at 96 mA. The solid-state KYZ output provides the long life—billions of operations—required for pulse initiator applications. The mechanical relay outputs have limited lives: 10 million operations under no load; 100,000 under load. For maximum life, use the solid-state KYZ pulse output for pulse initiation, except when a rating higher than 96 mA is required. See **Solid State KYZ Pulse Output** in this chapter for a description of the solid-state KYZ pulse output.

Setpoint Controlled Relay Functions

The circuit monitor can detect over 100 alarm conditions, including over under conditions, status input changes, phase unbalance conditions, and more (see **Chapter 4—Alarm Functions**). Using POWERLOGIC application software, an alarm condition can be assigned to automatically operate one or more relays. For example, you could setup the alarm condition "Undervoltage Phase A" to operate relays R1, R2, and R3. Then, each time the alarm condition occurs—that is, each time the setpoints and time delays assigned to Undervoltage Phase A are satisfied—the circuit monitor automatically operates relays R1, R2, and R3 per their configured mode of operation. (See **Relay Output Operating Modes** in this chapter for a description of the operating modes.)

Also, multiple alarm conditions can be assigned to a single relay. For example, the alarm conditions "Undervoltage Phase A" and "Undervoltage Phase B" could both be assigned to operate relay R1. The relay remains energized as long as either "Undervoltage Phase A" or "Undervoltage Phase B" remains true.

Note: Setpoint-controlled relay operation can be used for some types of non-timecritical relaying. For more information, see *Setpoint Controlled Relay Functions* in *Chapter 4*.

SOLID-STATE KYZ PULSE OUTPUT	This section describes the circuit monitor's pulse output capabilities. For instructions on wiring the KYZ pulse output, refer to the appropriate instruction bulletin.
	Input/Output modules IOM-11, IOM-18, IOM-44, IOM-4411, and IOM-4444 are all equipped with one solid-state KYZ pulse output contact (see table 3-1 on page 17). This solid-state relay provides the extremely long life—billions of operations—required for pulse initiator applications.
	The KYZ output is a Form-C contact with a maximum rating of 96 mA. Since most pulse initiator applications feed solid state receivers with very low burdens, this 96 mA rating is generally adequate. For applications where a rating higher than 96 mA is required, the IOM-44 provides 3 relays with 10 amp ratings. Any of the 10 amp relays can be configured as a pulse initiator output, using POWERLOGIC application software. Keep in mind that the 10 amp relays are mechanical relays with limited life—10 million operations under no load; 100,000 under load.
	The watthour-per-pulse value can be set from the circuit monitor's front panel. When setting the kWH/pulse value, set the value based on a 3-wire pulse output basis. See Setting the Watthour Pulse Output in Chapter 4 of the <i>Circuit Monitor Installation and Operation Bulletin</i> for instructions. See Calculating the Watthour Per Pulse Value in this chapter for instructions on calculating the correct value.
	The circuit monitor can be used in 2-wire or 3-wire pulse initiator applica- tions. Each of these applications is described below.
2-Wire Pulse Initiator	Most energy management system digital inputs use only two of the three wires provided with a KYZ pulse initiator. This is referred to as a 2-wire pulse initiator application. Figure 3-3 shows a pulse train from a 2-wire pulse initiator application. Refer to this figure when reading the following points:
	 In a 2-wire application, the pulse train looks like alternating open and closed states of a Form-A contact.
	 Most 2-wire KYZ pulse applications use a Form-C contact, but tie into only one side of the Form-C contact.
. 0	• The pulse is defined as the transition from OFF to ON of one side of the Form-C relay.
	• In figure 3-3, the transitions are marked as 1 and 2. Each transition represents the time when the relay flip-flops from KZ to KY. At points 1 and 2, the receiver should count a pulse.
	• In a 2-wire application, the circuit monitor can deliver up to 5 pulses per second.
L'	
	© 1000 Sauces D. Company, All Dights Descrived
20	Sissi Square D Company An Rights Reserved

3-Wire Pulse Initiator

Some pulse initiator applications require all three wires provided with a KYZ pulse initiator. This is referred to as a 3-wire pulse initiator application. Figure 3-4 shows a pulse train for a 3-wire pulse initiator application. Refer to this figure when reading the following points:

- 3-wire KYZ pulses are defined as transitions between KY and KZ.
- These transitions are alternate contact closures or "flip-flops" of a Form-C contact.
- In figure 3-4 the transitions are marked as 1, 2, 3, and 4. Each transition represents the time when the relay flip flops from KY to KZ, or from KZ to KY. At points 1, 2, 3, and 4, the receiver should count a pulse.
- In a 3-wire application, the circuit monitor can deliver up to 10 pulses per second.

Calculating the Watthour-This section shows an example of how to calculate the watthour-per-pulse **Per-Pulse Value** value. To calculate this value, first determine the highest kW value you can expect and the required pulse rate. In this example, the following assumptions are made: The metered load should not exceed 1500 kW. • The KYZ pulses should come in at about two pulses per second at full scale. Step 1: Translate 1500 kW load into kWH/second. (1500 kW) (1 Hr) = 1500 kWH(1500 kWH) ="X" kWH 1 hour 1 second (1500 kWH) ="X" kWH 3600 seconds 1 second X = 1500/3600 = 0.4167 kWH/second Step 2: Calculate the kWH required per pulse. 0.4167 kWH/second = 0.2084 kWH/pulse 2 pulses/second Step 3: Round to nearest tenth, since the circuit monitor only accepts 0.1 kWH increments. Ke = 0.2 kWH/pulse Summary:

• 3-wire basis—0.2 kWH/pulse will provide approximately 2 pulses per second at full scale.

2-wire basis—0.1 kWH/pulse will provide approximately 2 pulses per second at full scale. (To convert to the kWH/pulse required on a 2-wire basis, divide Ke by 2. This is necessary since the circuit monitor Form C relay generates two pulses—KY and KZ—for every pulse that is counted on a 2-wire basis.)
ANALOG OUTPUTS

The circuit monitor supports analog outputs through the use of optional input/output modules. I/O modules IOM-4411-20 and IOM-4444-20 offer one and four 0-20 mA analog outputs, respectively. I/O modules IOM-4411-01 and IOM-4444-01 offer one and four 0–1 mA analog outputs, respectively. Table 3-1, on page 17, lists the available input/output modules.

This section describes the circuit monitor's analog output capabilities. For technical specifications and instructions on installing the modules, refer to page 6 of the *Circuit Monitor Installation and Operation Bulletin*.

To setup analog outputs, application software is required. Using POWERLOGIC application software, the user must define the following values for each analog output:

- Analog Output Label—A four character label used to identify the output.
- Output Range—The range of the output current: 4–20 mA, for the IOM-4411-20 and IOM-4444-20; 0–1 mA, for the IOM-4411-01 and IOM-4444-01.
- **Register Number**—The circuit monitor register number assigned to the analog output.
- Lower Limit—The register value that is equivalent to the minimum output current (0 or 4 mA).
- **Upper Limit**—The register value that is equivalent to the maximum output current (1 mA or 20 mA).

The following are important facts regarding the circuit monitor's analog output capabilities:

• When the register value is below the *lower limit*, the circuit monitor outputs the minimum output current (0 or 4 mA).

When the register value is above the *upper limit*, the circuit monitor outputs the maximum output current (1 mA or 20 mA).

HAZARD OF EQUIPMENT DAMAGE.

Each analog output represents an individual 2-wire current loop. Therefore, an isolated receiver *must* be used for each individual analog output from an IOM-4411 and IOM-4444.

Failure to observe this precaution can result in equipment damage.

Chapter 4—Alarm Functions

CHAPTER 4—ALARM FUNCTIONS

The circuit monitor (models CM-2150 and higher) can detect over 100 alarm conditions, including over/under conditions, status input changes, phase unbalance conditions, and more. (See **Alarm Conditions and Alarm Codes** in **Appendix D** for a complete list of alarm conditions.) The circuit monitor maintains a counter for each alarm to keep track of the total number of occurrences.

These alarm conditions are tools that enable the circuit monitor to execute tasks automatically. Using POWERLOGIC application software, each alarm condition can be assigned one or more of the following tasks.

- Force data log entries in up to 14 user-defined data log files (see **Data Logging** in **Chapter 5**)
- Operate one or more mechanical relays (see Mechanical Relay Outputs in Chapter 3)
- Perform a 4-cycle waveform capture (see 4-Cycle Waveform Capture in Chapter 6)
- Perform a 12-cycle waveform capture (see Extended Event Capture in Chapter 6)

SETPOINT-DRIVEN ALARMS

Many of the alarm conditions—including all over, under, and phase unbalance alarm conditions—require that you define setpoints. Other alarm conditions, such as status input transitions and phase reversals do not require setpoints. For those alarm conditions that require setpoints, you must define the following information:

Pickup Setpoint

Pickup Delay (in seconds)

- Dropout Setpoint
- Dropout Delay (in seconds)

For instructions on setting up alarm/relay functions from the circuit monitor front panel, see **Setting Up Alarm/Relay Functions** in **Chapter 4** of the *Circuit Monitor Installation and Operation Bulletin*.

To understand how the circuit monitor handles setpoint-driven alarms, see figure 4-2. Figure 4-1 shows what the actual event log entries for figure 4-2 might look like, as displayed by POWERLOGIC application software.

Note: The software does not actually display the codes in parentheses—EV1, EV2, Max1, Max2. These are references to the codes in figure 4-2.

SETPOINT-CONTROLLED RELAY FUNCTIONS

A circuit monitor—model CM-2150 (or higher) equipped with an I/O module—can mimic the functions of certain motor management devices such as phase loss, undervoltage, or reverse phase relays. While the circuit monitor is not a primary protective device, it can detect abnormal conditions and respond by operating one or more Form-C output contacts. These outputs can be used to operate an alarm horn or bell to annunciate the alarm condition.

Note: The circuit monitor is not designed for use as a primary protective relay. While its setpoint-controlled functions may be acceptable for certain applications, it should not be considered a substitute for proper circuit protection.

If the user determines that the circuit monitor's performance is acceptable, the output contacts can be used to mimic some functions of a motor management device. When deciding if the circuit monitor is acceptable for these applications, keep the following points in mind:

- Circuit monitors require control power in order to operate properly.
- Circuit monitors may take up to 5 seconds after control power is applied before setpoint-controlled functions are activated. If this is too long, a reliable source of control power is required.
- When control power is interrupted for more than approximately 100 milliseconds, the circuit monitor releases all energized output contacts.
- Standard setpoint-controlled functions may take 2–3 seconds to operate, even if no delay is intended.
- A password is required to program the circuit monitor's setpoint controlled relay functions.

A description of some common motor management functions follows. For detailed instructions on setting up setpoint-controlled functions from the circuit monitor's front panel, see **Setting Up Alarm/Relay Functions** in **Chapter 4** of the *Circuit Monitor Installation and Operation Bulletin*, and **Appendix D—Alarm Setup Information** in this bulletin.

Undervoltage:

- Pickup and dropout setpoints are entered in volts. Very large values may require scale factors. Refer to **Setting Scale Factors for Extended Metering Ranges** in **Chapter 9** for more information on scale factors.
- The per-phase undervoltage alarm occurs when the per-phase voltage is equal to or below the pickup setpoint long enough to satisfy the specified pickup delay (in seconds).
- When the undervoltage alarm occurs, the circuit monitor operates any specified relays.
- Relays configured for normal mode operation remain closed until the under voltage alarm clears. The undervoltage alarm clears when the phase voltage remains above the dropout setpoint for the specified dropout delay period.

Setpoint-Controlled Relay Functions (cont.)

• To release any relays that are in latched mode, enter the circuit monitor's Alarm mode and select the clear option. For detailed instructions, see **Clearing the Priority 1 Log** in **Chapter 4** of the *Circuit Monitor Installation and Operation Bulletin*.

Overvoltage:

- Pickup and dropout setpoints are entered in volts. Very large values may require scale factors. Refer to Setting Scale Factors for Extended Metering Ranges in Chapter 9 for more information on scale factors.
- The per-phase overvoltage alarm occurs when the per-phase voltage is equal to or above the pickup setpoint long enough to satisfy the specified pickup delay (in seconds).
- When the overvoltage alarm occurs, the circuit monitor operates any specified relays.
- Relays configured for normal mode operation remain closed until the overvoltage alarm clears. The overvoltage alarm clears when the phase voltage remains below the dropout setpoint for the specified dropout delay period.
- To release any relays that are in latched mode, enter the circuit monitor's Alarm mode and select the *Clear* option. For detailed instructions, see **Clearing the Priority 1 Log in Chapter 4** of the *Circuit Monitor Installation and Operation Bulletin*.

Unbalance Current:

- Pickup and dropout setpoints are entered in tenths of percent, based on the percentage difference between each phase current with respect to the average of all phase currents. For example, enter an unbalance of 16.0% as 160.
- The unbalance current alarm occurs when the phase current deviates from the average of the phase currents, by the percentage pickup setpoint, for the specified pickup delay (in seconds).
- When the unbalance current alarm occurs, the circuit monitor operates any specified relays.
- Relays configured for normal mode operation remain closed until the unbalance current alarm clears. The unbalance current alarm clears when the percentage difference between the phase current and the average of all phases remains below the dropout setpoint for the specified dropout delay period.
- To release any relays that are in latched mode, enter the circuit monitor's Alarm mode and select the *Clear* option. For detailed instructions, see **Clearing the Priority 1 Log** in **Chapter 4** of the *Circuit Monitor Installation and Operation Bulletin*.

Unbalance Voltage:

• Pickup and dropout setpoints are entered in tenths of percent, based on the percentage difference between each phase voltage with respect to the average of all phase voltages. For example, enter an unbalance of 16.0% as 160.

© 1999 Square D Company All Rights Reserved

Chapter 4—Alarm Functions

Setpoint-Controlled Relay Functions (cont.)

- The unbalance voltage alarm occurs when the phase voltage deviates from the average of the phase voltages, by the percentage pickup setpoint, for the specified pickup delay (in seconds).
- When the unbalance voltage alarm occurs, the circuit monitor operates any specified relays.
- Relays configured for normal mode operation remain closed until the unbalance voltage alarm clears. The unbalance voltage alarm clears when the percentage difference between the phase voltage and the average of all phases remains below the dropout setpoint for the specified dropout delay (in seconds).
- To release any relays that are in latched mode, enter the circuit monitor's Alarm mode and select the *Clear* option. For detailed instructions, see **Clearing the Priority 1 Log** in **Chapter 4** of the *Circuit Monitor Installation and Operation Bulletin*.

Phase Loss—Current:

- Pickup and dropout setpoints are entered in tenths of percent, based on a percentage ratio of the smallest current to the largest current. For example, enter 50% as 500.
- The phase loss current alarm occurs when the percentage ratio of the smallest current to the largest current is equal to or below the pickup setpoint for the specified pickup delay (in seconds).
- When the phase loss current alarm occurs, the circuit monitor operates any specified relays.
- Relays configured for normal mode operation remain closed until the phase loss current alarm clears. The phase loss current alarm clears when the ratio of the smallest current to the largest current remains above the dropout setpoint for the specified dropout delay (in seconds).

To release any relays that are in latched mode, enter the circuit monitor's Alarm mode and select the *Clear* option. For detailed instructions, see **Clearing the Priority 1 Log** in **Chapter 4** of the *Circuit Monitor Installation and Operation Bulletin*.

Phase Loss—Voltage:

- Pickup and dropout setpoints are entered in volts.
- The phase loss voltage alarm occurs when any voltage value (but not all voltage values) is equal to or below the pickup setpoint for the specified pickup delay (in seconds).
- When the phase loss voltage alarm occurs, the circuit monitor operates any specified relays.
- Relays configured for normal mode operation remain closed until the phase loss voltage alarm clears. The alarm clears when one of the following is true:
 - *all* of the phases remain above the dropout setpoint for the specified dropout delay (in seconds), OR
 - *all* of the phases drop below the phase loss pickup setpoint.

Setpoint-Controlled Relay Functions (cont.)

- If *all* of the phase voltages are equal to or below the pickup setpoint, during the pickup delay, the phase loss alarm will not activate. This is considered an under voltage condition. It should be handled by configuring the under voltage protective functions.
- To release any relays that are in latched mode, enter the circuit monitor's Alarm mode and select the *Clear* option. For detailed instructions, see **Clearing the Priority 1 Log** in **Chapter 4** of the *Circuit Monitor Installation and Operation Bulletin*.

Reverse Power:

- Pickup and dropout setpoints are entered in kilowatts. Very large values may require scale factors. Refer to **Setting Scale Factors for Extended Metering Ranges** in **Chapter 9** for more information on scale factors.
- The reverse power alarm occurs when the 3-phase power flow in the negative direction remains at or below the negative pickup value for the specified pickup delay (in seconds).
- When the reverse power alarm occurs, the circuit monitor operates any specified relays.
- Relays configured for normal mode operation remain closed until the reverse power alarm clears. The alarm clears when the 3-phase power reading remains above the dropout setpoint for the specified dropout delay (in seconds).
- To release any relays that are in latched mode, enter the circuit monitor's Alarm mode and select the *Clear* option. For detailed instructions, see **Clearing the Priority 1 Log** in **Chapter 4** of the *Circuit Monitor Installation and Operation Bulletin.*

Phase Reversal:

- Pickup and dropout setpoints and delays do not apply to phase reversal.
- The phase reversal alarm occurs when the phase voltage waveform rotation differs from the default phase rotation. The circuit monitor assumes that an ABC phase rotation is normal. If a CBA phase rotation is normal, the user must change the circuit monitor's phase rotation from ABC (default) to CBA. See **Chapter 9—Advanced Topics**.
- When the phase reversal alarm occurs, the circuit monitor operates any specified relays.
- Relays configured for normal mode operation remain closed until the phase reversal alarm clears.
- To release any relays that are in latched mode, enter the circuit monitor's Alarm mode and select the *Clear* option. For detailed instructions, see **Clearing the Priority 1 Log** in **Chapter 4** of the *Circuit Monitor Installation and Operation Bulletin*.

Chapter 5—Logging

CHAPTER 5—LOGGING

CHAPTER CONTENTS		
	Event Logging	37
	Event Log Storage	37
	Data Logging	38
	Alarm-Driven Data Log Entries	38
	Organizing Data Log Files	38
	Storage Considerations	39
	Maintenance Log	40
	0	

EVENT LOGGING

The circuit monitor provides an event log file to record the occurrence of important events. The circuit monitor can be configured to log the occurrence of any alarm condition as an event. The event log can be configured as *first-in-first-out* (FIFO) or *fill and hold*. Using POWERLOGIC application software, the event log can be uploaded for viewing and saved to disk, and the circuit monitor's event log memory can be cleared.

Event Log Storage Circuit monitor models 2150 and higher provide nonvolatile memory for event log storage. The size of the event log (the maximum number of events) is user-definable. When determining the maximum number of events, take the circuit monitor's total storage capacity into consideration. For circuit monitor models 2150 and 2250, the total storage capacity must be allocated between the event log and up to 14 data logs. For circuit monitor models 2350, 2450, and 2452, the total data storage capacity must be allocated between an event log, a 4-cycle waveform capture log, an extended event capture log, and up to 14 data logs. See Memory Allocation in Chapter 9 for additional memory considerations.

DATA LOGGING	Circuit monitor models CM-2150 and higher are equipped with nonvolatile memory for storing meter readings at regular intervals. The user can configure up to 14 independent data log files. The following items can be configured for each data log file:		
	 Logging Int 	erval—1 minute to 24 hours	Co
	Offset Time	e	9
	• First-In-Firs	st-Out (FIFO) or Fill & Hold	
	• Values to be	e logged—up to 100, including date/time of	each log entry
	Each data log f POWERLOGIC clearing data lo instruction bul	The can be cleared, independently of the othe C application software. For instructions on se og files, refer to the POWERLOGIC application letin.	rs, using etting up and on software
Alarm-Driven Data Log Entries	The circuit mor under conditio more. (See Cha condition can b entries into any	nitor can detect over 100 alarm conditions, ir ons, status input changes, phase unbalance co apter 4—Alarm Functions for more informat be assigned one or more tasks, including force y or all data log files.	ncluding over onditions, and ion.) Each alarm red data log
	For example, a POWERLOGIC "Overcurrent I entries into any	ssume that you've defined 14 data log files. C software, you could select an alarm conditi Phase A" and set up the circuit monitor to for y of the 14 log files each time the alarm cond	Using on such as rce data log ition occurs.
Organizing Data Log Files	There are man organize log fi log file for entr four data log fi	y ways to organize data log files. One possib les according to the logging interval. You mi ries forced by alarm conditions. For example, les as follows:	le way is to ght also define a , you could set up
	Data Log 1:	Voltage <i>logged every minute</i> . File is large energy entries so that you could look back over the voltage readings.	ough to hold 60 e last hour's
	Data Log 2:	Voltage, current, and power <i>logged hourly</i> f record over a longer period.	or a historical
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Data Log 3:	Energy <i>logged once daily</i> . File is large enoug entries so that you could look back over the see daily energy use.	h to hold 31 e last month and
	Data Log 4:	Report by exception file. File contains data are forced by the occurrence of an alarm co <b>Alarm-Driven Data Log Entries</b> above.	log entries that ondition. See
		<i>Note</i> : The same data log file can support both s driven entries.	scheduled and alarm
A ^r	Data log file 1 i records several to meet your sj	is pre-configured at the factory with a sampl l parameters hourly. This sample data log ca pecific needs.	e data log which n be reconfigured
38	— © 1999 Square D	Company All Rights Reserved	

### Chapter 5—Logging

#### **Storage Considerations**

The following are important storage considerations:

- Circuit monitor model CM-2150 or higher is required for on-board data logging.
- For circuit monitor models CM-2150 and CM-2250, the total storage capacity must be allocated between the event log and up to 14 data logs. For circuit monitor model 2350 and higher, the total data storage capacity must be allocated between an event log, a 4-cycle waveform capture log, an extended event capture log, and up to 14 data logs.
- Circuit monitor standard models CM-2150, CM-2250, CM-2350, and CM-2450 store up to 51,200 values. Model CM-2452 stores up to 182,272 values. With the -512k memory option, models CM-2150, -2250, -2350, and -2450 store up to 313,344 values; with the -1024k memory option, models CM-2150, -2250, -2350, and -2450 store up to 575,488 values. (These numbers assume that you've devoted all of the circuit monitor's logging memory to data logging, and the series number of the circuit monitor is G4 or later.)
- Each defined data log file stores a date and time and requires some additional overhead. To minimize storage space occupied by dates/times and file overhead, use a few log files that log many values, as opposed to many log files that store only a few values each.
- See Memory Allocation in Chapter 9 for additional storage considerations.

#### MAINTENANCE LOG

The circuit monitor stores a maintenance log in nonvolatile memory. This log contains several values that are useful for maintenance purposes.

Table 5-1 below lists the values stored in the maintenance log and a short description of each. The values stored in the maintenance log are cumulative over the life of the circuit monitor and cannot be reset.

You can view the maintenance log using POWERLOGIC application software. For specific instructions, refer to the POWERLOGIC software instruction bulletin.

Value Stored	Description
Number of Demand Resets	Number of times demand values have been reset.
Number of Energy Resets	Number of times energy values have been reset.
Number of Min/Max Resets	Number of times min/max values have been reset.
Number of Output Operations	Number of times relay output has operated. This value is stored for each relay output.
Number of Power Losses	Number of times circuit monitor has lost control power.
Number of Firmware Downloads	Number of times new firmware has been downloaded to the circuit monitor over communications.
Number of Optical Comms Sessions	Number of times the front panel optical communications port has been used.
Highest Temperature Monitored	Highest temperature reached inside the circuit monitor.
Lowest Temperature Monitored	Lowest temperature reached inside the circuit monitor.

Table 5-1 Values Stored in Maintenance Log

### Chapter 6—Waveform Capture

### **CHAPTER 6—WAVEFORM CAPTURE**

CHAPTER CONTENTS	4-Cycle Waveform Capture       41         Manual Waveform Capture       41         Automatic Waveform Capture       41
	Waveform Storage43Extended Event Capture44Manual Event Capture44Automatic Event Capture—High-Speed Trigger44Automatic Event Capture—Initiated by a Standard Setpoint46Extended Event Capture Storage47
4-CYCLE WAVEFORM CAPTURE	Circuit monitor models CM-2250 and CM-2350 are equipped with waveform capture. Circuit monitors use a sophisticated, high-speed sampling technique to sample 64 times per cycle, simultaneously, on all current and voltage inputs.
	<ul> <li>Manually, from a remote personal computer, using POWERLOGIC application software</li> </ul>
	<ul> <li>Automatically, by the circuit monitor, when an alarm condition such as "Alarm #55: Over value THD voltage Phase A-B" occurs</li> </ul>
	Both methods are described below.
Manual Waveform Capture	Using POWERLOGIC application software, you can initiate a manual waveform capture from a remote personal computer. To initiate a manual waveform capture, select a circuit monitor equipped with waveform capture and issue the acquire command. The circuit monitor captures the waveform, and the software retrieves and displays it.
	POWERLOGIC software lets you view all phase voltage and current wave- forms simultaneously, or zoom in on a single waveform that includes a data block with extensive harmonic data.
	For instructions on performing manual waveform capture using POWERLOGIC software, refer to the application software instruction bulletin.
Automatic Waveform Capture	The circuit monitor can detect over 100 alarm conditions—such as metering setpoint exceeded and status input changes (see <b>Chapter 4—Alarm</b> <b>Functions</b> for more information). The circuit monitor can be set up to auto- matically capture and save four cycles of waveform data associated with an alarm condition.
N	
4	— © 1999 Square D Company All Rights Reserved — 41

Setting Up the Circuit Monitor	The circuit monitor must be set up for automatic waveform capture using POWERLOGIC application software. To set up the circuit monitor for automatic waveform capture, perform the following steps:		
	1. Select an alarm condition. (See <b>Appendix D</b> for a listing of alarm conditions.)		
	2. Define the setpoints. (This may not be necessary if the selected alarm is a status input change, for example.)		
	3. Select the automatic waveform capture option.		
	Repeat these steps for the desired alarm conditions. For specific instructions on selecting alarm conditions and specifying them for automatic waveform capture, refer to the POWERLOGIC application software instruction manual.		
How it Works	At the beginning of every update cycle, the circuit monitor acquires four cycles of sample data for metering calculations (figure 6-1). During the update cycle, the circuit monitor performs metering calculations and checks for alarm conditions. If the circuit monitor sees an alarm condition, it performs any actions assigned to the alarm condition. These actions can include automatic waveform capture, forced data logs, or output relay operations. For this example, assume that automatic waveform capture has been assigned to the alarm condition. When the circuit monitor sees that an alarm condition specified for automatic waveform capture has occurred, it stores the four cycles of waveform data acquired at the beginning of the update cycle.		



#### **Waveform Storage**

Circuit monitor model 2250 stores waveforms differently than model 2350. The lists below describe how each model stores waveforms.

#### CM-2250

- Can store only one captured waveform. Each new waveform capture (either manual or automatic) replaces the last waveform data.
- Stores the captured waveform in volatile memory—the waveform data is lost on power-loss.
- The captured waveform does not affect event log and data log storage space. The captured waveform is stored separately.

### CM-2350 (and higher)

- Can store multiple captured waveforms.
- Stores the captured waveforms in nonvolatile memory—the waveform data is retained on power-loss.
- The number of waveforms that can be stored is based on the amount of memory that has been allocated to waveform capture. See **Memory Allocation** in **Chapter 9**.

EXTENDED EVENT CAPTURE	Circuit monitor models CM-2250 and higher are equipped with a feature
	called extended event capture. By connecting the circuit monitor to an external device, such as an undervoltage relay, the circuit monitor can capture and provide valuable information on short duration events such as voltage sags and swells.
	For a CM-2250, each event capture includes 12 cycles of sample data from each voltage and current input. For a CM-2350 and higher, an extended event capture can include 12, 24, 36, 48, or 60-cycles of sample data. An adjustable trigger delay lets the user adjust the number of pre-event cycles.
	In a CM-2250, there are three ways to initiate a 12-cycle event capture:
	<ul> <li>Manually, from a remote personal computer using POWERLOGIC application software</li> </ul>
	<ul> <li>Automatically, using an external device to trigger the circuit monitor</li> </ul>
	• Automatically, by the circuit monitor, when an alarm condition such as "Alarm #55: Over value THD voltage Phase A-B" occurs.
	These methods are described below.
	<i>Note</i> : Models CM-2350 and higher can also trigger on high-speed events, allowing it to perform disturbance monitoring of voltage and current waveforms. See <i>Chapter</i> <b>7</b> for a description of the CM-2350's disturbance monitoring capability.
Manual Event Capture	Using POWERLOGIC application software, you can initiate a manual exten- ded event capture from a remote personal computer. Manual event captures, which can be used for steady-state analysis, can be stored in two ways:
	<ul> <li>12–60 cycles of data captured at 64 samples/cycle for all voltages and currents simultaneously (12 cycles only in a CM-2250)</li> </ul>
	<ul> <li>6–30 cycles of data captured at 128 samples per cycle for selected voltages and currents (CM-2350 and higher models only)</li> </ul>
	To initiate a manual capture, select a circuit monitor equipped with extended event capture, choose the desired method, and issue the <b>acquire</b> command. The circuit monitor captures the data, and the software retrieves and dis- plays it. POWERLOGIC software lets you view all captured voltage and current waveforms up to 60 cycles, simultaneously, or zoom in on a single waveform.
	For instructions on performing manual extended event capture using POWERLOGIC software, refer to the application software instruction manual.
Automatic Event Capture— High-Speed Trigger	By connecting the circuit monitor to an external device, such as an undervoltage relay, the circuit monitor can capture and provide valuable information on short duration events such as voltage sags. (The circuit monitor must be equipped with an optional I/O module.)
44	- © 1999 Square D Company All Rights Reserved

Chapter 6—Waveform Capture



Figure 6-2: Status input S2 connected to external high-speed relay

Figure 6-2 shows a block diagram that illustrates the relay-to-circuit monitor connections. As shown in figure 6-3, the relay must be wired to status input S2 on an IOM-18 or IOM-44. Status input S2 is a high-speed input designed for this application, or any of the status inputs on an IOM-4411 or IOM-4444 can be used for high-speed event capture.

The circuit monitor must be set up for extended event capture using POWERLOGIC application software. The following is an example of setting up the circuit monitor for event capture:

1. When setting up the circuit monitor, select the alarm condition "Input S2 OFF to ON" (See **Appendix D** for a listing of alarm conditions.)

2. Select the number of cycles to be stored for the extended event capture.

For specific instructions on specifying an alarm condition for extended event capture, refer to the POWERLOGIC application software instruction bulletin.

The circuit monitor maintains a data buffer consisting of 64 data points per cycle, for all current and voltage inputs. As the circuit monitor samples data, this buffer is constantly updated. When the circuit monitor senses the trigger—that is, when input S2 in the above example transitions from off to on—the circuit monitor can transfer from 12 to 60 cycles of data from the buffer into the memory allocated for extended event captures.

You can specify from 2 to 10 pre-event cycles. This allows extended captures from 2 pre-event and from 10 to 58 post-event cycles, to 10 pre-event and from 2 to 50 post-event cycles. For specific instructions on setting the number of pre-event and post-event cycles, refer to the POWERLOGIC application software instruction bulletin.

Setting Up the Circuit Monitor

How it Works



# Extended Event Capture Storage

Circuit monitor model 2250 stores 12-cycle event captures differently than models 2350 and higher store 12 to 60 cycle event captures. The lists below describe how each model stores extended event captures.

#### CM-2250:

- Stores only one captured 12-cycle event. Each new event capture (either manual or automatic) replaces the last captured data.
- Stores the captured data in volatile memory—the data is lost on power-loss.
- The captured data does not affect event log and data log storage space. The captured waveform is stored separately.

### CM-2350 (and higher):

- Stores multiple captured 12 to 60-cycle events.
- Stores the captured data in nonvolatile memory—the data is retained on power-loss.
- The number of extended event captures that can be stored is based on the amount of memory that has been allocated to extended event capture. See **Memory Allocation** in **Chapter 9**.



### Chapter 7—Disturbance Monitoring

### **CHAPTER 7—DISTURBANCE MONITORING**

CHAPTER CONTENTS	Introduction
	Description
	Operation
	Multiple Waveform Setup
	SMS-3000, SMS-1500, or PMX-1500
	SMS-770, SMS-700, EXP-550, or EXP-500
	Sag/Swell Alarms
	Multiple Waveform Retrieval
	SMIS-3000, SIMIS-1500, OF PMIX-1500
	SIVIS-770, SIVIS-700, EAP-330, OF EAP-300
	riigh-speed Event Log Entries
INTRODUCTION	<b>Chapter 6—Waveform Capture</b> describes using a circuit monitor to make an extended event capture, with 64 points per cycle resolution simultaneously
	on all channels, when triggered by an external device such as an
	disturbances on the current and voltage inputs of circuit monitor models 2350, 2450, and 2452.
DESCRIPTION	Models 2350, 2450, and 2452 can perform continuous monitoring of rms
	magnitudes of any of the metered channels of current and voltage. These calculations can be used to detect sags or swells on these channels.
	Momentary voltage disturbances are becoming an increasing concern for industrial plants, hospitals, data centers, and other commercial facilities. Modern equipment used in many facilities tends to be more sensitive to voltage sags and swells, as well as momentary interruptions. POWERLOGIC Circuit Monitors can help facility engineers diagnose equipment problems resulting from voltage sags or swells, identify areas of vulnerability, and take corrective action.
C C	The interruption of an industrial process due to an abnormal voltage condi- tion can result in substantial costs to the operation, which manifest them- selves in many ways:
	labor costs for cleanup and restart
	lost productivity
	<ul> <li>damaged product or reduced product quality</li> </ul>
	delivery delays and user dissatisfaction
JA'	The entire process can depend on the sensitivity of a single piece of equip- ment. Relays, contactors, adjustable speed drives, programmable controllers, PCs, and data communication networks are all susceptible to transient power problems. After the electrical system is interrupted or shut down, determin- ing the cause may be difficult.
<u> </u>	— © 1999 Square D Company All Rights Reserved — 49
2	

### **DESCRIPTION (CONT.)**

There are several types of voltage disturbances; each may have different origins and require a separate solution. For example, a momentary interruption occurs when a protective device interrupts the circuit feeding the customer's facility. Swells and overvoltages are also a concern, as they can accelerate equipment failure or cause motors to overheat. Perhaps the biggest power quality problem facing industrial and commercial facilities is the momentary voltage sag caused by faults on remote circuits.

A voltage sag is a brief (1/2 cycle to 1 minute) decrease in rms voltage magnitude. A sag is typically caused by a remote fault somewhere on the power system, often initiated by a lightning strike. In figure 7-1, the fault not only causes an interruption to plant D, but also results in voltage sags to plants A, B, and C. Thus, system voltage sags are much more numerous than interruptions, since a wider part of the distribution system is affected. And, if reclosers are operating, they may cause repeated sags. The waveform in figure 7-2 shows the magnitude of a voltage sag, which persists until the remote fault is cleared.





Figure 7-1: A fault near plant D that is cleared by the utility circuit breaker can still affect plants A, B, and C, resulting in a voltage sag

Figure 7-2: Voltage sag caused by a remote fault and lasting 5 cycles

The disturbance monitoring capabilities of the CM-2350, CM-2450, and CM-2452 can be used to:

- Identify number of sags/swells/interruptions for evaluation
- Compare actual sensitivity of equipment to published standards
- Compare equipment sensitivity of different brands (contactor dropout, drive sensitivity, etc.)
- Distinguish between equipment failures and power system related problems

© 1999 Square D Company All Rights Reserved

- Diagnose mysterious events such as equipment failure, contactor dropout, computer glitches, etc.
- Determine the source (user or utility) of sags/swells
- Develop solutions to voltage sensitivity-based problems using actual data
- Accurately distinguish between sags and interruptions, with accurate time/date of occurrence
- Use waveform to determine exact disturbance characteristics to compare with equipment sensitivity
- Provide accurate data in equipment specification (ride-through, etc.)
- Discuss protection practices with serving utility and request changes to shorten duration of potential sags (reduce interruption time delays on protective devices)
- Justify purchase of power conditioning equipment
- Work with utility to provide alternate "stiffer" services (alternate design practices)

Table 7-1 below shows the capability of the CM-2350, CM-2450, and CM-2452 to measure power system electromagnetic phenomena as defined in *IEEE Recommended Practice for Monitoring Electric Power Quality*.

