

Westinghouse I.L. 41-945.51K INSTALLATION • OPERATION • MAINTENANCE

TYPE TCF POWER LINE CARRIER FREQUENCY-SHIFT RECEIVER EQUIPMENT-TRANSFER TRIP

Caution: It is recommended that the user of this equipment become acquainted with the information in this instruction leaflet and in the system instruction leaflet before energizing the system.

> Printed circuit modules should not be removed or inserted when the relay is energized. Failure to observe this precaution can result in an undesired tripping output and cause component damage.

If the carrier set is mounted in a cabinet, it must be bolted down to the floor or otherwise secured before swinging out the equipment rack to prevent its tipping over.

APPLICATION

The TCF frequency-shift receiver equipment as adapted for transfer-trip applications responds to carrier-frequency signals transmitted from the distant end of a power line and carried on the power line conductors. The Guard signal is transmitted continuously when conditions are normal. Its reception indicates that the channel is operative and that there is no fault in the protected equipment. The Guard frequency is 100 hertz above the center frequency of the channel. When a fault occurs at the distant end of the power line protective relays switch the transmitter located there to a Trip frequency, 100 hertz below the center frequency, and may also increase the power output of the transmitter (from 1 watt to 10 watts).

The reception of Trip frequency within a fixed interval after disappearance of the Guard frequency causes the energization of a high-speed electromechanical relay which closes the breaker trip circuit. If trip frequency is not received within this interval, the channel is not operating normally and a second relay closes contacts to sound an alarm. Simultaneously, the Trip relay is locked out so that a spurious Trip signal resulting later from line noise cannot cause false tripping. Other circuitry, described under OPERATION, provides security against false tripping caused by severe line noise that overrides a normal Guard signal and produces a spurious Trip signal.

CONSTRUCTION

The TCF receiver unit for transfer-trip applications is mounted on a standard 19-inch wide panel 10½ inches high (6 rack units) with edge slots for mounting on a standard relay rack. All components are mounted at the rear of the panel. Fuses, a pilot light, a power switch, an input attenuator, a jack for metering the discriminator output current, and the control for the adjustable time delay in the logic circuit are accessible from the front of the panel. See Fig. No. 14

All of the circuitry that is suitable for mounting on printed circuit boards is contained in an enclosure that projects from the rear of the panel and is accessible by opening a hinged door on the front of the panel. Other components on the rear of the panel are located as shown on Fig. No. 6. Reference to the internal schematic connections on Fig. 1 will show the location of these components in the circuit. The dotted lines enclosing separate areas of Fig. 1 indicate that the components thus enclosed are all on the same printed circuit board.

The enclosure that contains the printed circuit boards is divided into seven compartments. The partitions between compartments together with the outer walls of the enclosure provide complete shielding between adjacent boards and from external fields. Frequency shift receivers for transfer-trip relaying utilize all compartments if a carrier level indicator is provided. If this is omitted, the compartment on the extreme right, front view, is left vacant. In frequency shift receivers for applications other than transfer-trip relaying, the logic circuitry is not required and the fifth compartment from the left is vacant in such cases.

The printed circuit boards slide into position in slotted guides at the top and bottom of each compartment, and the board terminals engage a terminal block at the rear of the compartment. Each board and

SUPERSEDES I.L. 41-945.51J

*Denotes change from superseded issue.

terminal block are keyed so that if a board is placed in the wrong compartment, it cannot be inserted into the terminal block. A handle on the front of each board is labeled to identify its function in the circuit.

A board extender (Style No. 644B315G01) is available for facilitating circuit voltage measurements or major adjustments. After withdrawing any one of the circuit boards, the extender is inserted in that compartment. The board then is inserted into the terminal block on the front of the extender. This restores all circuit connections, and all components and test points on the board are readily accessible.

A portion of the receiver operates from a regulated 20 VDC supply, and the remainder from a regulated 45 V.D.C. supply. These voltages are taken from two Zener diodes mounted on a common heat sink. Variation of the resistance value between the positive side of the unregulated D.C. supply and the 45 volt Zener adapt the receiver for operation on 48, 125, or 250 V.D.C.

External connections to the receiver are made through a 24-circuit receptacle, J3 (see Fig. 1). The r-f input connection to the receiver is made through a coaxial cable jack, J2.

OPERATION

Input Control

The signals to which the TCF receiver responds are received through a coaxial cable connected to jack J2 of Fig. No. 1. Resistor R4 and 20-volt Zener diodes CR1 and CR2 protect the receiver from abnormally high voltages received through the coaxial cable. Input attenuator R5 reduces the signal to a level suitable for best operation of the receiver. The attenuator is adjustable from the front of the panel and can be clamped at the desired setting. A scale on the panel is graduated in db. While this scale is typical rather than individually calibrated, it is accurate within one or two db. and is useful in setting approximate levels. Settings should be made by observation of the db. scale of a suitable a-c voltmeter when possible.

Crystal Filter

From the attenuator, the signal passes through a crystal filter, FL1. This filter has a narrow pass band, and frequencies several hundred cycles above or below the center frequency (fc) of the channel are greatly attenuated. Fig. 4 shows a typical curve for the crystal filter, as well as a characteristic curve for the intermediate frequency filter, FL2, and for the discriminator output. The narrow pass band of FL1 permits close spacing of channel frequencies and reduces the possibility of false operation caused by spurious signals such as may result from arcing disconnects or corona discharge.

Oscillator and Mixer

From the crystal filter, the signal enters the oscillator and mixer stage of the receiver. Crystal Y11, transistors Q12 and Q13, or IC201 (Fig. 16) and their associated resistors and capacitors, comprise a crystal-controlled oscillator that operates at a frequency 20 kHz above the channel frequency, fc. The output from this local oscillator is fed through transformer T11 to potentiometer R12, and the later is adjusted to feed a suitable input to the base of mixer transistor Q11. The output of FL1 is impressed on the emitter-collector circuit of Q11. As the result of mixing these two frequencies, the primary of transformer T12 will contain frequencies of $^{+}20$ kHz, 2fc + 20kHz, fc + 20kHz and fc.

IF Amplifier

The output from the secondary of T12 is amplified by Q31, in the intermediate frequency amplifier stage, and is impressed on filter FL2. This is a two-section filter, with both filters contained in a common case. Its pass band is centered at 20kHz. While its passband is much wider than that of the crystal filter, it eliminates the frequencies present at its input that are substantially higher than 20kHz.

Amplifier and Limiter

The output from the second section of the IF amplifier stage is fed to potentiometer R52 at the input of the amplifier and limiter stage. Sufficient input is taken from R52 so that with minimum input signal (5 mv.) at J2 and with R5 set for zero attenuation, satisfactory amplitude limiting will be obtained at the output of the limiter stage.

Discriminator

The output of the limiter stage is fed to the discriminator. The discriminator is adjusted at the factory to have zero output (as measured by a milliammeter inserted in the circuit at jack J1) at fc-25 hertz. The adjustment for zero output at fc-25 hertz is made by capacitor C88. C83 also is adjusted to obtain a maximum voltage reading across R84 when the current output is zero. Maximum current output, of opposite polarities, will be obtained when the frequency is 100 hertz above or below the zero output frequency. This separation of 200 hertz between the current peaks is affected by the value of C86, (the actual value of which may be changed slightly from its typical value in factory calibration if required.)

The purpose of offsetting the zero output frequency of the discriminator by 25 hertz in the Trip direction is to reduce the band of noise-generated trip frequencies (between the discriminator center frequency and the skirt of the FL1 filter), and to similarly increase the band of noise-generated frequencies on the Guard side of the discriminator center. It should be observed that although Guard frequency is fc + 100 hertz, after leaving the mixer stage and as seen by the discriminator the Guard frequency is 20 kHz-100 hertz. Similarly, the Trip frequency is 20 kHz + 100 hertz. The intermediate frequency at which the discriminator has zero output then is 20.025 kHz.

The discriminator output is connected to the bases of transistors Q81 and Q82 in such manner that Q82 is made conductive when current flows out of terminal 4 (which occurs with trip output) and Q81 is made conductive when current flows into terminal 4. Consequently, terminal 15 is at a potential of approximately \pm 20 volts at Guard frequency and terminal 11 is at \pm 20 volts at Trip frequency. These two outputs feed the logic circuit board, and through it they control the operation of the loss-ofchannel alarm relay, AL, and the Trip relay, AR.

As a means of increasing further the security of the receiver against false tripping on noise-generated Trip frequencies, diode CR84 is connected in the emitter circuit of Q82. This requires an increase of three or four db. in the minimum Trip signal that will pick up the Trip relay. However, when the transmitter is keyed to Trip, its output is increased by 10 db. to assure the reliability of tripping at times of severe channel deterioration or simultaneous noise conditions, and this amply compensates for the reduction of Trip sensitivity caused by diode CR84. For applications where severe noise conditions or channel deterioration are not encountered. a TCF transmitter with 1 watt output rather than 10 watts can be supplied. If in such installations it is found desirable to increase the reliability of tripping, a jumper may be connected across diode CR84.

Logic Circuits

The logic stage of the receiver employs static circuitry that permits elimination of separate guard and lockout relays but provides all of the function of these relays as well as a unique method for minimizing the effect of noise signals. The block diagram of the logic circuits is shown on Fig. 3. When the discriminator receives Guard signal, its output terminal (15) supplies positive potential to blocks A. D. and F on the block diagram. Block A represents R108, C101 and CR104 of Fig. 1. Capacitor C101 will charge in approximately 120 milliseconds to the breakdown voltage of Zener CR104 and block C (transistor Q102) then will receive input #1. The function of Q101 is not indicated on the block diagram, but it discharges C101 quickly when Guard signal disappears, so that the full 120 ms. delay is obtained on closely repetitive appearances of Guard signal. This avoids cancellation of a loss-of-channel alarm by noise-produced Guard signal.

When Q102 (block C) receives input #1 or #2, it is made conductive and capacitor C102 receives no charge. Q103 is non-conductive since it receives no base input through CR105, and its collector is held at approximately 10 volts by the voltage divider effect of R131 and R136. Note that under this condition, input #1 to block K is supplied. If Guard signal should disappear but be followed promptly by appearance of Trip signal, the trip input fed through R102 will not be diverted through CR102 to the collector of Q103 but will flow through CR101 to the base of Q102 to keep it conductive. However, if Guard signal disappears and Trip signal does not appear in approximately 150 ms., C102 will charge to the breakdown point of CR105, making Q103 conductive. This will remove base input from Q104 and the alarm relay will drop out, sounding the alarm through its normally-closed contacts. (The copper slug on the alarm relay adds an additional delay of approximately 40 ms. before the alarm contacts close.) When Q103 becomes conductive, the saturation voltage at its collector is so low that any current flowing through R102 as a result of a subsequent Trip signal will be diverted through Q103 to negative instead of flowing through CR101 and the base-emitter junction of Q102. If Guard signal reappears, the discriminator output at term. 15 will turn Q101 off. C101 will change and after 120 ms. it will reach the breakdown voltage of CR104 and turn Q102 on. This will allow C102 to quickly discharge through R123 and Q102 and provide the full 150 ms. time delay to be effective on any subsequent loss of guard signal.

TYPE TCF POWER LINE CARRIER

Guard signal also produces input to transistor Q109 (block D). With base input to Q109 it has negligible voltage on its collector, but if Guard signal is lost capacitor C104 will charge to the breakdown voltage of CR113 in a time ranging from about 2 to 20 ms., as determined by the setting of R7. This time delay also is quickly reset on reappearance of Guard signal, as C104 discharges through R114, CR113 and Q109. Transistors Q110 and Q111 are a part of logic block I. When C104 reaches the conduction voltage of CR113, Q110 conducts and removes base input from Q111. This raises the voltage on the collector of Q111 to about 15 volts, which constitutes input #2 to block K. The purpose of logic blocks D and I is to provide an adjustable delay between the loss of Guard signal and the pickup of the Trip relay. It is possible that a noise burst might momentarily cancel the Guard signal and produce a spurious Trip signal. Provision of this adjustable delay provides a considerable degree of protection against such incorrect operations. Resistor R7 is adjustable by means of a knob on the front of the panel, and the knob can be clamped at any desired setting.

When Trip signal appears, input is fed to transistor Q106 (block E) through R119. Under this condition Q106 becomes conducting and does not supply input #1 to Q107 (block J). If input #2 (supplied through R115) also is lacking for Q107, the latter is non-conductive and its collector voltage is approximately 15 volts. This constitutes input #3 to AND block K. Block K is a three-input diode-AND, with the inputs contributed by the collectors of transistors Q103, Q107 and Q111. When one or more of these transistors is conducting, input fed from the 45 volt supply through R138 cannot reach the base of Q108 to cause pickup of the Trip relay because the voltage drop across any of the three diodes plus the saturation resistance of a transistor is substantially less than the voltage drop across one diode (CR110) plus the base-emitter voltage required to make Q108 conductive.