- in M

#### Table 7-1 Circuit Monitor Electromagnetic Phenomena Measurement Capability

Category	Capability
Transients ^①	
Impulsive	N/A
Oscillatory	N/A
Short Duration Variations	
Instantaneous	$\checkmark$
Momentary	1
Temporary	$\checkmark$
Long Duration Variations	$\checkmark$
Voltage Imbalance	$\checkmark$
Waveform Distortion [®]	$\checkmark$
Voltage Fluctuations	$\checkmark$
Power Frequency Variations	√

 Circuit monitor not intended to detect phenomena in this category.

2 Through the 31st harmonic.

OPERATION	The circuit monitor calculates rms magnitudes, based on 16 data points per cycle, every 1/2 cycle. This ensures that even single cycle duration rms variations are not missed. When the circuit monitor detects a sag or swell, it can perform the following actions:
	• The event log can be updated with a sag/swell pickup event date/time stamp with 1 millisecond resolution, and an rms magnitude corresponding to the most extreme value of the sag or swell during the event pickup delay.
	• An event capture consisting of up to five back-to-back 12-cycle recordings can be made, for a maximum of 60 continuous cycles of data. The event capture has a resolution of 64 data points per cycle on all metered currents and voltages.
	• A forced data log entry can be made in up to 14 independent data logs.
	• Any optional output relays can be operated upon detection of the event.
	• At the end of the disturbance, these items are stored in the Event Log: a dropout time stamp with 1 millisecond resolution, and a second rms magnitude corresponding to the most extreme value of the sag or swell.
	• The front panel can indicate, by a flashing Alarm LED, that a sag or swell event has occurred. A list of up to 10 of the prior alarm codes can be viewed in the P1 Log from the circuit monitor's front panel.
	In addition to these features, the CM-2350, CM-2450, and CM-2452 include expanded non-volatile memory for logging. Using POWERLOGIC applica- tion software, the user can choose how to allocate the nonvolatile memory among the 14 data logs, the event log, multiple 4-cycle waveform captures and multiple extended event captures.
MULTIPLE WAVEFORM SETUP	You can configure the CM-2350, CM-2450, and CM-2452 to record up to five back-to-back 12-cycle waveform captures. This allows you to record 60 cycles of continuous data on all current and voltage inputs, with 64 points per cycle resolution.
SMS-3000, SMS-1500, or PMX-1500	To set up the extended waveform capture using SMS-3000, SMS-1500, or PMX-1500, follow these steps:
. 0	1. In the Onboard Data Storage screen (figure 7-3), select the number of cycles for extended capture from the pull-down menu.
	2. Allocate the amount of memory to be used for extended waveform capture by specifying the number of extended waveform captures to be stored.

### Chapter 7—Disturbance Monitoring



### SMS-770, SMS-700, EXP-550, or EXP-500

To configure the number of back-to-back 12-cycle recordings triggered by a single event, write a 1, 2, 3, 4, or 5 to register 7298 (see table 7-2 below). You must then allocate the onboard memory as shown in tables 7-3 and 7-4 to support multiple back-to-back 12-cycle waveform captures. Allocate onboard memory using the Onboard Data Storage setup screen (figure 7-4). Once the memory is properly allocated, you must perform a file "Resize/Clear All." For information on register writes and file "Resize/Clear All," refer to the appropriate POWERLOGIC application software instruction bulletin.

No. of Back-to-Back 12-Cycle Waveform Captures per Trigger	No. of Continuous Cycles Recorded per Trigger	Required Value in Register 7298	
1	12	1	
2①	24	2	
<b>3</b> ①	36	3	
4①	48	4	
5①	60	5	

Table 7-2 Multiple 12-Cycle Waveform Capture



Figure 7-4: POWERLOGIC System Manager™ SMS-770 Onboard Data Storage setup dialog box

① Requires circuit monitor firmware version 15.002 or higher.

No. of Back-to-Back 12-Cycle Waveform Captures Per Trigger	Legal Entries for 12-Cycle Waveform Capture Memory Allocation	Max. No. of Triggered Events Stored
1	Multiples of 1: 1, 2, 38	8
2①	Multiples of 2: 2, 4, 6, 8	4
3①	Multiples of 3: 3, 6	2
4①	Multiples of 4: 4, 8	2
5①	Multiple of 5: 5	1

Table 7-3 CM-2350 and CM-2450 12-Cycle Waveform Capture Memory Allocation

### Table 7-4

### CM-2452 12-Cycle Waveform Capture Memory Allocation

No. of Back-to-Back 12-Cycle Waveform Captures Per Trigger	Legal Entries for 12-Cycle Waveform Capture Memory Allocation	Max. No. of Triggered Events Stored
1	Multiples of 1: 1, 2, 329	29
2①	Multiples of 2: 2, 4, 628	14
<b>3</b> ①	Multiples of 3: 3, 6, 927	9
4①	Multiples of 4: 4, 8, 1228	7
5①	Multiples of 5: 5, 10, 15, 20, 25	5

As explained in chapter 6, the event capture has a user-programmable number of pre-event cycles ranging from 2 to 10 cycles. This allows you to tailor the event capture for more or less pre-event data. On event captures consisting of multiple 12-cycle recordings, the pre-event cycles apply only to the first 12-cycle waveform of the series.

POWERLOGIC application software can be used to set up each of the sag/ swell alarms. For each alarm, the user programs the following data:

- Sag/swell alarm priority
- Pickup setpoint in amps or volts
- Pickup delay in cycles
- Dropout setpoint in amps or volts
- Dropout delay in cycles
- Data and waveform logging instructions
- Relay output actions

**Note:** Relays which are specified to be operated by high speed status input events should not be operated by standard events or high speed sag/swell events. Unpredictable relay operation will result.

Requires circuit monitor firmware version 15.002 or higher.



#### MULTIPLE WAVEFORM RETRIEVAL

SMS-3000, SMS-1500,

or PMX-1500

POWERLOGIC application software can be used to retrieve multiple waveform information for later analysis. When a set of multiple continuous 12-cycle waveform captures are triggered, they are stored in the circuit monitor as individual 12-cycle recordings.

Using SMS-3000, SMS-1500, or PMX-1500 software, you can retrieve a continuous 12–60 cycle extended event capture (figure 7-5).



Figure 7-5: 60-cycle extended event capture displayed in SMS-3000

### SMS-770, SMS-700, EXP-550, or EXP-500

You can retrieve and display the individual 12-cycle waveform captures (which comprise the extended event capture) using SMS-700, SMS-770, EXP-550, or EXP-500. You can also manually acquire a set of continuous 12-cycle waveform captures using the "retrieve existing on board waveform capture" option (figure 7-6).



© 1999 Square D Company All Rights Reserved

### Chapter 7—Disturbance Monitoring

**Note:** Whenever the 12-cycle waveform capture is configured for two or more backto-back waveform captures, a set of waveform captures can be triggered manually with POWERLOGIC application software. However, to retrieve the set, the "retrieve existing onboard 12-cycle waveform capture" option should be used.

### HIGH-SPEED EVENT LOG ENTRIES

- MAN

Event log entries 1 and 2 are detailed below and illustrated in figure 7-7.

Event Log Entry 1—For high-speed events, the value stored in the event log at the end of the pickup delay is the furthest excursion from normal during the pickup delay period *t*1. This is calculated using 16 data point rms calculations.

Event Log Entry 2—The value stored in the event log at the end of the dropout delay is the furthest excursion from normal during both periods *t1 and t2* from the start of the pickup delay to the end of the dropout delay.

The time stamps for the pickup and dropout reflect the actual duration of these periods.



Figure 7-7: High speed event log entries



## CHAPTER 8-CM-2450, CM-2452 WITH PROGRAMMING LANGUAGE

INTRODUCTION	Circuit monitor models CM-2450 and CM-2452 are designed to run custom- ized programs written in the circuit monitor programming language. This programming language provides you with the application flexibility to adapt the CM-2450 or CM-2452 to your specialized needs. Programs can be de- signed to work with all other circuit monitor features, extending the overall capabilities of the device. A sample CM-2450 program is available from Square D that includes customized features for enhanced data logging. Contact POWERLOGIC Engineering Services for information on using the CM-2450 for other applications.
DESCRIPTION	<ul> <li>The CM-2450 circuit monitor programming language uses an easy-to-understand set of programming commands similar to a compiled "BASIC" language. The programming language includes capabilities such as:</li> <li>scheduled tasks</li> <li>event tasks (based on undervoltage, over kW)</li> <li>math functions: Add, subtract, multiply, divide, sine, cosine, square root</li> <li>support for various data types: 16-bit signed registers, longs, floats, power factor, date/time</li> <li>logical operations: AND, OR, XOR, NOT, shift</li> <li>for next loops, nested IFElse statements, =, &lt;, &gt;, &lt;&gt;, &lt;+, &gt;=</li> <li>Subroutine calls</li> </ul>
	<ul> <li>Subjourne cans</li> <li>1000 nonvolatile SY/MAX read/write registers</li> <li>2000 virtual registers for scratch pad area</li> <li>support for tables of up to 256 items</li> </ul>
	The programs are developed using an ASCII text editor such as DOS "Edit" and saved as ".SRC" files. A circuit monitor programming language compiler is then used to process the text file, looking for syntax errors or illegal com- mands. Any errors that are found are listed in a report detailing the errors. After program errors are corrected, the compiler generates a ".HEX" file which can be downloaded into the circuit monitor using the downloadable firmware utility program. Programs that are downloaded into the circuit monitor are secure; they cannot be uploaded. If changes to a program are desired, the new program can be modified from the original program text file, re-compiled, and written over the previous program as a new application.
And i	——— © 1999 Square D Company All Rights Reserved ———— 59

APPLICATION EXAMPLES	Examples of applications where the CM-2450 can be very valuable are as follows:
	<ul> <li>metering of specialized utility rate structures</li> </ul>
	data reduction using smart data logging
	<ul> <li>automatic monthly logging of kWH and Peak Demand</li> </ul>
	<ul> <li>synchronization of Demand Intervals to Time of Day</li> </ul>
	statistical profile analysis of metered quantities
	CBEMA power quality analysis
	calculations for IEEE-519 verification
	• metering of combined utilities: gas, water, steam, electric
	<ul> <li>non-critical control output decisions such as Load Control or Power Factor Correction, based on multiple conditions, e.g., Time of Day and Input Status</li> </ul>
	<b>Note:</b> Apply the circuit monitor appropriately as a programmable power monitoring device, not as a primary protective device.
DEVELOPER'S KIT	Purchasers of circuit monitor models CM-2450 or CM-2452 can receive a program developer's kit at no additional charge. The developer's kit includes an instruction bulletin, program compiler, and sample programs, enabling you to create your own CM-2450 programs. Contact your local Square D representative or PMO Technical Support to order the developer's kit.

**Chapter 9—Advanced Topics** 

### **CHAPTER 9—ADVANCED TOPICS**

CHAPTER CONTENTS	The Command Interface	61
	Command Codes	62
	Cetting Lie Delege (en Derecte (Federate)) Centrel	64
	Setting Up Kelays for Remote (External) Control	64
	Energizing a Kelay	64
	De-Energizing a Kelay	64
	Setting Up Relays for Circuit Monitor (Internal) Control	65
	Overriding an Output Relay	65
	Releasing an Overridden Relay	65
	Setting Scale Factors For Extended Metering Ranges	66
	Setting The Date and Time Using the Command Interface	69
	Memory Allocation	69
	Memory Example	71
	How Power Factor is Stored	71
	Changing the VAR Sign Convention	72
	Conditional Energy	73
	Command Interface Control	73
	Status Input Control	73
	Incremental Energy	74
	Using Incremental Energy	74
	Changing the Demand Calculation Method	75
	Changing to the Block/Rolling Method	75
	Setting Up a Demand Synch Pulse Input	75
	Controlling the Demand Interval Over the Communications Link	76
	Setting Up Individual Harmonic Calculations	77
	Status Input Pulse Demand Metering	78
	Pulse Counting Example	78
•		
THE COMMAND INTERFACE	The circuit monitor provides a command interface that can be used to	
	perform various operations such as manual relay operation.	
67	To use the command interface, do the following:	
	1. Write related parameters to the command parameter registers—	
	mands, write the command code only to register 7700.)	
	2. Write a command code to the circuit monitor's command interface register (7700).	
A.		
2	— © 1999 Square D Company All Rights Reserved ————————————————————————————————————	- 61

#### **Command Codes**

The following is a listing of command codes that can be written to the command interface register (7700) and to the command interface parameter registers (7701–7709).

<u>Code</u> 1110	<u>Parameter(s)</u> None	Description Resets the circuit monitor.	Reset Req'd N/A
1310	Sec, Min, Hr, Day, Mo, Yr	Command code to set date and time.	N
2110	Scale Factors A-E	Change scale factors A–E and reset min/max registers/file. Then reset unit.	Ν
2120	CT ratio correction factors A, B, C, N	Change CT ratio correction factors	Y
130	PT ratio correction factors A, B, C	Change PT ratio correction factors	Υ
310	Unit Address	Change unit's address to the address specified and reset unit	Ν
320	Baud Rate	Change unit's baud rate to the baud rate specified and reset unit	Ν
325	None	Set communication to even parity (default)	Y
326	None	Set communication to no parity	Y
330	None	Enable unit #01's response to the SY/MAX enquire transmission (default)	Ν
331	None	Disable unit #01's response to the SY/MAX enquire transmission	Ν
340	None	Set control of conditional energy to status inputs (default)	Ν
341	None	Set control of conditional energy to command Interface	Ν
50	None	Enable front panel comm port (default)	Ν
351	None	Disable front panel comm port	Ν
60	None	Enable front panel setup (default)	Ν
361	None	Disable front panel setup	Ν
370	None	Set normal phase rotation to ABC (default)	Ν
371	None	Set normal phase rotation to CBA	Ν
310	Bit Map Relay Designation	Place specified relays under external control (default)	Ν
311	Bit Map Relay Designation	Place specified relays under internal control	Ν
320	Bit Map Relay Designation	De-energize designated relays per specified bit map	Ν
321	Bit Map Relay Designation	Energize designated relays per specified bit map	Ν
340	Bit Map Output Designation	Release specified relays from override control	Ν
341	Bit Map Output Designation	Place specified relays under override control	Ν
5			

**Chapter 9—Advanced Topics** 

	<u>Code</u>	Parameter(s)	Description	Reset Req'd
	3390	Bit Map Input Designation	Set control of conditional energy to indicated status inputs	N
	4110	None	Reset Min/Max	N
	4310	None	Set VAr sign convention to CM1 convention (default)	Y
	4311	None	Set VAr sign convention to alternate convention	Y
	4910	None	Trigger 4-cycle waveform capture	Ν
	4911	None	Trigger 12-cycle waveform capture	Ν
	5110	None	Reset Peak Demand Currents/K Factors/Generic Demand	Ν
	5112	None	Reset Peak and MinimumGeneric Demand quantities	Ν
	5120	None	Reset Peak Demand Powers and associated average Power Factors	Ν
	5310	None	Set power demand method to thermal (default)	Y
	5311	None	Set power demand method to block/rolling	Y
	5320	None	Set external demand synch source to input 1	Ν
	5321	None	Set external demand synch source to the command interface	Ν
	5910	None	Start new demand interval	Ν
	5920	None	Set new Status Input Pulse Demand Interval	Ν
	6210	None	Clear all accumulated energies	Ν
	6220	None	Clear all conditional energies	Ν
	6310	None	Set energy accumulation method to absolute	Ν
	6311	None	Set energy accumulation method to signed	Ν
	6320	None	Disable conditional energy accumulation	Ν
	6321	None	Enable conditional energy accumulation	Ν
	6330	None	Set reactive energy and demand method to include only the fundamental component	Ν
	6331	None	Set reactive energy and demand method to include the both fundamental and harmonic components	Ν
	6910	None	Start new incremental energy interval	Ν
	7510	Віт Мар	Trigger Data Log Entry	Ν
- MA	2	• © 1999	9 Square D Company All Rights Reserved ————————————————————————————————————	63

	See <b>Append</b> configuration	<b>ix B</b> , registers 2500- n.	-2521, for information on relay output		
Setting Up Relays for Remote (External) Control	To set up the circuit monitor for remote (external) relay operation, you must configure the circuit monitor for remote relay control.				
	To configure the circuit monitor for remote relay control:				
	<ol> <li>Write a l specifyir</li> </ol>	pitmap (see below) ng the relays to be s	to the command parameter register, etup for remote control.		
	<u>Reg #</u> 7701	<u>Value</u> Bitmap	Description Bitmap corresponding to relays to be placed under manual control. Bit 1 corresponds to KYZ, Bit 2 corresponds to Relay 1, Bit 3 corresponds to relay 2, Bit 4 corresponds to relay 3.		
	2. Write a c interface	command code (331 e register (7700).	0) to the circuit monitor's command		
	7700	3310	Command code to configure relay for remote (external) control		
Energizing a Relay	To energize a	relay, do the followin	8		
	1. Write a l specifyir	oitmap (see below) ng the relays to be e	to the command parameter register, nergized.		
	<u>Reg #</u> 7701	<u>Value</u> Bitmap	Description bitmap corresponding to relays to be energized. Bit 1 corresponds to KYZ, Bit 2 corresponds to Relay 1, Bit 3 corresponds to relay 2, Bit 4 corresponds to relay 3.		
	2. Write a cinterface	command code (332 e register (7700).	21) to the circuit monitor's command		
	7700	3321	Command code to energize relay		
De-Energizing a Relay	To de-energiz	e a relay, do the follow	ving:		
	1. Write a l specifyir	pitmap (see below) ng the relays to be c	to the command parameter register, le-energized.		
	<u>Reg #</u> 7701	<u>Value</u> Bitmap	Description bitmap corresponding to relays to be de-ener- gized. Bit 1 corresponds to KYZ, Bit 2 corresponds to Relay 1, Bit 3 corresponds to relay 2, Bit 4 corresponds to relay 3.		
	2. Write a cinterface	command code (332 e register (7700).	20) to the circuit monitor's command		
2	7700	3320	Command code to de-energize relay		
2					
# Chapter 9—Advanced Topics

Setting Up Relays for Circuit Monitor (Internal) Control	Fo cor cir	r the circuit mo nditions or as a cuit monitor (in	nitor to autom pulse initiator ternal) control	atically control relays based on alarm output, you must configure the relays for
	То	configure relays	for circuit moni	tor (internal) control, do the following:
	1.	Write a bitma specifying the	p (see below) t relays to be se	o the command parameter register, etup for internal control.
		<u>Reg #</u> 7701	<u>Value</u> Bitmap	Description Bitmap corresponding to relays to be placed under internal control. Bit 1 corresponds to KYZ, Bit 2 corresponds to Relay 1, Bit 3 corresponds to relay 2, Bit 4 corresponds to relay 3.
	2.	Write a comm interface regis	and code (331) ster (7700).	1) to the circuit monitor's command
		7700	3311	Command code to configure relay for internal control
Overriding an Output Relay	It i mo to	s possible to ov onitor (internal) manual control	erride a circuit control. Once	monitor output relay set up for circuit overridden, the specified relays will respond
	То	override relays, a	lo the following:	
	1.	Write a bitma specifying the	p (see below) t relays to be ov	o the command parameter register, verridden.
		<u>Reg #</u> 7701	<u>Value</u> Bitmap	Description Bitmap corresponding to relays to be placed under override control. Bit 1 corresponds to KYZ, Bit 2 corresponds to Relay 1, Bit 3 corresponds to relay 2, Bit 4 corresponds to relay 3.
•	2.	Write a comm interface regis	and code (334) ster (7700).	1) to the circuit monitor's command
~		7700	3341	Command Code to place relay under override control.
Releasing an Overridden Relay	To rel	return an over ease the overric	ridden relay to le.	circuit monitor (internal) control, you must
	То	release the overr	ide, do the follou	ving:
	1.	Write a bitmaging the relays	p (see below) t to be released	o the command parameter register, specify- from override.
		<u>Reg #</u> 7701	<u>Value</u> Bitmap	<b>Description</b> Bitmap corresponding to relays to be released from override control. Bit 1 corresponds to KYZ, Bit 2 corresponds to Relay 1, Bit 3 corresponds to relay 2, Bit 4 corresponds to relay 3.
2	2.	Write a comm interface regis	and code (334) ter (7700).	0) to the circuit monitor's command
7		7700	3340	Command Code to release overridden relays.

### SETTING SCALE FACTORS FOR EXTENDED METERING RANGES

The circuit monitor stores instantaneous metering data in single registers. Each register has a maximum range of 32,767. In order to meter extended ranges, current, voltage, and power readings can accommodate multipliers other than one. Multipliers can be changed from the default value of 1 to other values such as 10, 100, or 1000. These scale factors are automatically selected for the user when setting up the circuit monitor, either from the front panel or using POWERLOGIC application software.

The circuit monitor stores these multipliers as scale factors. A scale factor is the multiplier expressed as a power of 10. For example, a multiplier of 10 is represented as a scale factor of 1, since  $10^1$ =10; a multiplier of 100 is represented as a scale factor of 2, since  $10^2$ =100.

If the circuit monitor displays "-OFLO-" for any reading, the scale factor may need to be changed to bring the reading back into range. For example, since a circuit monitor register cannot store a number as large as 138,000, a 138 kV system requires a multiplier of 10. 138,000 is converted to 13,800 x 10. The circuit monitor stores this value as 13,800 with a scale factor of 1 (since 10¹=10). The circuit monitor front panel would display the value as 138.00 with the KILO units LED lit.

Scale factors are arranged in scale groups. The abbreviated register list in Appendix B shows the scale group associated with each metered value.

The command interface can be used to change scale factors on a group of metered values. The procedure on the following page tells how.

#### Notes:

- It is strongly recommended that the default scale factors which are automatically selected by POWERLOGIC hardware and software not be changed.
- When using custom software to read circuit monitor data over the communications link, you must account for these scale factors. To correctly read any metered value with a scale factor other than 0, multiply the register value read by the appropriate power of 10.
  - When you change a scale factor, all min/max values are reset.

### Chapter 9—Advanced Topics

## **Setting Scale Factors (cont.)** *To change scale factors, do the following:*

1. Determine the required scale factors

There are 5 scale groups. The desired scale factor for each group must be determined. The following is a listing of the available scale factors for each of the 5 user defined scale groups. The factory default for each scale group is 0. If you need either an extended range or more resolution, you can select any of the available scale factors to suit your need.

Scale Group A-Phase Current Scale Factor Amps 0-327.67 A -2 0-3276.7 A -1 0 (default 0-32767 A Scale Group B-Neutral Current Amps 0-327.67 A 0-3276.7 A 0-32767 A 0 (default) 0-327.67 kA 1 Scale Group C—Ground Current Amps 0-327.67 A -2 0-3276.7 A -1 0-32767 A 0 (default) 0-327.67 kA 1 Scale Group D-Voltage, L-L, L-N Voltage 0-3276.7 V -1 0 (default) 0-32767 V 0–327.67 kV 1 2 0-3276.7 kV Scale Group E—Power kW, kVAR, kVA Power -3 0-32.767 kW, kVAR, kVA -2 0-327.67 kW, kVAR, kVA 0-3276.7 kW, kVAR, kVA -1 0 (default) 0-32767 kW, kVAR, kVA 0-327.67 MW, MVAR, MVA 1 0-3276.7 MW, MVAR, MVA 2 0-32767 MW, MVAR, MVA 3 2. Using POWERLOGIC application software, read the existing scale factors from registers 2020-2024 and write them down. Register 2020 Scale Group A Register 2021 Scale Group B Register 2022 Scale Group C Register 2023 Scale Group D M Register 2024 Scale Group E Make note of the changes required to the scale groups. 3.

Z

30

4. Write the appropriate values (see below) to a series of command parameter registers, one for each scale group.

Reg No.	Value	<u>Descripti</u>	on
7701–7705	Scale Factors	Scale Gro Scale Gro Scale Gro Scale Gro Scale Gro	bup A—write to reg. 7701 bup B—write to reg. 7702 bup C—write to reg. 7703 bup D—write to reg. 7704 bup E—write to reg. 7705
Scale Group A: Amm	eter Per Phase	-2 -1 0 1	<ul> <li>multiplier of 0.01</li> <li>multiplier of 0.10</li> <li>multiplier of 1.00 (default)</li> <li>multiplier of 10.0</li> </ul>
Scale Group B: Amm	eter Neutral	-2 -1 0 1	= multiplier of 0.01 = multiplier of 0.10 = multiplier of 1.00 (default) = multiplier of 10.0
Scale Group C: Amm	neter Ground	-2 -1 0 1	<ul> <li>multiplier of 0.01</li> <li>multiplier of 0.10</li> <li>multiplier of 1.00 (default)</li> <li>multiplier of 10.0</li> </ul>
Scale Group D: Voltn	neter	-1 0 1 2	<ul> <li>multiplier of 0.10</li> <li>multiplier of 1.00 (default)</li> <li>multiplier of 10.0</li> <li>multiplier of 100.</li> </ul>
Scale Group E: kWat	tmeter, kVarmeter, kV/	-3 -2 -1 0 1 2 3 4 5	<ul> <li>multiplier of 0.001</li> <li>multiplier of 0.01</li> <li>multiplier of 0.10</li> <li>multiplier of 1.00 (default)</li> <li>multiplier of 10.0</li> <li>multiplier of 100.</li> <li>multiplier of 1000</li> <li>multiplier of 10,000</li> <li>multiplier of 100,000</li> </ul>
Scale Group F: Frequ	uency (Determined by (	CM) -2 -1	= multiplier of 0.01 (for 50/60 Hz) = multiplier of 0.10 (for 400 Hz)

Write a command code (2110) to the circuit monitor's command interface register (7700).

SETTING THE DATE AND	Th	e command int	erface can be u	sed to set the date and time.		
INTERFACE	<i>To set the date and time, do the following:</i>					
	1.	Write values t time paramete	to a series of co er, SEC, MO, D	ommand parameter registers, one for each OA, HR, MN, YR.		
		<b>Reg No.</b> 7701–7706	<b>Value</b> Sec, min, hr day, mo, yr	Description Secs corresponds to Register 7701 Mins corresponds to Register 7702 Hours corresponds to Register 7703 Day corresponds to Register 7704 Month corresponds to Register 7705 Year corresponds to Register 7706		
	2.	Write a comm interface regis	nand code (131) ster (7700).	0) to the circuit monitor's command		
		<b>Reg No.</b> 7700	<b>Value</b> 1310	<b>Description</b> Command code to set date and time.		
MEMORY ALLOCATION	Th on suc In no	is section descr ly. It does not a ch as setup para all circuit moni nvolatile memo	ibes memory a apply to nonvol ameters, min/r tor models, the ory area.	llocation for nonvolatile <i>logging</i> memory latile memory used to store critical values max values, and energy and demand values. ese critical values are stored in a separate		
	Cin me log wa mo	rcuit monitors a emory. Dependi gging memory r weform capture odel are describ	are available w ing on the circu must be allocat e log, and an ex ed below.	ith different amounts of nonvolatile logging uit monitor model, the available nonvolatile ed among an event log, 1 to 14 data logs, a stended event capture log. Specifics for each		
	CN	<b>4-2050</b> —Provid	les no nonvola	tile logging memory.		
	CI cat	<b>4-2150, CM-225</b> red among an e	<b>50—</b> Available vent log and 1	nonvolatile logging memory must be allo- to 14 data logs.		
3	CN be an	<b><i>I</i>-2350, CM-24</b> 5 allocated amon d an extended e	50, CM-2452— ng an event log event capture l	Available nonvolatile logging memory must , 1 to 14 data logs, a waveform capture log, og.		
	WI the me	hen using POW e choices you m emory used:	ERLOGIC app ake for the iter	plication software to set up a circuit monitor, ns listed below directly affect the amount of		
	•	The number of	data log files (	(1 to 14)		
	•	The quantities	logged in each	entry (1 to 97), for each data log file		
•	•	The maximum	number of ent	ries in each data log file		
•	•	The maximum	number of eve	ents in the event log file		
4	•	The maximum capture file	number of wa	veform captures in the waveform		
2	•	The maximum capture file	number of ext	ended event captures in the extended event		
4	– ©	1999 Square D Co	mpany All Rights	Reserved — 69		

The number you can enter for each of the above items depends on the amount of the memory that is still available. The amount of memory still available depends on the numbers you've already assigned to the other items.

Figure 9-1 below shows how the memory might be allocated in a CM-2350. In this figure, the user has set up a waveform capture log, an extended event capture log, an event log, and three data logs (two small logs, and one larger log). Of the total available nonvolatile memory, about 25% is still available. If the user decided to add a fourth data log file, the file could be no larger than the space still available—25% of the circuit monitor's total storage capacity. If the fourth file had to be larger than the space still available, the user would have to reduce the size of one of the other files to free up the needed space.

POWERLOGIC System Manager Software indicates the memory allocation statistics in the On-Board Data Storage dialog box shown in figure 7-3, page 53, and figure 7-4, page 54. The display uses color coding to show the space devoted to each type of log file along with the space still available. For instructions on setting up log files using POWERLOGIC software, refer to the instruction bulletin included with the software.



### **Memory Example**

Table 9-1 shows how a user might configure the available memory for various circuit monitor models. In this example, the circuit monitors have been set up with one data log that stores the following data hourly: 3-phase average amps, volts (L-L, L-N), PF, kW, kVAR, frequency, 3-phase demand for amps, kW, kVA, kWH and kVARH.

The circuit monitors store waveform captures and extended event captures as follows:

- The CM-2250 can store only one waveform capture and one 12-cycle event capture. It stores these in *volatile* memory; therefore, they do not reduce the amount of nonvolatile memory available for event and data logs.
- The CM-2350 can store multiple waveform captures and extended event captures. It stores these in *nonvolatile* memory; therefore, they do affect the amount of nonvolatile memory available for event and data logs.

For specific instructions on calculating log file sizes, see **Appendix C**— **Calculating Log File Sizes**.

# Table 9-1 Memory Configuration Example

Typical Standard Memory Configuration [®]						
CM-2050 CM-2150 ³ CM-2250 ³ CM-2350/2450 ³ CM-2452 ⁵						
Event Log	N/A	500 Events	500 Events	500 Events	1500 Events	
1 Data Log	N/A	40 Days	40 Days	40 Days	120 Days	
Waveform Captures ²	N/A	N/A	1	<b>3</b> ^④	95	
Event Captures ²	N/A	N/A	1	3 ^④	13 ^⑤	

① This table illustrates a typical memory configuration for a standard circuit monitor, with one data log storing the following data hourly: 3Ø avg. amps, volts (L-L, L-N), PF, kW, kVAR, freq., 3Ø demand for amps, kW, kVA, kWH, and kVARH.

2 Waveform & event captures are stored in non-volatile memory in the CM-2350 and CM-2450. The exact number of waveforms and event captures that can be stored depends on how much memory is allocated to event & data logs.

⁽³⁾ The standard CM-2150, -2250, -2350, and -2450 can store up to 51,200 values (100K).

The CM-2350 and CM-2450 can store up to 20 waveform captures or 8 twelve-cycle event captures.
 The standard CM-2452 can store over 180,000 values (356K), including up to 60 waveform captures, or 29 twelve-cycle event captures.

Each power factor value occupies one register. Power factor values are stored using signed magnitude notation (see figure 9-2). Bit number 16, the sign bit, indicates leading/lagging. A positive value (bit 16=0) always indicates leading. A negative value (bit 16=1) always indicates lagging. Bits 1–9 store a value in the range 0–1000 decimal. For example the circuit monitor would return a leading power factor of 0.5 as 500. Divide by 1000 to get a power factor in the range 0 to 1.000.



#### Figure 9-2: Power factor register format

# HOW POWER FACTOR IS STORED

N

ebruary 1999			(
	When the power fa value—for exampl binary equivalent 0 to 1000, you need An example will h	actor is lagging, the circuit le, -31,794. This happens be of -31,794 is 1000001111002 d to mask bit 16. You do th elp clarify.	monitor returns a high negative ecause bit 16=1 (for example, the 1110). To get a value in the range is by adding 32,768 to the value.
	Assume that you r power factor in the	read a power factor value c e range 0 to 1.000, as follow	of -31,794. Convert this to a vs:
	-31,794 + 32,76	58 = 974	
	974/1000 = .97	4 lagging power factor	
CHANGING THE VAR SIGN CONVENTION	The circuit monito the default sign co The procedures be command interfac complete listing of chapter.	r offers two VAR sign com nvention. Figure 9-4 show low tell how to change the e. For a description of the command codes, see <b>The</b>	ventions. Figure 9-3 shows s the alternate sign convention. sign convention using the command interface and a <b>Command Interface</b> in this
	To change to the alte	ernate sign convention, comp	lete the following steps:
	1. Write commar	nd code 4311 to register 770	00.
	2. Write commar	nd code 1110 to register 770	00.
	This resets the	encult montor, causing it	
	10 return to the defa	tult sign convention, complet	e the following steps:
	<ol> <li>Write comman</li> <li>Write comman</li> </ol>	nd code 1110 to register 77	0
	This resets the convention.	circuit monitor, causing it	to return to the default sign
Quadrant	adrant	REA PO	CTIVE WER
2	1	Quadrant 2	Quadrant 1
WATTS NEGATIVE (-) WATTS PE VARS NEGATIVE (-) VARS NEGATIVE (-)	OSITIVE (+) GATIVE (-)	WATTS NEGATIVE ()	WATTS POSITIVE (+)
P.F. LEADING (+) P.F. LAGG		VARS POSITIVE (+) P.F. LEADING (+)	VARS POSITIVE (+) P.F. LAGGING (-)
Keverse Power Flow Normal Po	REAL POWER		Normal Power Flow -> RFAI
WATTS NEGATIVE (-) WATTS PO VARS POSTIVE (+) VARS PO	OSITIVE (+) STIVE (+)		POWER
P.F. LAGGING (-) P.F. LEAD	ING (+)	WATTS NEGATIVE () VARS NEGATIVE ()	WATTS POSITIVE (+) VARS NEGATIVE (-)
Quadrant Qu	adrant	P.F. LAGGING (–)	P.F. LEADING (+)
	4	Quadrant	Quadrant
REACTIVE POWER			, , , , , , , , , , , , , , , , , , ,
		<b>E</b> '	ioual VAD sign contraction

# Chapter 9—Advanced Topics

isters 1629–1648 are <i>conditional energy</i> registers.
unications link, by writing commands to the circuit and interface
Co
t—for example, conditional energy accumulates when the input is on, but does not accumulate when the status
edures tell how to set up conditional energy for command nd for status input control. The procedures refer to nd command codes. For a listing of circuit monitor <b>ndix B</b> . For a listing of command codes, see <b>The Com</b> - this chapter.
litional energy to the command interface:
d code 2341 to register 7700.
er setup, read register 2081. Bit 6 should read 1, indicating face control. Bit 7 should read 0, indicating that condition lation is off.
mergy accumulation:
d code 6321 to register 7700.
nal energy is accumulating, bit 7 of register 2081 should ng that conditional energy accumulation is on.
nergy accumulation:
d code 6320 to register 7700.
al enerou registers (1629-1648):
d code 6220 to register 7700.
nal energy for status input control.
d code 2340 to register 7700
us input that will drive conditional energy accumulation
map to register 7701. Set the appropriate bit to 1 to sired input (input S1=bit 1, S2=bit 2, S3=bit 3, S4=bit 4).
d code 3390 to register 7700.
er setup, read register 2081. Bit 6 should read 0, indicating l energy accumulation is under status input control. Bit 7 vhen the status input is off, indicating that conditional lation is off. Bit 7 should read 1 when the status input is hat conditional energy accumulation is on.
al energy registers (1629–1648):
d code 6220 to register 7700.
pany All Rights Reserved 73
ו

INCREMENTAL ENERGY	The circuit monitor's incremental energy feature allows you to define a start time and time interval for incremental energy accumulation. At the end of each incremental energy period, the following information is available:
	<ul> <li>WH IN during the last completed interval (reg. 1649–1651)</li> </ul>
	• VARH IN during the last completed interval (reg. 1652–1654)
	WH OUT during the last completed interval (reg. 1655–1657)
	• VARH OUT during the last completed interval (reg. 1658–1660)
	• VAH during the last completed interval (reg. 1661–1663)
	• Date/time of the last completed interval (reg. 1869–1871)
	• Peak kW demand during the last completed interval (reg. 1749)
	• Date/Time of Peak kW during the last interval (reg. 1878–1880)
	• Peak kVAR demand during the last completed interval (reg. 1750)
	• Date/Time of Peak kVAR during the last interval (reg. 1881–1883)
	• Peak kVA demand during the last completed interval (reg. 1751)
	• Date/Time of Peak kVA during the last interval (reg. 1884–1886)
	The incremental energy data listed above can be logged by the circuit monitor. This logged data provides all the information needed to analyze energy and power usage against present or future utility rates. The informa- tion is especially useful for doing "what ifs" with time-of-use rate structures.
	When using the incremental energy feature, keep the following points in mind:
	<ul> <li>Peak demands help minimize the size of the data log in cases of sliding or rolling demand. Shorter incremental energy periods make it easier to reconstruct a load profile analysis.</li> </ul>
	• Since the incremental energy registers are synchronized to the circuit monitor clock, it is possible to log this data from multiple circuits and perform accurate totalization.
Using Incremental Energy	Incremental energy accumulation begins at the specified start date and offset time. Once the start date has arrived, a new incremental energy period begins at the specified offset time.
	Incremental energy calculations continue around the clock at the specified interval. However, a new incremental energy calculation will begin each new day at the offset time regardless of where it is in the present interval. For example:
*	Offset time = 8:00 a.m. Interval = 14 hours
2 ⁿ	The first incremental energy calculation will be from 8:00 a.m. to 10:00 p.m. (14 hours). The next interval will be from 10:00 p.m. to 8:00 a.m. the next day, even though that interval will only be 10 hours. This is because 8:00 a.m. is
74	© 1999 Square D Company All Rights Reserved
2	

your specified offset time. Incremental energy accumulation will then continue in this manner until the configuration is changed or a new interval is started by a remote master.

To set up incremental energy:

- 1. Write a start date and offset time to registers 1863–1865
- 2. Write the desired interval length, from 0–1440 minutes, to register 2076. If incremental energy will be controlled from a remote master, such as a programmable controller, write a value of zero here.

To start a new incremental energy interval from a remote master:

■ Write command code 6910 to register 7700.

#### CHANGING THE DEMAND CALCULATION METHOD

The circuit monitor can be configured to use one of three demand power calculation methods:

- thermal demand (circuit monitor default)
- external pulse synchronized demand
- block interval demand with rolling subinterval (block/rolling)

For a description of the demand power calculation methods, see **Demand Power Calculation Methods** in **Chapter 2**.

The thermal demand method is the default. To set up the circuit monitor for thermal demand, simply define the demand interval. See **Setting the Demand Interval** in **Chapter 4** of the *Circuit Monitor Installation and Operation Bulletin* for instructions.

To change to the block/rolling demand method, the user must write to the command interface over the communications link. (For a description of the command interface and a list of command codes, see **The Command Interface** in this chapter.)

To change to the block/rolling method, complete the following steps:

- 1. Write command code 5311 to register 7700.
- 2. Write command code 1110 to command interface register 7700.

This resets the circuit monitor, causing it to recognize the new demand calculation method.

3. Write a subinterval value in minutes into register 2078. If the subinterval is set equal to the demand interval, the demand calculation will update once each demand interval (block mode). If the subinterval equals zero, the demand calculation will update every 15 seconds (sliding window).

## Changing to the Block/Rolling Method

#### SETTING UP A DEMAND SYNCH PULSE INPUT

The external pulse synchronized demand method allows a circuit monitor, equipped with an I/O module, to accept a demand synch pulse from another demand meter. When this method is used, the circuit monitor watches input S1 for a pulse that signals the start of a new demand interval. This allows the circuit monitor's demand interval "window" to match the other meter's demand interval "window." For a detailed description of this feature, see **Demand Synch Pulse Input** in **Chapter 3**.

To set up the circuit monitor to accept a demand synch pulse input:

Set the demand interval to 0 from the circuit monitor front panel. See **Setting the Demand Interval** in **Chapter 4** of the *Circuit Monitor Installation and Operation Bulletin* for instructions on setting the demand interval using the circuit monitor's front panel.

OR

- 1. Using application software, write a value of zero to register 2077, the demand interval configuration register.
- 2. Using application software, write command code 5311 to register 7700 to select block demand mode.
- 3. Using application software, write command code 5320 to register 7700 to set the external synch source to S1.

## CONTROLLING THE DEMAND INTERVAL OVER THE COMMUNICATIONS LINK

The circuit monitor's demand interval can be controlled over the communications link. For example, a programmable controller can signal the start of each new demand interval.

The circuit monitor's command interface is used to control the demand interval over the communications link. For a description of the command interface and a list of command codes, see **The Command Interface** in this chapter.

To set demand control to the command interface:

- 1. Using application software, write a value of zero to register 2077, the demand interval configuration register.
- 2. Using application software, write command code 5311 to register 7700 to select block demand mode.
  - Using application software, write command code 5321 to register 7700.

To start a new demand interval:

Write command code 5910 to register 7700.

#### SETTING UP INDIVIDUAL HARMONIC CALCULATIONS

NN

Circuit monitor models 2350 and higher can perform harmonic magnitude and angle calculations for each metered input. The harmonic magnitude can be formatted as either a percentage of the fundamental or as a percentage of the rms values. The harmonic magnitude and angles are stored in a set of registers: 4002–4447. The circuit monitor updates the values in these registers over a 10-metering update cycle period. During the time that the circuit monitor is refreshing harmonic data, the circuit monitor posts a value of 0 in register 2037. When the whole set of harmonic registers is updated with new data, the circuit monitor posts a value of 1 in register 2037. The circuit monitor can be configured to hold the values in these registers for up to 60 metering update cycles once the data processing is complete.

There are three operating modes for harmonic data processing: disabled, voltage only, and voltage and current. Because of the extra processing time necessary to perform these calculations, the factory default operating mode is disabled.

Write to the following registers to configure the harmonic data processing:

cycles ates tting; :)
tting; :)
abled onics
2.
; before
cycles odate.
,

# When equipped with an I/O module, the circuit monitor can count pulses **STATUS INPUT PULSE DEMAND METERING** from an external source, such as a watthour meter equipped with a pulse initiator. This allows the circuit monitor to keep track of demand information by counting pulses. The circuit monitor provides ten input pulse demand channels (see figure 9-5). Each channel maintains pulse count data taken from one or more status inputs assigned to that channel. For each channel, the circuit monitor maintains the following information: • Present Interval Pulse Count-the number of pulses counted so far during the present interval. • Last Completed Interval Pulse Count—the number of pulses counted during the last completed interval. • Peak Interval Pulse Count—the maximum number of pulses counted during a completed interval since the last power demand reset. • Date/Time of Peak—the date and time of the peak interval pulse count (described above) since the last power demand reset. For each channel, utility registers are provided which can be defined by custom application software as storage locations for: • Units—for example, kWH, kVARH, or kVAH. • Weight factor—a weight factor for each pulse. For example, you might define that each pulse is equal to 10.0 kW. • Scale Code—a scale factor to indicate what power of 10 to apply to the weight factor The pulse demand interval can be chosen to synchronize all channels with the power demand interval (block only), the incremental energy interval, a status input transition, or by external communications. **Pulse Counting Example** Figure 9-5, page 79, shows how you might apply the pulse demand metering feature. In the example, channels 1, 2 have been assigned to count pulses from inputs S1 and S2, respectively. Channel 10 has been assigned inputs S1 and S2. Therefore, channel 10 will totalize the pulses from S1 and S2. Refer to Appendix B—Abbreviated Register Listing, for information on registers 2898–2999.

### **Chapter 9—Advanced Topics**





### Appendix A—Communication Cable Pinouts

# **APPENDIX A—COMMUNICATION CABLE PINOUTS**





# **APPENDIX B—ABBREVIATED REGISTER LISTING**

This appendix contains an abbreviated listing of circuit monitor registers. The following values are included in this register listing:

- Real-Time Metered Values
- Real-Time Meter Values Minimum
- Real-Time Meter Values Maximum
- Energy Values
- Demand Values
- Dates and Times
- Status Inputs
- Relay Outputs
- Circuit Monitor Configuration Values

In this appendix, the following information is provided for each register:

- Register Number (see note below)
- Register Description
- Units
- Range

- And

*Note:* Some registers in this section apply only to circuit monitors with firmware version 17.009 or higher. To determine a circuit monitor's firmware version from the front panel, see *Viewing Configuration Data In Protected Mode* in *Chapter 4* of the Circuit Monitor Installation and Operation Bulletin. Step 3 tells how to determine the firmware version.

*To determine the firmware version over comms, follow these steps:* 

- 1. Read register 2094. The two digits on the left in the 4-digit decimal value represent the reset code revision; the two digits on the right represent the circuit monitor firmware version.
- 2. Read register 2093. The decimal value represents the circuit monitor firmware sub-revision level, as in firmware version 16.001.

84

February 1	999		
			)`
Reg. No.	Description	<u>Units</u>	Range
000	Update Interval	In 1000ths of a second	0 to 10,000
001	Frequency	Hertz/Scale Factor F	2300 to 6700 (50/60)
			3500 to 4500 (400)
002	Temperature inside CM enclosure	Degrees C in 100ths	-10,000 to +10,000
003	Current, Phase A	Amps/Scale Factor A	0 to 32,767
004	Current, Phase B	Amps/Scale Factor A	0 to 32,767
005	Current, Phase C	Amps/Scale Factor A	0 to 32,767
006	Current, Neutral	Amps/Scale Factor B	0 to 32,767
007	Current, Ground	Amps/Scale Factor C	0 to 32,767
800	Current, 3-Phase Average	Amps/Scale Factor A	0 to 32,767
009	Current, Apparent rms	Amps/Scale Factor A	0 to 32,767
010	Current Unbalance, Phase A	Percent in 10ths	0 to ±1000
011	Current Unbalance, Phase B	Percent in 10ths	0 to ±1000
012	Current Unbalance, Phase C	Percent in 10ths	0 to ±1000
013	Current Unbalance, Worst	Percent in 10ths	0 to ±1000
014	Voltage, Phase A to B	Volts/Scale Factor D	0 to 32.767
015	Voltage, Phase B to C	Volts/Scale Factor D	0 to 32.767
016	Voltage, Phase C to A	Volts/Scale Factor D	0 to 32.767
017	Voltage L-L. 3-Phase Average	Volts/Scale Factor D	0 to 32.767
018	Voltage. Phase A to Neutral	Volts/Scale Factor D	0 to 32.767
019	Voltage, Phase B to Neutral	Volts/Scale Factor D	0 to 32.767
020	Voltage, Phase C to Neutral	Volts/Scale Factor D	0 to 32.767
021	Voltage L-N. 3-Phase Average	Volts/Scale Factor D	0 to 32.767
022	Voltage Unbalance. Phase A-B	Percent in 10ths	0 to ±1000
023	Voltage Unbalance, Phase B-C	Percent in 10ths	0 to ±1000
024	Voltage Unbalance, Phase C-A	Percent in 10ths	0 to ±1000
025	Voltage Unbalance, L-L Worst	Percent in 10ths	0 to ±1000
026	Voltage Unbalance, Phase A	Percent in 10ths	0 to ±1000
027	Voltage Unbalance, Phase B	Percent in 10ths	0 to ±1000
028	Voltage Unbalance, Phase C	Percent in 10ths	0 to ±1000
029	Voltage Unbalance, L-N Worst	Percent in 10ths	0 to ±1000
031	True Power Factor, Phase A	In 1000ths	-100 to +1000 to +100 [®]
032	True Power Factor, Phase B	In 1000ths	-100 to +1000 to +100 ^①
033	True Power Factor, Phase C	In 1000ths	-100 to +1000 to +100 ^①
034	True Power Factor, 3-Phase Total	In 1000ths	−100 to +1000 to +100 [®]
035	Displacement Power Factor, Phase A	In 1000ths	-100 to +1000 to +100 [®]
036	Displacement Power Factor, Phase B	In 1000ths	-100 to +1000 to +100 ^①
037	Displacement Power Factor, Phase C	In 1000ths	-100 to +1000 to +100 ^①
038	Displacement Power Factor, 3-Phase Total	In 1000ths	-100 to +1000 to +100 ^①
039	Real Power, Phase A	kW/Scale Factor E	0 to ±32,767
040	Real Power, Phase B	kW/Scale Factor E	0 to ±32,767
041	Real Power, Phase C	kW/Scale Factor E	0 to ±32,767
042	Real Power, 3-Phase Total	kW/Scale Factor E	0 to ±32,767
043	Reactive Power, Phase A	kVAr/Scale Factor E	0 to ±32,767
044	Reactive Power, Phase B	kVAr/Scale Factor E	0 to ±32,767
045	Reactive Power, Phase C	kVAr/Scale Factor E	0 to ±32,767
046	Reactive Power, 3-Phase Total	kVAr/Scale Factor E	0 to ±32,767
047	Apparent Power, Phase A	kVA/Scale Factor E	0 to +32,767
048	Apparent Power, Phase B	kVA/Scale Factor E	0 to +32,767
049	Apparent Power, Phase C	kVA/Scale Factor E	0 to +32,767
050	Apparent Power, 3-Phase Total	kVA/Scale Factor E	0 to +32,767

① See How Power Factor is Stored in Chapter 13 for a description of the power factor register format.

<u>Reg. No.</u>	Description	<u>Units</u>	Range
1051	THD Phase A Current	% in 10ths	0 to 32,767
1052	THD Phase B Current	% in 10ths	0 to 32,767
1053	THD Phase C Current	% in 10ths	0 to 32,767
1054	THD Phase Neutral Current	% in 10ths	0 to 32,767
1055	THD Phase A Voltage	% in 10ths	0 to 32,767
1056	THD Phase B Voltage	% in 10ths	0 to 32,767
1057	THD Phase C Voltage	% in 10ths	0 to 32,767
1058	THD Phase A-B Voltage	% in 10ths	0 to 32,767
1059	THD Phase B-C Voltage	% in 10ths	0 to 32,767
1060	THD Phase C-A Voltage	% in 10ths	0 to 32,767
1061	thd Phase A Current	% in 10ths	0 to 32,767
1062	thd Phase B Current	% in 10ths	0 to 32,767
1063	thd Phase C Current	% in 10ths	0 to 32,767
1064	thd Phase Neutral Current	% in 10ths	0 to 32,767
1065	thd Phase A Voltage	% in 10ths	0 to 32,767
1066	thd Phase B Voltage	% in 10ths	0 to 32,767
1067	thd Phase C Voltage	% in 10ths	0 to 32,767
1068	thd Phase A-B Voltage	% in 10ths	0 to 32,767
1069	thd Phase B-C Voltage	% in 10ths	0 to 32,767
1070	thd Phase C-A Voltage	% in 10ths	0 to 32,767
1071	K-Factor, Phase A	In 10ths	0 to 10,000
1072	K-Factor, Phase B	In 10ths	0 to 10,000
1073	K-Factor, Phase C	In 10ths	0 to 10,000
1074	Crest Factor, Phase A	In 100ths	0 to 10,000
1075	Crest Factor, Phase B	In 100ths	0 to 10,000
1076	Crest Factor, Phase C	In 100ths	0 to 10,000
1077	Crest Factor, Neutral	In 100ths	0 to 10,000
1078	Phase A Current, Fundamental rms Magnitude	Amps/Scale Factor A	0 to 32,767
1079	Phase A Current, Fundamental Coincident Angle	In 10ths of degrees	0 to 3,599
1080	Phase B Current, Fundamental rms Magnitude	Amps/Scale Factor A	0 to 32,767
1081	Phase B Current, Fundamental Coincident Angle	In 10ths of degrees	0 to 3,599
1082	Phase C Current, Fundamental rms Magnitude	Amps/Scale Factor A	0 to 32,767
1083	Phase C Current, Fundamental Coincident Angle	In 10ths of degrees	0 to 3,599
1084	Neutral Current, Fundamental rms Magnitude	Amps/Scale Factor B	0 to 32,767
1085	Neutral Current, Fundamental Coincident Angle	In 10ths of degrees	0 to 3,599
1086	Ground Current, Fundamental rms Magnitude	Amps/Scale Factor C	0 to 32,767
1087	Ground Current, Fundamental Coincident Angle	In 10ths of degrees	0 to 3,599
1088	Phase A Voltage, Fundamental rms Magnitude	Volts/Scale Factor D	0 to 32,767
1089	Phase A Voltage, Fundamental Coincident Angle	In 10ths of degrees	0 to 3,599
1090	Phase B Voltage, Fundamental rms Magnitude	Volts/Scale Factor D	0 to 32,767
1091	Phase B Voltage, Fundamental Coincident Angle	In 10ths of degrees	0 to 3,599
1092	Phase C Voltage, Fundamental rms Magnitude	Volts/Scale Factor D	0 to 32,767
1093	Phase C Voltage, Fundamental Coincident Angle	In 10ths of degrees	0 to 3,599
1094	Phase A-B Voltage, Fundamental rms Magnitude	Volts/Scale Factor D	0 to 32,767
1095	Phase A-B Voltage, Fundamental Coincident Angle	In 10ths of degrees	0 to 3,599
1096	Phase B-C Voltage, Fundamental rms Magnitude	Volts/Scale Factor D	0 to 32,767
1097	Phase B-C Voltage, Fundamental Coincident Angle	In 10ths of degrees	0 to 3,599
1098 🔦	Phase C-A Voltage, Fundamental rms Magnitude	Volts/Scale Factor D	0 to 32,767
1099	Phase C-A Voltage, Fundamental Coincident Angle	In 10ths of degrees	0 to 3,599
1100	Phase A Fundamental Real Power	KW//Scale Factor F	0 to +32 76
1101	Phase B Fundamental Real Power	KW/Scale Factor F	$0 \text{ to } \pm 32,70$
			0.00 ±02,70