The logic blocks F and G provide further protection against incorrect tripping under noise conditions. Transistor Q105 is represented by block F; and diode CR107; capacitor C103 and resistor R115 are represented by block G. Q105 receives input from either Trip or Guard signals through R101 or R106, and when either signal is present its collector voltage is a small fraction of a volt. When the transmitter is shifted from Guard to Trip by closure of a protective relay contact, the discriminator shifts its outputs very rapidly and the interval during which there is no input to Q105 is only 1.5 to 2.0 ms. Most of the charge that builds up in C103 during this interval flows to the base of Q107 and keeps it conducting after the appearance of Trip signal has removed the input through R125. However, this delay has approximately the same duration as the minimum delay obtained from block I and thus does not increase the minimum overall time for tripping following a legitimate Trip signal.

At times when severe random noise is present, such as might be produced by opening a nearby disconnect switch, the noise-produced signal may override the Guard signal and produce a discriminator output that no longer has a constant Guard output but rapidly fluctuates between Guard and Trip (and beyond). There will be relatively long periods when the discriminator has neither Guard nor Trip output. At such times capacitor C103 may approach or reach its maximum voltage, thereby keeping Q107 conducting for 40 to 50 ms. Also, because of the quick reset feature of logic block I, intermittent reappearance of Guard signal during noise will fully reactivate the time delay for which it has been set. If a fault should occur and Trip frequency be transmitted at a time when high level noise frequencies are present, tripping may be somewhat delayed but will be accomplished before the cessation of noise unless conditions are extremely severe. The recommended 10 db. increase of transmitter output level at Trip frequency minimizes such delay.

It may appear that the function of block E in the logic diagram is duplicated by block F and could have been omitted. This is correct when the time constants are as normally supplied, but block E was retained to make the circuit adaptable to possible extreme conditions with minimum change.

In summary, the logic circuit provides the following functions:

- 1. Energizes alarm in case of loss of signal.
- 2. Prevents cancellation of an alarm by noiseproduced signal.
- 3. Allows tripping upon reception of legitimate Trip signal.
- 4. Prevents tripping if channel is not operative immediately prior to reception of Trip signal.
- 5. Minimizes effect of noise-produced signals by utilizing noise characteristics to introduce additional Trip delay.

Output Circuits

The output stage of the receiver contains the alarm relay (AL) and the tripping relay (AR). Either relay is energized from the regulated 45 volt supply when the logic circuit has determined that the existing conditions require such operation. The AL relay is a telephone type relay with a copper slug on the end of the core opposite the armature. It has two sets of Form C contacts, all points of which are connected to terminals of jack J3. The AR relay has two normally-open and two normally-closed contacts. The two sets of normally-open contacts and one set of normally-closed contacts are connected to terminals of jack J3. The AR relay has been designed to provide very high speed operation with negligible contact bounce. While normally it is energized only briefly, it will not be damaged by continuous energization.

Carrier Level Indicator (When Supplied)

With the logic circuit connections shown on Fig. 1, the AL relay closes contacts to energize an alarm when there is absence of both Guard and Trip signal for a definite time interval. This is satisfactory when the channel fails suddenly and completely. However, the signal may weaken gradually from various causes, and it is desirable to have a means for providing a visual indication of the channel condition as well as for energizing an alarm when the signal has weakened seriously but has not reached the point of complete failure. These functions are provided if a carrier level indicator stage is included in the receiver.

The carrier level indicator is housed in the right-hand compartment of the enclosure that contains the circuit boards. Fig. 2 shows the connections of the components on this circuit board and also the external connections of the board. All other stages of the receiver are identical with those shown on Fig. 1. The same AL relay is used, but it is energized through transistor Q104 of the logic stage when the receiver does not include carrier level indication and through Q154 of the carrier level indicator when the latter is supplied. A TCF receiver in which the carrier level indicator was not included at time of assembly can have this feature added later by installing the printed circuit board and guides in the right hand compartment and making minor changes in the wiring.

The r.f. input to the carrier level indicator is taken from the collector of Q51, the first transistor in the amplifier and limiter stage. The input, which varies approximately as the signal at the receiver

input, is amplified by Q151 and Q152. Diodes CR151 and CR152 together with capacitors C157 and C158 establish a d-c voltage across C158 that controls the conductivity of Q153. The base current of Q153 together with the current through R164 is measured by a milliammeter (supplied by the customer) located at a point convenient for observation. This current can also be metered at the receiver by means of jack J151 on the printed circuit board. Thermistor R166 with its associated resistors, and Sensistor R152, provide compensation to minimize the variation of the metered current with ambient temperature. When Q153 becomes conductive, it supplies base input to Q154 to turn it on and pick up alarm relay AL. When the signal at the receiver input drops sufficiently, AL will drop out and close the alarm circuit. The signal level at which this will occur is determined by the setting of R156 in the emitter of Q151.

The input to the carrier level indicator is not affected by frequency variations that are within the pass band of the crystal input filter, but only by the level of the receiver input signal. When the alarm relay is energized through transistor Q104 of the logic stage (in a receiver without carrier level indicator - Fig. 1), the alarm will be activated on complete loss of signal or on loss of Guard signal if Trip signal does not appear within approximately 150 ms. After the alarm relay has dropped out and activated the alarm, the relay will not be picked up by subsequent appearance of Trip signal but only by the reappearance of Guard signal. It is desirable to retain this alarm feature when the carrier level indicator is supplied, and a single alarm relay can be caused to respond to frequency change as well as to signal level by the interconnection between the #19 terminals of the logic and carrier level indicator circuit boards.

When Guard signal is being received, the voltage at the collector of Q103 in the logic circuit is approximately 10 volts, but this voltage is blocked from the base of Q154 in the carrier level indicator circuit by diode CR155. However, if the discriminator Guard output should fail because of a sufficient frequency shift either above or below Guard frequency, Q103 would become conductive and the collector current of Q153 would be diverted to negative through CR155 and Q103 rather than entering the base of Q154. The latter would become nonconductive and the alarm relay would drop out, closing the alarm circuit even though the signal level is unchanged.

TYPE TCF POWER LINE CARRIER.

Fig. 5 is typical of the variation of the carrier level indicator current with the receiver input level. With Guard signal being received, the signal level just below which the discriminator Guard output drops to zero is the minimum operating level of the receiver. The AL relay should energize the alarm at a signal level somewhat above this. For usual operating conditions it should be satisfactory to set the input attenuator (R5) 15 db. above the minimum operating level and set the AL relay (by means of R156) to drop out at a signal 5 db. above the minimum operating level. Fig. 5 shows that with such settings the carrier level indicator current would be approximately 2.25 ma. with the normal input signal. The alarm would be energized when the indicator current dropped to slightly less than 0.6 ma.

A TCF receiver in which the carrier level indicator was not included at time of assembly can have this feature added later by installing the printed circuit board, guides, and terminal block in the right-hand compartment of the circuit board enclosure, and making minor changes or additions to the wiring. The upper and lower guides are held in position by a snap fastener, and the terminal block by screws and nuts. The terminal block includes an insert located to mate with a corresponding slot in the end of the carrier level indicator circuit board only, which prevents accidental ininsertion of any other circuit board in this compartment.

Reference to the internal schematic diagrams, Figs. 1 and 2, will show the wiring changes required. Connect terminal 2 to the adjacent terminal 2 of the output board, terminal 9 to terminal 9 of the logic board, terminal 12 to terminal 12 of the output board (and remove connection from the later to terminal 12 of the logic board), terminals 14 and 17 to terminals 18 and 19 respectively of J3, terminal 16 to terminal 16 of the limiter board, terminal 18 to terminal 18 of the discriminator board and terminal 19 to terminal 19 of the logic board.

Power Supply

The regulated 20 V.D.C. and 45 V.D.C. circuits of the receiver are supplied from Zener diodes mounted on a common heat sink on the rear of the panel. Resistors (R2, R3) of suitable value are connected between the station battery supply and the 45 volt Zener to adapt the receiver for use on 48, 125 or 250 V.D.C. battery circuits. The receiver is connected to the external supply through a switch and fuses, and a pilot light indicates whether the D.C. circuits are energized. Capacitors C1 and C2 bypass r.f. or transient voltages to ground. Chokes

L1 and L2 isolate the receiver from transient volt ages that may appear on the D.C. supply.

CHARACTERISTICS

Frequency range Sensitivity (noise30-300 kHz

down

0.005 volt (65 db below 1 watt for limiting)

down < 3 db at 220 hertz

Set for 200 cycles shift

from Guard to Trip fre-

quency. Offset 25 hertz to favor Guard for all

relay-output applications.

9 ms. channel (transm.

2 ms. min. logic delay

14 ms. minimum time

32 ms. maximum time

500 hertz minimum

+ 18 ms. max. added logic

time (if req'd. by noise

and recvr.)

+ 3 ms. AR relay

conditions)

> 60 db at 1000 hertz

5000 ohms minimum

Input Impedance

free channel)

Bandwidth (crystal filter)

Discriminator

Operating time

Frequency spacing

- A. For two or more signals over one-way channel
- B. For two-way channel

Ambient temperature range Battery voltage variations Rated voltage 48 V.D.C. 125 V.D.C. 250 V.D.C.

Battery drain

Dimensions

Weight

* 1000 hertz minimum between transmitter and adjacent receiver frequencies.

 $-20^{\circ}C$ to $+55^{\circ}C$ temperature around chassis.

Allowable variation 42- 56 V.D.C. 105-140 V.D.C. 210-280 V.D.C.

0.20 a. at 48 V.D.C. 0.27 a. at 125 or 250 V.D.C.

Panel height - 10½''or 6 r.u. Panel width - 19''

13 lbs.

1.L. 41-945.51

INSTALLATION

The TCF receiver is generally supplied in a cabinet or on a relay rack as part of a complete carrier assembly. The location must be free from dust, excessive humidity, vibration, corrosive fumes, or heat. The maximum ambient temperature around the chassis must not exceed $55^{\circ}C$.

ADJUSTMENTS

All factory adjustments of the TCF receiver have been carefully made and should not be altered unless there is evidence of damage or malfunctioning. Such adjustments are: frequency and output level of the oscillator and mixer; input to the amplifier and limiter; discriminator offset from center frequency; frequency spacing and magnitude of discriminator output peaks. Adjustments that must be made at time of installation are: setting of input attenuator R5; setting of the logic time delay by R7; adjustment of R156 on the carrier level indicator (if supplied) to operate the alarm at the desired input level. The input attenuator and the logic time delay adjustments are made by knobs on the front of the panel. A screw driver adjustment of a potentiometer at the front and top of the printed circuit board sets the point at which the level indicator alarm operates.

The receiver should not be set with a greater margin of sensitivity than is needed to assure correct operation with the maximum expected variation in attenuation of the transmitter signal. In the absence of data on this, the receiver may be set to operate on a signal that is 15 db below the expected maximum signal. After installation of the receiver and the corresponding transmitter, and with a normal Guard signal being received, input attenuator R5 should be adjusted to the position at which the alarm relay drops out. R5 then should be readjusted to increase the voltage supplied to the receiver by 15 db. The scale markings for R5 permit an approximate setting to be made but it is preferable to make this setting by means of the db scales of an a-c VTVM connected from ground to the sliding contact of R5.

In case the transmitter has a 1 Watt/1 Watt output and diode CR84 in the discriminator is not bypassed (see discussion under OPERATION-Discriminator), the transmitter should be keyed to trip, transistor Q103 should be kept non-conducting by connecting a short clip lead across R128, and R5 should be adjusted to the position at which the trip relay just picks up. R5 then should be readjusted for a 15 db increase in receiver input, and the jumper across R128 should be removed. If CR84 is bypassed the input levels at which the AL and AR relays just operate will be approximately the same, and the AL relay minimum operating point can be used as reference for arriving at the R5 setting, as described in the preceeding paragraph.

If the receiver has a carrier level indicator, the procedure for setting R5 is somewhat different. Turn R156 to maximum clockwise position and adjust R5 to the position at which the alarm relay just drops out. At this point the signal has been attenuated to the point that the discriminator no longer has Guard output although it still would be sufficient to produce output from the carrier level indicator, and the base input to Q154 on the carrier level indicator is diverted to negative through Q103 on the logic circuit board. (Note that a milliammeter reading at J151 has no significance at this abnormal setting of R156.) Then readjust R5 to increase the input signal by 5 db and adjust R156 to the position at which the alarm relay again drops out. Again readjust R5 to increase the signal by an additional 10 db and clamp the knob in this position.

It is recommended that R7 be set for maximum time delay (full clockwise rotation) unless field tests have shown that a shorter delay can be used without danger of false tripping under conditions of severe line noise, such as may be caused by the opening of nearby disconnect switches.

Potentiometer R12, where applicable, in the oscillator and mixer should be set for 0.3 volt, measured with an a-c VTVM connected between TP11 and terminal 18 on the circuit board (ground terminal of voltmeter). A frequency counter can be connected to the same points for a check on the frequency, which should be 20kHz above the channel frequency. The frequency is fixed by the crystal used, except that it may be changed a few cycles by the value of capacitor C12. Reducing C12 increases the frequency, but the capacity should never be less than a value that insures reliable starting of oscillation. The frequency at room temperature is usually several cycles above the crystal nominal frequency as this reduces the frequency deviation at the temperature extremes.

The adjustment of the amplifier and limiter is made by potentiometer R52. An oscilloscope should

be connected from the base of transistor Q54 to terminal 18 of the limiter. With 3 mv. of Guard frequency on the receiver input (R5 at zero), R52 should be adjusted to the point where the peaks of the oscilloscope trace begin to flatten. This should appear on the upper and lower peaks at approximately the same setting.

Adjustment of the discriminator is made by capacitors C83 and C88. In order to offset the discriminator by 25 Hertz in the Trip direction, apply to the receiver inputa 5 mv. signal taken from an oscillator set at fc-25 Hertz (R5 at zero.) Connect a 1.5-0-1.5 milliammeter in the circuit at J1 and a VTVM across R84. Adjust C88 for zero current in the milliammeter and C83 for maximum voltage across R84, rechecking the adjustments alternately until no further change is observed. Remove the VTVM from across R84 and observe the milliammeter reading as the oscillator frequency is varied. Positive and negative peaks should occur at fc + 75 Hertz and fc-125 Hertz, with the latter peak being 20% or 25% lower than the former because of diode CR84 in the Trip output path.

In case a check is desired of any of the delay times of the receiver (such as channel time or logic delays), this can be done most conveniently by means of an oscilloscope with a calibrated triggered sweep. A two-pole toggle switch, checked to have less than 1 ms. interval between pole closures, can be used to impress the signal and trigger the sweep.

MAINTENANCE

Periodic checks of the received carrier signal and the receiver sensitivity will detect gradual deterioration and permit its correction before failure can result. The carrier level indicator, when provided, permits ready observation of the received signal level. With or without a carrier level indicator, an overall check can be made with the attenuation control R5. A change in operating margin from the original setting can be detected by observing the change in the dial setting required to drop out the alarm relay. If there is a substantial reduction in margin, the signal voltage at the receiver input should be checked to see whether the reduction is due to loss of signal or loss of receiver sensitivity.

All adjustable components on the printed circuit boards are accessible when the door on the front of the panel is opened. (An offset screwdriver would be required for adjusting R12.) However, as described under "CONSTRUCTION", any board may be made entirely accessible while permitting electrical operation by using board extender Style No. 644B315G01. This permits attaching instrument leads to the various test points of terminals when making voltage, oscilloscope or frequency checks.

It is advisable to record voltage values after adjustment in order to establish reference values which will be useful when checking the apparatus. The readings will remain fairly constant over an indefinite period unless a failure occurs. However, if transistors are changed, there may be considerable difference in these readings without the overall performance being affected.

Typical voltage values are given in Table I and II. Voltages should be measured with a VTVM. Some readings may vary as much as \pm 20%.

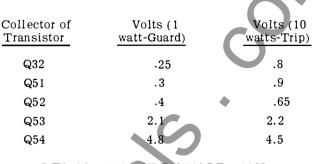
TABLE I

RECEIVER D-C MEASUREMENTS

Note: All voltage readings taken with ground of d-c VTVM on terminal 9 (neg. d.c.). Receiver adjusted for 15 db operating margin with Guard signal down 50 db from 1 watt and Trip signal down 40 db. Unless otherwise indicated, voltage will not vary appreciably whether signal is Guard, Trip or zero.

Collector of Transistor	Volts (+)	
011	<13	
Q11	-	
Q12	15 (Guard or Trip)	
Q13	15 (Guard or Trip)	
Q31	2.5	
Q32	2.5	
Q51	11.5	
Q52	12	
Q53	15.5	
Q54	2.5	
Q 81	< 1 (No sig. or Trip)	
Q81	19.5 (Guard)	
Q 82	< 1 (No sig. or Guard)	
Q 82	19.5 (Trip)	
Q101	< 1 (No sig. or Trip)	
Q101	7 (Guard)	
Q102	21 (No signal)	
Q102	< 1 (Guard or keyed Trip #)	
w(102	(Guard Of Reyed 111p #)	

TYPE TCF POWER LINE CARRIER


Q103	< 1	(No signal)
Q103	10	(Guard or keyed Trip)
Q104	45	(No signal)
Q104	< 1	(Guard or keyed Trip)
Q105	40	(No signal)
Q105	< 1	(Guard or Trip)
Q106	15	(No sig. or Guard)
Q106	< 1	(Trip)
Q107	< 1	(No sig. or Guard)
Q107	15	(Trip)
Q108	45	(No sig. or Guard)
Q108	< 1	(Keyed Trip)
Q109	10	(No sig. or Trip)
Q109	< 1	(Guard)
Q110	< 1	(No sig. or Trip)
Q110	15	(Guard)
Q111	15	(No sig. or Trip)
Q111	< 1	(Guard)
Q151	6	(No signal)
Q151	6	(Guard)
Q152	9.8	(No signal)
Q152	10	(Guard)
Q153	< 1	(No signal)
Q153	19	(Guard)
Q154	45	(No signal)
Q154	< 1	(Guard)

- ''Keyed Trip'' signifies minimum transition time from Guard to Trip.

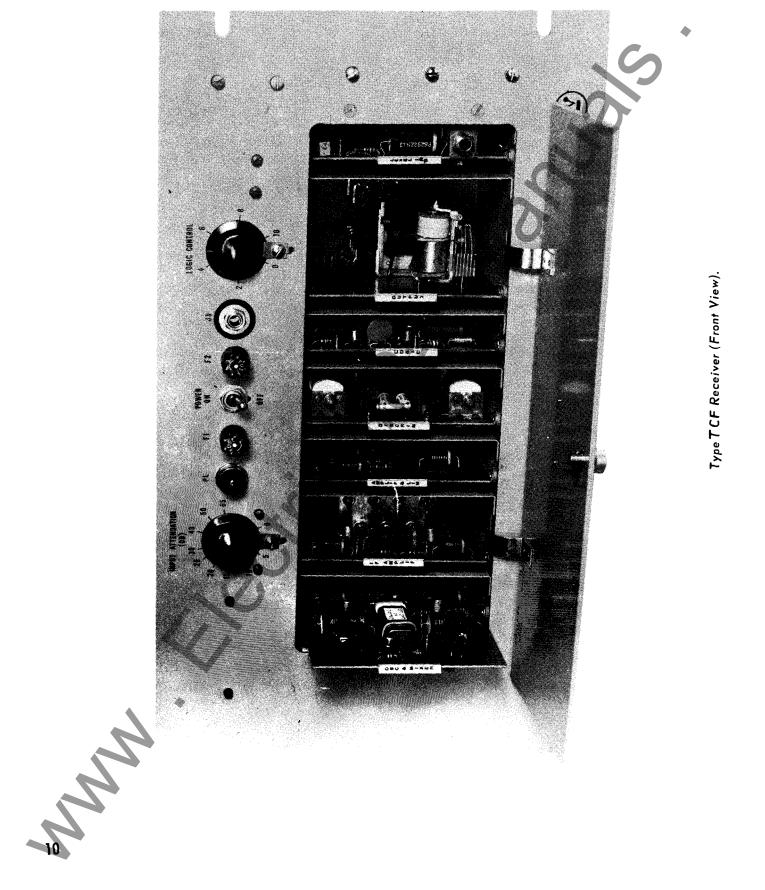
TABLE II

Note: Voltmeter readings taken between receiver input and Q32 are not meaningful or feasible because of waveform or effect of instrument loading. Receiver adjusted as in Table 1.

With shipments of sets starting in early 1973, the germanium transistors used in the various modules were replaced with silicon transistors. In addition, due to the nature of silicon transistors, some resistor values in the circuits had to be changed In order to correctly bias these transistors. Therefore the transistors are not replaceable on a pin for pin basis throughout the receiver. Before attempting to replace a germanium transistor with a silicon transistor on older sets using germanium, please check the schematics on the following pages to see if the location where the replacement is desired has additional component changes. If that is the case,

RELAY MAINTENANCE AND ADJUSTMENT

The AL and AR relay contacts should be cleaned periodically. A contact burnisher S#182A836H01 is recommended for this purpose. The use of abrasive material for cleaning contacts is not recommended, because of the danger of embedding small particles in the face of the soft silver and thus impairing the contact. Care must be taken to avoid distorting the contact springs during burnishing, particularly in the case of the AR relay.


These relays have been properly adjusted at the factory to insure correct operation, and under normal field conditions they should not require readjustment. If, however, the adjustments are disturbed in error, or if it becomes necessary to replace some part, the following adjustment procedure should be used.

In the AL relay the armature gap should be approximately 0.004 inch with the armature closed. This adjustment is made with the armature stop screw and locknut. The contact leaf springs should be adjusted to obtain at least 0.015 inch gap on all contacts when fully open. There should be at least 0.010 inch follow on all normally-open contacts and 0.005 inch follow on all normally-closed contacts. The relay should pick up at approximately 35 volts.

ADDENDUM

then the replacement can only be made by the same designation transistor or the additional component changes must also be made. It should be pointed out that the modules containing the silicon transistors are completely interchangeable with the modules containing germanium transistors. Therefore, there is no problem with intermixing the silicon transistor modules in the same receiver. Thus complete new modules containing silicon transistors can be ordered and used as replacements in older receivers having germanium transistor modules. The new modules have the same style numbers as the old germanium transistor modules they replace.

TYPE TCF POWER LINE CARRIER

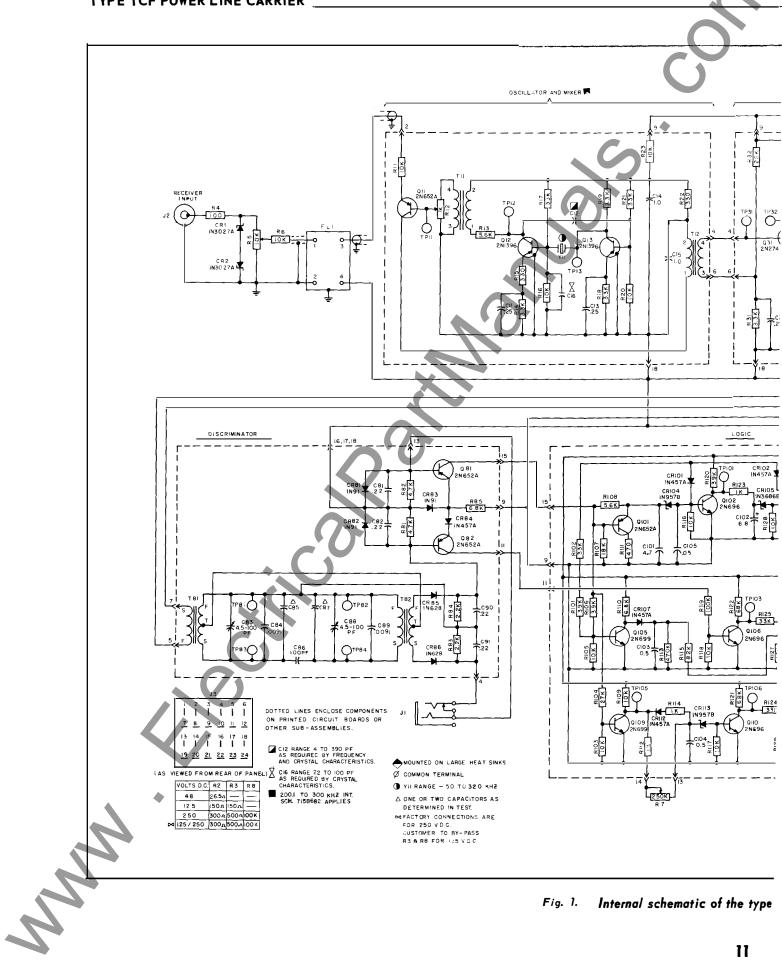
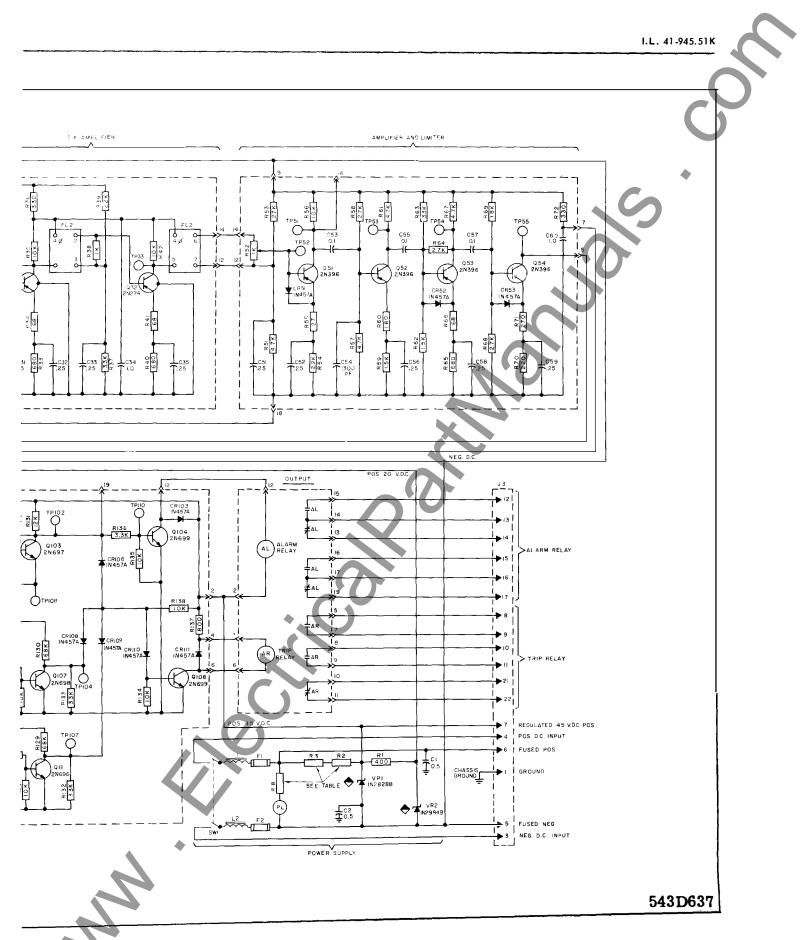



Fig. 1. Internal schematic of the type

TCF receiver without the carrier level indicator.