86

Reg. No.     Description     Units     Range       1102     Phase C Fundamental Real Power     KWScale Factor E     01 to 32.767       1103     3-Phase Total Fundamental Readive Power     KWScale Factor E     01 to 32.767       1104     Phase A Fundamental Readive Power     KWScale Factor E     01 to 32.767       1105     Phase C fundamental Readive Power     KWScale Factor E     01 to 32.767       1108     Harmonic Factor, Phase A     S in 10ths     91 to 20.767       1109     Harmonic Factor, Phase A     S in 10ths     91 to 20.767       1101     Harmonic Factor, Phase A     S in 10ths     91 to 20.767       1111     Harmonic Pactor, Phase A     S in 10ths     91 to 20.767       1111     Harmonic Power, Phase A     S in 10ths     91 to 20.767       1111     Harmonic Power, Phase A     S in 10ths     91 to 20.767       1111     Harmonic Power, Phase A     S in 10ths     91 to 20.767       1111     Harmonic Power, Phase B     S in 10ths     91 to 20.767       1112     Harmonic Power, Phase B     S in 10ths     91 to 20.767       1113     Harmonic Power, Phase B     S in 10ths     91 to 32.767       1114     Harmonic Power, Phase C A     S S 77 to 52.77     10 to 32.767       1112     Harmonic Power, Phase C A						
1102       Phase C Fundamental Real Power       KW:Scale Factor E       0 to 32,767         1103       3-Phase Total fundamental Readrev Power       KW:Scale Factor E       0 to 32,767         1105       Phase A Fundamental Readrev Power       KW:Scale Factor E       0 to 32,767         1106       Phase C Indamental Readrev Power       KW:Scale Factor E       0 to 32,767         1107       3-Phase Total Fundamental Readrev Power       KW:Scale Factor E       0 to 32,767         1108       Harmonic Factor, Phase A       % in 10ths       0 to 32,767         1109       Harmonic Factor, Phase A       % in 10ths       0 to 32,767         1110       Harmonic Factor, Phase A       % in 10ths       0 to 32,767         1111       Harmonic Factor, Phase A       % in 10ths       0 to 32,767         1113       Harmonic Power, Phase A       KW:Scale Factor E       0 to 32,767         1114       Harmonic Power, Phase A       KW:Scale Factor E       0 to 32,767         1115       Harmonic Power, Phase A       KW:Scale Factor E       0 to 32,767         1116       Harmonic Power, Shase A       KW:Scale Factor E       0 to 32,767         1117       Phase Rotation: 0-Normal A-B-C, 1-C-B-A       nore       0 to 1         1112       Analog Input 1	<u>Reg. No.</u>	<b>Description</b>		<u>Units</u>	<u>Range</u>	$\mathbf{G}$
1133       3-Phase Total Fundamental Read Power       KW/Scale Factor E       0 to 432,767         1140       Phase A Fundamental Readtive Power       KW/Scale Factor E       0 to 432,767         1155       Phase C Fundamental Readtive Power       KW/Scale Factor E       0 to 432,767         1177       3-Phase C Fundamental Readtive Power       KW/Scale Factor E       0 to 43,767         1178       Harmonic Factor, Phase A       KW/Scale Factor E       0 to 43,2767         1179       Harmonic Factor, Phase A       % in 10ths       0 to 1000         1170       Harmonic Factor, Phase A       KW/Scale Factor E       0 to 322,767         1171       Harmonic Power, Phase A       KW/Scale Factor E       0 to 322,767         1171       Harmonic Power, Phase A       KW/Scale Factor E       0 to 322,767         1172       Harmonic Power, Phase A       KW/Scale Factor E       0 to 322,767         1174       Harmonic Power, Phase A C       KW/Scale Factor E       0 to 322,767         1175       Harmonic Power, Phase A C       KW/Scale Factor E       0 to 322,767         1176       Harmonic Power, Phase A C       KW/Scale Factor E       0 to 322,767         1177       Phase Rotation: 0-None       -32767 to +32767       The present Scaled value of analog input 1.	1102	Phase C Fundamental Real Power		KW/Scale Factor E	0 to ±32,767	
1104     Phase A Fundamental Reactive Power     KW:Scale Factor E     0 to 432,767       1105     Phase D Fundamental Reactive Power     KW:Scale Factor E     0 to 432,767       1106     Phase C Fundamental Reactive Power     KW:Scale Factor E     0 to 432,767       1108     Harmonic Factor, Phase A     % in 10ths     Vis 1000       1109     Harmonic Factor, Phase A     % in 10ths     Vis 1000       1111     Harmonic Factor, Phase A     % in 10ths     Vis 1000       1111     Harmonic Pactor, Phase A     % in 10ths     Vis 1000       1111     Harmonic Power, Phase A     % in 10ths     Vis 1000       1111     Harmonic Power, Phase A     KW:Scale Factor E     0 to 32,767       1113     Harmonic Power, Phase A     KW:Scale Factor E     0 to 32,767       1114     Harmonic Power, Phase C Total     KW:Scale Factor E     0 to 32,767       1115     Harmonic Power, Phase C Total     KW:Scale Factor E     0 to 32,767       1116     Harmonic Power, SaPhase Total     KW:Scale Factor E     0 to 32,767       1117     Present Value     -32767 to +32767     The present scaled value of analog input 1.       1124     Analog Input 3     None     -32767 to +32767     The present scaled value of analog input 3.       1133     Analog Input 4     None     -3276	1103	3-Phase Total Fundamental Real Pov	ver	KW/Scale Factor E	0 to ±32,767	
1105       Phase B fundamental Reactive Power       KWScale Factor E       0 to ±32,767         1107       3-Phase Total Fundamental Reactive Power       KWScale Factor E       0 to ±32,767         1108       Harmonic Factor, Phase A       × in 10ths       0 to ±32,767         1109       Harmonic Factor, Phase B       × in 10ths       0 to ±32,767         1109       Harmonic Factor, Phase B       × in 10ths       0 to ±32,767         1110       Harmonic Factor, Phase B       × in 10ths       0 to ±32,767         1111       Harmonic Power, Phase A       KWScale Factor E       0 to ±32,767         1112       Harmonic Power, Phase B       KWScale Factor E       0 to ±32,767         1114       Harmonic Power, Phase B       KWScale Factor E       0 to ±32,767         1117       Phase Rotation: 3-None       -32767 to +32767       The present Scaled value of analog input 1.         1182       Analog Input 1       None       -32767 to +32767       The present scaled value of analog input 2.         1191       Analog Input 3       None       -32767 to +32767       The present scaled value of analog input 3.         1192       Analog Input 4       None       -32767 to +32767       The present scaled value of analog input 4.         1193       Analog Input 4       None </td <td>1104</td> <td>Phase A Fundamental Reactive Powe</td> <td>er</td> <td>KW/Scale Factor E</td> <td>0 to ±32,767</td> <td>•</td>	1104	Phase A Fundamental Reactive Powe	er	KW/Scale Factor E	0 to ±32,767	•
1106         Phase C Fundamental Reactive Power         KWScale Factor E         0 to ±32/67           1107         3-Phase Total Fundamental Reactive Power         KWScale Factor E         0 to ±32/67           1108         Harmonic Factor, Phase A         % in 10ths         0 to ±32/67           1109         Harmonic Factor, Phase B         % in 10ths         0 to ±000           1111         Harmonic Power, Phase B         % in 10ths         0 to ±32/767           1112         Harmonic Power, Phase B         KWScale Factor E         0 to ±32/767           1114         Harmonic Power, Phase B         KWScale Factor E         0 to ±32/767           1114         Harmonic Power, Phase B         KWScale Factor E         0 to ±32/767           1114         Harmonic Power, Phase B         KWScale Factor E         0 to ±32/767           1114         Harmonic Power, Phase B Total         KWScale Factor E         0 to ±32/767           1117         Phase Rotation: 0=Normal A-B-C, 1+C-B-A         none         0 to 1         32/767           1119         Analog Input 1         None         -32767 to +32767         The present scaled value of analog input 1.           1192         Analog Input 2         None         -32767 to +32767         The present scaled value of analog input 3.           119	1105	Phase B Fundamental Reactive Powe	er	KW/Scale Factor E	0 to ±32,767	*
1107         3-Phase Total Fundamental Reactive Power         KW/Scale Factor E         016 ±32/67           1108         Harmonic Factor, Phase A         % in 10ths         0 to 1000           1109         Harmonic Factor, Phase B         % in 10ths         0 to 1000           1111         Harmonic Factor, Phase C         % in 10ths         0 to 320,767           1112         Harmonic Power, Phase B         KW/Scale Factor E         0 to 322,767           1113         Harmonic Power, Phase B         KW/Scale Factor E         0 to 322,767           1114         Harmonic Power, Phase B         KW/Scale Factor E         0 to 322,767           1115         Harmonic Power, Shase B Total         KW/Scale Factor E         0 to 322,767           1114         Harmonic Power, S-Phase Total         KW/Scale Factor E         0 to 32,767           1115         Harmonic Power, S-Phase Total         KW/Scale Factor E         0 to 10           1117         Phase Rotation: On-Normal A-BC, t=C-B-A         none         0 to 1         10           1191         Analog Input 1         None         -32767 to +32767         The present scaled value of analog input 1.           1192         Analog Input 4         None         -32767 to +32767         The present scaled value of analog input 3.           1193 </td <td>1106</td> <td>Phase C Fundamental Reactive Powe</td> <td>er</td> <td>KW/Scale Factor E</td> <td>0 to ±32,767</td> <td></td>	1106	Phase C Fundamental Reactive Powe	er	KW/Scale Factor E	0 to ±32,767	
1108       Harmonic Factor, Phase A       % in 10ms       0 to 000         1110       Harmonic Factor, Phase C       % in 10ms       0 to 1000         1111       Harmonic Factor, Phase C       % in 10ms       0 to 1000         1111       Harmonic Factor, Phase C       % in 10ms       0 to 327,67         1112       Harmonic Power, Phase B       KW/Scale Factor E       0 to 327,67         1113       Harmonic Power, Phase B       KW/Scale Factor E       0 to 327,67         1114       Harmonic Power, Phase B       KW/Scale Factor E       0 to 327,67         1115       Harmonic Power, Shase S Total       KW/Scale Factor E       0 to 327,67         1116       Harmonic Power, Shase S Total       KW/Scale Factor E       0 to 327,67         1117       Phase Rotation: C-Normal ALS-C, 1-C-B-A       nore       0 to 1         1191       Analog Input 2       None       -32767 to +32767       The present value of analog input 1.         1192       Analog Input 3       None       -32767 to +32767       The present scaled value of analog input 2.         1193       Analog Input 4       None       -32767 to +32767       The present scaled value of analog input 3.         1194       Analog Input 4       None       -32767 to +32767       The present scaled value	1107	3-Phase Total Fundamental Reactive	Power	KW/Scale Factor E	0 to ±32,767	
1109       Harmonic Factor, Phase B       % in 10ths       0 to 1000         1111       Harmonic Factor, S-Phase Total       % in 10ths       0 to 1000         1112       Harmonic Pactor, S-Phase Total       % in 10ths       0 to 32,767         1113       Harmonic Power, Phase B       KW/Scale Factor E       0 to 32,767         1114       Harmonic Power, Phase B       KW/Scale Factor E       0 to 32,767         1115       Harmonic Power, Phase Total       KW/Scale Factor E       0 to 32,767         1117       Phase Rotation: 0=Normal A.B-C, 1=C-B-A       none       0 to 13,767         1117       Phase Rotation: 0=Normal A.B-C, 1=C-B-A       none       0 to 1         Analog Input 1       None       -32767 to +32767         1192       Analog Input 2       None       -32767 to +32767       The present scaled value of analog input 1.         1192       Analog Input 3       None       -32767 to +32767       The present scaled value of analog input 3.         1193       Analog Input 4       None       -32767 to +32767       The present scaled value of analog input 4.         1194       Analog Input 4       None       -32767 to +32767       The present scaled value of analog input 4.         1200       Minimum Temp.       Degrees Cent.       1 to	1108	Harmonic Factor, Phase A		% in 10ths	0 to 1000	
1110       Harmonic Factor, Phase C       % in 10ths       0 to 3000         1111       Harmonic Factor, Phase A       % in 10ths       0 to 30,767         1112       Harmonic Power, Phase A       KW/Scale Factor E       0 to 32,767         1113       Harmonic Power, Phase B       KW/Scale Factor E       0 to 32,767         1114       Harmonic Power, Phase C       KW/Scale Factor E       0 to 32,767         1115       Harmonic Power, Shase S       KW/Scale Factor E       0 to 32,767         1117       Phase Rotation: 0=Normal A-B-C, 1=C-B-A       none       0 to 32,767         1191       Analog Input 1       None       -32767 to +32767       The present Saled value of analog input 1.         1192       Analog Input 2       None       -32767 to +32767       The present scaled value of analog input 2.         1193       Analog Input 4       None       -32767 to +32767       The present scaled value of analog input 3.         1194       Analog Input 4       None       -32767 to +32767       The present scaled value of analog input 4.         1195       Analog Input 4       None       -32767 to +32767       The present scaled value of analog input 4.         1194       Analog Input 4       None       -32767 to +32767       The present scaled value of analog input 4.	1109	Harmonic Factor, Phase B		% in 10ths	0 to 1000	
1111       Harmonic Factor, 3-Phase Total       % in 10hs       10 to 1000         1112       Harmonic Power, Phase B       KW/Scale Factor E       0 to 32,767         1113       Harmonic Power, Phase C       KW/Scale Factor E       0 to 23,767         1114       Harmonic Power, Phase C       KW/Scale Factor E       0 to 23,767         1115       Harmonic Power, Phase C       KW/Scale Factor E       0 to 23,767         1117       Phase Rotation: 0=Normal A-B-C, 1=C-B-A       none       0 to 1         Analog Input 1       None       -32767 to +32767       The present scaled value of analog input 1.         1192       Analog Input 2       None       -32767 to +32767       The present scaled value of analog input 2.         1193       Analog Input 3       None       -32767 to +32767       The present scaled value of analog input 3.         1194       Analog Input 4       None       -32767 to +32767       The present scaled value of analog input 3.         1194       Analog Input 4       None       -32767 to +32767       The present scaled value of analog input 4.         1200       Minimum Update Interval       In 1000ths of a second       0 to 10.000         1201       Minimum Current Phase A       Amps/Scale Factor A       0 to 32,767         1203	1110	Harmonic Factor, Phase C		% in 10ths	0 to 1000	
1112       Harmonic Power, Phase A       KW/Scale Factor E       0 to 32,767         1113       Harmonic Power, Phase C       KW/Scale Factor E       0 to 32,767         1114       Harmonic Power, Phase C       KW/Scale Factor E       0 to 32,767         1115       Harmonic Power, Phase C       KW/Scale Factor E       0 to 32,767         1117       Phase Rotation: 0=Normal A-B-C, 1=C-B-A       none       0 to 1         Analog Input 1       None       -32767 to +32767       The present scaled value of analog input 1.         Present Value       None       -32767 to +32767       The present scaled value of analog input 2.         1192       Analog Input 3       None       -32767 to +32767       The present scaled value of analog input 3.         1193       Analog Input 4       None       -32767 to +32767       The present scaled value of analog input 4.         1194       Analog Input 4       None       -32767 to +32767       The present scaled value of analog input 4.         1200       Minimum Update Interval       In 1000ths of a second       0 to 10,000         1201       Minimum Current Phase A       Amps/Scale Factor A       0 to 32,767         1202       Minimum Current Phase B       Amps/Scale Factor A       0 to 32,767         1203       M	1111	Harmonic Factor, 3-Phase Total		% in 10ths	0 to 1000	
1113       Harmonic Power, Phase D       KW/Scale Factor F       0 to 432,767         1114       Harmonic Power, Phase Cotal       KW/Scale Factor F       0 to 432,767         1115       Harmonic Power, 3-Phase Total       KW/Scale Factor F       0 to 432,767         1117       Phase Rotation: 0=Normal A-B-C, 1=C-B-A       none       0 to 1         ANALOG INPUT PRESENT VALUE REGISTERS         1191       Analog Input 1       None       -32767 to +32767       The present scaled value of analog input 1.         1192       Analog Input 2       None       -32767 to +32767       The present scaled value of analog input 2.         1193       Analog Input 3       None       -32767 to +32767       The present scaled value of analog input 3.         Present Value         None       -32767 to +32767         The present scaled value of analog input 3.         Present Value         None       -32767 to +32767         The present scaled value of analog input 3.         Present Value         None       -32767 to +32767         The present scaled value of analog input 4.         Present Value         None       -32767 to +32767 <t< td=""><td>1112</td><td>Harmonic Power, Phase A</td><td></td><td>KW/Scale Factor E</td><td>0 to ±32,767</td><td></td></t<>	1112	Harmonic Power, Phase A		KW/Scale Factor E	0 to ±32,767	
1114       Harmonic Power, Phase C       KW/Scale Factor E       0 to 32,767         1115       Harmonic Power, 3-Phase Total       KW/Scale Factor E       0 to 32,767         1117       Phase Rotation: 0=Normal A-B-C, 1=-C-B-A       none       0 to 1         Analog Input 1       None       -32767 to +32767         1191       Analog Input 2       None       -32767 to +32767       The present Scaled value of analog input 1.         1192       Analog Input 3       None       -32767 to +32767       The present scaled value of analog input 2.         1193       Analog Input 3       None       -32767 to +32767       The present scaled value of analog input 3.         1194       Analog Input 4       None       -32767 to +32767       The present scaled value of analog input 4.         1194       Analog Input 4       None       -32767 to +32767       The present scaled value of analog input 4.         1200       Minimum Errep.       -32767 to +32767       The present scaled value of analog input 4.         1201       Minimum Freq.       -32767 to +32767       The present scaled value of analog input 4.         1203       Minimum Current Phase A       Amps/Scale Factor A       0 to 32,767         1204       Minimum Current Phase B       Amps/Scale Factor A       0 to 32,767	1113	Harmonic Power, Phase B		KW/Scale Factor E	0 to ±32,767	
1115       Harmonic Power, 3-Phase Total       KW//Scale Factor E       0 to 432,767         1117       Phase Rotation: 0=Normal A-B-C, 1=C-B-A       none       0 to 1         ANALOG INPUT PRESENT VALUE REGISTERS       Increase of the second of the	1114	Harmonic Power, Phase C		KW/Scale Factor E	0 to ±32,767	
1117       Phase Rotation: 0=Normal A-B-C, 1=C-B-A       none       0 to 1         ANALOG INPUT PRESENT VALUE REGISTERS         1191       Analog Input 1       None       -32767 to +32767       The present Scaled value of analog input 1.         1192       Analog Input 2       None       -32767 to +32767       The present scaled value of analog input 2.         1193       Analog Input 3       None       -32767 to +32767       The present scaled value of analog input 3.         1194       Analog Input 4       None       -32767 to +32767       The present scaled value of analog input 4.         1194       Analog Input 4       None       -32767 to +32767       The present scaled value of analog input 4.         1200       Minimum Update Interval       In 1000ths of a second       0 to 10.000         1201       Minimum Tereq.       Degrees Cent.       ±10.000 in 100ths         1202       Minimum Current Phase A       Amps/Scale Factor A       0 to 32.767         1203       Minimum Current Neutral (N)       Amps/Scale Factor A       0 to 32.767         1204       Minimum Current Neutral (N)       Amps/Scale Factor A       0 to 32.767         1205       Minimum Current Neutral (N)       Amps/Scale Factor A       0 to 32.767         1206       Minimum Current Neutral (N) <td< td=""><td>1115</td><td>Harmonic Power, 3-Phase Total</td><td></td><td>KW/Scale Factor E</td><td>0 to ±32,767</td><td></td></td<>	1115	Harmonic Power, 3-Phase Total		KW/Scale Factor E	0 to ±32,767	
ANALOG INPUT PRESENT VALUE REGISTERS         1191       Analog Input 1 Present Value       None       -32767 to +32767       The present scaled value of analog input 1.         1192       Analog Input 2 Present Value       None       -32767 to +32767       The present scaled value of analog input 2.         1193       Analog Input 3 Present Value       None       -32767 to +32767       The present scaled value of analog input 3.         1194       Analog Input 4 Present Value       None       -32767 to +32767       The present scaled value of analog input 4.         1194       Analog Input 4 Present Value       None       -32767 to +32767       The present scaled value of analog input 4.         1200       Minimum Update Interval Minimum Urgate Interval       In 1000ths of a second       0 to 10,000         1201       Minimum Terre.       Degrees Cent.       ±10,000 in 100ths         1203       Minimum Current Phase A       Amps/Scale Factor A       0 to 32,767         1204       Minimum Current Phase B       Amps/Scale Factor A       0 to 32,767         1205       Minimum Current Neutral (N       Amps/Scale Factor A       0 to 32,767         1206       Minimum Current Neutral (N       Amps/Scale Factor A       0 to 32,767         1207       Minimum Current Neutral (N       Amps/Scale Factor A       0 to 32,767<	1117	Phase Rotation: 0=Normal A-B-C, 1=	C-B-A	none	0 to 1	
1191       Analog Input 2 Present Value       None       -32767 to +32767       The present scaled value of analog input 2.         1192       Analog Input 2 Present Value       None       -32767 to +32767       The present scaled value of analog input 3.         1193       Analog Input 3 Present Value       None       -32767 to +32767       The present scaled value of analog input 3.         1194       Analog Input 4 Present Value       None       -32767 to +32767       The present scaled value of analog input 3.         1194       Analog Input 4 Present Value       None       -32767 to +32767       The present scaled value of analog input 4.         1194       Analog Input 4 Present Value       None       -32767 to +32767       The present scaled value of analog input 4.         1200       Minimum Update Interval       In 1000ths of a second       0 to 10,000         1201       Minimum Current Phase B       Amps/Scale Factor A       0 to 32,767         1203       Minimum Current Phase B       Amps/Scale Factor A       0 to 32,767         1204       Minimum Current Phase B       Amps/Scale Factor A       0 to 32,767         1205       Minimum Current Phase A       Amps/Scale Factor A       0 to 32,767         1206       Minimum Current Graung (Is)       Amps/Scale Factor A       0 to 32,767         120	ANALOG IN	PUT PRESENT VALUE REGISTERS				
1192       Analog Input 2 Present Value       None       -32767 to +32767       The present scaled value of analog input 2.         1193       Analog Input 3 Present Value       None       -32767 to +32767       The present scaled value of analog input 3.         1194       Analog Input 4 Present Value       None       -32767 to +32767       The present scaled value of analog input 4.         The present scaled value of analog input 4.         Present Value         1200       Minimum Update Interval Minimum Tere,       In 1000ths of a second       0 to 10,000         1201       Minimum Current Phase A       Amgs/Scale Factor F       2300 to 6700, (50/60) 3500 to 4500 (400)         1203       Minimum Current Phase B       Amgs/Scale Factor A       0 to 32,767         1204       Minimum Current Phase B       Amgs/Scale Factor A       0 to 32,767         1205       Minimum Current Vehase B       Amgs/Scale Factor A       0 to 32,767         1206       Minimum Current Vehase B       Amgs/Scale Factor A       0 to 32,767         1207       Minimum Current Vehase A       Amgs/Scale Factor A       0 to 32,767         1208       Minimum Current Vehase A       Amgs/Scale Factor A       0 to 32,767         1209       Minimum Current Vehase A       Percent in 10ths       0 to 1000     <	1191	Analog Input 1 None Present Value	-32767 to +32767	The present scaled value of a	analog input 1.	
1193Analog Input 3 Present ValueNone-32767 to +32767The present scaled value of analog input 3.1194Analog Input 4 Present ValueNone-32767 to +32767The present scaled value of analog input 4. <b>REAL TIME HETERED VALUES MINIMUM</b> 1200Minimum Update Interval Minimum Freq.In 1000ths of a second Hertz/Scale Factor F0 to 10,000 2300 to 6700, (50/60) 3500 to 4500 (400)1201Minimum Current Phase A Minimum Current Phase BDegrees Cent.10,000 in 1000hs1205Minimum Current Phase GAmps/Scale Factor A0 to 32,7671206Minimum Current Phase BAmps/Scale Factor A0 to 32,7671207Minimum Current Phase BAmps/Scale Factor A0 to 32,7671208Minimum Current Apparent rmsAmps/Scale Factor A0 to 32,7671209Minimum Current Apparent rmsAmps/Scale Factor A0 to 32,7671210Minimum Current Unbalance, Phase APercent in 10ths0 to ±10001211Minimum Current Unbalance, Phase BPercent in 10ths0 to ±10001212Minimum Current Unbalance, Phase BPercent in 10ths0 to ±10001213Minimum Current Unbalance, Phase BPercent in 10ths0 to ±10001214Minimum Current Unbalance, Phase BPercent in 10ths0 to ±10001213Minimum Current Unbalance, Phase BPercent in 10ths0 to ±10001214Minimum Current Unbalance, Phase BPercent in 10ths0 to ±10001215Minimum Current Unbalance,	1192	Analog Input 2 None Present Value	-32767 to +32767	The present scaled value of a	analog input 2.	
1194Analog Input 4 Present ValueNone-32767 to +32767The present scaled value of analog input 4. <b>REAL TIME METERED VALUES MINIMUM</b> 1200Minimum Update Interval Minimum Freq.In 1000ths of a second Hertz/Scale Factor F0 to 10,0001201Minimum Temp. Degrees Cent.± 010,000 (400)1202Minimum Current Phase AAmps/Scale Factor A0 to 32,7671204Minimum Current Phase BAmps/Scale Factor A0 to 32,7671205Minimum Current Phase BAmps/Scale Factor A0 to 32,7671206Minimum Current Phase CAmps/Scale Factor A0 to 32,7671207Minimum Current Orund (B)Amps/Scale Factor A0 to 32,7671208Minimum Current Apparent rmsAmps/Scale Factor A0 to 32,7671209Minimum Current Apparent rmsAmps/Scale Factor A0 to 32,7671210Minimum Current Mabance, Phase APercent in 10ths0 to ±10001211Minimum Current Unbalance, Phase BPercent in 10ths0 to ±10001212Minimum Current Unbalance, Phase CPercent in 10ths0 to ±10001213Minimum Current Unbalance, Phase AVolts/Scale Factor D0 to 32,7671214Minimum Volt, Phase B to CVolts/Scale Factor D0 to 32,7671215Minimum Volt, Phase A to NeutralVolts/Scale Factor D0 to 32,7671214Minimum Volt, Phase B to NeutralVolts/Scale Factor D0 to 32,7671215Minimum Volt, Phase A to NeutralVolts/Scale Factor D0	1193	Analog Input 3 None Present Value	-32767 to +32767	The present scaled value of a	analog input 3.	
REAL TIME WETERED VALUES MINIMUM1200Minimum Update Interval1201Minimum Freq.1202Minimum Temp.1203Minimum Current Phase A1204Minimum Current Phase B1205Minimum Current Phase B1206Minimum Current Phase B1207Minimum Current Phase C1208Minimum Current Phase B1209Minimum Current Phase B1209Minimum Current Phase B1200Minimum Current Phase B1201Minimum Current Phase B1202Minimum Current Phase B1203Minimum Current Phase B1204Minimum Current Phase B1205Minimum Current Graung (I5)1206Minimum Current Graung (I5)1207Minimum Current Graung (I5)1208Minimum Current Unbalance, Phase A1209Minimum Current Unbalance, Phase A1210Minimum Current Unbalance, Phase B1211Minimum Current Unbalance, Phase C1212Minimum Current Unbalance, Phase B1213Minimum Current Unbalance, Phase B1214Minimum Volt. Phase A to B1215Minimum Volt. Phase A to B1216Minimum Volt. Phase A to B1217Minimum Volt. Phase A to B1218Minimum Volt. Phase A to Neutral1219Minimum Volt. Phase C to A1211Minimum Volt. Phase A to Neutral1212Minimum Volt. Phase A to Neutral1213Minimum Volt. Phase A to Neutral1214Minimum Vo	1194	Analog Input 4 None Present Value	-32767 to +32767	The present scaled value of a	analog input 4.	
1200Minimum Update IntervalIn 1000ths of a second0 to 10,0001201Minimum Freq.Hertz/Scale Factor F2300 to 6700, (50/60)1202Minimum Temp.Degrees Cent.±10,000 in 100ths1203Minimum Current Phase AAmps/Scale Factor A0 to 32,7671204Minimum Current Phase BAmps/Scale Factor A0 to 32,7671205Minimum Current Neutral (N)Amps/Scale Factor A0 to 32,7671206Minimum Current Neutral (N)Amps/Scale Factor A0 to 32,7671207Minimum Current Sound (IS)Amps/Scale Factor A0 to 32,7671208Minimum Current Apparent rmsAmps/Scale Factor A0 to 32,7671209Minimum Current Apparent rmsAmps/Scale Factor A0 to 32,7671209Minimum Current Apparent rmsAmps/Scale Factor A0 to 32,7671210Minimum Current Ubalance, Phase APercent in 10ths0 to ±10001211Minimum Current Ubalance, Phase BPercent in 10ths0 to ±10001212Minimum Current Ubalance, Phase CPercent in 10ths0 to ±10001213Minimum Volt, Phase A to BVolts/Scale Factor D0 to 32,7671216Minimum Volt, Phase B to CVolts/Scale Factor D0 to 32,7671217Minimum Volt, Phase A to BVolts/Scale Factor D0 to 32,7671218Minimum Volt, Phase A to NeutralVolts/Scale Factor D0 to 32,7671219Minimum Volt, Phase A to NeutralVolts/Scale Factor D0 to 32,7671218Minimum V	<b>ΒΕΔΙ ΤΙΜΕ</b>	METERED VALUES MINIMUM	$\mathbf{O}$			
1200Minimum Update IntervalIn 1000ths of a second0 to 10,0001201Minimum Freq.Hertz/Scale Factor F2300 to 6700, (50/60)1202Minimum Current Phase AAmps/Scale Factor A0 to 32,7671204Minimum Current Phase BAmps/Scale Factor A0 to 32,7671205Minimum Current Phase CAmps/Scale Factor A0 to 32,7671206Minimum Current Neutral (N)Amps/Scale Factor A0 to 32,7671207Minimum Current Reutral (N)Amps/Scale Factor A0 to 32,7671208Minimum Current Ground (I5)Amps/Scale Factor A0 to 32,7671209Minimum Current Querent Reparent rmsAmps/Scale Factor A0 to 32,7671210Minimum Current Unbalance, Phase APercent in 10ths0 to ±10001211Minimum Current Unbalance, Phase BPercent in 10ths0 to ±10001212Minimum Current Unbalance, Phase CPercent in 10ths0 to ±10001213Minimum Volt, Phase A to BVolts/Scale Factor D0 to 32,7671216Minimum Volt, Phase B to CVolts/Scale Factor D0 to 32,7671216Minimum Volt, Phase C to AVolts/Scale Factor D0 to 32,7671217Minimum Volt, Phase A to BVolts/Scale Factor D0 to 32,7671218Minimum Volt, Phase A to NeutralVolts/Scale Factor D0 to 32,7671219Minimum Volt, Phase A to NeutralVolts/Scale Factor D0 to 32,7671218Minimum Volt, Phase C to NeutralVolts/Scale Factor D0 to 32,767						
1201Minimum Freq.Hertz/Scale Factor F2300 to 6700, (50/60) 3500 to 4500 (400)1202Minimum Temp.Degrees Cent.±10,000 in 100ths1203Minimum Current Phase AAmps/Scale Factor A0 to 32,7671204Minimum Current Phase BAmps/Scale Factor A0 to 32,7671205Minimum Current Neutral (14)Amps/Scale Factor A0 to 32,7671206Minimum Current Neutral (14)Amps/Scale Factor A0 to 32,7671207Minimum Current Ground (15)Amps/Scale Factor A0 to 32,7671208Minimum Current Apparent rmsAmps/Scale Factor A0 to 32,7671209Minimum Current Unbalance, Phase APercent in 10ths0 to ±10001211Minimum Current Unbalance, Phase BPercent in 10ths0 to ±10001212Minimum Current Unbalance, Phase BPercent in 10ths0 to ±10001213Minimum Current Unbalance, Phase CPercent in 10ths0 to ±10001214Minimum Current Unbalance, Phase CVolts/Scale Factor D0 to 32,7671215Minimum Volt. Phase A to BVolts/Scale Factor D0 to 32,7671216Minimum Volt. Phase A to AVolts/Scale Factor D0 to 32,7671217Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671218Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671219Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase B to NeutralVolts/Scale Factor D	1200	Minimum Update Interval		In 1000ths of a second	0 to 10,000	
1202Minimum Temp.Degrees Cent.±10,000 in 100ths1203Minimum Current Phase AAmps/Scale Factor A0 to 32,7671204Minimum Current Phase BAmps/Scale Factor A0 to 32,7671205Minimum Current Neutral (1)Amps/Scale Factor A0 to 32,7671206Minimum Current Neutral (1)Amps/Scale Factor A0 to 32,7671207Minimum Current Neutral (1)Amps/Scale Factor A0 to 32,7671208Minimum Current Apparent rmsAmps/Scale Factor A0 to 32,7671209Minimum Current Unbalance, Phase APercent in 10ths0 to ±10001211Minimum Current Unbalance, Phase BPercent in 10ths0 to ±10001212Minimum Current Unbalance, Phase CPercent in 10ths0 to ±10001213Minimum Current Unbalance, Phase CPercent in 10ths0 to ±10001214Minimum Volt. Phase A to BVolts/Scale Factor D0 to 32,7671215Minimum Volt. Phase A to BVolts/Scale Factor D0 to 32,7671216Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671217Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671218Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671219Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671216Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671217Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,767 </td <td>1201</td> <td>Minimum Freq.</td> <td></td> <td>Hertz/Scale Factor F</td> <td>2300 to 6700, (50 3500 to 4500 (40</td> <td>0/60) 0)</td>	1201	Minimum Freq.		Hertz/Scale Factor F	2300 to 6700, (50 3500 to 4500 (40	0/60) 0)
1203Minimum Current Phase AAmps/Scale Factor A0 to 32,7671204Minimum Current Phase BAmps/Scale Factor A0 to 32,7671205Minimum Current Neutral (I4)Amps/Scale Factor A0 to 32,7671206Minimum Current Neutral (I4)Amps/Scale Factor A0 to 32,7671207Minimum Current Ground (I8)Amps/Scale Factor A0 to 32,7671208Minimum Current 3-Phase AverageAmps/Scale Factor A0 to 32,7671209Minimum Current Apparent rmsAmps/Scale Factor A0 to 32,7671210Minimum Current Unbalance, Phase APercent in 10ths0 to ±10001211Minimum Current Unbalance, Phase BPercent in 10ths0 to ±10001212Minimum Current Unbalance, Phase CPercent in 10ths0 to ±10001213Minimum Current Unbalance, Phase CPercent in 10ths0 to ±10001214Minimum Volt. Phase A to BVolts/Scale Factor D0 to 32,7671215Minimum Volt. Phase B to CVolts/Scale Factor D0 to 32,7671216Minimum Volt. Phase A to BVolts/Scale Factor D0 to 32,7671217Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671218Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671219Minimum Volt. Phase C to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase C to NeutralVolts/Scale Factor D0 to 32,7671221Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to	1202	Minimum Temp.		Degrees Cent.	±10,000 in 100th	S
1204Minimum Current Phase BAmps/Scale Factor A0 to 32,7671205Minimum Current Phase CAmps/Scale Factor A0 to 32,7671206Minimum Current Neutral (I4)Amps/Scale Factor A0 to 32,7671207Minimum Current Ground (I5)Amps/Scale Factor A0 to 32,7671208Minimum Current Apparent rmsAmps/Scale Factor A0 to 32,7671210Minimum Current Unbalance, Phase AverageAmps/Scale Factor A0 to 32,7671210Minimum Current Unbalance, Phase APercent in 10ths0 to ±10001211Minimum Current Unbalance, Phase BPercent in 10ths0 to ±10001212Minimum Current Unbalance, Phase CPercent in 10ths0 to ±10001213Minimum Current Unbalance WorstPercent in 10ths0 to ±10001214Minimum Volt. Phase A to BVolts/Scale Factor D0 to 32,7671215Minimum Volt. Phase A to BVolts/Scale Factor D0 to 32,7671216Minimum Volt. Phase A to AVolts/Scale Factor D0 to 32,7671217Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671218Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671219Minimum Volt. Phase B to NeutralVolts/Scale Factor D0 to 32,7671229Minimum Volt. Phase C to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase C to NeutralVolts/Scale Factor D0 to 32,7671221Minimum Volt. Phase C to NeutralVolts/Scale Factor D </td <td>1203</td> <td>Minimum Current Phase A</td> <td></td> <td>Amps/Scale Factor A</td> <td>0 to 32,767</td> <td></td>	1203	Minimum Current Phase A		Amps/Scale Factor A	0 to 32,767	
1205Minimum Current Phase CAmps/Scale Factor A0 to 32,7671206Minimum Current Neutral (14)Amps/Scale Factor A0 to 32,7671207Minimum Current Ground (15)Amps/Scale Factor A0 to 32,7671208Minimum Current 3-Phase AverageAmps/Scale Factor A0 to 32,7671209Minimum Current Apparent rmsAmps/Scale Factor A0 to 32,7671210Minimum Current Unbalance, Phase APercent in 10ths0 to ±10001211Minimum Current Unbalance, Phase BPercent in 10ths0 to ±10001212Minimum Current Unbalance, Phase CPercent in 10ths0 to ±10001213Minimum Current Unbalance WorstPercent in 10ths0 to ±10001214Minimum Volt. Phase A to BVolts/Scale Factor D0 to 32,7671216Minimum Volt. Phase B to CVolts/Scale Factor D0 to 32,7671217Minimum Volt. L-L, 3-Phase AverageVolts/Scale Factor D0 to 32,7671218Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671219Minimum Volt. Phase B to NeutralVolts/Scale Factor D0 to 32,7671218Minimum Volt. Phase B to NeutralVolts/Scale Factor D0 to 32,7671219Minimum Volt. Phase B to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase C to NeutralVolts/Scale Factor D0 to 32,7671221Minimum Volt. L-N, 3-Phase AverageVolts/Scale Factor D0 to 32,7671221Minimum Volt. L-N, 3-Phase AverageVolts/Sca	1204	Minimum Current Phase B		Amps/Scale Factor A	0 to 32,767	
1206Minimum Current Neutral (I4)Amps/Scale Factor A0 to 32,7671207Minimum Current Ground (I5)Amps/Scale Factor A0 to 32,7671208Minimum Current 3-Phase AverageAmps/Scale Factor A0 to 32,7671209Minimum Current Apparent rmsAmps/Scale Factor A0 to 32,7671210Minimum Current Unbalance, Phase APercent in 10ths0 to ±10001211Minimum Current Unbalance, Phase BPercent in 10ths0 to ±10001212Minimum Current Unbalance, Phase CPercent in 10ths0 to ±10001213Minimum Current Unbalance, Phase CPercent in 10ths0 to ±10001214Minimum Current Unbalance WorstPercent in 10ths0 to ±10001215Minimum Volt. Phase A to BVolts/Scale Factor D0 to 32,7671216Minimum Volt. Phase B to CVolts/Scale Factor D0 to 32,7671217Minimum Volt. L-L, 3-Phase AverageVolts/Scale Factor D0 to 32,7671218Winimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671219Minimum Volt. Phase B to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase C to NeutralVolts/Scale Factor D0 to 32,7671221Minimum Volt. Phase AverageVolts/Scale Factor D0 to 32,7671221Minimum Volt. Phase AverageVolts/Scale Factor D0 to 32,7671221Minimum Volt. Phase AverageVolts/Scale Factor D0 to 32,7671221Minimum Volt. Phase A to NeutralVolts/Scale Factor D<	1205	Minimum Current Phase C		Amps/Scale Factor A	0 to 32,767	
1207Minimum Current Ground (I5)Amps/Scale Factor A0 to 32,7671208Minimum Current 3-Phase AverageAmps/Scale Factor A0 to 32,7671209Minimum Current Apparent rmsAmps/Scale Factor A0 to 32,7671210Minimum Current Unbalance, Phase APercent in 10ths0 to ±10001211Minimum Current Unbalance, Phase BPercent in 10ths0 to ±10001212Minimum Current Unbalance, Phase CPercent in 10ths0 to ±10001213Minimum Current Unbalance, Phase CPercent in 10ths0 to ±10001214Minimum Current Unbalance WorstPercent in 10ths0 to ±10001215Minimum Volt. Phase A to BVolts/Scale Factor D0 to 32,7671216Minimum Volt. Phase B to CVolts/Scale Factor D0 to 32,7671217Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671218Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671219Minimum Volt. Phase B to NeutralVolts/Scale Factor D0 to 32,7671219Minimum Volt. Phase C to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase C to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase C to NeutralVolts/Scale Factor D0 to 32,7671221Minimum Volt. Phase AverageVolts/Scale Factor D0 to 32,7671221Minimum Volt. Phase AverageVolts/Scale Factor D0 to 32,7671221Minimum Volt. Phase AverageVolts/Scale Factor	1206	Minimum Current Neutral (14)		Amps/Scale Factor A	0 to 32,767	
1208Minimum Current 3-Phase AverageAmps/Scale Factor A0 to 32,7671209Minimum Current Apparent rmsAmps/Scale Factor A0 to 32,7671210Minimum Current Unbalance, Phase APercent in 10ths0 to ±10001211Minimum Current Unbalance, Phase BPercent in 10ths0 to ±10001212Minimum Current Unbalance, Phase CPercent in 10ths0 to ±10001213Minimum Current Unbalance WorstPercent in 10ths0 to ±10001214Minimum Volt. Phase A to BVolts/Scale Factor D0 to 32,7671215Minimum Volt. Phase B to CVolts/Scale Factor D0 to 32,7671216Minimum Volt. Phase C to AVolts/Scale Factor D0 to 32,7671217Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671218Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671219Minimum Volt. Phase B to NeutralVolts/Scale Factor D0 to 32,7671219Minimum Volt. Phase B to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase C to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase C to NeutralVolts/Scale Factor D0 to 32,7671221Minimum Volt. L-N, 3-Phase AverageVolts/Scale Factor D0 to 32,7671221Minimum Volt L-N, 3-Phase AverageVolts/Scale Factor D0 to 32,7671221Minimum Volt L-N, 3-Phase AverageVolts/Scale Factor D0 to 32,767	1207	Minimum Current Ground (15)		Amps/Scale Factor A	0 to 32,767	
1209Minimum Current Apparent rmsAmps/Scale Factor A0 to 32,7671210Minimum Current Unbalance, Phase APercent in 10ths0 to ±10001211Minimum Current Unbalance, Phase BPercent in 10ths0 to ±10001212Minimum Current Unbalance, Phase CPercent in 10ths0 to ±10001213Minimum Current Unbalance WorstPercent in 10ths0 to ±10001214Minimum Volt. Phase A to BVolts/Scale Factor D0 to 32,7671215Minimum Volt. Phase B to CVolts/Scale Factor D0 to 32,7671216Minimum Volt. Phase C to AVolts/Scale Factor D0 to 32,7671217Minimum Volt L-L, 3-Phase AverageVolts/Scale Factor D0 to 32,7671218Minimum Volt. Phase B to NeutralVolts/Scale Factor D0 to 32,7671219Minimum Volt. Phase C to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase C to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase A verageVolts/Scale Factor D0 to 32,7671221Minimum Volt. Phase AverageVolts/Scale Factor D0 to 32,7671221Minimum Volt. Phase A verageVolts/Scale Factor D0 to 32,7671221Minimum Volt. Phase AverageVolts/Scale Factor D0 to 32,7671221Minimum Volt L-N, 3-Phase AverageVolts/Scale Factor D0 to 32,767	1208	Minimum Current 3-Phase Average		Amps/Scale Factor A	0 to 32,767	
1210Minimum Current Unbalance, Phase APercent in 10ths0 to ±10001211Minimum Current Unbalance, Phase BPercent in 10ths0 to ±10001212Minimum Current Unbalance, Phase CPercent in 10ths0 to ±10001213Minimum Current Unbalance WorstPercent in 10ths0 to ±10001214Minimum Volt. Phase A to BVolts/Scale Factor D0 to 32,7671215Minimum Volt. Phase B to CVolts/Scale Factor D0 to 32,7671216Minimum Volt. Phase C to AVolts/Scale Factor D0 to 32,7671217Minimum Volt L-L, 3-Phase AverageVolts/Scale Factor D0 to 32,7671218Winimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671219Minimum Volt. Phase B to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase C to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase AverageVolts/Scale Factor D0 to 32,7671221Minimum Volt. Phase AverageVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase AverageVolts/Scale Factor D0 to 32,7671221Minimum Volt L-N, 3-Phase AverageVolts/Scale Factor D0 to 32,7671221Minimum Volt L-N, 3-Phase AverageVolts/Scale Factor D0 to 32,767	1209	Minimum Current Apparent rms		Amps/Scale Factor A	0 to 32,767	
1211Minimum Current Unbalance, Phase BPercent in 10ths0 to ±10001212Minimum Current Unbalance, Phase CPercent in 10ths0 to ±10001213Minimum Current Unbalance WorstPercent in 10ths0 to ±10001214Minimum Volt. Phase A to BVolts/Scale Factor D0 to 32,7671215Minimum Volt. Phase B to CVolts/Scale Factor D0 to 32,7671216Minimum Volt. Phase C to AVolts/Scale Factor D0 to 32,7671217Minimum Volt L-L, 3-Phase AverageVolts/Scale Factor D0 to 32,7671218Winimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671219Minimum Volt. Phase B to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671221Minimum Volt L-N, 3-Phase AverageVolts/Scale Factor D0 to 32,767	1210	Minimum Current Unbalance, Phase	A	Percent in 10ths	0 to ±1000	
1212Minimum Current Unbalance, Phase CPercent in 10ths0 to ±10001213Minimum Current Unbalance WorstPercent in 10ths0 to ±10001214Minimum Volt. Phase A to BVolts/Scale Factor D0 to 32,7671215Minimum Volt. Phase B to CVolts/Scale Factor D0 to 32,7671216Minimum Volt. Phase C to AVolts/Scale Factor D0 to 32,7671217Minimum Volt L-L, 3-Phase AverageVolts/Scale Factor D0 to 32,7671218Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671219Minimum Volt. Phase B to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase C to NeutralVolts/Scale Factor D0 to 32,7671221Minimum Volt L-N, 3-Phase AverageVolts/Scale Factor D0 to 32,7671221Minimum Volt L-N, 3-Phase AverageVolts/Scale Factor D0 to 32,767	1211	Minimum Current Unbalance, Phase	В	Percent in 10ths	0 to ±1000	
1213Minimum Current Unbalance WorstPercent in 10ths0 to ±10001214Minimum Volt. Phase A to BVolts/Scale Factor D0 to 32,7671215Minimum Volt. Phase B to CVolts/Scale Factor D0 to 32,7671216Minimum Volt. Phase C to AVolts/Scale Factor D0 to 32,7671217Minimum Volt L-L, 3-Phase AverageVolts/Scale Factor D0 to 32,7671218Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671219Minimum Volt. Phase B to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase C to NeutralVolts/Scale Factor D0 to 32,7671221Minimum Volt L-N, 3-Phase AverageVolts/Scale Factor D0 to 32,767	1212	Minimum Current Unbalance, Phase	C	Percent in 10ths	0 to ±1000	
1214Minimum Volt. Phase A to BVolts/Scale Factor D0 to 32,7671215Minimum Volt. Phase B to CVolts/Scale Factor D0 to 32,7671216Minimum Volt. Phase C to AVolts/Scale Factor D0 to 32,7671217Minimum Volt L-L, 3-Phase AverageVolts/Scale Factor D0 to 32,7671218Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671219Minimum Volt. Phase B to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase C to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase AverageVolts/Scale Factor D0 to 32,7671221Minimum Volt L-N, 3-Phase AverageVolts/Scale Factor D0 to 32,767	1213	Minimum Current Unbalance Worst		Percent in 10ths	0 to ±1000	
1215Minimum Volt. Phase B to CVolts/Scale Factor D0 to 32,7671216Minimum Volt. Phase C to AVolts/Scale Factor D0 to 32,7671217Minimum Volt L-L, 3-Phase AverageVolts/Scale Factor D0 to 32,7671218Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671219Minimum Volt. Phase B to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase C to NeutralVolts/Scale Factor D0 to 32,7671221Minimum Volt L-N, 3-Phase AverageVolts/Scale Factor D0 to 32,767	1214	Minimum Volt. Phase A to B		Volts/Scale Factor D	0 to 32,767	
1216Minimum Volt. Phase C to AVolts/Scale Factor D0 to 32,7671217Minimum Volt L-L, 3-Phase AverageVolts/Scale Factor D0 to 32,7671218Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671219Minimum Volt. Phase B to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase C to NeutralVolts/Scale Factor D0 to 32,7671221Minimum Volt L-N, 3-Phase AverageVolts/Scale Factor D0 to 32,767	1215	Minimum Volt. Phase B to C		Volts/Scale Factor D	0 to 32,767	
1217Minimum Volt L-L, 3-Phase AverageVolts/Scale Factor D0 to 32,7671218Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671219Minimum Volt. Phase B to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase C to NeutralVolts/Scale Factor D0 to 32,7671221Minimum Volt L-N, 3-Phase AverageVolts/Scale Factor D0 to 32,767	1216	Minimum Volt. Phase C to A		Volts/Scale Factor D	0 to 32,767	
1218Minimum Volt. Phase A to NeutralVolts/Scale Factor D0 to 32,7671219Minimum Volt. Phase B to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase C to NeutralVolts/Scale Factor D0 to 32,7671221Minimum Volt L-N, 3-Phase AverageVolts/Scale Factor D0 to 32,767	1217	Minimum Volt L-L, 3-Phase Average		Volts/Scale Factor D	0 to 32,767	
1219Minimum Volt. Phase B to NeutralVolts/Scale Factor D0 to 32,7671220Minimum Volt. Phase C to NeutralVolts/Scale Factor D0 to 32,7671221Minimum Volt L-N, 3-Phase AverageVolts/Scale Factor D0 to 32,767	1218	Minimum Volt. Phase A to Neutral		Volts/Scale Factor D	0 to 32,767	
1220Minimum Volt. Phase C to NeutralVolts/Scale Factor D0 to 32,7671221Minimum Volt L-N, 3-Phase AverageVolts/Scale Factor D0 to 32,767	1219	Minimum Volt. Phase B to Neutral		Volts/Scale Factor D	0 to 32,767	
1221 Minimum Volt L-N, 3-Phase Average Volts/Scale Factor D 0 to 32,767	1220	Minimum Volt. Phase C to Neutral		Volts/Scale Factor D	0 to 32,767	
	1221	Minimum Volt L-N, 3-Phase Average		Volts/Scale Factor D	0 to 32,767	

- © 1999 Square D Company All Rights Reserved -

#### Reg. No. Description

1222	Minimum Volt Unbalance Phase A-B
1223	Minimum Volt Unbalance Phase B-C
1224	Minimum Volt Unbalance Phase C-A
1225	Minimum Volt Unbalance L-L Worst
1226	Minimum Volt Unbalance Phase A
1227	Minimum Volt Unbalance Phase B
1228	Minimum Volt Unbalance Phase C
1229	Minimum Volt L-N Unbalance Worst
1231	Minimum True, Power Factor A
1232	Minimum True, Power Factor B
1233	Minimum True, Power Factor C
1234	Minimum True, Power Factor, 3 Total
1235	Minimum Displ. Power Factor, A
1236	Minimum Displ. Power Factor, B
1237	Minimum Displ. Power Factor, C
1238	Minimum Displ. Power Factor, 3-phase Total
1239	Minimum Real Power, Phase A
1240	Minimum Real Power, Phase B
1241	Minimum Real Power, Phase C
1242	Minimum Real Power 3-Phase Total
1243	Minimum Reactive Power Phase A
1244	Minimum Reactive Power Phase B
1245	Minimum Reactive Power Phase C
1246	Minimum Reactive Power 3-Phase Total
1247	Minimum Apparent Power Phase A
1248	Minimum Apparent Power Phase B
1249	Minimum Apparent Power Phase C
1250	Minimum Apparent Power 3-Phase Total
1251	Minimum THD Phase A Current
1252	Minimum THD Phase B Current
1253	Minimum THD Phase C Current
1254	Minimum THD Neutral Current
1255	Minimum THD Phase A Voltage
1256	Minimum THD Phase B Voltage
1257	Minimum THD Phase C Voltage
1258	Minimum THD A-B Voltage
1259	Minimum THD B-C Voltage
1260	Minimum THD C-A Voltage
1271	Minimum K-Factor A
1272	Minimum K-Factor B
1273	Minimum K-Factor C

#### <u>Units</u>

Percent in 10ths

Percent in 10ths Percent in 10ths Percent in 10ths Percent in 10ths Percent in 10ths Percent in 10ths Percent in 10ths In 1000ths kW/Scale Factor E kW/Scale Factor E kW/Scale Factor E kW/Scale Factor E kVAr/Scale Factor E kVAr/Scale Factor E kVAr/Scale Factor E kVAr/Scale Factor E kVA/Scale Factor E kVA/Scale Factor E kVA/Scale Factor E kVA/Scale Factor E % in 10ths In 10ths 0 to 10,000 In 10ths 0 to 10,000 In 10ths 0 to 10,000

#### **Range** 0 to ±1000 -100 to +1000 to +100 0 to ±32,767 0 to +32,767 0 to +32.767 0 to +32,767 0 to +32,767 0 to 32,767 0 to 32,767

### ANALOG INPUT MIN REGISTERS

1391	Analog Input 1 Minimum Value	None	-32767 to +32767	The minimum scaled value of analog input 1 since the last reset of min/max values.
1392	Analog Input 2 Minimum Value	None	-32767 to +32767	The minimum scaled value of analog input 2 since the last reset of min/max values.
1393	Analog Input 3 Minimum Value	None	-32767 to +32767	The minimum scaled value of analog input 3 since the last reset of min/max values.
1394	Analog Input 4 Minimum Value	None	-32767 to +32767	The minimum scaled value of analog input 4 since the last reset of min/max values.