FILTER RESPONSE MEASUREMENTS

The crystal input filter (FL1) and the IF filter (FL2) are in sealed containers and repairs can be made only by the factory. The stability of the original response characteristics is such that in normal usage no appreciable change in response will occur. However the test circuits of Dwg. 849A109 can be used in case there is reason to suspect that either of the filters has been damaged.

Fig. 4 shows the -3db and -60db check points for the crystal filters. The response curve of the IF filter shows the combined effect of the two sections, and was obtained by adding the attenuation of each section for identical frequencies. The scale of Fig. 4 was chosen to show the crystal filter response, which permitted only a portion of the IF filter curve to be shown. The check points for the pass band of each section of the latter are "down 3db maximum at 19.75 and 20.25 kHz, and for the stop band are "down 18 db minimum at 19.00 and 21.00 kHz. The signal generator voltage must be held constant throughout the entire check. A value of 20 db (7.8 volts) is suitable. The reading of VM2 at the frequency of minimum attenuation should not be more than 22db below the reading of VM1. It should be noted that a limit measured in this manner is for convenience only and does not indicate actual insertion loss of the filter. The insertion loss would be approximately 16db less than the measured difference because of the input resistor and the difference in input and output impedances of the filter.

Because of the extreme frequency sensitivity of the crystal filter, the oscillator used in its test circuit should have very good frequency stability and a close vernier control. The oscillators used for factory testing have special modifications for this use. A value of approximately 10db (2.45 volts) is suitable for the constant voltage at which to hold VM1 throughout the check. The reading of VM2 at the frequency of minimum attenuation will vary somewhat with the channel frequency but should not be more than 11db below the reading of VM1. (The filter insertion loss is approximately 6db less than the difference in readings.)

CONVERSION OF RECEIVER FOR CHANGED CHANNEL FREQUENCY

The parts required for converting a TCF receiver for operating on a different channel frequency consist of a new crystal filter (FL1), a new local oscillator crystal (Y11) and probably a different feedback capacitor (C12). Because the wide range of channel frequencies precludes maintaining a factory stock of the various crystals, immediate shipment of the filter and the oscillator crystal cannot be made. After the crystals have been procured and the filter has been completed, it is recommended that the receiver be returned to the factory for the conversion and for complete test and adjustment. However, if the time that the receiver can be out of service must be kept to a minimum, the conversion may be made by customers who are equipped for this work.

RECOMMENDED TEST EQUIPMENT

I. Minimum Test Equipment for Installation.

a. A-C vacuum Tube Voltmeter (VTVM). Voltage range 0.003 to 30 volts, frequency range 60 Hz to 330 kHz, input impedance 7.5 megohms.

b. D-C Vacuum Tube Voltmeter (VTVM).

Voltage Range: 1.5 to 300 volts

7.5 megohms

c. Milliammeter, 0-3 range (if receiver has carrier level indicator).

II. Desirable Test Equipment for Apparatus Maintenance

a. All items listed in I.

Imput Impedance:

b.	Signal Generator	
	Output Voltage:	up to 8 volts
	Frequency Range:	20-kHz to 330-kHz

- c. Oscilloscope
- d. Frequency counter
- e. Ohmmeter
- f. Capacitor checker

g. Milliammeter, 0-1.5 or preferably 1.5-0 1.5 range, for checking discriminator.

Some of the functions of the recommended test equipment are combined in the type TCT carrier test meter unit, which is designed to mount on a standard 19" rack but also can be removed and used as a portable unit.

RENEWAL PARTS

Repair work can be done most satisfactorily at the factory. However, replacement parts can be furnished, in most cases, to customers who are equipped for doing repair work. When ordering parts, always give the complete nameplate data, the electrical value, style number, and identify the part by its designation on the Internal Schematic drawing.

TYPE TCF POWER LINE CARRIER _____

ELECTRICAL PARTS LIST

CIRCUIT SYMBOL	DESCRIPTION	WESTINGHOUSE DESIGNATION
	CAPACITORS	
C1	Oil-filled; 0.5 mfd.; 1500 V.D.C.	1877962
C2	Oil-filled; 0.5 mfd.; 1500 V.D.C.	1877962
C11	Metallized paper; 0.25 mfd.; 200 V.D.C.	187 A624 H02
C12-C16	Mica, capacity as required, 500 V.D.C.	
C13	Metallized paper; 0.25 mfd.; 200 V.D.C.	187A624H02
C14	Metallized paper; 1.0 mfd.; 200 V.D.C.	187A624H04
C15	Metallized paper; 1.0 mfd.; 200 V.D.C.	187A624H04
C31	Metallized paper; 0.25 mfd.; 200 V.D.C.	187A624H02
C32	Metallized paper; 0.25 mfd.; 200 V.D.C.	187A624H02
C33	Metallized paper; 0.25 mfd.; 200 V.D.C.	187A624H02
C34	Metallized paper; 1.0 mfd.; 200 V.D.C.	187A624H04
C35	Metallized paper; 0.25 mfd.; 200 V.D.C.	187A624H02
C51	Metallized paper; 0.25 mfd.; 200 V.D.C.	187A624H02
C52	Metallized paper; 0.25 mfd.; 200 V.D.C.	187A624H02
C53	Metallized paper; 0.1 mfd.; 200 V.D.C.	187A624H01
C54	Dur-Mica, 1300 pf.; 500 V.D.C.	187A584H15
C55	Metallized paper; 0.1 mfd.; 200 V.D.C.	187A624H01
C56	Metallized paper; 0.25 mfd.; 200 V.D.C.	187A624H02
C57	Metallized paper; 0.1 mfd.; 200 V.D.C.	187A624H01
C58	Metallized paper; 0.25 mfd.; 200 V.D.C.	187A624H02
C59	Metallized paper; 0.25 mfd.; 200 V.D.C.	187A624H02
C60	Metallized paper; 1.0 mfd.; 200 V.D.C.	187A624H04
C81	Mylar; 0.22 mfd.; 50 V.D.C.	762A703H01
C82	Mylar; 0.22 mfd.; 50 V.D.C.	762A703H01
C83	Variable; 4.5 - 100 pf.	762A736H02
C84	Polystyrene, 9100 pf.; 200 V.D.C.	187A624H16
C85	Temp. compensating; 150 V.D.C.; pf. as required	
C86	100 pf.; zero temp. coef.	187A684H08
C87	Temp. compensating; 150 V.D.C.; pf. as required	
C88	Variable; 4.5 - 100 pf.	762A736H02
C89	Polystyrene; 9100 pf.; 200 V.D.C.	187A624H16
C90	Mylar; 0.22 mfd.; 50 V.D.C.	762A703H01
C91	Mylar; 0.22 mfd.; 50 V.D.C.	762A703H01
C101	Tantalum, 4.7 mfd., 35 V.D.C.	184A661H12
C102	Tantalum, 6.8 mfd.; 35 V.D.C.	184A661H25
C103	Metallized paper; 0.5 mfd.; 200 V.D.C.	187A624H11
C104	Metallized paper; 0.5 mfd.; 200 V.D.C.	187A624H11
C105	Ceramic, 0.05 mfd.; 50 V.D.C.	184A663H02
C151	Metallized paper; 0.25 mfd.; 200 V.D.C.	187A624H02
C152	Metallized paper; 0.25 mfd.; 200 V.D.C.	187A624H02

16

TYPE TCF POWER LINE CARRIER

CIRCUIT WE STINGHOUSE SYMBOL DESCRIPTION DESIGNATION CAPACITORS (Cont'd.) C153 Metallized paper; 1.0 mfd.; 200 V.D.C. 187A624H04 Metallized paper; 0.25 mfd.; 200 V.D.C. 817A624H02 C154 C155 Metallized paper; 0.25 mfd.; 200 V.D.C. 187A624H02 C156 Metallized paper; 0.25 mfd.; 200 V.C.C. 187A624H02 Metallized paper; 0.25 mfd.; 200 V.D.C. 187A624H02 C157 C158 Metallized paper; 0.25 mfd.; 200 V.D.C. 187A624H02 Durmica; 100 mmf to 1000 mmf C211 187A695H Ceramic; .1 mf, 50 v.d.c. C212 184A663H04 C213 Ceramic: .1 mf. 50 v.d.c. 184 A 663 H 04 C214 Durmica; .56 mmf 187A695H17 C215 .1 mf, 50 v.d.c. Ceramic; 184A663H04 C216 Metallized paper; 1 mf 187A624H04 C217 Metallized Paper; 1 mf 187A624H04 DIODES - GENERAL PURPOSE IN457A; 60 V.; 200 MA. 184A855H07 CR51 IN475A; 60 V.; 200 MA. 184 A855H07 CR52 IN457A; 60 V.; 200 MA. 184 A855H07 CR53 CR81 IN91; 100 V.; 150 MA. 182A881H04 IN91; 100 V.; 150 MA. 182A881H04 **CR82** IN91; 100 V.; 150 MA. 182A881H04 **CR83** IN475A; 60 V.; 200 MA. 184A885H07 CR84 IN628; 125 V.; 30 MA. **CR85** 184A855H12 IN628; 125 V.; 30 MA. 184A855H12 CR86 IN457A; 60 V.; 200 MA. 184A885H07 CR101 IN457A; 60 V.; 200 MA. 184A885H07 CR102 CR103 IN457A; 60 V.; 200 MA. 184 A885H07 IN457A; 60 V.; 200 MA. CR106 184A885H07 IN457A; 60 V.; 200 MA. 184 A885H07 CR107 IN457A; 60 V-; 200 MA. 184A885H07 CR108 IN457A; 60 V.; 200 MA. 184A885H07 CR109 CR110 IN457A; 60 V.; 200 MA. 184A885H07 CR111 IN457A; 60 V.; 200 MA. 184A885H07 IN457A; 60 V.; 200 MA. 184A885H07 CR112 CR151 IN457A; 60 V.; 200 MA. 184A885H07 IN457A; 60 V.; 200 MA. 184A885H07 CR152 IN457A; 60 V.; 200 MA. 184A885H07 CR153 CR154 IN457A.; 60 V.; 200 MA 184A885H07 184A885H07 CR155 IN457A; 60 V.; 200 MA. CR156 184A855H07 IN457A; 60 V.; 200 MA. DIODES - ZENER CR1 IN3027A; 20 V. ± 10%; 1W. 188A302H10 IN3027A; 20 V. ± 10%; 1W. 188A302H10 CR2 🌢 IN957B; 6.8 V. ± 5%; 400 MW. 186A797H06 CR104 IN3686B; 20 V. ± 5%; 750 MW. 185A212H06 CR105 186A797H06 CR113 IN957B; 6.8 V. ± 5%; 400 MW. IN2828B; 45 V. ± 5%; 50 W. 184A854H06

IN2984B; 20 V. ± 5%; 10 W.

IN753A; 6.2 V. v 5%; 400 MW.

ELECTRICAL PARTS LIST (Cont'd.)

VR1

VR2 Z201

17

762A631H01

862A606H01

I.L. 41-945.51K

TYPE TCF POWER LINE CARRIER

ELECTRICAL PARTS LIST (Cont'd.)