#### Description Reg. No.

#### **REAL TIME METERED VALUES MAXIMUM**

Maximum Update Interval 1400 1401 Maximum Freq. 1402 Maximum Temp. 1403 Maximum Current Phase A 1404 Maximum Current Phase B 1405 Maximum Current Phase C 1406 Maximum Current Neutral (14) 1407 Maximum Current Ground (I5) 1408 Maximum Current 3-Phase Average 1409 Maximum Current, Apparent rms Maximum Current Unbalance, Phase A 1410 Maximum Current Unbalance, Phase B 1411 Maximum Current Unbalance, Phase C 1412 Maximum Current Unbalance Worst 1413 1414 Maximum Voltage Phase A to B Maximum Voltage Phase B to C 1415 1416 Maximum Voltage Phase C to A Maximum Volt L-L, 3-Phase Average 1417 Maximum Voltage Phase A to Neutral 1418 1419 Maximum Voltage Phase B to Neutral 1420 Maximum Voltage Phase C to Neutral 1421 Maximum Volt L-N, 3-Phase Average 1422 Maximum Volt Unbalance Phase A-B 1423 Maximum Volt Unbalance Phase B-C 1424 Maximum Volt Unbal. Phase C-A 1425 Maximum Volt Unbal. L-L Worst Maximum Volt Unbal. Phase A 1426 1427 Maximum Volt Unbal. Phase B Maximum Volt Unbal. Phase C 1428 Maximum Volt L-N. Unbal. Worst 1429 1431 Maximum True, Power Factor A Maximum True, Power Factor B 1432 Maximum True, Power Factor C 1433 Maximum True, Power Factor 3-Phase Total 1434 Maximum Displ. Power Factor Phase A 1435 Maximum Displ. Power Factor, Phase B 1436 Maximum Displ. Power Factor Phase C 1437 Maximum Displ. Power Factor 3-Phase Total 1438 1439 Maximum Real Power Phase A Maximum Real Power Phase B 1440 Maximum Real Power Phase C 1441 Maximum Real Power 3 Total 1442 Maximum Reactive Power Phase A 1443 Maximum Reactive Power Phase B 1444 Maximum Reactive Power Phase C 1445 Maximum Reactive Power 3-Phase Total 1446 Maximum Apparent Power Phase A 1447 1448 Maximum Apparent Power Phase B Maximum Apparent Power Phase C 1449 1450 Maximum Apparent Power 3-Phase Total Maximum THD Phase A Current 1451 Maximum THD Phase B Current 1452

## Units

#### Range

In 1000ths of a second Hertz/Scale Factor F

Degrees Cent. in 100ths Amps/Scale Factor A Amps/Scale Factor A Amps/Scale Factor A Amps/Scale Factor B Amps/Scale Factor C Amps/Scale Factor A Amps/Scale Factor A Percent in 10ths Percent in 10ths Percent in 10ths Percent in 10ths Volts/Scale Factor D Percent in 10ths in 1000ths Percent kW/Scale Factor E kW/Scale Factor E kW/Scale Factor E kW/Scale Factor E kVAr/Scale Factor E kVAr/Scale Factor E kVAr/Scale Factor E kVAr/Scale Factor E kVA/Scale Factor E kVA/Scale Factor E kVA/Scale Factor E kVA/Scale Factor E % in 10ths % in 10ths

0 to 10,000 2300 to 6700, (50/60) 3500 to 4500 (400) -10,000 to +10,000 0 to 32,767 0 to ±1000 0 to ±1000 0 to ±1000 0 to ±1000 0 to 32,767 0 to ±1000 -100 to +1000 to +100 0 to ±32,767 0 to +32,767 0 to +32,767 0 to +32.767 0 to +32,767

0 to 32,767

0 to 32,767

© 1999 Square D Company All Rights Reserved

<u>Reg. No.</u>	<b>Description</b>			<u>Units</u>	Range
1453	Maximum THD Ph	ase C Current		% in 10ths	0 to 32,767
1454	Maximum THD Ne	utral Current		% in 10ths	0 to 10,000
1455	Maximum THD Ph	ase A Voltage		% in 10ths	0 to 32,767
1456	Maximum THD Ph	ase B Voltage		% in 10ths	0 to 32,767
1457	Maximum THD Ph	ase C Voltage		% in 10ths	0 to 32,767
1458	Maximum THD A-I	B Voltage		% in 10ths	0 to 32,767
1459	Maximum THD B-	C Voltage		% in 10ths	0 to 32,767
1460	Maximum THD C-	A Voltage		% in 10ths	0 to 32,767
1471	Maximum K-Facto	r Phase A		In 10ths	• 0 to 10,000
1472	Maximum K-Facto	r Phase B		In 10ths	0 to 10,000
1473	Maximum K-Facto	r Phase C		In 10ths	0 to 10,000
ANALOG INI	PUT MAX REGISTE	R			
1591	Analog Input 1 Maximum Value	None	-32767 to +32767	The maximum scaled value or since the last reset of min/ma	f analog input 1 x values.
1592	Analog Input 2 Maximum Value	None	-32767 to +32767	The maximum scaled value of since the last reset of min/ma	f analog input 2 x values.
1593	Analog Input 3 Maximum Value	None	-32767 to +32767	The maximum scaled value or since the last reset of min/ma	f analog input 3 x values.
1594	Analog Input 4 Maximum Value	None	-32767 to +32767	The maximum scaled value or since the last reset of min/ma	f analog input 4 x values.

# ENERGY VALUES

Each energy is kept in 4 registers, except Incremental, which is kept in 3 registers; modulo 10,000 per register

### ACCUMULATED ENERGY

1601–1604	Real Energy In 3-Phase Total	WH	0 to 9,999,999,999,999,999
1605–1608	Reactive Energy In 3-Phase Total	VArH	0 to 9,999,999,999,999,999
1609–1612	Real Energy Out 3-Phase Total	WH	0 to 9,999,999,999,999,999
1613–1616	Reactive Energy Out 3-Phase Total	VArH	0 to 9,999,999,999,999,999
1617–1620	Apparent Energy, 3-Phase Total	VAH	0 to 9,999,999,999,999,999
1621–1624	Real Energy Signed/Absolute 3-Phase Total	WH	0 to ±9,999,999,999,999,999
1625–1628	Reactive Energy Signed/Absolute 3-Phase Total	VArH	0 to ±9,999,999,999,999,999
CONDITION	AL ACCUMULATED ENERGY		
1629–1632	Conditional Real Energy In, 3-Phase Total	WH	0 to 9,999,999,999,999,999
1633–1636	Conditional Reactive Energy In 3-Phase Total	VArH	0 to 9,999,999,999,999,999
1637–1640	Conditional Real Energy Out, 3-Phase Total	WH	0 to 9,999,999,999,999,999
1641–1644	Conditional Reactive Energy Out 3-Phase Total	VArH	0 to 9,999,999,999,999,999
1645–1648	Conditional Apparent Energy 3-Phase Total	VAH	0 to 9,999,999,999,999,999
INCREMENT	AL ACCUMULATED ENERGY		
1649–1651	Incremental Real Energy In, 3-Phase Total	WH	0 to 999,999,999,999
1652–1654	Incremental Reactive Energy In 3-Phase Total	VArH	0 to 999,999,999,999
1655–1657	Incremental Real Energy Out, 3-Phase Total	WH	0 to 999,999,999,999
1658–1660	Incremental Reactive Energy Out 3-Phase Total	VArH	0 to 999,999,999,999
1661–1663	Incremental Apparent Energy 3-Phase Total	VAH	0 to 999,999,999,999
2	© 1999 Square D Compa	ny All Rights Reserved —	
0			

#### Reg. No. Description

#### DEMAND VALUES

#### CURRENT DEMAND

1700	Present Current Demand 3-Phase Average	Amps/Scale Factor A
1701	Present Current Demand Phase A	Amps/Scale Factor A
1702	Present Current Demand Phase B	Amps/Scale Factor A
1703	Present Current Demand Phase C	Amps/Scale Factor A
1704	Present Current Demand Neutral	Amps/Scale Factor A
1705	Thermal K-Factor Demand, Phase A	In 10ths
1706	Thermal K-Factor Demand, Phase B	In 10ths
1707	Thermal K-Factor Demand, Phase C	In 10ths
1708	Peak Current Demand 3-Phase Average	Amps/Scale Factor A
1709	Peak Current Demand Phase A	Amps/Scale Factor A
1710	Peak Current Demand Phase B	Amps/Scale Factor A
1711	Peak Current Demand Phase C	Amps/Scale Factor A
1712	Peak Current Demand Neutral	Amps/Scale Factor A
1713	K-Factor Demand Phase A Coincident Peak Product	In 10ths
1714	Current Demand Phase A Coincident Peak Product	Amps/Scale Factor A
1715	K-Factor Demand Phase B Coincident Peak Product	In 10ths
1716	Current Demand Phase B Coincident Peak Product	Amps/Scale Factor A
1717	K-Factor Demand Phase C Coincident Peak Product	In 10ths
1718	Current Demand Phase C Coincident Peak Product	Amps/Scale Factor A

#### POWER DEMAND

Reactive Demand may be calculated using either the fundamental only (default), or total harmonics (user selectable).

1730	Average Power Factor Over Interval	In 1000ths	-100 to 1000 to +100
1731	Present Real Power, Demand, 3-Phase Total	kW/Scale Factor E	0 to ±32,767
1732	Present Reactive Power, Demand, 3 Phase Total	kVAr/Scale Factor E	0 to ±32,767
1733	Present Apparent Power Demand 3-Phase Total	kVA/Scale Factor E	0 to 32,767
1734	Peak Real Power Demand 3-Phase Total	kW/Scale Factor E	0 to ±32,767
1735	Average Power Factor for Peak Real	Percent in 1000ths	-100 to 1000 to +100
1736	Reactive Power Demand for Peak Real	kVAr/Scale Factor E	0 to ±32,767
1737	Apparent Power Demand for Peak Real	kVA/Scale Factor E	0 to 32,767
1738	Peak Reactive Power Demand, 3-Phase Total	kVAr/Scale Factor E	0 to ±32,767
1739	Average Reactive Power Factor for Peak Reactive	Percent in 1000ths	-100 to 1000 to +100
1740	Real Power Demand for Peak Reactive	kW/Scale Factor E	0 to ±32,767
1741	Apparent Power Demand for Peak Reactive	kVA/Scale Factor E	0 to 32,767
1742	Peak Apparent Power Demand, 3-Phase Total	kVA/Scale Factor E	0 to 32,767
1743	Average Apparent Power Factor for Peak Apparent	Percent in 1000ths	-100 to 1000 to +100
1744	Real Power Demand for Peak Apparent	kW/Scale Factor E	0 to ±32,767
1745	Reactive Power Demand for Peak Apparent	kVAr/Scale Factor E	0 to ±32,767
1746	Predicted Real Power Demand, 3 Phase Total	kW/Scale Factor E	0 to ±32,767
1747	Predicted Reactive Power Demand, 3-Phase Total	kVAr/Scale Factor E	0 to 32,767
1748	Predicted Apparent Power Demand, 3-Phase Total	kVA/Scale Factor E	0 to 32,767
1749	Maximum Real Power 3-Phase Demand Over Last Inc. Energy Interval	kW/Scale Factor E	0 to 32,767
1750	Maximum Reactive Power 3-Phase Demand Over Last Inc. Energy Interval	kVAr/Scale Factor E	0 to 32,767
1751	Maximum Apparent Power 3-Phase Demand Over Last Inc. Energy Interval	kVA/Scale Factor E	0 to 32,767
1752	Time Remaining in Demand Interval	Seconds	0 to 3600

# <u>Range</u>

0 to 32,767

0 to 32,767

0 to 32,767

0 to 32,767 0 to 32,767

0 to 10,000

0 to 10,000

0 to 10,000

0 to 32,767

<u>Units</u>

٠

<u>Reg. No.</u>	Description	<u>Units</u>	Kange
DATE/TIME	(Compressed, 3 register format)		
The date and manner.	time in registers 1800–1802 are stored as follows. Other dat	es and times (through regis	ter 1877) are stored in
*Register 18 Register 180 Register 180 The year is z represented	00, Month (byte 1) = 1–12, Day (byte 2) = 1–31 1, Year (byte 1) = 0–199), Hour (byte 2) = 0–23, 2, Minutes (byte) = 0–59, Seconds (byte) = 0–59 ero based on the year 1900 in anticipation of the 21st centur as 109).	y, (e.g., 1989 would be rep	resented as 89 and 200
1800–1802	Last Restart Date/Time	Month, Day, Yr., Hr., Min., Sec.	*See Above
1803–1805	Date/Time Demand of Peak Current Phase A	Month, Day, Yr., Hr., Min., Sec.	Same as Regs. 1800–18
1806–1808	Date/Time Demand of Peak Current Phase B	Month, Day, Yr., Hr., Min., Sec.	Same as Regs. 1800–18
1809–1811	Date/Time Demand of Peak Current Phase C	Month, Day, Yr., Hr., Min., Sec.	Same as Regs. 1800–18
1812–1814	Date/Time of Peak Demand (Average Real Power)	Month, Day, Yr., Hr., Min., Sec.	Same as Regs. 1800–18
1815–1817	Date/Time of Last Reset of Peak Demand Current	Month, Day, Yr., Hr., Min., Sec.	Same as Regs. 1800–18
1818–1820	Date/Time of last Min/Max Clear of Instantaneous Values	Month, Day, Yr., Hr., Min., Sec.	Same as Regs. 1800–18
1821–1823	Date/Time of Last Write to Circuit Tracker™ Setpoint Register	Month, Day, Yr., Hr., Min., Sec.	Same as Regs. 1800–18
1824–1826	Date/Time When Peak Power Demand Was Last Reset	Month, Day, Yr., Hr., Min., Sec.	Same as Regs. 1800–18
1827–1829	Date/Time When Accumulated Energy Was Last Cleared	Month, Day, Yr., Hr., Min., Sec.	Same as Regs. 1800–18
1830–1832	Date/Time When Control Power Failed Last	Month, Day, Yr., Hr., Min., Sec.	Same as Regs. 1800–18
1833–1835	Date/Time When Level 1 Energy Mgmt. Setpt. Alarm Period Was Last Entered	Month, Day, Yr., Hr., Min., Sec.	Same as Regs. 1800–18
1836–1838	Date/Time When Level 2 Energy Mgmt. Setpt. Alarm Period Was Last Entered	Month, Day, Yr., Hr., Min., Sec.	Same as Regs. 1800–18
1839–1841	Date/Time When Level 3 Energy Mgmt. Setpt. Alarm Period Was Last Entered	Month, Day, Yr., Hr., Min., Sec.	Same as Regs. 1800–18
1842–1844	Present/Set Date/Time	Month, Day, Yr., Hr., Min., Sec.	Same as Regs. 1800–18
1845–1 <b>8</b> 47	Date/Time of Calibration	Month, Day, Yr., Hr., Min., Sec.	Same as Regs. 1800–18
1848–1850	Date/Time of Peak K-Factor Demand A Product	Month, Day, Yr., Hr., Min., Sec.	Same as Regs. 1800–18

Reg. No.         Description         Units         Range           1851-1853         Date/Time of Peak K-Factor Demand B Product         Month, Day, Yr., Hr., Min., Sec.         Same as Regs. 1800-1802           1854-1856         Date/Time of Peak K-Factor Demand C Product         Month, Day, Yr., Hr., Min., Sec.         Same ar Regs. 1800-1802           1857-1859         Date/Time of Peak Reactive Demand Power         Month, Day, Yr., Hr., Min., Sec.         Same ar Regs. 1800-1802           1860-1862         Date/Time of Peak Apparent Demand Power         Month, Day, Yr., Hr., Min., Sec.         Same as Regs. 1800-1802           1866-1868         Date/Time when Conditional Energy Last Cleared         Month, Day, Yr., Hr., Min., Sec.         Same as Regs. 1800-1802           1866-1868         Date/Time of Peak Neutral Current Demand         Month, Day, Yr., Hr., Min., Sec.         Same as Regs. 1800-1802           1867-1867         Date/Time of Peak Neutral Current Demand         Month, Day, Yr., Hr., Min., Sec.         Same as Regs. 1800-1802           1875-1877         Date/Time of Peak Real Power Demand Last Informental Energy Period         Month, Day, Yr., Month, Day, Yr., Same as Regs. 1800-1802           1881-1883         Date/Time of Peak Real Power Demand Last Informental Energy Period         Month, Day, Yr., Regs. 1800-1802           1884-1886         Date/Time of Peak Real Power Demand Last Informental Energy Period Month, Day, Yr., Regs. 1800-1802					
1851-1633       Date/Time of Peak K-Factor Demand B Product       Month, Day, Yr., Hr., Min., Sec.       Same as Regs. 1800-1802         1854-1856       Date/Time of Peak K-Factor Demand C Product       Month, Day, Yr., Hr., Min., Sec.       Same as Regs. 1800-1802         1857-1859       Date/Time of Peak R-Factor Demand Power       Month, Day, Yr., Hr., Min., Sec.       Same as Regs. 1800-1802         1860-1862       Date/Time of Peak Apparent Demand Power       Month, Day, Yr., Hr., Min., Sec.       Same as Regs. 1800-1802         1866-1868       Incremental Energy Start Time of Day       Month, Day, Yr., Hr., Min., Sec.       Same as Regs. 1800-1802         1869-1871       Incremental Energy Last Update Date/Time       Month, Day, Yr., Hr., Min., Sec.       Same as Regs. 1800-1802         1872-1874       Date/Time of Peak Neutral Current Demand       Month, Day, Yr., Hr., Min., Sec.       Same as Regs. 1800-1802         1875-1877       Date/Time of Peak Real Power Demand Last Incremental Energy Period       Month, Day, Yr., Month, Day, Yr., Same as Regs. 1800-1802         1878-1880       Date/Time of Peak Real Power Demand Last Incremental Energy Period       Month, Day, Yr., Month, Day, Yr., Same as Regs. 1800-1802         1881-1886       Date/Time of Peak Apparent Power Demand Last Incremental Energy Period       Month, Day, Yr., Month, Day, Yr., Regs. 1800-1802         1881-1886 <td< td=""><td><u>Reg. No.</u></td><td>Description</td><td><u>Units</u></td><td><u>Ra</u></td><td>ange</td></td<>	<u>Reg. No.</u>	Description	<u>Units</u>	<u>Ra</u>	ange
1854-1856       Date/Time of Peak K-Factor Demand C Product       Month, Day, Yr., Hr., Min, Sec.       Same average (1900-1802)         1857-1859       Date/Time of Peak Reactive Demand Power       Month, Day, Yr., Hr., Min, Sec.       Same average (1900-1802)         1860-1862       Date/Time of Peak Apparent Demand Power       Month, Day, Yr., Min, Sec.       Same average (1900-1802)         1863-1865       Incremental Energy Start Time of Day       Month, Day, Yr., Min, Sec.       Same average (1900-1802)         1869-1861       Incremental Energy Last Update Date/Time       Month, Day, Yr., Min, Sec.       Same average (1900-1802)         1869-1871       Incremental Energy Last Update Date/Time       Month, Day, Yr., Min, Sec.       Same average (1900-1802)         1872-1877       Date/Time of Peak Neutral Current Demand       Month, Day, Yr., Min, Sec.       Same average (1900-1802)         1875-1877       Date/Time of Peak Real Power Demand Last Incremental Energy Period       Mit, Min, Sec.       Same average (1900-1802)         1881-1883       Date/Time of Peak Apparent Power Demand Last Incremental Energy Period       Month, Day, Yr., Min, Sec.       Same average (1900-1802)         1881-1883       Date/Time of Peak Reactive Power Demand Last Incremental Energy Period       Month, Day, Yr., Min, Sec.       Same average (1900-1802)         1881-1883       Date/Time of Peak Apparent Power Demand Last Incremental Energy Period       Mo	1851–1853	Date/Time of Peak K-Factor Demand B Product	Month, Day, Yr Hr., Min., Sec.	., Sa Re	ame as egs. 1800–1802
1857-1859       Date/Time of Peak Apparent Demand Power       Month, Day, Yr., Hr., Min., See.       Same as regs. 1800-1802         1860-1862       Date/Time of Peak Apparent Demand Power       Month, Day, Yr., Hr., Min., See.       Same as regs. 1800-1802         1863-1865       Incremental Energy Start Time of Day       Month, Day, Yr., Min., See.       Same as regs. 1800-1802         1866-1868       Date/Time when Conditional Energy Last Cleared       Month, Day, Yr., Min., See.       Same as regs. 1800-1802         1869-1871       Incremental Energy Last Update Date/Time       Month, Day, Yr., Min., Sae.       Same as regs. 1800-1802         1872-1874       Date/Time of Peak Apparent Demand       Month, Day, Yr., Min., Sae.       Same as regs. 1800-1802         1875-1877       Date/Time of Peak Neutral Current Demand       Month, Day, Yr., Regs. 1800-1802       Same as regs. 1800-1802         1878-1880       Date/Time of Peak Real Power Demand Last Indemental Energy Period       Month, Day, Yr., Same as regs. 1800-1802       Same as regs. 1800-1802         1878-1880       Date/Time of Peak Reactive Power Demand Last Indemental Energy Period       Month, Day, Yr., Min., Sae.       Same as regs. 1800-1802         1881-1883       Date/Time of Peak Apparent Power Demand Last Indemental Energy Period       Month, Day, Yr., Min., Sae.       Same as regs. 1800-1802         1881-1888       Date/Time of Peak Apparent Power Demand Last Indemental Energy Pe	1854–1856	Date/Time of Peak K-Factor Demand C Product	Month, Day, Yr Hr., Min., Sec.	., Sa Re	ame as egs. 1800–1802
1860–1862       Date/Time of Peak Apparent Demand Power       Month, Day, Yr, Hr, Min, Sec.       Same as Regs. 1800–1802         1863–1865       Incremental Energy Start Time of Day       Month, Day, Yr, Hr, Min, Sec.       Same as Regs. 1800–1802         1866–1868       Date/Time when Conditional Energy Last Cleared       Month, Day, Yr, Hr, Min, Sec.       Same as Regs. 1800–1802         1866–1868       Date/Time of Peak Apparent Date/Time       Month, Day, Yr, Hr, Min, Sec.       Same as Regs. 1800–1802         1872–1874       Date/Time of Peak A-Phase Avg Current Demand       Month, Day, Yr, Hr, Min, Sec.       Same as Regs. 1800–1802         1875–1877       Date/Time of Peak Neutral Current Demand       Month, Day, Yr, Hr, Min, Sec.       Same as Regs. 1800–1802         1878–1880       Date/Time of Peak Real Power Demand Last Incremental Energy Period       Month, Day, Yr, Same as Regs. 1800–1802         1881–1883       Date/Time of Peak Apparent Power Demand Last Incremental Energy Period       Month, Day, Yr, Min, Sec.       Same as Regs. 1800–1802         1881–1886       Date/Time of Peak Apparent Power Demand Last Incremental Energy Period       Month, Day, Yr, Min, Sec.       Same as Regs. 1800–1802         1881–1886       Date/Time of Peak Apparent Power Demand Last Incremental Energy Period       Month, Day, Yr, Min, Sec.       Same as Regs. 1800–1802         1881–1886       Date/Time of Peak Apparent Power Demand Last Incremental Energy Period <td>1857–1859</td> <td>Date/Time of Peak Reactive Demand Power</td> <td>Month, Day, Yr Hr., Min., Sec.</td> <td>., Sa Re</td> <td>ame as egs. 1800–1802</td>	1857–1859	Date/Time of Peak Reactive Demand Power	Month, Day, Yr Hr., Min., Sec.	., Sa Re	ame as egs. 1800–1802
1863–1865       Incremental Energy Start Time of Day       Morth, Day, Yr., Hr., Min., Sec.       Same as Regs. 1800–1802         1866–1868       Date/Time when Conditional Energy Last Cleared       Morth, Day, Yr., Hr., Min., Sec.       Same as Regs. 1800–1802         1869–1871       Incremental Energy Last Update Date/Time       Month, Day, Yr., Hr., Min., Sec.       Same as Regs. 1800–1802         1872–1874       Date/Time of Peak 3-Phase Avg Current Demand       Month, Day, Yr., Hr., Min., Sec.       Same as Regs. 1800–1802         1875–1877       Date/Time of Peak Neutral Current Demand       Wonth, Day, Yr., Hr., Min., Sec.       Same as Regs. 1800–1802         1875–1877       Date/Time of Peak Real Power Demand Last Incremental Energy Period       Month, Day, Yr., Hr., Min., Sec.       Same as Regs. 1800–1802         1881–1883       Date/Time of Peak Reactive Power Demand Last Incremental Energy Period       Month, Day, Yr., Masme as Regs. 1800–1802       Same as Regs. 1800–1802         1881–1883       Date/Time of Peak Reactive Power Demand Last Incremental Energy Period       Month, Day, Yr., Masme as Regs. 1800–1802       Same as Regs. 1800–1802         1881–1883       Date/Time of Peak Apparent Power Demand Last Incremental Energy Period       Month, Day, Yr., Same as Regs. 1800–1802       Same as Regs. 1800–1802         1887–1892       Reserved       Month, Day, Yr., Same as Regs. 1800–1802       Same as Regs. 1800–1802         1887–1892	1860–1862	Date/Time of Peak Apparent Demand Power	Month, Day, Yr Hr., Min., Sec.	., Sa Re	ime as egs. 1800–1802
1866–1868       Date/Time when Conditional Energy Last Cleared       Month, Day, Yr, Min, Sec.       Same as Regs. 1800–1802         1869–1871       Incremental Energy Last Update Date/Time       Month, Day, Yr, Hr, Min, Sec.       Regs. 1800–1802         1872–1874       Date/Time of Peak 3-Phase Avg Current Demand       Month, Day, Yr, Hr, Min, Sec.       Same as Regs. 1800–1802         1875–1877       Date/Time of Peak Neutral Current Demand       Month, Day, Yr, Mr, Min, Sec.       Same as Regs. 1800–1802         1875–1877       Date/Time of Peak Real Power Demand Last Incremental Energy Period       Month, Day, Yr, Same as Regs. 1800–1802         1881–1883       Date/Time of Peak Reactive Power Demand Last Incremental Energy Period       Month, Day, Yr, Same as Regs. 1800–1802         1881–1886       Date/Time of Peak Apparent Power Demand Last Incremental Energy Period       Month, Day, Yr, Min, Sec.       Same as Regs. 1800–1802         1881–1883       Date/Time of Peak Apparent Power Demand Last Incremental Energy Period       Month, Day, Yr, Min, Sec.       Same as Regs. 1800–1802         1887–1892       Reserved       Month, Day, Yr, Min, Sec.       Same as Regs. 1800–1802       Same as Regs. 1800–1802         1887–1892       Reserved       Same as Regs. 1800–1802       Month, Day, Yr, Min, Sec.       Same as Regs. 1800–1802         1887–1892       Reserved       Same A Sec. Min, Month, Day, Yr, Min, Sec.       Same as Regs.	1863–1865	Incremental Energy Start Time of Day	Month, Day, Yr Hr., Min., Sec.	., Sa Re	ame as egs. 1800–1802
1869–1871       Incremental Energy Last Update Date/Time       Month, Day, Yr., Hr., Mon, Sec.       Same as Regs. 1800–1802         1872–1874       Date/Time of Peak 3-Phase Avg Current Demand       Month, Day, Yr., Hr., Min, Sec.       Regs. 1800–1802         1875–1877       Date/Time of Peak Neutral Current Demand       Month, Day, Yr., Month, Day, Yr., Same as Regs. 1800–1802       Same as Regs. 1800–1802         1875–1877       Date/Time of Peak Neutral Current Demand       Month, Day, Yr., Month, Day, Yr., Same as Regs. 1800–1802       Same as Regs. 1800–1802         1878–1880       Date/Time of Peak Real Power Demand Last Incremental Energy Period       Month, Day, Yr., Same as Regs. 1800–1802       Same as Regs. 1800–1802         1881–1883       Date/Time of Peak Reactive Power Demand Last Incremental Energy Period       Month, Day, Yr., Same as Regs. 1800–1802       Same as Regs. 1800–1802         1884–1886       Date/Time of Peak Apparent Power Demand Last Incremental Energy Period       Month, Day, Yr., Same as Regs. 1800–1802       Same as Regs. 1800–1802         1887–1892       Reserved       Month, Day, Yr., Same as Regs. 1800–1802       Same as Regs. 1800–1802         1887–1892       Reserved       Month, Day, Yr., Same as Regs. 1800–1802       Same as Regs. 1800–1802         1887–1892       Reserved       Month, Day, Yr., Same as Regs. 1800–1802       Same as Regs. 1800–1802         1887–1892       Reserved       Month, Cay, Y	1866–1868	Date/Time when Conditional Energy Last Cleared	Month, Day, Yr Hr., Min., Sec.	Sa Re	ame as egs. 1800–1802
1872-1874       Date/Time of Peak 3-Phase Avg Current Demand       Month, Day, Yr., Hr, Vin., Sec.       Same as Regs. 1800-1802         1875-1877       Date/Time of Peak Neutral Current Demand       Month, Day, Yr., Hr, Vin., Sec.       Same as Regs. 1800-1802         1876-1877       Date/Time of Peak Neutral Current Demand       Month, Day, Yr., Hr, Vin., Sec.       Same as Regs. 1800-1802         1878-1880       Date/Time of Peak Real Power Demand Last Incremental Energy Period       Month, Day, Yr., Same as Regs. 1800-1802         1881-1883       Date/Time of Peak Reactive Power Demand Last Incremental Energy Period       Month, Day, Yr., Same as Regs. 1800-1802         1884-1886       Date/Time of Peak Apparent Power Demand Last Incremental Energy Period       Month, Day, Yr., Min., Sec.       Same as Regs. 1800-1802         1887-1892       Reserved       Month Day, Yr., Min., Sec.       Same as Regs. 1800-1802         1887-1892       Reserved       Month, Day, Yr., Min., Sec.       Regs. 1800-1802         1887-1892       Reserved       Month, Day, Yr., Min., Sec.       Regs. 1800-1802         1893-1898       Present Date/Time 6-register format       Sec., Min., Hr., Min., Sec.       Regs. 1800-1802         1893-1898       Present Date/Time 6-register format       Sec., Min., Hr., Min., Sec.       Regs. 700-705         DATE/TIME Expanded (6 registers)       The date and time in registers 700-705 are stored as fo	1869–1871	Incremental Energy Last Update Date/Time	Month, Day, Yr Hr., Min., Sec.	Sa Re	ame as egs. 1800–1802
1875–1877       Date/Time of Peak Neutral Current Demand       Month, Day, Yr., Hr., Min., Sec.       Same as Regs. 1800–1802         Reg. No.       Description       Units       Range         1878–1880       Date/Time of Peak Real Power Demand Last Incremental Energy Period       Month, Day, Yr., Hr., Min., Sec.       Same as Regs. 1800–1802         1881–1883       Date/Time of Peak Reactive Power Demand Last Incremental Energy Period       Month, Day, Yr., Same as Regs. 1800–1802       Same as Regs. 1800–1802         1884–1886       Date/Time of Peak Apparent Power Demand Last Incremental Energy Period       Month, Day, Yr., Sec.       Same as Regs. 1800–1802         1887–1892       Reserved       Month, Day, Yr., Sec.       Same as Regs. 1800–1802         1887–1892       Reserved       Month, Day, Yr., Sec.       Same as Regs. 1800–1802         1887–1892       Reserved       Month, Day, Yr., Sec.       Same as Regs. 1800–1802         1887–1892       Reserved       Month, Day, Yr., Sec.       Same as Regs. 1800–1802         1887–1893       Present Date/Time 6-register format       Sec., Min., Hr., Sec.       Same as Regs. 1800–1802         1893–1898       Present Date/Time 6-register format       Sec., Min., Hr., Sec.       Same as Regs. 700–705         DATE/TIME Expanded (6 registers)       D=0–59, Hours (Reg. 702) = 0–23, Day, Month, Yr.       Same as Regs. 700–705 <t< td=""><td>1872–1874</td><td>Date/Time of Peak 3-Phase Avg Current Demand</td><td>Month, Day, Yr Hr., Min., Sec.</td><td>., Sa Re</td><td>ame as egs. 1800–1802</td></t<>	1872–1874	Date/Time of Peak 3-Phase Avg Current Demand	Month, Day, Yr Hr., Min., Sec.	., Sa Re	ame as egs. 1800–1802
Reg. No.         Description         Units         Range           1878–1880         Date/Time of Peak Real Power Demand Last Incremental Energy Period         Month, Day, Yr., Hr., Min., Sec.         Same as Regs. 1800–1802           1881–1883         Date/Time of Peak Reactive Power Demand Last Incremental Energy Period         Month, Day, Yr., Hr., Min., Sec.         Same as Regs. 1800–1802           1884–1886         Date/Time of Peak Apparent Power Demand Last Incremental Energy Period         Month, Day, Yr., Hr., Min., Sec.         Same as Regs. 1800–1802           1887–1892         Reserved         Month, Day, Yr., Hr., Min., Sec.         Same as Regs. 1800–1802           1887–1892         Reserved         Month, Day, Yr., Hr., Min., Sec.         Same as Regs. 1800–1802           1887–1892         Reserved         Month, Day, Yr., Hr., Min., Sec.         Same as Regs. 1800–1802           1887–1892         Reserved         Month, Day, Yr., Hr., Min., Sec.         Same as Regs. 1800–1802           1893–1898         Present Date/Time 6-register format         Sec., Min., Hr., Day, Month, Yr.         Same as Regs. 700–705           DATE/TIME Expanded (6 registers)         The date and time in registers 700–705, are stored as follows. Other dates and times through register 795 are stored in an identical mannet "Seconds (Reg. 700) = 0–58, Minutes (Reg. 701) = 0–59, Hours (Reg. 702) = 0–23, Day (Reg. 703) 1–31, Month (Reg. 704) = 1–12, Year (Reg. 705) = 1900–2099         The date and time ar	1875–1877	Date/Time of Peak Neutral Current Demand	Month, Day, Yr Hr., Min., Sec.	r., Sa Re	ame as egs. 1800–1802
1878–1880       Date/Time of Peak Real Power Demand Last Incremental Energy Period       Month, Day, Yr., Kr., Min., Sec.       Same as Regs. 1800–1802         1881–1883       Date/Time of Peak Reactive Power Demand Last Incremental Energy Period       Month, Day, Yr., Kressen, Kress. 1800–1802         1884–1886       Date/Time of Peak Apparent Power Demand Last Incremental Energy Period       Month, Day, Yr., Kressen, Kress. 1800–1802         1884–1886       Date/Time of Peak Apparent Power Demand Last Incremental Energy Period       Month, Day, Yr., Kressen, Kress. 1800–1802         1887–1892       Reserved       Month, Day, Yr., Kressen, Kress. 1800–1802         1887–1893       Present Date/Time 6-register format       Sec., Min., Hr., Sec.       Same as Regs. 700–705         DATE/TIME Expanded (6 registers)       Same as Regs. 700–705       Same as Regs. 700–705       Same as Regs. 700) = 0–59, Minutes (Reg. 701) = 0–59, Hours (Reg. 702) = 0–23, Day (Reg. 703) 1–31, Month (Reg. 704) = 1–12, Year (Reg. 705) = 1900–2099       Sec., Min., Hour Sec.       Sec above         [700–705]       Last Restart Date/Time       Sec, Min, Hour Day, Month, Yr.       Same as Day, Month, Yr.       Same as Day, Month, Yr.         [706–711]       Date/Time Demand of Peak Current Phase A       Sec, Min, Hour Sec, Min, Hour Same as Day, Month, Yr.       Same as Day (North, Yr.	<u>Reg. No.</u>	Description	<b>O</b>	<u>Units</u>	<u>Range</u>
1881–1883       Date/Time of Peak Reactive Power Demand Last Incremental Energy Period       Month, Day, Yr., Min., Sec.       Same as Regs. 1800–1802         1884–1886       Date/Time of Peak Apparent Power Demand Last Incremental Energy Period       Month, Day, Yr., Min., Sec.       Same as Regs. 1800–1802         1887–1892       Reserved       Month, Day, Yr., Min., Sec.       Same as Regs. 1800–1802         1887–1892       Reserved       Month, Day, Yr., Min., Sec.       Same as Regs. 1800–1802         1893–1898       Present Date/Time 6-register format       Sec., Min., Hr., Day, Month, Yr.       Same as Regs. 700–705         DATE/TIME Expanded (6 registers)       Sec., Min., Hr., Day, Month, Yr.       Same as Regs. 700–705         DATE/TIME Expanded (6 registers)       Stored as follows. Other dates and times through register 795 are stored in an identical mannet "Seconds (Reg. 700) = 0–58, Minutes (Reg. 701) = 0–59, Hours (Reg. 702) = 0–23, Day (Reg. 703) 1–31, Month (Reg. 704) = 1–12, Year (Reg. 705) = 1900–2099       The date and time are mapped from CM Registers 1800–1802.         Reg. No.       Description       Units       Range         [700–705]       Last Restart Date/Time       Sec, Min, Hour Day, Month, Yr.       See above         [706–711]       Date/Time Demand of Peak Current Phase A       Sec, Min, Hour Day, Month, Yr.       Same as Day Month, Yr.	1878–1880	Date/Time of Peak Real Power Demand Last Incremental En	ergy Period	Month, Day, Yr., Hr., Min., Sec.	Same as Regs. 1800–1802
1884–1886       Date/Time of Peak Apparent Power Demand Last Incremental Energy Period       Month, Day, Yr., Kegs. 1800–1802         1887–1892       Reserved       Month, Day, Yr., Kin., Sec.       Same as Regs. 1800–1802         1887–1892       Reserved       Month, Day, Yr., Kin., Sec.       Same as Regs. 1800–1802         1893–1898       Present Date/Time 6-register format       Sec., Min., Hr., Day, Month, Yr.       Same as Regs. 700–705         DATE/TIME Expanded (6 registers)       Seconds (Reg. 700) = 0–59, Minutes (Reg. 701) = 0–59, Hours (Reg. 702) = 0–23, Day (Reg. 703) 1–31, Month (Reg. 704) = 1–12, Year (Reg. 705) = 1900–2099       The date and time are mapped from CM Registers 1800–1802.         Reg. No.       Description       Units       Range         [700–705]       Last Restair Date/Time       Sec, Min, Hour Day, Month, Yr.       Same as Sec, Min, Hour Day, Month, Yr.         [706–711]       Date/Time Demand of Peak Current Phase A       Sec, Min, Hour Sec, Min, Hour Day (Bar Day (	1881–1883	Date/Time of Peak Reactive Power Demand Last Incrementa	I Energy Period	Month, Day, Yr., Hr., Min., Sec.	Same as Regs. 1800–1802
1887–1892       Reserved       Month, Day, Yr., Kr., Same as Regs. 1800–1802         1893–1898       Present Date/Time 6-register format       Sec., Min., Hr., Day, Month, Yr.       Same as Regs. 700–705         DATE/TIME Expanded (6 registers)       The date and time in registers 700–705 are stored as follows. Other dates and times through register 795 are stored in an identical mannet *Seconds (Reg. 700) = 0–59, Minutes (Reg. 701) = 0–59, Hours (Reg. 702) = 0–23, Day (Reg. 703) 1–31, Month (Reg. 704) = 1–12, Year (Reg. 705) = 1900–2099       The date and time are mapped from CM Registers 1800–1802.         Reg. No.       Description       Units       Range         [700–705]       Last Restart Date/Time       Sec, Min, Hour Day, Month, Yr.       *See above Day, Month, Yr.         [706–711]       Date/Time Demand of Peak Current Phase A       Sec, Min, Hour Same as Day, Month, Yr.       Same as Day, Month, Yr.	1884–1886	Date/Time of Peak Apparent Power Demand Last Incrementa	al Energy Period	Month, Day, Yr., Hr., Min., Sec.	Same as Regs. 1800–1802
1893–1898       Present Date/Time 6-register format       Sec., Min., Hr., Day, Month, Yr.       Same as Regs. 700–705         DATE/TIME Expanded (6 registers)       The date and time in registers 700–705 are stored as follows. Other dates and times through register 795 are stored in an identical manner         *Seconds (Reg. 700) = 0–59, Minutes (Reg. 701) = 0–59, Hours (Reg. 702) = 0–23, Day (Reg. 703) 1–31, Month (Reg. 704) = 1–12, Year (Reg. 705) = 1900–2099       Description       Units       Range         [700–705]       Last Restand Date/Time       Sec, Min, Hour Day, Month, Yr.       *See above Day, Month, Yr.         [706–711]       Date/Time Demand of Peak Current Phase A       Sec, Min, Hour Same as Day Month Merce       Same as Day Month Merce	1887–1892	Reserved		Month, Day, Yr., Hr., Min., Sec.	Same as Regs. 1800–1802
DATE/TIME Expanded (6 registers)         The date and time in registers 700–705 are stored as follows. Other dates and times through register 795 are stored in an identical mannel *Seconds (Reg. 700) = 0–59, Minutes (Reg. 701) = 0–59, Hours (Reg. 702) = 0–23, Day (Reg. 703) 1–31, Month (Reg. 704) = 1–12, Year (Reg. 705) = 1900–2099         The date and time are mapped from CM Registers 1800–1802.         Reg. No.       Description       Units       Range         [700–705]       Last Restary Date/Time       Sec, Min, Hour Day, Month, Yr.       *See above Day, Month, Yr.         [706–711]       Date/Time Demand of Peak Current Phase A       Sec, Min, Hour Same as Date Markth Market M	1893–1898	Present Date/Time 6-register format		Sec., Min., Hr., Day, Month, Yr.	Same as Regs. 700–705
The date and time in registers 700–705 are stored as follows. Other dates and times through register 795 are stored in an identical mannel *Seconds (Reg. 700) = 0–59, Minutes (Reg. 701) = 0–59, Hours (Reg. 702) = 0–23, Day (Reg. 703) 1–31, Month (Reg. 704) = 1–12, Year (Reg. 705) = 1900–2099         The date and time are mapped from CM Registers 1800–1802.         Reg. No.       Description         [700–705]       Last Restart Date/Time         Sec, Min, Hour       *See above         Day, Month, Yr.       Same as         [706–711]       Date/Time Demand of Peak Current Phase A	DATE/TIME	Expanded (6 registers)			
<ul> <li>*Seconds (Reg. 700) = 0–59, Minutes (Reg. 701) = 0–59, Hours (Reg. 702) = 0–23, Day (Reg. 703) 1–31, Month (Reg. 704) = 1–12, Year (Reg. 705) = 1900–2099 The date and time are mapped from CM Registers 1800–1802.</li> <li><u>Reg. No.</u> <u>Description</u> <u>Units</u> <u>Range</u></li> <li>[700–705] Last Restart Date/Time Sec, Min, Hour Day, Month, Yr.</li> <li>[706–711] Date/Time Demand of Peak Current Phase A Sec, Min, Hour Day Month, Yr.</li> </ul>	The date and	time in registers 700-705 are stored as follows. Other dates and	l times through re	gister 795 are store	ed in an identical manner.
Reg. No.       Description       Units       Range         [700–705]       Last Restant Date/Time       Sec, Min, Hour Day, Month, Yr.       *See above Day, Month, Yr.         [706–711]       Date/Time Demand of Peak Current Phase A       Sec, Min, Hour Day, Month, Yr.       Same as	*Seconds (R Day (Reg. 70 The date and	eg. 700) = 0–59, Minutes (Reg. 701) = 0–59, Hours (Reg. 702) 03) 1–31, Month (Reg. 704) = 1–12, Year (Reg. 705) = 1900–24 d time are mapped from CM Registers 1800–1802.	= 0–23, 099		
[700-705]       Last Restart Date/Time       Sec, Min, Hour Day, Month, Yr.       *See above         [706-711]       Date/Time Demand of Peak Current Phase A       Sec, Min, Hour Date/Time Demand of Peak Current Phase A       Sec, Min, Hour Date/Time Demand of Peak Current Phase A	<u>Reg. No.</u>	Description	<u>Units</u>	<u>Ra</u>	ange
[706–711] Date/Time Demand of Peak Current Phase A Sec, Min, Hour Same as	[700–705]	Last Restart Date/Time	Sec, Min, Hour Day, Month, Yr	*S	ee above
Day, Month, Yr. Regs. # 700–705	[706–711]	Date/Time Demand of Peak Current Phase A	Sec, Min, Hour Day, Month, Yr	Sa . Re	ame as egs. # 700–705

92

© 1999 Square D Company All Rights Reserved

<u>neg. no.</u>	Description		Units	Rang
[712–717]	Date/Time Demand of Peak Current Phase B		Sec, Min, Hour	Same as
			Day, Month, Yr.	Regs. # 70
[718–723]	Date/Time Demand of Peak Current Phase C		Sec, Min, Hour	Same as
			Day, Month, Yr.	Regs. # 70
[724–729]	Date/Time of Peak Demand (Average Real Po	ower)	Sec, Min, Hour	Same as
			Day, Month, Yr.	Regs. # 7
[730–735]	Date/Time of Last Reset of Peak Demand Cur	rent	Sec, Min, Hour	Same as
			Day, Month, Yr.	Regs. # 7
[736–741]	Date/Time of last Min/Max Clear of Instantane	ous Values	Sec, Min, Hour	Same as
			Day, Month, Yr.	Regs. # 7
[742–747]	Date/Time of Last Write to Circuit Tracker™		Sec, Min, Hour	Same as
	Setpoint Register		Day, Month, Yr.	Regs. # 7
[748–753]	Date/Time when Peak Demand was Last Clea	red	Sec, Min, Hour	Same as
			Day, Month, Yr.	Regs. # 7
[754–759]	Date/Time when Accumulated Energy was Las	st Cleared	Sec, Min, Hour	Same as
			Day, Month, Yr.	Regs. # 7
[760–765]	Date/Time when Control Power Failed Last		Day, Month, Yr.	Regs. # 7
			Sec, Min, Hour	Same as
[766–771]	Date/Time When Level 1 Energy Mgmt. Setpt.	Alarm	Sec, Min, Hour	Same as
	Period was Last Entered		Day, Month, Yr.	Regs. # 7
[772–777]	Date/Time When Level 2 Energy Mgmt. Setpt.	Alarm	Sec, Min, Hour	Same as
	Period was Last Entered		Day, Month, Yr.	Regs. # 7
[778–783]	Date/Time When Level 3 Energy Mgmt. Setpt.	Alarm	Sec, Min, Hour	Same as
	Period was Last Entered		Day, Month, Yr.	Regs. # 7
[784–789]	Present/Set Date/Time		Sec, Min, Hour	Same as
			Day, Month, Yr.	Regs. # 7
[790–795]	Date/Time of Calibration		Sec, Min, Hour	Same as
	. 71		Day, Month, Yr.	Regs. # 7
STATUS INF	<u>PUTS</u>			
2400	Input Status	None	0000 to 00FF He	x
2401	Input Conditional Energy Control	None	0000 to 00FF He	X
2402–2403	Input 1 Label	None	Alpha-Numeric 4	Chars.
2404–2405	Input 1 Count	Counts	0 to 99,999,999	
2406	Input 1 On-Timer	Seconds	0 to 32,767	
2407-2408	Input 2 Label	None	Alpha-Numeric 4	Chars.
2409-2410	Input 2 Count	Counts	0 to 99,999,999	
2411	Input 2 On-Timer	Seconds	0 to 32,767	

<u>Reg. No.</u>	<u>Descri</u>	<u>ption</u>	<u>Units</u>	Range	( )
2412–2413	Input 3	Label	None	Alpha-Numeric 4 Chars.	
2414–2415	Input 3	Count	Counts	0 to 99,999,999	
2416	Input 3	On-Timer	Seconds	0 to 32,767	•
2417–2418	Input 4	Label	None	Alpha-Numeric 4 Chars.	6
2419–2420	Input 4	Count	Counts	0 to 99,999,999	
2421	Input 4	On-Timer	Seconds	0 to 32,767	
2422-2423	Input 5	Label	None	Alpha-Numeric 4 Chars	
2422 2426	Input 5	Count	Counts		
2424-2423	Input 5	On Timor	Soondo	0 to 33,353,353	
2420	input 5	Oll-Timer	Geconus	01032,101	
2427–2428	Input 6	Label	None	Alpha-Numeric 4 Chars.	
2429–2430	Input 6	Count	Counts	0 to 99,999,999	
2431	Input 6	On-Timer	Seconds	0 to 32,767	
2432–2433	Input 7	Label	None	Alpha-Numeric 4 Chars.	
2434–2435	Input 7	Count	Counts	0 to 99,999,999	
2436	Input 7	On-Timer	Seconds	0 to 32,767	
2437-2438	Input 8	Label	None	Alpha-Numeric 4 Chars	
2439-2440	Innut 8	Count	Counte	0 to 99 999 999	
2441	Input 8	On-Timer	Seconds	0 to 32.767	
KYZ and RE	LAY OUTPUTS			U	
2500	Output Status	None	0000 to 00FF Hex	Bit Map of the states of the Outputs. A Bit 1 represents the KYZ Output, bits 2 R1–R3, respectively. Register 235 is gh and does not provide control.	1=On, a 0=Off. -4 represent relays nosted as Read Only
2501	Output Control State Bit Mask	None	0000 to FFFF Hex	Bit Map indicating active Relay Control The lower byte indicates the status of control. A 1=Relay Control is under in and a 0=Relay Control is under extern upper byte indicates the status of A 1=Relay Control is in override and a not in override. For each byte, Bit 1 re pulse output, and bits 2–4 represen- respectively.	l states. internal/external ternal control nal control. The override control. 0=Relay Control is presents the KYZ ent relays R1–R3,
2502–2503	KYZ Output Labe	el None	Alpha-Numeric 4 Chars. (2 Regs.)	Label for KYZ output.	
2504	KYZ Output Mode Reg.	None	0 to 9	KYZ Output Mode Register: 0=Normal 1=Latched, 2=Timed, 3=Absolute kWI 4=Absolute kVArH pulse, 5=kVAH puls 6=kWH in pulse, 7=kVarH in pulse, 8=kWH out pulse, 9=kVArH out pulse	, H pulse, se
2505	KYZ Output Parameter Register	Seconds	0 to 32,767	This register specifies the time the KY remain closed for timed mode.	Z output is to
94		©	1999 Square D Company All	Rights Reserved ————	

<u>Reg. No.</u>	Name	<u>Units</u>	Range	Description
2506	KYZ Output kWH, kVArH or kVAH /Pulse Register	kWH/Pulse or kVArH/Pulse or kVAH/Pulse In 10ths	0 to 32,767	kVAH per pulse for the KYZ output when in those
2507–2508	Relay R1 Label	None	Alpha-Numeric 4 Chars. (2 Regs.)	Label for relay R1.
2509	Relay R1 Mode Reg.	None	0 to 9	Relay R1 Mode Register: 0=Normal, 1=Latched, 2=Timed, 3=Absolute kWH pulse, 4=Absolute kVArH pulse, 5=kVAH pulse 6=kWH in pulse, 7=kVarH in pulse, 8=kWH out pulse, 9=kVArH out pulse
2510	Relay R1 Parameter Register	Seconds	0 to 32,767	This register specifies the time relay R1 is to remain closed for timed mode.
2511	Relay R1 kWH, kVArH or kVAH/ Pulse Register	kWH/Pulse or kVArH/Pulse or kVAH/Pulse In 10ths	0 to 32,767	This register specifies the kWH, kVArH or kVAH per pulse for relay R1 when in those modes
2512–2513	Relay R2 Label	None	Alpha-Numeric 4 Chars. (2 Reg <b>s</b> .)	Label for relay R2.
2514	Relay R2 Mode Reg.	None	0 to 9	Relay R2 Mode Register: 0=Normal, 1=Latched, 2=Timed, 3=Absolute kWH pulse, 4=Absolute kVArH pulse, 5=kVAH pulse 6=kWH in pulse, 7=kVarH in pulse, 8=kWH out pulse, 9=kVArH out pulse
2515	Relay R2 Parameter Register	Seconds	0 to 32,767	This register specifies the time relay R2 is to remain closed for timed mode.
2516	Relay R2 kWH, kVArH or kVAH/ Pulse Register	kWH/Pulse or kVArH/Pulse or kVAH/Pulse In 10ths	0 to 32,767	This register specifies the kWH, kVArH or kVAH per pulse for relay R2 when in those modes
2517–2518	Relay R3 Label	None	Alpha-Numeric 4 Chars. (2 Regs.)	Label for relay R3.
2519	Relay R3 Mode Reg.	None	0 to 9	Relay R3 Mode Register: 0=Normal, 1=Latched, 2=Timed, 3=Absolute kWH pulse, 4=Absolute kVArH pulse, 5=kVAH pulse 6=kWH in pulse, 7=kVarH in pulse, 8=kWH out pulse, 9=kVArH out pulse
2520	Relay R3 Parameter Register	Seconds	0 to 32,767	This register specifies the time relay R3 is to remain closed for timed mode.
2521	Relay R3 kWH, kVArH or kVAH /Pulse Register	kWH/Pulse or kVArH/Pulse or kVAH/Pulse In 10ths	0 to 32,767	This register specifies the kWH, kVArH or kVAH per pulse for relay R3 when in those modes
		0.400		

96

<u>Reg. No.</u>	<b>Description</b>		<u>Units</u>	<u>Range</u>	()
CIRCUIT MO	NITOR CONFIGURATION VALUES				
2001	System Connection		None	30=3-wire mode 40=4-wire with calculated neutral 41=4-wire with me neutral 42=4-wire, 2-1/2 e with calculated ne 43=4-wire, 2-1/2 e with metered neutral	etered element utral element ral
2002	CT Ratio 3-Phase Primary Ratio Terr	m	None	1 to 32,767	
2003	CT Ratio 3-Phase Secondary Ratio 1	[erm	None	1 to 5	
2004	CT Ratio Neutral Primary Ratio Term	1	None	1 to 32,767	
2005	CT Ratio Neutral Secondary Ratio Te	erm	None	1 to 5	
2006	PT Ratio 3-Phase Primary Ratio Terr	n	None	1 to 32,767	
2007	PT Ratio 3-Phase Primary Scale Fac	tor	None	0 to 2	
2008	PT Ratio 3-Phase Secondary Ratio 1	erm	None	1 to 600	
2009	CT Ratio Correction Factors Phase A		In 10,000ths	5,000-20,000	
2010	CT Ratio Correction Factors Phase E	3	In 10,000ths	5,000-20,000	
2011	CT Ratio Correction Factors Phase 0		In 10,000ths	5,000-20,000	
2012	CT Ratio Correction Factors Neutral	/Ground	In 10,000ths	5,000-20,000	
2013	PT Ratio Correction Factors Phase A	$\mathbf{O}$	In 10,000ths	5,000-20,000	
2014	PT Ratio Correction Factors Phase E	3	In 10,000ths	5,000-20,000	
2015	PT Ratio Correction Factors Phase C		In 10,000ths	5,000-20,000	
2016	Nominal System Frequency				
<u>Reg. No.</u>	<u>Name Units</u>	<u>Range</u>	<b>Description</b>		
2020	Scale Group A: None Ammeter Per Phase	-2 to 1	Scale Group A: Ammeter Per F -2= scale by 0.01 -1=scale by 0.10 0=scale by 1.00 (default) 1=scale by 10.0	Phase	
2021	Scale Group B: None Ammeter Neutral	-2 to 1	Scale Group B: Ammeter Neut -2=scale by 0.01 -1=scale by 0.10 0=scale by 1.00 (default) 1=scale by 10.0	ral	

-  $\odot$  1999 Square D Company All Rights Reserved -

2022	Name Scale Group C: Ammeter Ground	<u>Units</u> None	<u>Rai</u> -2 to	<u>nge</u> > 1	Description Scale Group C: Ammeter Ground -2=scale by 0.01 -1=scale by 0.10 0=scale by 1.00 (default) 1=scale by 10.0
2023	Scale Group D: Voltmeter	None	-1 to	o 2	Scale Group D: Voltmeter -1=scale by 0.10 0=scale by 1.00 (default) 1=scale by 10.0 2=scale by 100
2024	Scale Group E: kwattmeter, kVarmeter, kVa	None	-3 to	o 3	Scale Group E: kWattmeter, kVarmeter, kVA -3=scale by .001 -2=scale by 0.01 -1=scale by 0.10 0=scale by 1.00 (default) 1=scale by 10.0 2=scale by 100 3=scale by 1000 4=scale by 10,000 5=scale by 100,000
2025	Scale Group F: Frequency	None	-1 to	0 2	Scale Group F: Frequency (Determined by CM) -2=scale by 0.01 (50/60) -1=scale by 0.10 (400)
2027	Energy Resolution on Front Panel	None	0 10- 20-2		Front panel energy display can be configured for various resolutions (max.value illustrated for each selection). Write 0=999999 kilo 10=999999 kilo 11=99999.9 kilo 12=9999.99 kilo 13=999.999 kilo 20=999999 mega 21=99999.9 mega 22=9999.99 mega 23=999.999 mega
<u>Reg. No.</u> 2028	<u>Name</u> Command Passw	ord	<u>Units</u> None	<b>Range</b> 0 to 9998	Description
2029	Display Setup Pas	ssword	None	0 to 9998	Full Access Front Panel Reset Password
2031	Reset Access Pas	ssword	None	0 to 9998 or -32,768	Limited Front Panel Reset Password. When set to -32,7 the Configuration password is used to access Resets.
2022	Limited Access Disable Bit Mask		None	0 to F (Hex)	Limited Front Panel Reset Disable Bit Mask. A 1=Disable. Bit 1=Disable Demand Amps Reset Capability Bit 2=Disable Demand Power Reset Capability Bit 3=Disable Energy Reset Capability Bit 4=Disable Min/Max Reset Capability
2032					
2032	Sag/Swell Susper Bit map	nd	None	0 to 17 (Hex)	Sag/Swell Suspend Status. A1 means condition exists. Bit 1=Set if any other bit is set Bit 2=Sag/Swell disabled Bit 3=CPML feature disabled Bit 4=Sag/Swell Suspended Temporarily Bit 5=Sag/Swell Suspended Permanently

<b>Reg. No.</b> 2040–2041	<u>Name</u> CM Label		<u>Units</u> None	<u>Range</u> Any Valid Alpha-Numeric	G
2042–2049	CM Nameplate		None	Any Valid Alpha-Numeric	
2076	Incremental Ene	rgy Interval	Minutes	0 to 1,440 minutes	*
2077	Power Demand	Interval	Minutes	0 to 60 @5min. Multiples	6
2078	Power Demand Sub-Interval		Minutes	0 to 60 @5min. Multiples	
2079	Current Demand Demand Interva	K-Factor in minutes	Minutes	0 to 60 @5min. Multiples	
<u>Reg. No.</u>	Name	<u>Units</u>	<u>Range</u>	Description	
2080	Energy Accum. Mode Selections Bit map	None	0 or 1	Circuit Monitor Energy Accumulation Map. Bit 1 indicates real & reactive e method: a 0 indicates absolute a 1 indicates signed	Mode Selections Bit energy accumulation
2081 Operating Mode None 0 to 7F Selections Bit map		0 to 7F	<ul> <li>a 0 indicates signed</li> <li>Circuit Monitor Operating Mode Selections Bit Map.</li> <li>Bit 1 indicates real &amp; reactive energy accumulation method: <ul> <li>0 indicates absolute (default)</li> <li>1 indicates signed</li> </ul> </li> <li>Bit 2 indicates Reactive Energy and Demand accumulation method: <ul> <li>0 specifies fundamental only (default)</li> <li>1 specifies to include harmonic cross products - (displacement &amp; distortion)</li> </ul> </li> <li>Bit 3 indicates VA/IPF sign convention: <ul> <li>0 indicates Demand Power calculation method:</li> <li>0 indicates Iternate convention</li> </ul> </li> <li>Bit 4 indicates Demand Power calculation method: <ul> <li>0 indicates Thermal Demand (default)</li> <li>1 indicates a Block/Rolling Interval Demand</li> </ul> </li> <li>Bit 5 indicates external power demand synch. driver source if applicable: <ul> <li>0 Specifies Input 1 as the source (default)</li> <li>1 indicates status inputs (default)</li> <li>1 specifies Command Interface as the source</li> </ul> </li> <li>Bit 6 indicates status of conditional energy accumulation: <ul> <li>0 indicates cond Energy Accum is off (default)</li> <li>1 indicates Cond Energy Accum is off (default)</li> <li>1 indicates response is enabled (default)</li> <li>1 indicates response is enabled (default)</li> <li>1 indicates response is disabled</li> </ul> </li> <li>Bit 10 indicates whether front comm port is enabled</li> <li>0 indicates front comm port is enabled (default)</li> <li>1 indicates front comm port is disabled</li> <li>Bit 11 indicates front panel setup is enabled (default)</li> <li>1 indicates front panel setup is enabled (default)</li> <li>1 indicates front panel setup is enabled (default)</li> <li>1 indicates front panel setup is enabled</li> <li>0 indicates front panel setup is disabled</li> </ul>		
				All other bits are unused.	
98		© 199	99 Square D Compa	any All Rights Reserved	

<u>Reg. No.</u>	Name	<u>Units</u>	<u>Range</u>	Description
2083	Present Day of the Week	None	0 to 6	Present Day of the Week 0=Sunday 1=Monday 2=Tuesday 3=Wednesday 4=Thursday 5=Friday 6=Saturday
2085	Square D Product I.D. Number equal to 460 for CMA Model A	None	0 to 3000	Square D Product I.D. Number equal to: 460 for 2050 461 for 2150 462 for 2250 463 for 2350 464 for 2450 465 for 2452
2088	On-board non-volatile memory	Bytes	0 to 1131	Amount of on-board non-volatile memory present
2091	Prior PLOS Rev. Sub-Level	None	0 to 9999	Prior PLOS revision sublevel before last firmware download. Zero if not applicable.
2092	Prior PLOS Revision Level	None	01:00 to 99:99	Prior PLOS revision level before last firmware download. Zero if not applicable.
2093	PLOS Rev. Sublevel	None	0 to 9999	PLOS revision sublevel—used for diagnostic purposes only.
2094	Firmware Revision Level	None	01:00 to 99:99	Firmware Revision Level in decimal. The first two digits after the equal sign represent the revision of the reset/boot code. The last two digits represent the revision of the downloadable PLOS code
2123	CT Phase Shift Correction (1 Amp)	Degrees in 100ths	-1000 to 1000	CT phase shift compensation at 1 Amp.
2124	CT Phase Shift Correction (5 Amps)	Degrees in 100ths	-1000 to 1000	CT phase shift compensation at 5 Amps.
<u>Reg. No.</u>	Name	<u>Units</u>	<u>Range</u>	<b>Description</b>
<b>GENERIC DE</b> 2200	EMAND Generic Demand Reset Selection	None		Generic Demand Reset Selection 0 = CMD 5110 & 5112 1 = CMD 5112 only
2201	Generic Demand interval	Minutes	5–60	Interval for generic demand calculation (thermal demand) default = 5
2202–2204	Date/Time of last generic demand maximum/minimum reset	Mo., Day, Yr. Hr., Min., Sec.	Same as Regs. 1800–1802	Date/Time of last generic demand maximum/minimum reset
2205–2224	Selected registers of quantities to perform generic demand calculations	None	Regs. 1001–1199 2000–2999 3000–3999 4000–5199	Generic demand calculation performed o value stored in these registers. Regs. 2205 2212 are defaulted to voltage registers 1014–1021.
2225–2229	Reserved			

<u>Reg. No.</u>	Name	<u>Units</u>	<u>Range</u>	Description
2202–2204	Generic Demand Value, 1, present demand	None	0 to 32,767	Present demand value for generic demand value #1
2331	Generic Demand Value, 1, Peak Demand	None	0 to 32,767	Peak demand value for generic   demand value #1
2332	Generic Demand Value, 1, Minimum Demand	None	0 to 32,767	Minimum demand value for generic demand value #1
2233–2235	(The definitions for registers 2233-2235	are the same as fo	r 2230–2232, except t	hat they apply to generic demand value #2.)
2236–2238	(The definitions for registers 2236–2238	are the same as fo	r 2230–2232, except t	hat they apply to generic demand value #3.)
2239–2241	(The definitions for registers 2239-2241	are the same as fo	r 2230–2232, except t	hat they apply to generic demand value #4.)
2242–2244	(The definitions for registers 2242-2244	are the same as fo	r 2230–2232, except t	hat they apply to generic demand value #5.)
2245–2247	(The definitions for registers 2245-2247	are the same as fo	r 2230–2232, except t	hat they apply to generic demand value #6.)
2248–2250	(The definitions for registers 2248-2250	are the same as fo	r 2230–2232, except t	hat they apply to generic demand value #7.)
2251–2253	(The definitions for registers 2251-2253	are the same as fo	r 2230–2232, except t	hat they apply to generic demand value #8.)
2254–2256	(The definitions for registers 2254–2256	are the same as fo	r 2230–2232, except t	hat they apply to generic demand value #9.)
2257–2259	(The definitions for registers 2257-2259	are the same as for	2230–2232, except th	hat they apply to generic demand value #10.)
2260–2262	(The definitions for registers 2260-2262	are the same as for	2230-2232, except th	nat they apply to generic demand value #11.)
2263–2265	(The definitions for registers 2263-2265	are the same as for	2230–2232, except th	nat they apply to generic demand value #12.)
2266–2268	(The definitions for registers 2266–2268 a	are the same as for	2230–2232, except th	nat they apply to generic demand value #13.)

(The definitions for registers 2269–2271 are the same as for 2230–2232, except that they apply to generic demand value #14.) 2269-2271 (The definitions for registers 2272-2274 are the same as for 2230-2232, except that they apply to generic demand value #15.) 2272-2274 (The definitions for registers 2275–2277 are the same as for 2230–2232, except that they apply to generic demand value #16.) 2275-2277 (The definitions for registers 2278–2280 are the same as for 2230–2232, except that they apply to generic demand value #17.) 2278-2280 (The definitions for registers 2281–2283 are the same as for 2230–2232, except that they apply to generic demand value #18.) 2281-2283 (The definitions for registers 2284–2286 are the same as for 2230–2232, except that they apply to generic demand value #19.) 2284-2286

(The definitions for registers 2287–2289 are the same as for 2230–2232, except that they apply to generic demand value #20.) 2287-2289

<u>Reg. No.</u>	Description	<u>Units</u>	<u>Range</u>		
DATE/TIME (GENERIC DEMAND PEAKS AND MINIMUMS FOR FIRST 10 VALUES					
1900–1902	Date/Time of Peak Demand Value #1	Month, Day, Yr. Hr., Min., Sec.	Same as Regs. 1800–1802		
1903–1905	Date/Time of Minimum Demand Value #1	Month, Day, Yr. Hr., Min., Sec.	Same as Regs. 1800–1802		
1906–1908	Date/Time of Peak Demand Value #2	Month, Day, Yr. Hr., Min., Sec.	Same as Regs. 1800–1802		
1909–1911	Date/Time of Minimum Demand Value #2	Month, Day, Yr. Hr., Min., Sec.	Same as Regs. 1800–1802		
1912–1914	Date/Time of Peak Demand Value #3	Month, Day, Yr. Hr., Min., Sec.	Same as Regs. 1800–1802		
1915–1917	Date/Time of Minimum Demand Value #3	Month, Day, Yr. Hr., Min., Sec.	Same as Regs. 1800–1802		

- © 1999 Square D Company All Rights Reserved
#### Reg. No. Description

- 1918-1920 Date/Time of Peak Demand Value #4
- 1921-1923 Date/Time of Minimum Demand Value #4
- Date/Time of Peak Demand Value #5 1924-1926
- 1927-1929 Date/Time of Minimum Demand Value #5
- 1930-1932 Date/Time of Peak Demand Value #6
- 1933-1935 Date/Time of Minimum Demand Value #6
- Date/Time of Peak Demand Value #7 1936-1938
- Date/Time of Minimum Demand Value #7 1939-1941
- Date/Time of Peak Demand Value #8 1942-1944
- Date/Time of Minimum Demand Value #8 1945-1947
- 1948-1950 Date/Time of Peak Demand Value #9
- 1951-1953 Date/Time of Minimum Demand Value #9
- 1954-1956 Date/Time of Peak Demand Value #10
- 1957-1959 Date/Time of Minimum Demand Value #10

#### Reg. No. Name

2306

2309

2312

2315

2318

#### Units MAGNITUDE AND DURATION OF LAST SAG/SWELL EVENT

Note: Registers 2300–2341 apply to circuit monitor models CM-2350 and higher only. 2300 Last Voltage A Swell Extreme Value Units/Scale Factor D 2301-2302 Last Voltage A Swell Event Duration Cycles 2303

Last Voltage B Swell Extreme Value 2304-2305 Last Voltage B Swell Event Duration Last Voltage C Swell Extreme Value 2307-2308 Last Voltage C Swell Event Duration Last Current A Swell Extreme Value Last Current A Swell Event Duration 2310-2311 Last Current B Swell Extreme Value 2313-2314 Last Current B Swell Event Duration Last Current C Swell Extreme Value 2316-2317 Last Current C Swell Event Duration Last Current N Swell Extreme Value 2319-2320 Last Current N Swell Event Duration

Volts/Scale Factor D Cycles Volts/Scale Factor D Cycles Amps/Scale Factor A Cycles Amps/Scale Factor A Cycles Amps/Scale Factor A Cycles Amps/Scale Factor B Cycles

Hr., Min., Sec. Month, Day, Yr. Hr., Min., Sec.

Month, Day, Yr.

Units

Month, Day, Yr. Hr., Min., Sec.

Month, Day, Yr. Hr., Min., Sec. Month, Day, Yr. Hr., Min., Sec.

Month, Day, Yr Hr., Min., Sec.

Month, Day, Yr. Hr., Min., Sec. Month, Day, Yr. Min., Sec. łr.

Month, Day, Yr. Hr., Min., Sec.

Month. Dav. Yr. Hr., Min., Sec.

> Month, Day, Yr. Hr., Min., Sec.