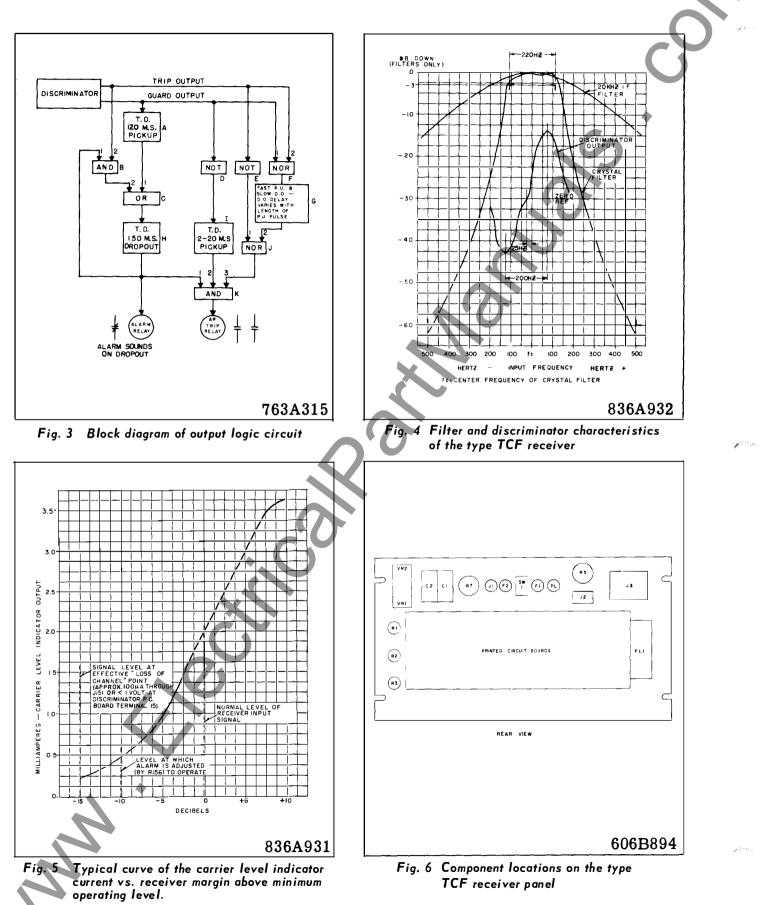
CIRCUIT SYMBOL	DESCRIPTION	WESTINGHOUSE DESIGNATION
1	POTENTIOMETERS	
R5	10K; 2 W.	185A086H10
R7	250K; 2 W.	185A086H11 🔶
R12	1K; ¼ W.	629A430H02
R52	1K; ¼ W.	629A645H04
R156	2.5K; ¼ W.	629A645H07
	RESISTORS	
R1	400 ohms ±5%; 25 W.	1202587
R2	26.5 ohms ± 5%; 40 W. (For 48 V. Supply)	04D1299H44
R2	150 ohms ± 5%; 40 W. (For 125 V. Supply)	1202499
R2	300 ohms ±5%; 50 W. (For 250 V. Supply)	763A963H01
R3	150 ohms ± 5%; 40 W. (For 125 V. Supply)	1 20 24 99
R3	500 ohms ±5%; 100 W. (For 250 V. Supply)	629A843H03
R4	100 ohms ±5%; 1 W. Composition	187A643H03
R6	10K ±5%; ½ W. Composition	184A763H51
R8	100K ±5%; 1 W. Composition	187A643H75
R11	10K ± 5%; ½ W. Composition	184A763H51
R13	5.6K ±5%; ½ W. Composition	184A763H45
R14	3.3K ±5%; ½ W. Composition	184A763H39
R15	330 ohms ±5%; ½ W. Composition	184A763H15
R16	10K ±5%; ½ W. Composition	184A763H51
R17	33K ±5%; ½ W. Composition	184A763H63
R18	3.3K ±5%; ½ W. Composition	184A763H39
R19	3.3K ± 5%; ½ W. Composition	184A763H39
R20	10K ±5%; ½ W. Composition	184A763H51
R21	33K ±5%; ½ W. Composition	184A763H63
R22	330 ohms ± 5%; ½ W. Composition	184A763H15
R23	$10K \pm 5\% \frac{1}{2}$ W. Composition	184A763H51
R31	3.3K ±5%; ½ W. Composition	184A763H39
R32	22K ±5%; ½ W. Composition	184A763H59
R33	680 ohms ±5%; ½ W. Composition	184A763H23
R34	68 ohms ±5%; ½ W. Composition	187A290H21
R35	10K ±5%; ½ W. Composition	184A763H51
R36	330 ohms ± 5%; ½ W. Composition	184A763H15
R37	3.3K ± 5%; ½ W. Composition	184A763H39
R38	1000 ohms ± 5%; ½ W. Composition	184A763H27
R39	22K ± 5%; ½ W. Composition	184A763H59
R40	680 ohms ± 5%; ½ W. Composition	184A763H23
R41	68 ohms ± 5%; ½ W. Composition	187A290H21
R42	10K ±5%; ½ W. Composition	184A763H51
R51	4.7K ± 5%; ½ W. Composition	184A763H43

ELECTRICAL PARTS LIST (Cont'd.)

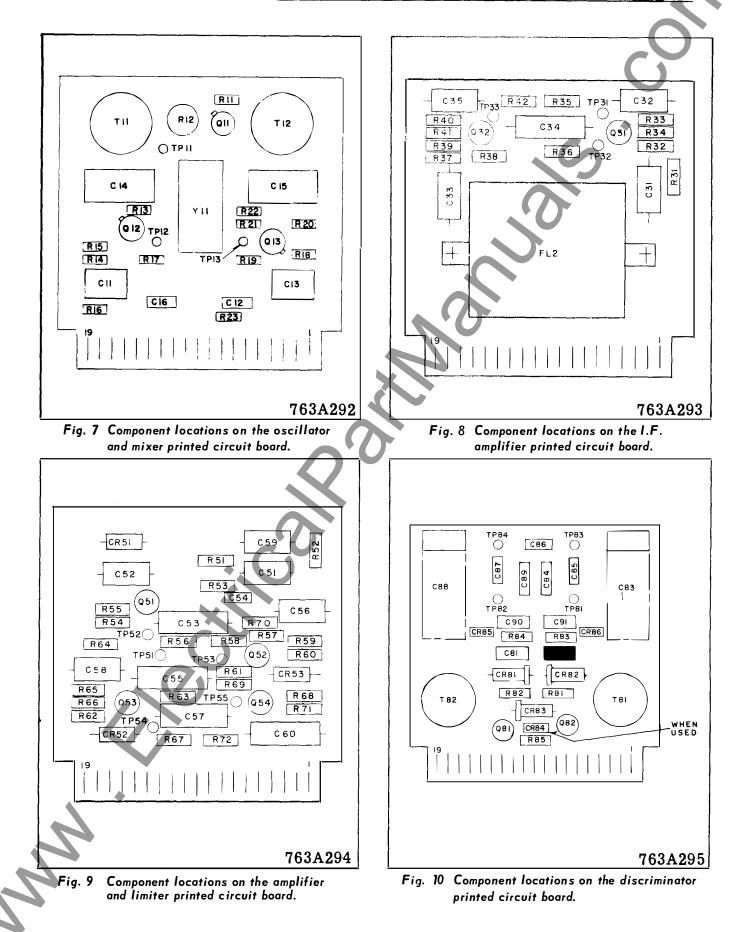
CIRCUIT SYMBOL	DESCRIPTION	WESTINGHOUSE DESIGNATION
	RESISTORS (Cont'd.)	
R53	27K $\pm 5\%$; $\frac{1}{2}$ W. Composition	184A763H61
R54	2.2K ± 5%; ½ W. Composition	184A763H35
R55	27 ohms $\pm 5\%$; $\frac{1}{2}$ W. Composition	187 A290H11
R56	10K ± 5%; ½ W. Composition	184 A763H51
R57	4.7K ± 5%; ½ W. Composition	184A763H43
R58	27K ± 5%; ½ W. Composition	184A763H61
R59	1.5K ±5%; ½ W. Composition	184A763H31
R60	180 ohms ±5%; ½ W. Composition	184A763H09
R61	4.7K ± 5%; ½ W. Composition	184A763H43
R62	1.5K ± 5%; ½ W. Composition	184A763H31
R63	3.3K ± 5%; ½ W. Composition	184 A763H63
R64	2.7K ±5%; ½ W. Composition	184A763H37
R65	680 ohms ± 5%; ½ W. Composition	184A763H23
R66	68 ohms ±5%; ½ W. Composition	187 A290 H21
R67	4.7K ± 5%; ½ W. Composition	184A763H43
R68	2.7K ± 5%; ½ W. Composition	184A763H37
R69	18K ±5%; ½ W. Composition	184A763H57
R70	220 ohms \pm 5%; $\frac{1}{2}$ W. Composition	184A763H11
R71	270 ohms ± 5%; Wire Wound	09D832G19
R72	330 ohms \pm 5%; $\frac{1}{2}$ W. Composition	184A763H15
R81	4.7K \pm 5%; $\frac{1}{2}$ W. Composition	184A763H43
R82	4.7K \pm 5%; $\frac{1}{2}$ W. Composition	184A763H43
R83	2.2K ± 5%; ½ W. Composition	184A763H35
R84	2.2K ±5%; ½ W. Composition	184A763H35
R85	6.8K ±5%; ½ W. Composition	184A763H47
R101	39K ± 5%; ½ W. Composition	184A763H65
R102	33K ±5%; ½ W. Composition	184A763H63
R103	10K ±5%; ½ W. Composition	184A763H51
R104	$27K \pm 5\%$; $\frac{1}{2}$ W. Composition	184A763H61
R105	10K ±5%; ½ W. Composition	184A763H51
R106	39K ±5%; ½ W. Composition	184A763H65
R107	18K ± 5%; ½ W. Composition	184A763H57
R108	56K ± 5%; ½ W. Composition	184A763H69
R109	10K ±5%; 1 W. Composition	187A643H51
R110	6.8K ±5%; 1 W. Composition	187A643H47
R111	470 ohms ± 5%; ½ W. Composition	184A763H19
R112	1000 ohms ± 5%; ½ W. Composition	184A763H27
R113	$470K \pm 5\%$; $\frac{1}{2}$ W. Composition	184A763H91
R114	1000 ohms ± 5%; ½ W. Composition	185A763H27
R115	82K ± 5%; ½ W. Composition	

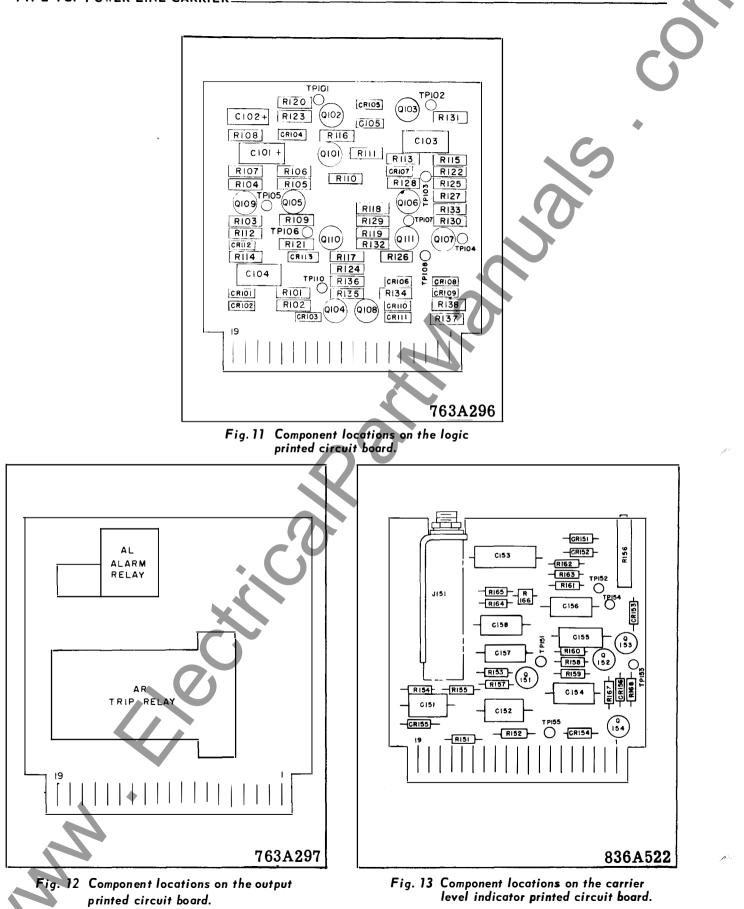
h

ELECTRICAL PARTS LIST (Cont'd.)


CIRCUIT SYMBOL	DESCRIPTION	WESTINGHOUSE DESIGNATION
	RESISTORS	
R116	10K ± 5%; ½ W. Composition	184A763H51
R117	$10K \pm 5\%$; ½ W. Composition	184A763H51
R118	10K ± 5%; ½ W. Composition	184A763H51
R119	100K ± 5%; ½ W. Composition	184A763H75
R120	39K ± 5%; ½ W. Composition	184A763H65
R121	68K ± 5%; ½ W. Composition	184A763H71
R122	68K ± 5%; ½ W. Composition	184A763H71
R123	1000 ohms ±5%; ½ W. Composition	184A763H27
R124	$33K \pm 5\%$; $\frac{1}{2}$ W. Composition	184A763H63
R125	33K ±5%; ½ W. Composition	184A763H63
R126	10K ± 5%; ½ W. Composition	184A763H51
R127	10K ± 5%; ½ W. Composition	184A763H51
R128	10K ± 5%; ½ W. Composition	184 A763H5 1
R129	68K ± 5%; ½ W. Composition	184A763H71
R130	$68K \pm 5\%; \frac{1}{2} \text{ W. Composition}$	184A763H71
R131	12K ± 5%; ½ W. Composition	184A763H53
R132	33K ± 5%; ½ W. Composition	184A763H63
R133	33K ± 5%; ½ W. Composition	184A763H63
R134	10K ± 5%; ½ W. Composition	184A763H51
R135	$\frac{10K \pm 5\%}{10K \pm 5\%}$	184A763H51
R136	$3.3 \text{K} \pm 5\%$; ½ W. Composition	184A763H39
R137	800 ohms ± 5%; 3 W. Composition	184A859H06
R138	10K ± 5%; ½ W. Composition	184A763H51
R150	2.7K ± 5%; ½ W. Composition	184A763H37
R152	2.2K Sensistor Type TM4 (Tex. Inst. Co.)	
R152	$\frac{2.24 \text{ Sensition Type TM74 (Tex. Inst. Co.)}}{220 \text{ ohms } \pm 5\%; \frac{1}{2} \text{ W. Composition}}$	187A685H01 184A763H11
R154	$2.2K \pm 5\%; \frac{1}{2} \text{ W. Composition}$	184A763H35
R155	$15K \pm 5\%$; ½ W. Composition	
R157	4.7K ± 5%; ½ W. Composition	<u>184A763H55</u> 184A763H43
R158	$4.7K \pm 5\%; \frac{1}{2}$ W. Composition	
R158	$15K \pm 5\%; \frac{1}{2}$ W- Composition	184A763H43
R160	560 ohms ± 5%; ½ W. Composition	184A763H55 184A763H21
R161	$1.2K \pm 5\%; \% W. Composition$	184A763H21 184A763H29
R162	180 ohms ± 5%; ½ W. Composition	
		184A763H09
R163	180 ohms $\pm 5\%$; ½ W. Composition	184A763H09
R164 R165	470 ohms $\pm 5\%$; ½ W. Composition	184A763H19
	1000 ohms ± 5%; ½ W. Composition	184A763H27
R166	3K Thermistor Type ID201 (G.E. Co.)	185A211H08
R167	$18K \pm 5\%$; $\frac{1}{2}$ W. Composition	184A763H57
R168	$10K \pm 5\%$; ½ W. Composition	184A763H51
R211	10K ± 5%; Composition	184A763H51
R212	1K ±5%; Composition	184A763H27
R213	10K ± 5%; Composition	184A763H51
R214	2.7K ± 5%; Composition	184A763H37
R215	10K ± 5%; Composition	184A763H51
R216	8.2K ±5%; Composition	184A763H73
R217	2K ±5%; Composition	184A763H34
R218	150 ohms ± 5%; Composition	184A763H07
R219	330 ohms ±5%; Composition	184A763H15
R220	47K ±5%; Composition	184A763H67

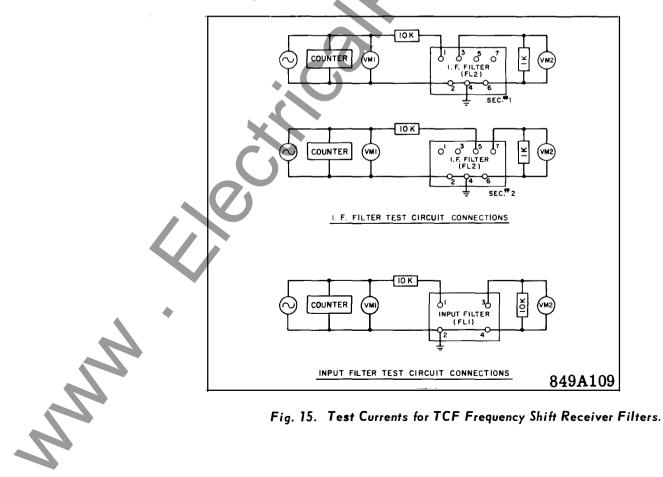
I.L. 41-945.51K

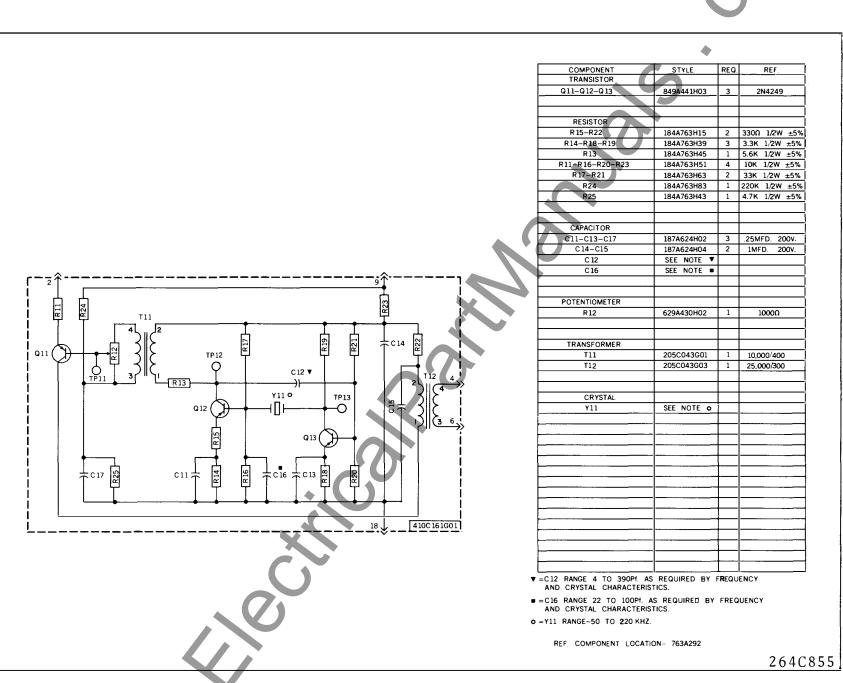

ELECTRICAL PARTS LIST (Cont[°]d.)


CIRCUIT SYMBOL	DESCRIPTION	WESTINGHOUSE
T11	Toroidal type, 10000/400 ohms	205C043G03
T12	Toroidal type, 25000/300 ohms	20 5C043G0 3
T81	Pot. Core type	606B533G01
T82	Pot. Core type	606B533G02
T211	10K:10K	714B677G01
T212	25K:300	205C043G01
	TRANSISTORS	
Q11	2N652A	184A638H16
Q12	2N1396	848A892H01
Q13	2N1396	848A892H01
Q31	2N274	187A270H01
Q32	2N274	187A270H01
Q5 1	2N396	762A575H03
Q52	2N396	762A575H03
Q53	2N396	762A575H03
Q54	2N396	762A585H03
Q81	2N652A	184A638H16
Q82	2N652A	184A638H16
Q101	2N652A	184A638H16
Q102	2N696	762A585H01
Q103	2N697	184A638H18
Q104	2N699	184A638H19
Q105	2N699	184A638H19
Q106	2N696	762A585H01
Q107	2N698	762A585H02
Q108	2N699	184 A € 38 H 19
ରୁ109	2N699	184A638H19
Q110	2N696	762A585H01
Q111	2N696	762A585H01
Q151	2N396	762A585H03
Q152	2N396	762A585H03
Q153	2N396	762A585H03
Q154	2N699	184A638H19
Q211	2N652A	184A638H16
	MISCELLANEOUS	
Y11	Oscillator Crystal (Frequency 20 kHz above Channel Frequency)	762A800H01+(Req.Freq.
FL1	Crystal input Filter	401C466 + (Req. Freq.)
FL2	I.F. Filter	762A613G01
PL	Pilot Light Bulb - For 48 V. Supply	187A133H02
	Pilot Light Bulb – For 125 or 250 V. Supply	183A955H01
F1, F2	Fuse, 1.5 A.	11D9195H26
AL	Alarm Relay	408C062H07
AR	Trip Relay	408C845G03
L1-L2	Choke	292B096G02
IC201	Fairchild UA 710C (Int. Ckt.)	201C826H04

1 n

1.L. 41-945.51





.

Fig. 14 Outline and drilling plan for the type TCF receiver assembly.

TYPE TCF POWER LINE CARRIER

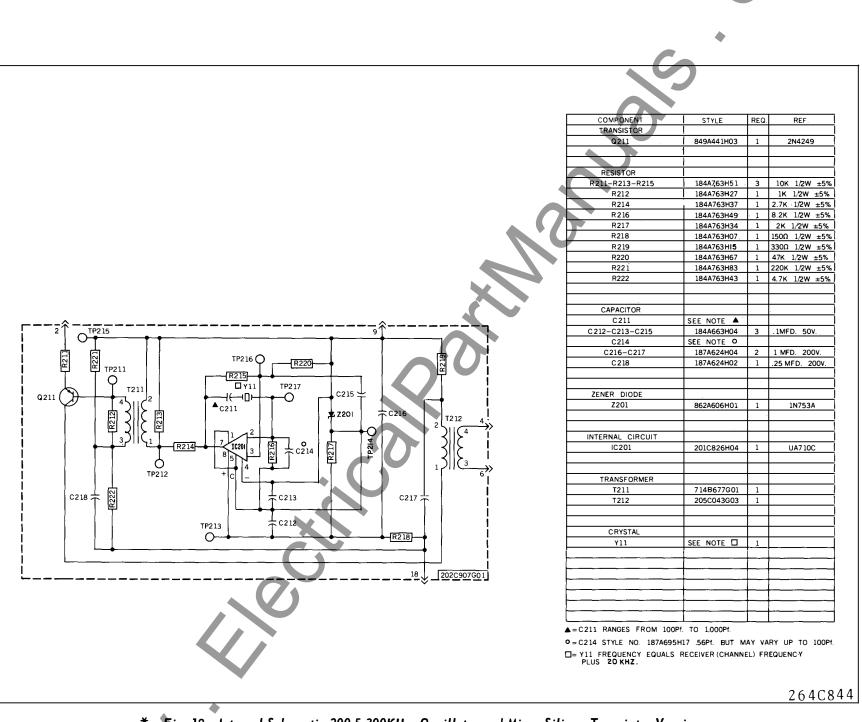
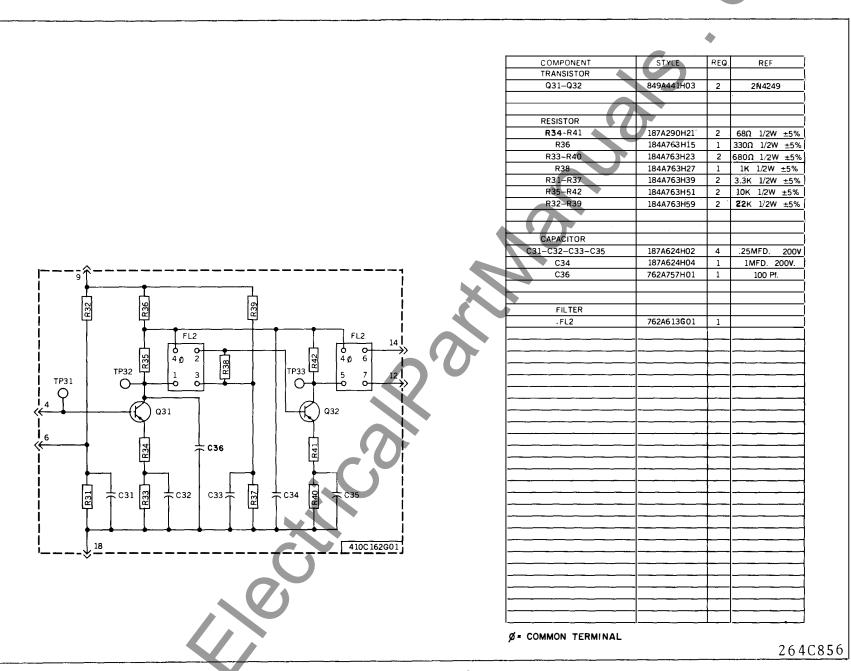
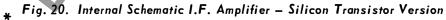
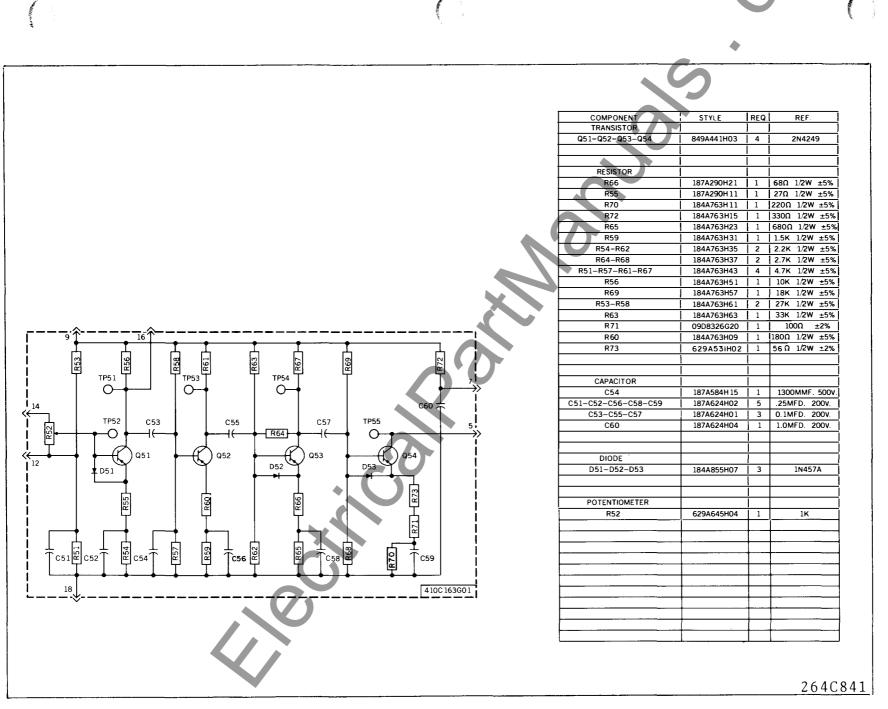
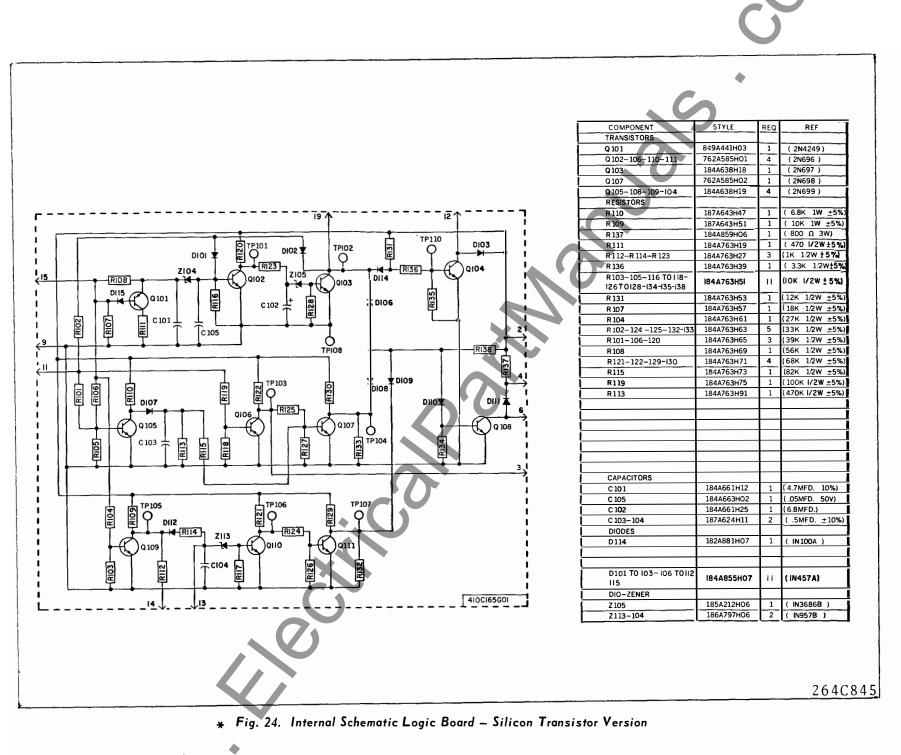
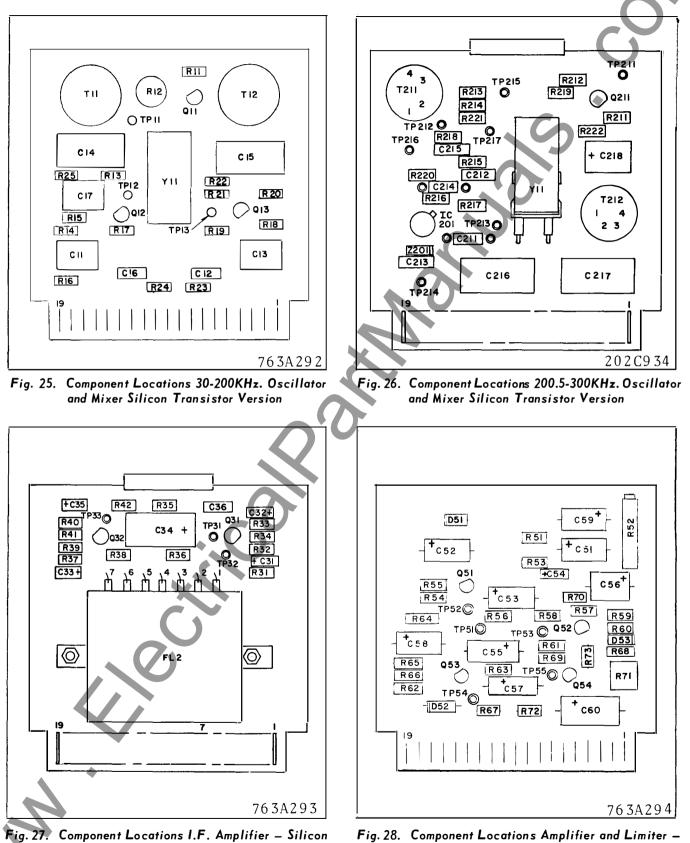