#### Range

0-32767 1-99999999 0-32767 1-99999999 0-32767 1-99999999 0-32767 1-99999999 0 - 327671-99999999 0-32767 1-99999999 0-32767 1 - 999999999

# Range

Same as Regs. 1800-1802

Same as 🌰 Regs. 1800–1802

Same as Regs. 1800–1802

Same as Regs. 1800-1802 Same as Regs. 1800-1802

Same as Regs. 1800-1802

Same as Regs. 1800–1802

Same as Regs. 1800-1802

#### Description

Voltage A swell extreme value Voltage A swell event duration Voltage B swell extreme value Voltage B swell event duration Voltage C swell extreme value Voltage C swell event duration Current A swell extreme value Current A swell event duration Current B swell extreme value Current B swell event duration Current C swell extreme value Current C swell event duration Current N swell extreme value Current N swell event duration

102

Bulletin No February 19	. 3020IM9806 999					2
Pog No	Namo		Unite	Pango	Description	Q
<u>Neg. NO.</u>			<u>UIIIIS</u>	Kange		
2321	Last Voltage A S	ag Extreme value	Volts/Scale Factor D	0-32767	Voltage A sag extreme value	
2322-2323	Last Voltage A Sa	ag Event Duration		1-999999999	Voltage A sag event duration	
2324	Last Voltage B S	ag Extreme value	Volts/Scale Factor D	0-32767	Voltage B sag extreme value	•
2325-2326	Last Voltage B S	ag Event Duration	Cycles	1-999999999	Voltage B sag event duration	
2321	Last Voltage C S	ag Extreme value	Cycles	1 0000000	Voltage C sag extreme value	
2320-2328	Last Voltage C S		Ampo/Socio Ecotor A	1-999999999		
2000	Last Current A Se		Cyclos	1 0000000	Current A sag event duration	
2001-2002	Last Current P S	ag Event Duration	Amps/Socia Easter A	1-999999999		
2000 2004 2005	Last Current B So	ag Except Duration		1 0000000	Current P and event duration	
2334-2333	Last Current C S	ag Event Duration	Amps/Scale Easter A	1-333333333	Current C sag extreme value	
2330	Last Current C S		Cyclos	1 0000000	Current C sag excitence value	
2331-2330	Last Current N S	ag Event Duration	Amns/Scale Factor P	1-33333333	Current N sag extreme value	
2338	Last Current N S		Cyclos	1 0000000	Current N sag event duration	
2340-2341	Last Current N 3	ay Event Duration	Cycles	1-33333333	Current in say event duration	
Pog No	Namo	Unite	Pango	Doscriptio		
<u>xeg. no.</u>	ITPUT CONFIGUR	UTION DECISTED	s s	Descriptio		
INALOG OU		ATION REGISTER	<u> </u>			
2600-2601	Analog Output 1 Label	None	Alphanumeric (4 chars)	A four charact	ter label used to identify this output.	
2602	Analog Output 1 Enable	None	0 or 1	Enables or dis	sables this output. 0 = Off; 1 = On.	
2603	Analog Output 1 Register Number	None	Any valid reg	The circuit mo analog output	onitor register number assigned to th	is
2604	Analog Output 1 Lower Limit	None	-32767 to Upper Limit	The register v output current	value that is equivalent to the minimu t (0 or 4 mA).	m
2605	Analog Output 1 Upper Limit	None	Lower Limit to 32,767	The register v maximum out	value that is equivalent to the put current (1 mA or 20 mA).	
The descript	tion for registers 26	508–2613 is the san	ne as 2600–2605)			
2608–2609	Analog Output 2	Label				
2610	Analog Output 2	Enable				
2611	Analog Output 2	Register Number				
2612	Analog Output 2	Lower Limit				
2613	Analog Output 2	Upper Limit				
The descrip	tion for registers 26	616–2621 is the san	ne as 2600–2605)			
2616–2617	Analog Output 3	Label				
2618	Analog Output 3	Enable				
2619	Analog Output 3	Register Number				
2620	Analog Output 3	Lower Limit				
The descript	tion for registers 26	624–2629 is the san	ne as 2600–2605)			
2624–2625	Analog Output 4	Label				
2626	Analog Output 4	Enable				
2627	Analog Output 4	Register Number				
2628	Analog Output 4	Lower Limit				
2629	Analog Output 4	Upper Limit				
2						

- © 1999 Square D Company All Rights Reserved -

<u>Reg. No.</u>	Name	Units	<u>Range</u>	Description	
ANALOG INF	PUT CONFIGURA	TION REGISTER	<u> </u>		
2700–2702	Analog Input 1 Units	None	Alphanumeric (6 chars)	A six character label used t	o identify this input.
2703	Analog Input 1 Precision	None	-3 to +3	The precision of the measu	red analog value.
2704	Analog Input 1 Input Type	None	0 or 1	Specifies whether the input a 4–20 mA source using the 0 = 0-5; $1 = 4-20$ .	is wired to a 0-5 V so internal 250 ohm re
2705	Analog Input 1 Offset Voltage	in 100ths	0 to 500	The lowest input voltage (in represents a valid reading, equal to this value, the circu <i>limit</i> , defined in register 270	hundredths of a volt When the input volta uit monitor reports the 6.
2706	Analog Input 1 Lower Limit	None	-32767 to Upper Limit	The value the circuit monitor voltage is equal to the offset register 2705.	or reports when the in et voltage, defined in
2707	Analog Input 1 Upper Limit	None	Lower Limit to 32767	The value the circuit monito voltage is equal to 5 volts (f	or reports when the in the maximum input v
(The descript	ion for registers 2	710–2717 is the s	same as 2700–2707)		
2710-2712	Analog Input 2 L	Jnits			
2713	Analog Input 2 F	Precision	$\Lambda'U$		
2714	Analog Input 2 I	nput Type			
2715	Analog Input 2 C	offset Voltage			
2716	Analog Input 2 L	ower Limit			
2/1/	Analog input 2 C	ррег сили			
(The descript	ion for registers 2	720–2727 is the s	same as 2700–2707)		
2720–2722	Analog Input 3 L	Jnits			
2723	Analog Input 3 F	recision			
2724	Analog Input 3 I	nput Type			
2725	Analog Input 3 C	Offset Voltage			
2726	Analog Input 3 L	ower Limit			
2727	Analog Input 3 L	Jpper Limit			
(The descript	ion for registers 2	730-2737 is the s	same as 2700–2707)		
2730-2732	Analog Input 4 L	Inits			
2733	Analog Input 4 F	Precision			
2734	Analog Input 4 In	nput Type			
2735	Analog Input 4 C	Iffset Voltage			
2736	Analog Input 4 L	ower Limit			
2/3/	Analog Input 4 C	Ipper Limit			
	•				
2736 2737	Analog Input 4 L Analog Input 4 L	ower Limit Jpper Limit			

<u>Reg. No.</u> Status inpi	<u>Name</u> UT PULSE DEMAND METERING	<u>Units</u>	<u>Range</u>	<b>Description</b>	C		
Note: Reg	Note: Registers 2898–2999 apply to circuit monitor models CM-2150 and higher only.						
2898	Pulse Demand Interval Mode	None	0 to 3	0=Slave to power demand interval (must be block interval mode) 1=Slave to incremental energy interval 2=Synch to status input 1 3=Ext comms synch to command interface	•		
2899	No. of Pulse Demand Intervals	None	0 to 32,767				
2900	Channel 1 Status Input Pulse Demand Bit Map	None	0 to FF	Demand meter bit map specifying which status inputs totalize for this demand channel. Bit 0 represents input 1, etc. Bit 0 represents input 1, etc. 0=exclude 1=include Default value is 0.			
2901–2903	Utility Registers	None	-32,767 to +32,767	Utility registers can be defined by custom appli tion software as storage locations for pulse cor scale factor, unit code, or other.	ica- istant,		
2904	Present Interval Pulse Count Channel 1	Counts	0 to 32,767	Total number of pulses counted on all specified during present demand interval on this channe	inputs I.		
2905	Last Interval Pulse Count Channel 1	Counts	0 to 32,767	Total number of pulses counted during the last completed interval on this channel.			
2906	Peak Interval Pulse Count Channel 1	Counts	0 to 32,767	Peak value of last interval pulse count on this channel since last demand reset.			
2907–2909	Date/Time of Peak Interval Mon Pulse Count Channel 1 Hr.,	nth, Day, Yr., Min., Sec.	Same as Regs. No.1800–1802	Date/time of peak interval pulse count since last reset.			
2910–2919	(The definitions for registers 2910	–2919 are the	same as for 2900-	-2909, except that they apply to channel 2.)			
2920–2929	(The definitions for registers 2920	-2929 are the	e same as for 2900-	-2909, except that they apply to channel 3.)			
2930–2939	(The definitions for registers 2930	-2939 are the	e same as for 2900-	-2909, except that they apply to channel 4.)			
2940–2949	(The definitions for registers 2940	-2949 are the	e same as for 2900-	-2909, except that they apply to channel 5.)			
2950–2959	(The definitions for registers 2950	-2959 are the	e same as for 2900-	-2909, except that they apply to channel 6.)			
2960–2969	(The definitions for registers 2960	–2969 are the	e same as for 2900-	-2909, except that they apply to channel 7.)			
2970–2979	(The definitions for registers 2970	–2979 are the	e same as for 2900-	-2909, except that they apply to channel 8.)			
2980–2989	(The definitions for registers 2980	–2989 are the	e same as for 2900-	-2909, except that they apply to channel 9.)			
2990–2999	(The definitions for registers 2990	–2999 are the	e same as for 2900-	-2909, except that they apply to channel 10.)			

#### CIRCUIT MONITOR UTILITY REGISTERS

6800–6999 Utility Registers None

104

0 to +/-32,767

These read/write registers can be used by the application programmer as required. They are saved in non-volatile memory when the circuit monitor loses control power.

,

© 1999 Square D Company All Rights Reserved

<u>Reg. No.</u>	<b>Description</b>	<u>Reg. No.</u>	<b>Description</b>	<u>Reg. No.</u>	<b>Description</b>
5611	Event Counter No. 201	5821	Event Counter No. 42	5876	Event Counter N
5612	Event Counter No. 202	5822	Event Counter No. 43	5877	Event Counter N
5613	Event Counter No. 203	5823	Event Counter No. 44	5878	Event Counter N
5614	Event Counter No. 204	5824	Event Counter No. 45	5879	Event Counter N
5615	Event Counter No. 205	5825	Event Counter No. 46	5880	Event Counter N
5616	Event Counter No. 206	5826	Event Counter No. 47	5881	Event Counter I
5617	Event Counter No. 207	5827	Event Counter No. 48	5882	Event Counter I
5618	Event Counter No. 208	5828	Event Counter No. 49	5883	Event Counter
5619	Event Counter No. 209	5829	Event Counter No. 50	5884	Event Counter
5620	Event Counter No. 210	5830	Event Counter No. 51	5885	Event Counter
5621	Event Counter No. 211	5831	Event Counter No. 52	5886	Event Counter
5622	Event Counter No. 212	5832	Event Counter No. 53	5887	Event Counter
5623	Event Counter No. 213	5833	Event Counter No. 54	5888	Event Counter
5624	Event Counter No. 214	5834	Event Counter No. 55	5889	Event Counter
5780	Event Counter No. 1	5835	Event Counter No. 56	5890	Event Counter
5781	Event Counter No. 1	5836	Event Counter No 57	5891	Event Counter
5782	Event Counter No. 3	5837	Event Counter No. 58	5892	Event Counter
5783	Event Counter No. 4	5838	Event Counter No. 59	5893	Event Counter
5784	Event Counter No. 5	5839	Event Counter No. 60	5894	Event Counter
5785	Event Counter No. 6	5840	Event Counter No. 61	5895	Event Counter
5786	Event Counter No. 7	58/1	Event Counter No. 62	5896	Event Counter
5787	Event Counter No. 8	5842	Event Counter No. 62	5897	Event Counter
5788	Event Counter No. 9	5942	Event Counter No. 64	5898	Event Counter
5789	Event Counter No. 10	5943	Event Counter No. 65	5899	Event Counter
5790	Event Counter No. 11	5044	Event Counter No. 66	5699	
5791	Event Counter No. 12	5840	Event Counter No. 67		
5702	Event Counter No. 12	5040	Event Counter No. 67		
5793	Event Counter No. 14	5040	Event Counter No. 60		
5794	Event Counter No. 15	5040	Event Counter No. 69		
5795	Event Counter No. 16	2049	Event Counter No. 70		
5795	Event Counter No. 17	5850	Event Counter No. 71		
5790	Event Counter No. 18	5851	Event Counter No. 72		
5709	Event Counter No. 10	5852	Event Counter No. 73		
5790	Event Counter No. 19	5853	Event Counter No. 74		
5799	Event Counter No. 21	5854	Event Counter No. 75		
5000	Event Counter No. 21	5855	Event Counter No. 76		
5001	Event Counter No. 22	5856	Event Counter No. 77		
5002	Event Counter No. 23	5857	Event Counter No. 78		
5005	Event Counter No. 25	5858	Event Counter No. 79		
5004	Event Counter No. 25	5859	Event Counter No. 80		
5805	Event Counter No. 26	5860	Event Counter No. 81		
5000	Event Counter No. 27	5861	Event Counter No. 82		
5007	Event Counter No. 28	5862	Event Counter No. 83		
5000	Event Counter No. 29	5863	Event Counter No. 84		
5009	Event Counter No. 30	5864	Event Counter No. 85		
5810	Event Counter No. 31	5865	Event Counter No. 86		
5811	Event Counter No. 32	5866	Event Counter No. 87		
5812	Event Counter No. 33	5867	Event Counter No. 88		
5813	Event Counter No. 34	5868	Event Counter No. 89		
5814	Event Counter No. 35	5869	Event Counter No. 90		
5815	Event Counter No. 36	5870	Event Counter No. 91		
5816	Event Counter No. 37	5871	Event Counter No. 92		
5817	Event Counter No. 38	5872	Event Counter No. 93		
5818	Event Counter No. 39	5873	Event Counter No. 94		
5819	Event Counter No. 40	5874	Event Counter No. 95		
5820	Event Counter No. 41	5875	Event Counter No. 96		
<b>S</b>					
	G	1000 Square D	Company All Dights Deserved		

#### SPECTRAL COMPONENTS

#### Reg. No.

4000-4001

**Description** 

Reserved

<u>Units</u>

% in 100ths

In 10ths of degrees

Range

10000

0 to 32767

Phase A Voltage

Note: Registers 4000-4447 apply to circuit monitor models CM-2350 and higher only.

1000	1001 100	
4002	H1	magnitude as a percent of H1 magnitude
4003	H1	Va angle defined as 0.0 for H1 reference
4004	H2	magnitude as a percent of H1 magnitude
4005	H2	Va angle defined as 0.0 for H2 reference
4006	H3	magnitude as a percent of H1 magnitude
4007	H3	Va angle defined as 0.0 for H3 reference
4008	H4	magnitude as a percent of H1 magnitude
4009	H4	Va angle defined as 0.0 for H4 reference
4010	H5	magnitude as a percent of H1 magnitude
4011	H5	Va angle defined as 0.0 for H5 reference
4012	H6	magnitude as a percent of H1 magnitude
4013	H6	Va angle defined as 0.0 for H6 reference
4014	H7	magnitude as a percent of H1 magnitude
4015	H7	Va angle defined as 0.0 for H7 reference
4016	H8	magnitude as a percent of H1 magnitude
4017	H8	Va angle defined as 0.0 for H8 reference
4018	H9	magnitude as a percent of H1 magnitude
4019	H9	Va angle defined as 0.0 for H9 reference
4020	H10	) magnitude as a percent of H1 magnitude
4021	H10	Va angle defined as 0.0 for H10 reference
4022	H11	magnitude as a percent of H1 magnitude
4023	H11	Va angle defined as 0.0 for H11 reference
4024	H12	2 magnitude as a percent of H1 magnitude
4025	H12	2 Va angle defined as 0.0 for H12 reference
4026	H13	3 magnitude as a percent of H1 magnitude
4027	H13	3 Va angle defined as 0.0 for H13 reference
4028	H14	I magnitude as a percent of H1 magnitude
4029	H14	Va angle defined as 0.0 for H14 reference
4030	H15	magnitude as a percent of H1 magnitude
4031	H15	Va angle defined as 0.0 for H15 reference
4032	H16	magnitude as a percent of H1 magnitude
4033	H16	Va angle defined as 0.0 for H16 reference
4034	H17	' magnitude as a percent of H1 magnitude
4035	H17	Va angle defined as 0.0 for H17 reference
4036	H18	magnitude as a percent of H1 magnitude
4037	H18	Va angle defined as 0.0 for H18 reference
4038	H19	magnitude as a percent of H1 magnitude
4039	H19	Va angle defined as 0.0 for H19 reference
4040	H2U	) magnitude as a percent of H1 magnitude
4041	H20	Va angle defined as 0.0 for H20 reference
4042	H21	magnitude as a percent of H1 magnitude
4043		va angle defined as 0.0 for H21 reference
4044	HZ2	2 Magnitude as a percent of HT magnitude
4045	1122	2 magnitude as a percent of H1 magnitude
4040	H23	We angle defined as 0.0 for H22 reference
4047		wa anyle defined as 0.0 101 m23 reference
4040	1124 Цол	Va ande defined as 0.0 for H24 reference
4050	H2F	magnitude as a percent of H1 magnitude
4050	112: H2F	Va andle defined as 0.0 for H25 reference
4052	H26	magnitude as a percent of H1 magnitude
-002	1120	, magnitude as a percent of the magnitude

% in 100ths ) to 32767 In 10ths of degrees 0 to 32767 % in 100ths In 10ths of degrees 0 % in 100ths • to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 tenths of degree 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 0 to 32767 % in 100ths In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees Ω % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0

% in 100ths

Appendix B—Abbreviated Register Listing

Range

0

0 to 32767

0 0 to 32767

0

0 to 32767

0 to 32767

0 0 to 32767

0

0

<u>Reg. No.</u>	Description
4053	H26 Va angle defined as 0.0 for H26 reference
4054	H27 magnitude as a percent of H1 magnitude
4055	H27 Va angle defined as 0.0 for H27 reference
4056	H28 magnitude as a percent of H1 magnitude
4057	H28 Va angle defined as 0.0 for H28 reference
4058	H29 magnitude as a percent of H1 magnitude
4059	H29 Va angle defined as 0.0 for H29 reference
4060	H30 magnitude as a percent of H1 magnitude
4061	H30 Va angle defined as 0.0 for H30 reference
4062	H31 magnitude as a percent of H1 magnitude
4063	H31 Va angle defined as 0.0 for H31 reference

#### Phase A Current

4064-4065	Reserved
4066	H1 magnitude as a percent of H1 magnitude
4067	H1 angle with reference to H1 Va angle
4068	H2 magnitude as a percent of H1 magnitude
4069	H2 angle with reference to H2 Va angle
4070	H3 magnitude as a percent of H1 magnitude
4071	H3 angle with reference to H3 Va angle
4072	H4 magnitude as a percent of H1 magnitude
4073	H4 angle with reference to H4 Va angle
4074	H5 magnitude as a percent of H1 magnitude
4075	H5 angle with reference to H5 Va angle
4076	H6 magnitude as a percent of H1 magnitude
4077	H6 angle with reference to H6 Va angle
4078	H7 magnitude as a percent of H1 magnitude
4079	H7 angle with reference to H7 Va angle
4080	H8 magnitude as a percent of H1 magnitude
4081	H8 angle with reference to H8 Va angle
4082	H9 magnitude as a percent of H1 magnitude
4083	H9 angle with reference to H9 Va angle
4084	H10 magnitude as a percent of H1 magnitude
4085	H10 angle with reference to H10 Va angle
4086	H11 magnitude as a percent of H1 magnitude
4087	H11 angle with reference to H11 Va angle
4088	H12 magnitude as a percent of H1 magnitude
4089	H12 angle with reference to H12 Va angle
4090	H13 magnitude as a percent of H1 magnitude
4091	H13 angle with reference to H13 Va angle
4092	H14 magnitude as a percent of H1 magnitude
4093	H14 angle with reference to H14 Va angle
4094	H15 magnitude as a percent of H1 magnitude
4095	H15 angle with reference to H15 Va angle
4096	H16 magnitude as a percent of H1 magnitude
4097	H16 angle with reference to H16 Va angle
4098	H17 magnitude as a percent of H1 magnitude
4099	H17 ^r angle with reference to H17 Va angle
4100	H18 magnitude as a percent of H1 magnitude
4101	H18 angle with reference to H18 Va angle
4102	H19 magnitude as a percent of H1 magnitude
4103	H19 angle with reference to H19 Va angle
4104	H20 magnitude as a percent of H1 magnitude
4105	H20 angle with reference to H20 Va angle
4106	H21 magnitude as a percent of H1 magnitude
410/	H21 angle with reference to H21 Va angle

<u>Units</u>
In 10ths of degrees
% in 100ths
In 10ths of degrees
% in 100ths
In 10ths of degrees
% in 100ths
In 10ths of degrees
% in 100ths

In 10ths of degrees % in 100ths In 10ths of degrees

% in 100ths	10	0000
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0

<u>Reg. No.</u>	<b>Description</b>
4108	H22 magnitude as a percent of H1 magnitude
4109	H22 angle with reference to H22 Va angle
4110	H23 magnitude as a percent of H1 magnitude
4111	H23 angle with reference to H23 Va angle
4112	H24 magnitude as a percent of H1 magnitude
4113	H24 angle with reference to H24 Va angle
4114	H25 magnitude as a percent of H1 magnitude
4115	H25 angle with reference to H25 Va angle
4116	H26 magnitude as a percent of H1 magnitude
4117	H26 angle with reference to H26 Va angle
4118	H27 magnitude as a percent of H1 magnitude
4119	H27 angle with reference to H27 Va angle
4120	H28 magnitude as a percent of H1 magnitude
4121	H28 angle with reference to H28 Va angle
4122	H29 magnitude as a percent of H1 magnitude
4123	H29 angle with reference to H29 Va angle
4124	H30 magnitude as a percent of H1 magnitude
4125	H30 angle with reference to H30 Va angle
4126	H31 magnitude as a percent of H1 magnitude
4127	H31 angle with reference to H31 Va angle

#### Phase B Voltage

108

4128-4129 Reserved 4130 H1 magnitude as a percent of H1 magnitude 4131 H1 angle with reference to H1 Va angle 4132 H2 magnitude as a percent of H1 magnitude H2 angle with reference to H2 Va angle 4133 4134 H3 magnitude as a percent of H1 magnitude 4135 H3 angle with reference to H3 Va angle H4 magnitude as a percent of H1 magnitude 4136 H4 angle with reference to H4 Va angle 4137 H5 magnitude as a percent of H1 magnitude/ 4138 H5 angle with reference to H5 Va angle 4139 H6 magnitude as a percent of H1 magnitude 4140 H6 angle with reference to H6 Va angle 4141 H7 magnitude as a percent of H1 magnitude 4142 4143 H7 angle with reference to H7 Va angle 4144 H8 magnitude as a percent of H1 magnitude 4145 H8 angle with reference to H8 Va angle H9 magnitude as a percent of H1 magnitude 4146 H9 angle with reference to H9 Va angle 4147 H10 magnitude as a percent of H1 magnitude 4148 H10 angle with reference to H10 Va angle 4149 4150 H11 magnitude as a percent of H1 magnitude 4151 H11 angle with reference to H11 Va angle H12 magnitude as a percent of H1 magnitude 4152 4153 H12 angle with reference to H12 Va angle 4154 H13 magnitude as a percent of H1 magnitude 4155 H13 angle with reference to H13 Va angle H14 magnitude as a percent of H1 magnitude 4156 H14 angle with reference to H14 Va angle 4157 4158 H15 magnitude as a percent of H1 magnitude 4159 H15 angle with reference to H15 Va angle H16 magnitude as a percent of H1 magnitude 4160 4161 H16 angle with reference to H16 Va angle 4162 H17 magnitude as a percent of H1 magnitude

Units % in 100ths 0 to 32767 In 10ths of degrees 0 to 32767 % in 100ths In 10ths of degrees % in 100ths 0 to 32767 In 10ths of degrees % in 100ths 0 to 3276 In 10ths of degrees 0 to 32767 % in 100ths In 10ths of degrees % in 100ths 0 to 32767 In 10ths of degrees % in 100ths 0 to 32767 In 10ths of degrees % in 100ths 0 to 32767 In 10ths of degrees % in 100ths 0 to 32767 In 10ths of degrees % in 100ths 0 to 32767 In 10ths of degrees

% in 100ths 10000 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 0 to 32767 % in 100ths In 10ths of degrees 0 0 to 32767 % in 100ths In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0

© 1999 Square D Company All Rights Reserved

% in 100ths

#### Range

0

0

0

0

0

0

0

0 to 32767

0

<u>Reg. No.</u>	Description
4163	H17 angle with reference to H17 Va angle
4164	H18 magnitude as a percent of H1 magnitude
4165	H18 angle with reference to H18 Va angle
4166	H19 magnitude as a percent of H1 magnitude
4167	H19 angle with reference to H19 Va angle
4168	H20 magnitude as a percent of H1 magnitude
4169	H20 angle with reference to H20 Va angle
4170	H21 magnitude as a percent of H1 magnitude
4171	H21 angle with reference to H21 Va angle
4172	H22 magnitude as a percent of H1 magnitude
4173	H22 angle with reference to H22 Va angle
4174	H23 magnitude as a percent of H1 magnitude
4175	H23 angle with reference to H23 Va angle
4176	H24 magnitude as a percent of H1 magnitude
4177	H24 angle with reference to H24 Va angle
4178	H25 magnitude as a percent of H1 magnitude
4179	H25 angle with reference to H25 Va angle
4180	H26 magnitude as a percent of H1 magnitude
4181	H26 angle with reference to H26 Va angle
4182	H27 magnitude as a percent of H1 magnitude
4183	H27 angle with reference to H27 Va angle
4184	H28 magnitude as a percent of H1 magnitude
4185	H28 angle with reference to H28 Va angle
4186	H29 magnitude as a percent of H1 magnitude
4187	H29 angle with reference to H29 Va angle
4188	H30 magnitude as a percent of H1 magnitude
4189	H30 angle with reference to H30 Va angle

4188	H30 magnitude as a percent of H1 magnitude
4189	H30 angle with reference to H30 Va angle
4190	H31 magnitude as a percent of H1 magnitude
4191	H31 angle with reference to H31 Va angle

#### Phase B Current

4192-4193	Reserved	
4194	H1 magnitude as a percent of	H1 magnitude
4195	H1 angle with reference to H1	Va angle
4196	H2 magnitude as a percent of	H1 magnitude
4197	H2 angle with reference to H2	Va angle
4198	H3 magnitude as a percent of	H1 magnitude
4199	H3 angle with reference to H3	Va angle
4200	H4 magnitude as a percent of	H1 magnitude
4201	H4 angle with reference to H4	Va angle
4202	H5 magnitude as a percent of	H1 magnitude
4203	H5 angle with reference to H5	Va angle
4204	H6 magnitude as a percent of	H1 magnitude
4205	H6 angle with reference to H6	o Va angle
4206	H7 magnitude as a percent of	H1 magnitude
4207	H7 angle with reference to H7	' Va angle
4208	H8 magnitude as a percent of	H1 magnitude
4209	H8 angle with reference to H8	Va angle
4210	H9 magnitude as a percent of	H1 magnitude
4211	H9 angle with reference to H9	Va angle
4212	H10 magnitude as a percent of	of H1 magnitude
4213	H10 angle with reference to H	10 Va angle
4214	H11 magnitude as a percent of	of H1 magnitude
4215	H11 angle with reference to H	11 Va angle
4216	H12 magnitude as a percent of	of H1 magnitude
4217	H12 angle with reference to H	12 Va angle
	©	1999 Square D C

Units	Range
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	10000

In 10ths of degrees

% in 100ths	10	0000
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0
% in 100ths	0 to	32767
In 10ths of degrees		0

-  $\odot$  1999 Square D Company All Rights Reserved -

Description Reg. No. 4218 H13 magnitude as a percent of H11 magnitude 4219 H13 angle with reference to H13 Va angle 4220 H14 magnitude as a percent of H1 magnitude 4221 H14 angle with reference to H14 Va angle 4222 H15 magnitude as a percent of H1 magnitude H15 angle with reference to H15 Va angle 4223 H16 magnitude as a percent of H1 magnitude 4224 4225 H16 angle with reference to H16 Va angle 4226 H17 magnitude as a percent of H1 magnitude H17 angle with reference to H17 Va angle 4227 4228 H18 magnitude as a percent of H1 magnitude 4229 H18 angle with reference to H18 Va angle H19 magnitude as a percent of H1 magnitude 4230 H19 angle with reference to H19 Va angle 4231 4232 H20 magnitude as a percent of H1 magnitude 4233 H20 angle with reference to H20 Va angle 4234 H21 magnitude as a percent of H1 magnitude 4235 H21 angle with reference to H21 Va angle 4236 H22 magnitude as a percent of H1 magnitude 4237 H22 angle with reference to H22 Va angle 4238 H23 magnitude as a percent of H1 magnitude 4239 H23 angle with reference to H23 Va angle H24 magnitude as a percent of H1 magnitude 4240 H24 angle with reference to H24 Va angle 4241 H25 magnitude as a percent of H1 magnitude 4242 4243 H25 angle with reference to H25 Va angle 4244 H26 magnitude as a percent of H1 magnitude H26 angle with reference to H26 Va angle 4245 H27 magnitude as a percent of H1 magnitude 4246 4247 H27 angle with reference to H27 Va angle 4248 H28 magnitude as a percent of H1 magnitude H28 angle with reference to H28 Va angle 4249 H29 magnitude as a percent of H1 magnitude 4250 4251 H29 angle with reference to H29 Va angle H30 magnitude as a percent of H1 magnitude 4252 4253 H30 angle with reference to H30 Va angle 4254 H31 magnitude as a percent of H1 magnitude 4255 H31 angle with reference to H31 Va angle

#### Phase C Voltage

4256-4257	Reserved
4258	H1 magnitude as a percent of H1 magnitude
4259	H1 angle with reference to H1 Va angle
4260	H2 magnitude as a percent of H1 magnitude
4261	H2 angle with reference to H2 Va angle
4262	H3 magnitude as a percent of H1 magnitude
4263	H3 angle with reference to H3 Va angle
4264	H4 magnitude as a percent of H1 magnitude
4265	H4 angle with reference to H4 Va angle
4266	H5 magnitude as a percent of H1 magnitude
4267	H5 angle with reference to H5 Va angle
4268	H6 magnitude as a percent of H1 magnitude
4299	H21 angle with reference to H21 Va angle
4300	H22 magnitude as a percent of H1 magnitude
4301	H22 angle with reference to H22 Va angle
4302	H23 magnitude as a percent of H1 magnitude

Units % in 100ths 0 to 32767 In 10ths of degrees 0 0 to 32767 % in 100ths In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees % in 100ths 0 to 3276 In 10ths of degrees 0 to 32767 % in 100ths In 10ths of degrees % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 0 to 32767 % in 100ths In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0 0 to 32767 % in 100ths In 10ths of degrees 0 % in 100ths 0 to 32767 In 10ths of degrees 0

% in 100ths	10000
n 10ths of degrees	0
% in 100ths	0 to 32767
n 10ths of degrees	0
% in 100ths	0 to 32767
n 10ths of degrees	0
% in 100ths	0 to 32767
n 10ths of degrees	0
% in 100ths	0 to 32767
n 10ths of degrees	0
% in 100ths	0 to 32767
n 10ths of degrees	0
% in 100ths	0 to 32767
n 10ths of degrees	0
% in 100ths	0 to 32767

© 1999 Square D Company All Rights Reserved

Range

<u>Reg. No.</u>	Description		
4303	H23 angle with reference to H23 Va angle		
4304	H24 magnitude as a percent of H1 magnitude		
4305	H24 angle with reference to H24 Va angle		
4306	H25 magnitude as a percent of H1 magnitude		
4307	H25 angle with reference to H25 Va angle		
4308	H26 magnitude as a percent of H1 magnitude		
4309	H26 angle with reference to H26 Va angle		
4310	H27 magnitude as a percent of H1 magnitude		
4311	H27 angle with reference to H27 Va angle		
4312	H28 magnitude as a percent of H1 magnitude		
4313	H28 angle with reference to H28 Va angle		
4314	H29 magnitude as a percent of H1 magnitude		
4315	H29 angle with reference to H29 Va angle		
4316	H30 magnitude as a percent of H1 magnitude		
4317	H30 angle with reference to H30 Va angle		
4318	H31 magnitude as a percent of H1 magnitude		
4319	H31 angle with reference to H31 Va angle		

#### Phase C Current

4320–4321	Reserved
4322	H1 magnitude as a percent of H1 magnitude
4323	H1 angle with reference to H1 Va angle
4324	H2 magnitude as a percent of H1 magnitude
4325	H2 angle with reference to H2 Va angle
4326	H3 magnitude as a percent of H1 magnitude
4327	H3 angle with reference to H3 Va angle
4328	H4 magnitude as a percent of H1 magnitude
4329	H4 angle with reference to H4 Va angle
4330	H5 magnitude as a percent of H1 magnitude
4331	H5 angle with reference to H5 Va angle
4332	H6 magnitude as a percent of H1 magnitude
4333	H6 angle with reference to H6 Va angle
4334	H7 magnitude as a percent of H1 magnitude
4335	H7 angle with reference to H7 Va angle
4336	H8 magnitude as a percent of H1 magnitude
4337	H8 angle with reference to H8 Va angle
4338	H9 magnitude as a percent of H1 magnitude
4339	H9 angle with reference to H9 Va angle
4340	H10 magnitude as a percent of H1 magnitude
4341	H10 angle with reference to H10 Va angle
4342	H11 magnitude as a percent of H1 magnitude
4343	H11 angle with reference to H11 Va angle
4344	H12 magnitude as a percent of H1 magnitude
4345	H12 angle with reference to H12 Va angle
4346	H13 magnitude as a percent of H1 magnitude
4347	H13 angle with reference to H13 Va angle
4348	H14 magnitude as a percent of H1 magnitude
4349	H14 angle with reference to H14 Va angle
4350	H15 magnitude as a percent of H1 magnitude
4351	H15 angle with reference to H15 Va angle
4352	H16 magnitude as a percent of H1 magnitude
4353	H16 angle with reference to H16 Va angle
4354	H17 magnitude as a percent of H1 magnitude
4355	H17 angle with reference to H17 Va angle
4356	H18 magnitude as a percent of H1 magnitude
4357	H18 angle with reference to H18 Va angle
	© 1999 Square D Co

<u>Units</u>	<u>Range</u>
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0

	% in 100ths	10000
	In 10ths of degrees	0
	% in 100ths	0 to 32767
	In 10ths of degrees	0
O	% in 100ths	0 to 32767
	In 10ths of degrees	0
	% in 100ths	0 to 32767
	In 10ths of degrees	0
	% in 100ths	0 to 32767
	In 10ths of degrees	0
	% in 100ths	0 to 32767
	In 10ths of degrees	0
	% in 100ths	0 to 32767
	In 10ths of degrees	0
	% in 100ths	0 to 32767
	In 10ths of degrees	0
	% in 100ths	0 to 32767
	In 10ths of degrees	0
	% in 100ths	0 to 32767
	In 10ths of degrees	0
	% in 100ths	0 to 32767
	In 10ths of degrees	0
	% in 100ths	0 to 32767
	In 10ths of degrees	0
	% in 100ths	0 to 32767
	In 10ths of degrees	0
	% in 100ths	0 to 32767
	In 10ths of degrees	0
	% in 100ths	0 to 32767
	In 10ths of degrees	0
	% in 100ths	0 to 32767
	In 10ths of degrees	0
	% in 100ths	0 to 32767
	In 10ths of degrees	0
	% in 100ths	0 to 32767
	In 10ths of degrees	0

Reg. No. Description 4358 H19 magnitude as a percent of H1 magnitude 4359 H19 angle with reference to H19 Va angle 4360 H20 magnitude as a percent of H1 magnitude 4361 H20 angle with reference to H20 Va angle 4362 H21 magnitude as a percent of H1 magnitude H21 angle with reference to H21 Va angle 4363 H22 magnitude as a percent of H1 magnitude 4364 4365 H22 angle with reference to H22 Va angle 4366 H23 magnitude as a percent of H1 magnitude H23 angle with reference to H23 Va angle 4367 4368 H24 magnitude as a percent of H1 magnitude 4369 H24 angle with reference to H24 Va angle H25 magnitude as a percent of H1 magnitude 4370 H25 angle with reference to H25 Va angle 4371 4372 H26 magnitude as a percent of H1 magnitude 4373 H26 angle with reference to H26 Va angle 4374 H27 magnitude as a percent of H1 magnitude 4375 H27 angle with reference to H27 Va angle 4376 H28 magnitude as a percent of H1 magnitude H28 angle with reference to H28 Va angle 4377 4378 H29 magnitude as a percent of H1 magnitude 4379 H29 angle with reference to H29 Va angle 4380 H30 magnitude as a percent of H1 magnitude H30 angle with reference to H30 Va angle 4381 H31 magnitude as a percent of H1 magnitude 4382 4383 H31 angle with reference to H31 Va angle