Fig. 19. Internal Schematic 200.5-300KHz. Oscillator and Mixer Silicon Transistor Version

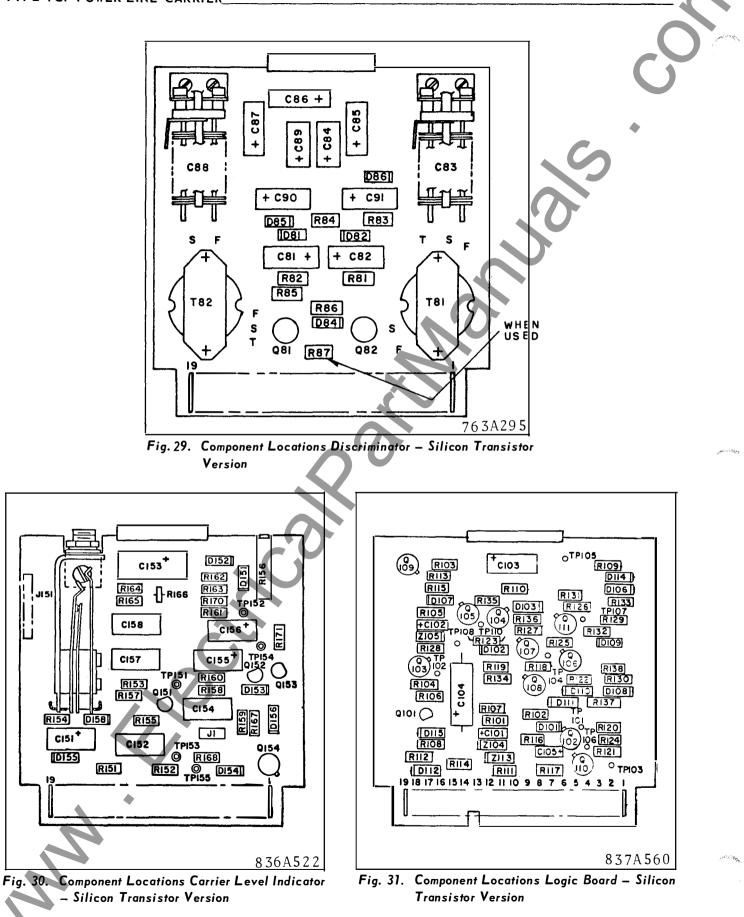
1.L. 41-945.51K



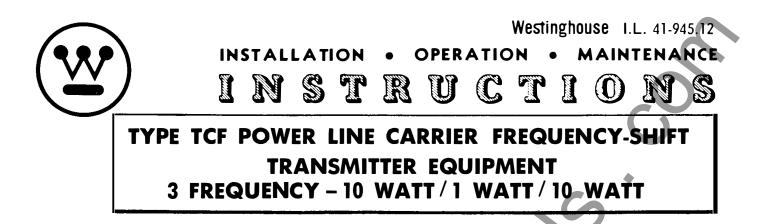
I.L. 41-945.51K


Fig. 21. Internal Schematic Amplifier and Limiter - Silicon Transistor Version

TYPE TCF POWER LINE CARRIER


TYPE TCF POWER LINE CARRIER __

I.L. 41-945.51K



7. Component Locations I.F. Amplifier - Silicon Transistor Version

Fig. 28. Component Locations Amplifier and Limiter — Silicon Transistor Version

WESTINGHOUSE ELECTRIC CORPORATION RELAY-INSTRUMENT DIVISION NEWARK, N. J. Printed in U.S.A.

CAUTION: It is recommended that the user of this equipment become thoroughly familiar with the information in this instruction leaflet before energizing the carrier assembly. Failure to observe this precaution may result in damage to the equipment.

If the carrier set is mounted in a cabinet, it must be bolted down to the floor or otherwise secured before swinging out the equipment rack to prevent its tipping over.

APPLICATION

A widely used high speed relaying system used for transmission line protection consists of directional-comparison unblock relaying plus a transfertrip channel for breaker failure protection. Normally these systems of relaying require two frequencyshift channels, wideband for unblocking and narrowband for transfer trip. A saving in channel spectrum can be effected by using a three frequency transmitter for the two relaying functions and two separate receivers, one for each function, as shown in Figure 7.

SYSTEM OPERATION

The three frequency TCF carrier transmitter provides for the transmission of any of three closely controlled discrete frequencies, all within the equivalent spacing of a single wide-band channel. The center frequency of the channel can vary from from 30 kHz to 300 kHz in 0.5 kHz steps. The transmitter normally operates at a frequency that is 100 hz above the channel center frequency (fc). This frequency serves as the "guard" frequency for the transfer-trip receiver and as the "block" frequency for the unblock receiver. Note that the discriminator characteristic in the unblock receiver in this case is reversed from the normal unblock receiver used with the standard two frequency transmitter. This "guard" "block" frequency is transmitted continuously when conditions are normal. It indicates at the receiving end of the line that the channel is operative and serves to prevent false operation of the receiver by line noise. The lowest frequency, which is 100 hz less than fc, is the "transfer trip" frequency and is transmitted as a signal that an operation (such as tripping a circuit breaker) should be performed at the receiving end of the line. The highest frequency, which is 300 hz above fc, is the "unblock" frequency and is transmitted as an unblock signal for directional comparison relaying. If a subsequent transfer-trip operation is called for, the transmitter will shift to fc - 100 hz which is the "trip" frequency for the transfer trip (narrow-band receiver.

Note that when the transmitter shifts to "unblock," the frequency is completely outside the passband of the narrow band transfer-trip receiver. Normally, this would cause a low-signal alarm output from that receiver. Similarly, when the frequency is shifted to "trip" (fc-100 hz), the signal is well removed from the "block" peak of the widehand receiver discriminator. In order to prevent a similar alarm output in this case, the checkback output of each receiver is cross-connected to the guard or block input of the opposite receiver (through an OR logic circuit). This logic is shown in Figure 8. The checkback output is a receiver output that indicates that a proper signal has been received without going through any time delays or other logic used for the actual relaying output. With this cross-connected logic, both receivers will function when required, but will not give any incorrect output indications.

The transmitter normally operates at an output level of one watt at the "guard" "blocking" frequency, but increases to ten watts for either "trip" or "unblock" output. An interlock is provided in the transmitter keying circuit to give transfer-trip preference. This means that even while the transmitter is shifted to the "unblock" frequency, if the transfer-trip keying circuit is energized, the transmitter will shift to the "trip" frequency without delay.

CONSTRUCTION

The 10 watt/1 watt/10 watt TCF transmitter unit is mounted on a standard 19-inch wide panel 12¼ inches (7 rack units) high with edge slots for mounting on a standard relay rack. A jack for metering the amplifier collector current is accessible from the front of the panel. See Fig. 6. All of the circuitry that is suitable for printed circuit board mounting is on two such boards, as shown in Fig. 2 The components mounted on each printed circuit board or other sub-assembly are shown enclosed by dotted lines on the internal schematic. Fig. 1. The location of components on the three printed circuit boards are shown on separate illustrations, Fig. 3, 4 & 5.

External connections to the assembly are made through a 12-circuit receptacle, J.3. The r.f. output connection to the assembly is made through a coaxial cable jack, J2.

OPERATION

The transmitter is made up of four main stages and two filters. The stages include two crystal oscillators operating at frequencies that differ by the desired channel center frequency, a mixer and buffer amplifier, a driver stage and a power amplifier. The interstage filter is located between the driver and the power amplifier. The output filter removes harmonics that may be generated by distortion in the power amplifier.

A single crystal designed for oscillation in the 30 kHz to 300 kHz range cannot be forced to oscillate away from its natural frequency by as much as ± 100 hz. In order to obtain this desired frequency shift, it is necessary to use crystals in the 2 MHz range. The crystals are Y1 and Y2 of Fig. 1. The frequency of Y2 is 2.00 MHz when operated with a specified amount of series capacity, and the frequency of Y1 is 2.00 MHz plus the channel center frequency, or 2.03 MHz for 30 kHz center frequency. Capacitor C55 and crystal Y2 in series are connected between the positive side of the supply voltage and the base of transistor Q51, which operates in the emitter following mode. The emitter is coupled to the base through C57. With Y2 removed the base of Q51 would be held at approximately the midpoint of the supply voltage by R51 and R52. The crystal serves as a series-resonant circuit with very high inductance and low capaci-

2

tance. The circuit can be made to oscillate at other than the natural frequency of the crystal by varying the series capacitor, C55. Increasing C55 will lower the frequency of oscillations and reducing C55 will raise the frequency.