**Neutral Current** 

112

4384-4385 Reserved H1 magnitude as a percent of H1 magnitude % in 100ths 4386 4387 H1 angle with reference to H1 Va angle In 10ths of degrees 4388 H2 magnitude as a percent of H1 magnitude % in 100ths 4389 H2 angle with reference to H2 Va angle In 10ths of degrees 4390 H3 magnitude as a percent of H1 magnitude % in 100ths H3 angle with reference to H3 Va angle 4391 In 10ths of degrees H4 magnitude as a percent of H1 magnitude 4392 % in 100ths H4 angle with reference to H4 Va angle In 10ths of degrees 4393 H5 magnitude as a percent of H1 magnitude % in 100ths 4394 H5 angle with reference to H5 Va angle 4395 In 10ths of degrees H6 magnitude as a percent of H1 magnitude 4396 % in 100ths H6 angle with reference to H6 Va angle In 10ths of degrees 4397 H7 magnitude as a percent of H1 magnitude 4398 % in 100ths H7 angle with reference to H7 Va angle In 10ths of degrees 4399 H8 magnitude as a percent of H1 magnitude % in 100ths 4400 H8 angle with reference to H8 Va angle In 10ths of degrees 4401 4402 H9 magnitude as a percent of H1 magnitude % in 100ths 4403 H9 angle with reference to H9 Va angle In 10ths of degrees 4404 H10 magnitude as a percent of H1 magnitude % in 100ths H10 angle with reference to H10 Va angle 4405 In 10ths of degrees 4406 H11 magnitude as a percent of H1 magnitude % in 100ths 4407 H11 angle with reference to H11 Va angle In 10ths of degrees 4408 H12 magnitude as a percent of H1 magnitude % in 100ths H12 angle with reference to H12 Va angle 4409 In 10ths of degrees 4410 H13 magnitude as a percent of H1 magnitude % in 100ths 4411 H13 angle with reference to H13 Va angle In 10ths of degrees 4412 H14 magnitude as a percent of H1 magnitude % in 100ths

© 1999 Square D Company All Rights Reserved

Units % in 100ths 0 to 32767 In 10ths of degrees 0 to 32767 % in 100ths In 10ths of degrees % in 100ths 0 to 32767 In 10ths of degrees % in 100ths 0 to 3276 In 10ths of degrees % in 100ths 0 to 32767 In 10ths of degrees % in 100ths 0 to 32767 In 10ths of degrees % in 100ths 0 to 32767 In 10ths of degrees 0 to 32767 % in 100ths In 10ths of degrees % in 100ths 0 to 32767 In 10ths of degrees % in 100ths 0 to 32767 In 10ths of degrees % in 100ths 0 to 32767 In 10ths of degrees % in 100ths 0 to 32767 In 10ths of degrees % in 100ths 0 to 32767 In 10ths of degrees

## Range

0

0

0

0

0

0

0

0

0

0

Appendix B—Abbreviated Register Listing

<u>Reg. No.</u>	Description
4413	H14 angle with reference to H14 Va angle
4414	H15 magnitude as a percent of H1 magnitude
4415	H15 angle with reference to H15 Va angle
4416	H16 magnitude as a percent of H1 magnitude
4417	H16 angle with reference to H16 Va angle
4418	H17 magnitude as a percent of H1 magnitude
4419	H17 angle with reference to H17 Va angle
4420	H18 magnitude as a percent of H1 magnitude
4421	H18 angle with reference to H18 Va angle
4422	H19 magnitude as a percent of H1 magnitude
4423	H19 angle with reference to H19 Va angle
4424	H20 magnitude as a percent of H1 magnitude
4425	H20 angle with reference to H20 Va angle
4426	H21 magnitude as a percent of H1 magnitude
4427	H21 angle with reference to H21 Va angle
4428	H22 magnitude as a percent of H1 magnitude
4429	H22 angle with reference to H22 Va angle
4430	H23 magnitude as a percent of H1 magnitude
4431	H23 angle with reference to H23 Va angle
4432	H24 magnitude as a percent of H1 magnitude
4433	H24 angle with reference to H24 Va angle
4434	H25 magnitude as a percent of H1 magnitude
4435	H25 angle with reference to H25 Va angle
4436	H26 magnitude as a percent of H1 magnitude
4437	H26 angle with reference to H26 Va angle
4438	H27 magnitude as a percent of H1 magnitude
4439	H27 angle with reference to H27 Va angle
4440	H28 magnitude as a percent of H1 magnitude
4441	H28 angle with reference to H28 Va angle
4442	H29 magnitude as a percent of H1 magnitude
4443	H29 angle with reference to H29 Va angle
4444	H30 magnitude as a percent of H1 magnitude
4445	H30 angle with reference to H30 Va angle
4446	H311 magnitude as a percent of H1 magnitude
4447	H311 angle with reference to H31 Va angle
	C
	$\mathbf{V}$
	•
	*

NN

<u>Units</u>	<u>Range</u>
n 10ths of degrees	0
% in 100ths	0 to 32767
n 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
n 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
n 10ths of degrees	0
% in 100ths	0 to 32767
n 10ths of degrees	0
% in 100ths	0 to 32767
n 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32767
In 10ths of degrees	0
% in 100ths	0 to 32/6/
In 10ths of degrees	0
% in 100ths	0 to 32/6/
In 10ths of degrees	0
% in 100ths	0 to 32/6/
In 10ths of degrees	0
	0 to 32/6/
	U
	0 to 32/6/
in rouns of degrees	U

© 1999 Square D Company All Rights Reserved -



# **APPENDIX C—CALCULATING LOG FILE SIZES**

This appendix tells how to calculate the approximate size of log files. To see if the log files you've set up will fit in the available logging memory, calculate the size of each event log, data log, waveform capture log, and extended event capture log using the worksheet on the following page. Then sum all log files to find the total space required. The total space required must be smaller than the numbers listed below:*

- CM-2150 and CM-2250 (standard, -512k, -1024k) —Sum of event log file and all data log files for standard, -512k, and -1024k must be smaller than 51,200, 313,344, and 575,488, respectively.
- **CM-2350** and **CM-2450** (standard, -512k, -1024k)—Sum of event log file, waveform capture log file, extended event capture, and all data log files for standard, -512k, and -1024k must be smaller than 51,200, 313,344, and 575,488, respectively.
- **CM-2452**—Sum of event log file, waveform capture log file, extended event capture, and all data log files must be smaller than 182,272.

**Note:** The log file worksheet will provide a close approximation of the required memory allocation. The memory allocation worksheet results may differ slightly from actual memory allocation requirements.

* Applies to circuit monitor series G4 or later

Data log 1	
Data log 2	
Data log 3	
Data log 4	
Data log 5	
Data log 6	
Data log 7	
Data log 8	
Data log 9	
Data log 10	
Data log 11	
Data log 12	
Data log 13	
Data log 14	
Ū.	
TOTAL	

#### Calculate the Size of the Event Log File

1. Multiply the maximum number of events by 8.

#### Calculate the Sizes of the Data Log Files

Repeat steps 2–7 for each data log file.

- 2. Multiply the number of cumulative energy readings by 4.
- 3. Multiply the number of incremental energy readings by 3.
- 4. Enter the number of non-energy meter readings.
- 5. Add lines 2, 3, and 4.
- 6. Add 3 to the value on line 5. (For date/time of each entry.)
- 7. Multiply line 6 by the maximum number of records in the data log file. Enter the result in the data log box to the left.
- 8. Repeat steps 2–7 for each data log file.
- $\rightarrow$  9. Total all data log files and enter the result here.

#### Calculate the Size of the Waveform Capture Log File

10. *For CM-2350s and higher only*, multiply the maximum number of waveform captures by 2,560. For CM-2150s and CM-2250s enter zero here.^①

#### Calculate the Size of the Extended Event Capture Log File

 For CM-2350s and higher only, for every 12 cycles, multiply by 6,400. (Example for 60 cycles: 5 x 6,400= 32,000.) For CM-2150s and CM-2250s enter zero here.^{^①}

# Total All Log Files

 Add lines 1, 9, 10, and 11. For standard CM-2150s, CM-2250s, CM-2350s, and CM-2450s, the total cannot exceed 51,200. For CM-2452s, the total cannot exceed 182,272. For models with the -512k option, the total cannot exceed 313,344. For models with the -1024k option, the total cannot exceed 575,488.

12. _____

2

3.

4.

6.

5.

9.____

10.

11. _____

① The CM-2150 does not provide waveform capture. The CM-2250 can store one 4-cycle waveform capture and one 12-cycle event capture, but these are stored in separate memory locations and do not affect the amount of memory available for event and data logging.

# **APPENDIX D—ALARM SETUP INFORMATION**

The circuit monitor is designed to handle a wide range of metering requirements. To handle very large and very small metering values, the circuit monitor uses scale factors to act as multipliers. These scale factors range from .001 up to 1000 and are expressed at powers of 10—for example,  $0.001 = 10^{-3}$ . These scale factors are necessary because the circuit monitor stores data in registers which are limited to integer to values between -32767 and +32767. When a value is either larger than 32767, or is a non-integer, it is expressed as an integer in the range of +/-32767 associated with a multiplier in the range of  $10^{-3}$  to  $10^{3}$ . For more information on scale factors see Setting Scale Factors for Extended Metering Ranges in Chapter 9.

When POWERLOGIC application software is used to set up alarms, it automatically handles the scaling of pickup and dropout setpoints.

When alarm setup is performed from the circuit monitor's front panel, the user must:

- determine how the corresponding metering value is scaled, and
- take the scale factor into account when entering alarm pickup and dropout settings.

Pickup and dropout settings must be integer values in the range of -32,767 to +32,767. For example, to set up an under voltage alarm for a 138 kV nominal system the user must decide upon a setpoint value, and then convert it into an integer between -32,767 and +32,767. If the under voltage setpoint were 125,000 V, this would typically be converted to 12500 x 10 and entered as a setpoint of 12500.

This section is for users who do not have POWERLOGIC software and must set up alarms from the circuit monitor front panel. It tells how to properly scale alarm setpoints.

The circuit monitor is equipped with a 6-digit LED display and a two LED's to indicate "Kilo" or "Mega" units, when applicable. When determining the proper scaling of an alarm setpoint first view the corresponding metering value. For example, for an "Over Current Phase A" alarm, view the Phase A Current. Observe the location of the decimal point in the displayed value and determine if either the "Kilo" or "Mega" light is turned on. This reading can be used to determine the scaling required for alarm setpoints.

The location of the decimal point in the displayed quantity indicates the resolution that is available on this metering quantity. There can be up to 3 digits to the right of the decimal point, indicating whether the quantity is stored in a register as thousandths, hundredths, tenths, or units. The "Kilo" or "Mega" LED indicates the engineering units—Kilowatts or Megawatts—that are applied to the quantity. The alarm setpoint value must use the same resolution as shown in the display.

© 1999 Square D Company All Rights Reserved

#### SCALING ALARM SETPOINTS

Bulletin No. 30 February 1999	20IM9806							L.
		For example, of factor is 1.000- enter the alarr define a power cates lag).	consider —meanin n setpoir er factor s	a power ng that tl nts as int setpoint o	factor alarm. I ne power facto eger values in of 0.85 lagging	f the 3-phase a r is stored in th thousandths. T , enter -850 (the	verage power iousandths— 'herefore, to e "-" sign indi-	5
For another example V _{A-B} reading is disp the setpoints in hund 125,000 volts, enter 1 convert 125,000 volts				e, consider a "Phase A-B Undervoltage" alarm. If the played as 138.00 with the Kilo LED turned on, then enter dredths of kilovolts. Therefore, to define a setpoint of 12,500 (hundredths of kV). To arrive at this value, first s to 125.00 kilovolts; then multiply by 100.				
ALARM CON AND ALARM	NDITIONS NUMBERS	This section lists the circuit monitor's predefined alarm conditions. For each alarm condition, the following information is provided.						
		Alarm No.		A code 1	number used f	to refer to indi	vidual alarms	
		Alarm Descr	iption	A brief d	description of	the alarm con	dition	
		Test Register	ſ	The regi applicat son to a	ster number t ple) that is use larm pickup a	hat contains tl d as the basis nd dropout se	ne value (where for a compari- ttings.	
		Units		The unit settings	s that apply t	o the pickup a	nd dropout	
		Scale Group	$\sim$	The Scal metering Groups, <b>Meterin</b>	e Group that g value (A–F). see <b>Setting S</b> g Ranges in C	applies to the For a descrip <b>cale Factors fo</b> Chapter 9.	test register's tion of Scale or Extended	
		Alarm Type		A refere operatic descript <b>Definiti</b>	nce to a definition and configu- ion of alarm t ons, page 121	ition providin iration of the a ypes, refer to a	g details on the ılarm. For a <b>Alarm Type</b>	
Alarm No.	Alarm Description		Test Reg	ister	<u>Units</u>	Scale Group	Alarm Type	
01	Over Current Phase A		1003		Amps	A	А	
02	Over Current Phase B		1004		Amps	A	A	
03	Over Current Phase C		1005		Amps	A	A	
04	Over Current Neutral		1006		Amps	В	A	
05	Under Current Bhase A		1007		Amps		A	
00	Under Current Phase P	ι {	1003		Amps	A	D R	
08	Under Current Phase C	, ,	1004		Amps	A	R	
09	Current Unbalance Pha	ase A	1010		Tenths %		A	
10	Current Unbalance Pha	ase B	1011		Tenths %		A	
11	Current Unbalance Pha	ase C	1012		Tenths %		A	
12	Phase Loss, Current		2122		Tenths %		С	
13	Over Voltage Phase A		1018		Volts	D	А	
14	• Over Voltage Phase B		1019		Volts	D	А	
15	Over Voltage Phase C		1020		Volts	D	А	

Appendix D—Alarm Setup Information

Alarm No.	Alarm Description	<u>Fest Register</u>	Units	Scale Group	Alarr
16	Over Voltage Phase A-B	1014	Volts	D	
17	Over Voltage Phase B-C	1015	Volts	D	
18	Over Voltage Phase C-A	1016	Volts	D	
19	Under Voltage Phase A	1018	Volts	В	
20	Under Voltage Phase B	1019	Volts	В	
21	Under Voltage Phase C	1020	Volts	В	
22	Under Voltage Phase A-B	1014	Volts	В	
23	Under Voltage Phase B-C	1015	Volts	В	
24	Under Voltage Phase C-A	1016	Volts	В	
25	Voltage Unbalance A	1026	Tenths %		
26	Voltage Unbalance B	1027	Tenths %		
27	Voltage Unbalance C	1028	Tenths %		
28	Voltage Unbalance A-B	1022	Tenths %		
29	Voltage Unbalance B-C	1023	Tenths %		
30	Voltage Unbalance C-A	1024	Tenths %		
31	Voltage Loss (Loss of A B or C but not	all) 2122	Volts	П	
32	Over $k/A$ 3-Phase Total	1050		E	
32	Over KW Into the Load 2 Phase Total	1030	KVA KM		
33 34	Over KW Out of the Load 2 Phase Total	1042			
34	Over KV Out of the Load 3 Phase Total	1042			
35	Over KVAR Into the Load 3-Phase Total	1046	KVAR	E	
36	Over KVAR Out of the Load 3-Phase Tota	al 1046	KVAR	E	
37	Over Current Demand Phase A	1701	Amps	A	
38	Over Current Demand Phase B	1702	Amps	A	
39	Over Current Demand Phase C	1703	Amps	A	
40	Over Current Demand 3-phase Total	1700	Amps	A	
41	Over Frequency	1001	Hundredths of Hertz	r F	
42	Under Frequency	1001	Hundredths of Hertz	r F	
43	Lagging True Power Factor	1034	Thousandths		
44	Leading True Power Factor	1034	Thousandths		
45	Lagging Displacement Power Factor	1038	Thousandths		
46	Leading Displacement Power Factor	1038	Thousandths		
47	Suspended Sag/Swell				
48	Reserved				
49	Over Value THD Current Phase A	1051	Tenths %		
50	Over Value THD Current Phase B	1052	Tenths %		
51	Over Value THD Current Phase C	1053	Tenths %		
52	Over Value THD Voltage Phase A-N	1055	Tenths %		
53	Over Value THD Voltage Phase B-N	1056	Tenths %		
54	Over Value THD Voltage Phase C-N	1057	Tenths %		
55	Over Value THD Voltage Phase A-B	1058	Tenths %		
56	Over Value THD Voltage Phase B-C	1059	Tenths %		
57	Over Value THD Voltage Phase C-A	1060	Tenths %		
58	Over K-Factor Phase A	1071	Tenths %		
59	Over K-Factor Phase B	1072	Tenths %		
60	Over K-Eactor Phase C	1072	Tenths %		
61	Over Predicted k\/A Domand	17/8		F	
60 ·		1740			
02		1740			
03	Over Predicied KVAR Demand	1722	KVAK		
64	Over kVA Demana Level 1	1/33	KVA	E	
65	Over KVA Demand Level 2	1733	KVA	E	
66	Over KVA Demand Level 3	1733	ĸVA	E	
67	Over KW Demand Level 1	1731	kW	E	
	© 1999 Square F	Company All F	Rights Reserved ———		

letin No. 30 ruary 1999	20IM9806				
larm No.	Alarm Description	Test Register	<u>Units</u>	Scale Group	Alarm Type
68	Over KW Demand Level 2	1731	kW	E	G
69	Over KW Demand Level 3	1731	kW	E	G
70	Over kVAR Demand	1732	kVAR	E	G
71	Over Lagging 3-phase Avg. Power Facto	r 1730	Thousandths		н 🔷
72	Under 3-Phase Total Real Power	1042	kW	E	
73	Over Reverse 3-Phase Power	1042	kW	E	
74	Phase Reversal	1117			К
75	Status Input 1 Transition from Off to On				L
76	Status Input 2 Transition from Off to On				L
77	Status Input 3 Transition from Off to On				L
78	Status Input 4 Transition from Off to On				L
79	Status Input 5 Transition from Off to On				L
80	Status Input 6 Transition from Off to On				L
81	Status Input 7 Transition from Off to On				L
82	Status Input 8 Transition from Off to On				L
83	Status Input 1 Transition from On to Off			<b>F</b>	M
84	Status Input 2 Transition from On to Off				M
85	Status Input 3 Transition from On to Off				M
86	Status Input 4 Transition from On to Off				M
87	Status Input 5 Transition from On to Off		X		Μ
88	Status Input 6 Transition from On to Off				M
89	Status Input 7 Transition from On to Off				Μ
90	Status Input 8 Transition from On to Off				Μ
91–98	Reserved				
99	End of Incremental Energy Interval				N
100	Power-Up/Reset				0
101	End of Demand Interval				N
102	End of Update Cycle				N
103	Over Analog Input Channel 1	1191	Integer Value		Р
104	Over Analog Input Channel 2	1192	Integer Value		Р
105	Over Analog Input Channel 3	1193	Integer Value		Р
106	Over Analog Input Channel 4	1194	Integer Value		Р
107	Under Analog Input Channel 1	1191	Integer Value		Q
108	Under Analog Input Channel 2	1192	Integer Value		Q
109	Under Analog Input Channel 3	1193	Integer Value		Q
110	Under Analog Input Channel 4	1194	Integer Value		Q
111-120	Reserved				
201	Voltage Swell A-N/A-B		Volts	D	R
202	Voltage Swell B-N		Volts	D	R
203	Voltage Swell C-N/C-B		Volts	D	R
204	Current Swell Phase A		Amps	A	R
205	Current Swell Phase B		Amps	A	R
206	Current Swell Phase C		Amps	A	R
207	Current Swell Neutral		Amps	В	R
208	Voltage Sag A-N/A-B		Volts	D	S
209	Voltage Sag B-N		Volts	D	S
210	Voltage Sag C-N/C-B		Volts	D	S
211	Current Sag Phase A		Amps	A	S
212	Current Sag Phase B		Amps	А	S
040	Current Sag Phase C		Amps	Δ	S
213	Ourion oug i naso o		70005	73	Ũ

# Appendix D—Alarm Setup Information

#### **ALARM TYPE DEFINITIONS**

<u>Alarm Type</u>	Alarm Description	Alarm Operation
A	Over Value Alarm	If the test register value exceeds the setpoint long enough to satisfy the pickup delay period, the alarm condition will be true. When the value in the test register falls below the dropout setpoint long enough to satisfy the dropout delay period, the alarm will dropout. Pickup and Dropout setpoints are positive, delays are in seconds.
В	Under Value Alarm	If the test register value is below the setpoint long enough to satisfy the pickup delay period, the alarm condition will be true. When the value in the test register rises above the dropout setpoint long enough to satisfy the dropout delay period, the alarm will dropout. Pickup and Dropout setpoints are positive, delays are in seconds.
С	Phase Loss, Current	The unbalance current alarm will occur when the percentage of the smallest phase current divided by the largest phase current is below the percentage pickup value, and remains at or below the pickup value long enough to satisfy the specified pickup delay in seconds. When the percentage of the smallest phase current divided by the largest phase current remains above the dropout value for the specified dropout delay period, the alarm will dropout. Pickup and Dropout setpoints are positive, delays are in seconds.
D	Phase Loss, Voltage	The Phase Loss Voltage alarm will occur when any one or two phase voltages (but not all) fall to the pickup value and remain at or below the pickup value long enough to satisfy the specified pickup delay. When all of the phases remain at or above the dropout value for the dropout delay period, or when all of the phases drop below the specified phase loss pickup value, the alarm will dropout. Pickup and Dropout setpoints are positive, delays are in seconds.
E	Lagging P.F.	The Lagging Power Factor alarm will occur when the test register value becomes more lagging than the pickup setpoint (i.e. closer to -0.010) and remains more lagging long enough to satisfy the pickup delay period. When the value becomes equal to or less lagging than the dropout setpoint (i.e. closer to 1.000) and remains less lagging for the dropout delay period, the alarm will dropout. Pickup setpoint must be negative. Dropout setpoint can be negative or positive. Enter setpoints as integer values representing power factor in thousandths. For example, to define a dropout setpoint of -0.5, enter -500. Delays are in seconds.
F	Leading P.F.	The Leading Power Factor alarm will occur when the test register value becomes more leading than the pickup setpoint (i.e. closer to 0.010) and remains more leading long enough to satisfy the pickup delay period. When the value becomes equal to or less leading than the dropout setpoint (i.e. closer to 1.000) and remains less leading for the dropout delay period, the alarm will dropout. Pickup setpoint must be positive. Dropout setpoint can be positive or negative. Enter setpoints as integer values representing power factor in thousandths. For example, to define a dropout setpoint of -0.5, enter -500. Delays are in seconds.
G	Over Power Demand	The over power demand alarms will occur when the test register's absolute value exceeds the pickup setpoint and remains above the pickup setpoint long enough to satisfy the pickup delay period. When the absolute value drops to below the dropout setpoint and remains below the setpoint long enough to satisfy the dropout delay period, the alarm will dropout. Pickup and Dropout setpoints are positive, delays are in seconds.

larm Type	Alarm Description	Alarm Operation	
Н	Over Lagging Average P.F.	The Over lagging 3-phase Average P.F. will occur when the tes less leading than the pickup setpoint and remains less leading f pickup delay period. When the value becomes less lagging than dropout setpoint and remains less lagging for the dropout delay will dropout. If a leading P.F. is selected for the pickup setpoint positive P.F.), then the alarm will be active for any lagging P.F. leading P.F. between the pickup setpoint and unity. Pickup and setpoints can be positive or negative; delays are in seconds. En setpoints as integer values representing power factor in thousan example, to define a dropout setpoint of -0.5, enter -500	t register is or the the alarm (that is, a or for any Dropout ter ndths. For
		<b>Note</b> : This alarm condition is based on the average power factor last demand interval—not instantaneous power factor.	r over the
I	Under Power	The Under power alarm will occur when the test register's absol is below the pickup setpoint and remains below the pickup setpoint enough to satisfy the pickup delay period. When the absolute variabove the dropout setpoint and remains above the setpoint long satisfy the dropout delay period, the alarm will dropout. Pickup a Dropout setpoints are positive, delays are in seconds.	ute value bint long alue rises genough to and
J	Over Reverse Power	The over reverse power alarm will occur when the test register's value exceeds the pickup setpoint and remains above the pickup long enough to satisfy the pickup delay period. When the absolut drops to below the dropout setpoint and remains below the setp enough to satisfy the dropout delay period, the alarm will dropout alarm will only hold true for Reverse Power conditions, i.e. any power value will not cause the alarm to occur. Pickup and Dropout setpoints are positive, delays are in seconds.	absolute p setpoint ute value oint long ut. This positive put
К	Phase Reversal	Once enabled the phase reversal alarm will occur whenever the voltage waveform rotation differs from the default phase rotation assumed that an ABC phase rotation is normal. If a CBA norma rotation is normal, the user should reprogram the circuit monitor rotation from ABC (default) to CBA phase rotation. The pickup a dropout setpoints and delays for phase reversal do not apply.	phase h. It is I phase 's phase nd
L	Status Input Transitions Off to On	The Status Input transitions alarms will occur whenever the stat changes from off to on. The alarm requires no pickup or dropou or delays. The Alarm will dropout when the status input changes off from on. The pickup and dropout setpoints and delays do no	us input t setpoints s back to t apply.
Μ	Status Input Transitions On to Off	The Status Input transitions alarms will occur whenever the stat changes from on to off. The alarm requires no pickup or dropou or delays. The alarm will dropout when the status input changes on from off. The pickup and dropout setpoints and delays do no	us input t setpoints s back to t apply.
Ν	End Of Interval/Update Cycle	The End of Interval alarms mark the end of an interval, or updat The pickup and dropout setpoints and delays do not apply.	e cycle.
0	Power-Up/Reset	The Power-Up/Reset alarm marks any time the circuit monitor p or resets. The pickup and dropout setpoints and delays do not a	owers up pply.
P	Over Analog	The Over Analog alarms will occur whenever the test register var more positive than the pickup setpoint (or less negative) and ren greater than the pickup long enough to satisfy the pickup delay. value becomes less positive than the dropout setpoint (or more and remains below the setpoint long enough to satisfy the dropout the alarm will dropout. Pickup and Dropout setpoints can be posi- negative, delays are in seconds.	alue is mains When the negative) but delay, sitive or

6

# Appendix D—Alarm Setup Information

<u>Alarm Type</u>	Alarm Description	Alarm Operation	$\mathbf{C}$
Q	Under Analog	The Under Analog alarms will occur whenever less positive than the pickup setpoint (or more than the pickup long enough to satisfy the pic becomes more positive than the dropout setp remains above the setpoint long enough to sa alarm will dropout. Pickup and Dropout setpo negative, delays are in seconds.	er the test register value is e negative) and remains less skup delay. When the oint (or less negative) and atisfy the dropout delay, the ints can be positive or
R	Voltage/Current Swell	The Voltage and Current Swell alarms will oc RMS calculation is above the pickup setpoint pickup setpoint for the specified number of cy RMS calculations fall below the dropout setpo setpoint for the specified number of cycles, th and Dropout setpoints are positive, delays are	cur whenever the continuous and remains above the cles. When the continuous bint and remain below the le alarm will drop out. Pickup e in cycles.
S	Voltage/Current Sag	The Voltage and Current Sag alarms will occur RMS calculation is below the pickup setpoint pickup setpoint for the specified number of cy RMS calculations rise above the dropout setp setpoint for the specified number of cycles, the and Dropout setpoints are positive, delays are	ur whenever the continuous and remains below the rcles. When the continuous point and remain above the le alarm will drop out. Pickup e in cycles.
T	Suspended Sag/Swell	The suspended sag/swell alarm will occur wh of current or voltage sag/swell alarms occur, alarm setpoints. If more than six of any one ty occurs within 500 ms, the disturbance monitor monitor will be suspended for approximately detection will then resume. If the disturbance suspended a second time, the user will have enable the sag/swell alarms.	enever an excessive amount typically due to erroneous ope of sag or swell alarm ring detection in the circuit 8 seconds. The disturbance detection is immediately to clear register 2038 and re-
<u></u>	© ′	1999 Square D Company All Rights Reserved —	123



# **APPENDIX E—READING AND WRITING REGISTERS FROM THE FRONT PANEL**

The circuit monitor provides four setup modes: Configuration mode, Resets mode, Alarm/Relay mode, and Diagnostics mode. (See **The Setup Mode** in **Chapter 4** of the *Circuit Monitor Installation and Operation Bulletin* for a description of the first three of these modes.) This appendix tells how to use the Diagnostics mode.

The Diagnostics mode lets you read and write circuit monitor registers, from the front panel. This capability is most useful to users who 1) need to set up an advanced feature which *cannot* be set up using the circuit monitor's normal front panel setup mode, and 2) do not have access to POWERLOGIC software to set up the feature.

For example, the default operating mode for a circuit monitor relay output is *normal*. To change a relay's operating mode from normal to some other mode (for example, latched mode), you'd need to use either POWERLOGIC software or the Diagnostics setup mode.

*Note:* Use this feature with caution. Writing an incorrect value, or writing to the wrong register could cause the circuit monitor to operate incorrectly.

To read and/or write registers, complete the following steps:

- 1 Press the MODE button until the red LED next to [Setup] is lit. The circuit monitor displays "ConFig."
- 2. Press the down arrow SELECT METER [Value] button until "diAg" is displayed.
  - Press the PHASE [Enter] button to select the Diagnostics mode.

The circuit monitor displays the password prompt "P - - - -."

Enter the master password.

To enter the password, use the SELECT METER [Value] buttons to increase or decrease the displayed value until it reaches the password value. Then press the PHASE [Enter] button.

The circuit monitor display alternates between "rEg No" (an abbreviation for register number) and "1000" (the lowest available register number).

- 5. Use the SELECT METER [Value] buttons to increase or decrease the displayed register number until it reaches the desired number.
- 6. Press the PHASE [Enter] button.

The circuit monitor reads the register, then alternately displays the register number (in the format r.xxxx) and the register contents (as a decimal value). If you are viewing a metered value, such as voltage, the circuit monitor updates the displayed value as the register contents change. (Note that scale factors are not taken into account automatically when viewing register contents.)

© 1999 Square D Company All Rights Reserved

- 7. To read another register, press the MODE button, then repeat steps 5 and 6 above.
- 8. To write to a register, continue with step 9 below.

*Note: Some circuit monitor registers are* read/write, *some are* read only. *You can write to read/write registers only.* 

- 9. Use the SELECT METER [Value] buttons to increase or decrease the displayed register number until it reaches the register you'd like to write.
- 10. Press the PHASE [Enter] button.

The circuit monitor alternately displays the register number and the register contents (as a decimal value).

11. Use the SELECT METER [Value] buttons to increase or decrease the displayed decimal value until it reaches the value you'd like to write.

If you've accidentally selected a *read only* register, the circuit monitor will not allow you to change the value.

12. Press the MODE button.

The circuit monitor displays "No."

- 13. To abort the register write, press the PHASE [Enter] button.
- 14. To write the value, press the up arrow SELECT METER [Value] button to change from "No" to "Yes." Then press the PHASE [Enter] button. The display flashes, indicating that the value has been written, then returns to the register number.
- 15. To write another register, repeat steps 9–14 above.
- 16. To leave the Diagnostics mode, press the MODE button while the circuit monitor displays "rEg No."

*Note:* You can use the diagnostics mode to execute commands using the circuit monitor's command interface. First, write the desired values to the command parameter registers. Then, write the code to execute the command. See **The** *Command Interface in Chapter 9* for a description of the command interface.

#### INDEX

# A

Abbreviated register listing 83 Advanced topics 61–76 Alarm conditions and numbers 118 setup information 117 type definitions 121 Alarm conditions and alarm numbers 118 Alarm Functions 31 Alarm setpoints scaling 117-118 Alarm setup 117 Alarm type definitions 121 Alarms sag/swell 55 Setpoint-driven 31 Alternate VAR sign convention 11 Analog inputs 20 Analog outputs 29

# В

Block/rolling command, changing the 75

# С

CAB-102, CAB-104 81 CAB-107 81 CAB-108 81 Calculating log file sizes 115 CC-100 81 Changing the VAR sign convention Circuit monitor configuration values 96 description 1 electromagnetic phenomena measurement 51 feature comparison 3, 4, 5 instrumentation 3 types 3 utility registers 104 waveform capture, setting up for 42 CM-2452 application examples 60 Command codes 62 Command interface 61 control 73 Command interface control 73 Command interface, operating relays using the 64 Communication cable pinouts 81 Communications link, controlling demand interval 76 Conditional energy 73

# D

Data logging 38 alarm-driven entries organized files 38 storage considerations 39 Date and time, setting using command interface 69 De-energizing a relay 64 Default VAR sign convention 11 Demand calculation method, changing the 75 Demand interval over the comms link, controlling 76 Demand readings generic demand 14 peak demand 13 predicted demand 13 voltage demand 14 Demand synch pulse input 19 Demand synch pulse input, setting up a 76 Developer's kit 60 Disturbance monitoring 49 high-speed event log entries 57 sag/swell alarms 55 voltage sag/swell 50

# Е

Energizing a relay 64 Energy readings 14 Event log high speed entries 57 storage 37 Extended event capture 44 Extended metering ranges, setting scale factors fo 66

# F

Fax-On-Demand 7 Front panel reading and writing from the 125

# G

Generic demand 14

## Н

Harmonic calculations, setting up individual 77 High-speed event log entries 57 How power factor is stored 71

#### I

Incremental energy 74 using 74 Input modules 17 Interface command 61 Introduction 1

## L

Log file sizes, calculating 115 Logging 37–40 data 38 event 37 maintenance 40

#### Μ

Maintenance log 40 Memory allocation 69 Memory configuration example 71 Metering capabilities 9 Min/max power factor conventions 10 values 10 Min/max values 10 Monitoring, disturbance 49 Multiple waveform retrieval using SMS-3000, SMS-1500, or PMX-1500 56 using SMS-770, SMS-700, EXP-550, or EXP-500 56

#### 0

Operating relays using command interface 64 Output modules 17 Overriding an ouput relay 65

#### Ρ

Peak demand 13 Pinouts communications pinouts 81 Power analysis values 15, 16 Power factor, how it is stored 71 Power factor min/max conventions 10 Predicted demand 13 Programming language 59–60 Pulse counting example 78 Pulse demand metering via status input 78

#### R

Reading and writing registers from the front panel 125 Readings demand 12 energy 14 real-time 9 Real-time readings 9 Register listing 83 analog input configuration 103 analog input max 89 analog input min 86 analog input present value 86 analog output configuration 102 circuit monitor utility 104 CM configuration values 96 date/time (compressed) 91 date/time (expanded) 92 demand values 90 energy values 89 KYZ and relay outputs 94 neutral current 112 phase A current 107 phase A voltage 106 phase B current 109 phase B voltage 108 phase C current 111 phase C voltage 110 real time metered values maximum 88 real time metered values minimum 86 sag/swell event 101 status input pulse demand metering 104 status inputs 93 **Register listings** spectral components 106 Registers reading and writing from front panel 125 Related documents 7 Relav setpoint-controlled functions 33 Relay, de-energizing a 64 Relay, energizing a 64 Relay output operating modes 22 Relay, overriding an output 65 Relay, releasing an overridden 65 Relay, setting up for CM (internal) control 65 Releasing and overridden relay 65

#### S

Safety precautions 5, 6 Sag/swell alarms 55 Scaling alarm setpoints 117 Setpoint controlled relay functions 25 Setpoint-controlled relay functions 33 Setting scale factors for extended metering ranges 66 Setting the date and time using the command interf 69 Setting up relays for CM (internal) control 65 Setting up relays for remote (external) control 64 Setup alarm 117 Software instruction bulletins 7 Status input pulse demand metering 78 Status input control 73

#### V

VAR sign convention alternate 11 default 11, 72 optional 72 VAR sign convention, changing the 72 Voltage demand 14 Voltage sag/swell 50

#### W

Waveform capture 41-47 4-cycle automatic 41 manual 41 CM-2452 memory allocation (12-cycle) 55 extended event automatic (high-speed trigger) 44 automatic (standard setpoint) 46 manual 44 storage 47 high-speed trigger multiple setup using SMS-3000, SMS-1500, or PMX-1500 52 using SMS-770, SMS-700, EXP-550, or EXP-500 54 setting up circuit monitor for 42 storage 43 Waveform storage 43



Square D Company 295 Tech Park Dr., Suite 100 LaVergne, TN 37086 USA Printed in USA

Order No. 3020IM9806 (Replaces 3020IM9301R10/97 dated January 1998)