Capacitor C73 (in parallel with C70) is not effective until D55 is biased in the forward direction and becomes conductive. It is blased in the reverse direction until the keying control for unblock is closed which places 45V..dc at terminal 12 of the printed circuit board. With D55 conducting, C73 and C70 are placed in parallel with C55 and C74. The adjustment of C73 will reduce the frequency of the Y2 circuit by 200 hz. Since Y2 is the lower of the two frequencies derived from Y1 and Y2, the difference frequency, which is the frequency transmitted, is now increased by 200 hz. Thus the frequency transmitted in now 200 hz above the guard frequency or 300 hz above the center frequency.

Crystal Y1 is connected in a circuit that is similar except for the addition of C53 and diodes D51 and D52. By adjustment of C52 this circuit is made to oscillate at 100 hz above its marked frequency. Capacitors C53 and C76 are not effective until D51 is biased in the forward direction and becomes conductive. It is biased in the reverse direction until the keying control is closed, which places 45 V. dc at terminal 1 of the printed circuit board. With D51 conducting, C53 and C76 are effectively in parallel with C52 and C75. The adjustment of C53 will reduce the frequency by 200 hz. The crystals taken individually have a greater variation of frequency with temperature than would be acceptable. However, by proper matching of the two crystals, the variation in their difference frequency can be kept within limits that permit holding the frequency station of the overall transmitter to \pm 10 hz over a temperature range of - 20 to +55°C.

The frequencies produced by the two oscillators are coupled to the base of mixer transistor Q53 through C62 and C63. The sum of the two frequencies is so high that a negligible amount appears on the secondary of transformer T51, but the difference frequency is accepted and amplified by Q53 and Q54.

When the keying control is closed, it increases the output power from 1 watt to 10 watts as well as changing the frequency from Guard to Transfer or Unblock Trip. This is effected by reducing the emitter resistance of buffer-amplifier transistor Q54 When the keying control is open, transistor Q55 receives no base current and is non-conducting. Emitter resistor R70 therefore is effectively opencircuited The level of output power is adjusted to 1 watt by means of R64. When Q55 is made conductive by closing the keying control circuit, R70 is placed in parallel with R68 and the amount of emitter resistance unbypassed by C66 can be adjusted as required to obtain a 10-watt output level.

Note in the keying board that diode D12 serves as interlocking logic connection between the keying for "unblock" and the keying for "transfer trip". This logic permits the "transfer trip" keying to take preference over the "unblock" keying. That is even if we have "unblock" keying and then get "transfer trip" keying, the "transfer trip" will take immediate preference over the "unblock" keying This is accomplished by the "transfer trip" keying causing transistor Q12 to conduct which in turn shunts out the keying voltage input to transistor G22 through diode D12. Thus while Q12 becomes conducting and consequently G11, effecting "transfer trip" keying, this conduction of Q12 also prevents G22 from becoming conducting and prevents "unblocking" keying.

As is shown on the Internal Schematic, Fig. 1, the voltage for the keying circuit is obtained from the 45-volt regulated supply in the transmitter.

The driver stage consists of transistors Q56 and Q57 connected in a conventional push-pull circuit with input supplied from the collector of Q54 through transformer T52. Thermistor R73 and resistors R74 and R75 are connected to provide a variable bias that reduces the effect of varying ambient temperatures on the input level. In addition, network R67, R79, and potentiometer R80 are used in the bias circuit and are adjusted by means of R80 to limit the quiscent current in the driver stage common to 0.2 ma. This adjustment is made by unsoldering the lead going from pin 2 of the transmitter to terminal 2 of transformer T1 and inserting a d-c milliammeter (0-1.0 ma) between this pin 2 and terminal 2 of T1. The R80 is adjusted to produce $0.2 \text{ ma } \pm .05$ in this circuit, after this, the milliammeter is removed and the lead replaced.

The driver filter, FL 101, consists of a seriesresonant inductor and capacitor connected between the driver and power amplifier stages by appropriate transformers T1 and T2. This filter greatly improves the waveform of this signal applied to the power amplifier.

The power amplifier uses two series-connected power transistors, G101 and G102, operating as a class B push-pull amplifier with single-ended output. Diodes D101 and D103 provide protection for the base-emitter junctions of the power transistors. Zener diodes Z105 and Z106 protect the collectoremitter junctions from surges that might come in from the power line through the coaxial cable.

The output transformer T3 couples the power transistors to the output filter FL102. The output filter includes two trap circuits (L102, C_B and L103, C_C) which are factory tuned to the second and third harmonics of the transmitter frequency. Capacitor C_D approximately cancels the inductive reactance of the two trap circuits at the operating frequency. Protective gap G1 is a small lightning arrester to limit the magnitude of switching surges or other line disturbances reaching the carrier set through the line turner and coaxial cable. Autotransformer T4 matches the filter impedance to coaxial cable of 50, 60, or 70 ohms.

The series resonant circuit composed of L105, and C_E is tuned to the transmitter frequency, and aids in providing resistive termination for the output stage. Jack J102 is mounted on the rear panel of FL102 and is used for measuring the r.f. output current of the transmitter into the coaxial cable. It should be noted that the filter contains no shunt reactive elements, thus providing a reserve impedance that is free of possible "across-the-line" resonances.

The power supply is a series-type transistorized d-c voltage regulator which has a very low stand-by current drain when there is no output current demand. The Zener diode Z1 holds a constant base-tonegative voltage on the series-connected power transistor Q1. Depending on the load current, the d-c voltage drop through transistor G1 and resistors R1 and R2 varies to maintain a constant output voltage. The Zener diode Z2 serves to protect the collector-base junction of G1 from surge voltages. Capacitor C1 provides a low carrier-frequency impedance across the d-c output voltage. Capacitors C2 and C3 bypass r.f. or transient voltages to ground, thus preventing damage to the transistor circuit.

CHARACTERISTICS

Frequency Range Output	30–300 kHz 1 watt guard–10 watts transfer trip (into 50 to 70 ohm resistive load) — 10 watts unblock.	
Frequency Stability	± 10 hz from -20°C to +55°C.	
Frequency Spacing	3000 hz min. between transmitter and adjacent receiver frequencies.	
Harmonics	Down 55 db (min.) from output level.	
Input voltage	48 or 125 v.d.c.	
Supply voltage variation	42–56 v. for nom. 47 v. supply. 105–140 v.for nom. 125 v. supply.	
Battery drain	0.5 a. guard 1.15 a. trip 48 v.d.c.	
	0.5 a. guard 1.15 a. trip 125 v.d.c.	
Keying circuit current	4 ma.	
Temperature range	-20 to +55°C. Around chassis.	
Dimensions	Panel height - 12½" or 7 r.u Panel width - 19"	
Weight	12 lbs.	

INSTALLATION

The TCF transmitter is generally supplied in a cabinet or on a relay rack as part of a complete carrier assembly. The location must be free from dust, excessive humidity, vibration, corrosive fumes, or heat. The maximum ambient temperature around the chassis must not exceed 55°C.

ADJUS THENTS

The TCF 10W/1W/10W 3 frequency transmitter is shipped with the power output controls R64 and R70 set for outputs of 1 watt and 10 watts into a 60 ohm load. If it is desired to check these adjustments or if repairs have made readjustment necessary, the coaxial cable should be disconnected from the assembly terminals and replaced with a 50 to 70 ohm non-inductive resistor of at least a 10 watt

rating. Use the value of the expected input impedance of the coaxial cable and line tuner. If this is not known, assume 60 ohms. Connect the T4 output lead to the corresponding tap. Connect an a-c vacuum tube voltmeter (VTVM) across the load resistor. Turn power output control R64 to minimum (full counter-clockwise). Turn on the power switch on the panel and note the d-c voltage across terminals 5 and 7 of J3. If this is in the range of 42 to 46 volts, rotate R64 clockwise to obtain 4 or 5 volts across the load resistor used. At this point check the adjustment of the series output tuning coil L105 by loosening the knurled shaft-locking nut and moving the adjustable core in and out a small amount from its initial position. Leave it at the point of maximum voltage across the load resistor used. Then rotate R64 farther clockwise to obtain the correct voltage for 1 watt in the load resistor, as shown in the following table. For above 200 kHz, tuning coil L105 is a screw type adjustment and not a plunger with knurled shaft and locking nut.

Then change to Trip frequency by connecting together terminals 2 and 3 of the transmitter printed circuit board (which is approximately equivalent to connecting together terminals 7 and 8 of J3), and rotate R70 until the voltage across the load resistor is as shown in the following table for a 10 watt output. Recheck the adjustment of L105 for maximum output voltage and readjust R70 for a 10 watt output if necessary. Tighten the locking nut on L105. Open the power switch, remove the jumper used to key the transmitter to the 10 watt level, remove the load resistor, and reconnect the coaxial cable circuit to the transmitter.

T106 Tap	Voltage for 1 Watt Output	Voltage for 10 Watts Output
50	7.1	22.4
60	7.8	24.5
70	8.4	26.5

Follow the procedure outlined in the line tuner instructions for its adjustment.

Normally the output filter (FL102) will require no readjustment except as noted above. It is factory tuned for maximum second and third harmonic rejection, and for series resonance (maximum output at the fundamental frequency) with a 60-ohm load. A small amount of reactance in the transmitter output load circuit may be tuned out by readjustment of the movable core of L105. This may be necessary with some types of line coupling equipment. The adjust-

able cores of L102 and L103 have been set for maximum harmonic rejection and no change should be made in these settings unless suitable instruments are available for measuring the second and third harmonic present in the transmitter output.

The operating frequencies of crystals Y1 and Y2 have been carefully adjusted at the factory and good stability can be expected. If it is desired to check the frequencies of the individual crystals, this can be done by turning the matched pair 180° and inserting a crystal in its proper socket with other crystal unconnected. A sensitive frequency counter with a range of at least 2.3 MHz can be connected from TP51 to TP54. (Connection to TP54 rather than to TP53 provides a better signal to the counter input capacitance on the oscillator circuit.) While measurement of the oscillator crystals individually is necessary for the initial adjustment of the oscillators, generally any subsequent checks may be made with a lower range counter connected at the transmitter output. If any minor adjustment of the Guard and Trip frequencies should be needed, the Guard adjustment should be made with capacitor C52 and the Trip adjustment with C53.

MAINTENANCE

Periodic checks of the transmitter Guard and Trip power outputs will detect impending failure so that the equipment can be taken out of service for correction. At regular maintenance intervals, any accumulated dust should be removed, particularly from the heat sinks. It is also desirable to check the transmitter power output at such times, making any necessary readjustments to return the equipment to its initial settings.

Voltage values should be recorded after adjustment in order to establish reference values which will be useful when checking the apparatus. The readings will remain fairly constant over an indefinite period unless a failure occurs. However, if transistors are changed, there may be considerable difference in these readings without the overall performance being affected.

Typical voltage values are given in the following tables. Voltages should be measured with a VTVM. Readings may vary as much as \pm 20%.

TABLE I TRANSMITTER D-C MEASUREMENTS

Note: All voltages are positive with respect to Neg. 45 V. (TP51). All voltages read with d-c VTVM.

	*
Voltage at	Voltage at
1 Watt	10 Watts
Output	Output
20	20
5.4	5.4
3.4	3.4
21	18.5
21	18.5
* < 1.0	* < 1.0
44.3	44.1
* < 1.0	* < 1.0
0	0
21 ± 2	21 ± 2
44.3	44.0
	1 Watt Output 20 5.4 3.4 21 21 * < 1.0 44.3 * < 1.0 0 21 ± 2

TABLE II TRANSMITTER RF MEASUREMENTS

Note: Voltages taken with transmitter set to indicated output across 60 ohms. These voltages subject to variations, depending upon frequency and transistor characteristics. T51-3 = Terminal 3 of transformer T51. Other transformer terminals identified similarly. All read with a-c VTVM.

Voltage at	Voltage at
1 Watt	10 Watts
Output	Output
0.015 - 0.03	0.015-0.03
0.05 - 0.09	0.3 -1.2
0.05 - 0.09	0.3 -1.2
1.65	5.6
1.45	4.9
.6	2.0
.57	1.85
5.2	17.0
5.2	17.0
35 31 9.8	112 110 31 24.5
	1 Watt Output 0.015 - 0.03 0.05 - 0.09 0.05 - 0.09 1.65 1.45 .6 .57 5.2 5.2 5.2 35 31

CONVERSION OF TRANSMITTER FOR CHANGED CHANNEL FREQUENCY

The parts required for converting a 1W/10W TCF transmitter for operation on a different channel frequency consist of a pair of matched crystals for the new channel frequency, new capacitors C103 and C 104 on the power amplifier circuit board if the old and new frequencies are not in the same frequency group (see table on internal schematic drawing) and, in general, new or modified filters FL101 and FL102. Inductors L101, L102 and L103 in these filters are adjustable over a limited range, but thirty-two combinations of capacitors and inductors are required to cover the frequency range of 30 to 200 kHz. The widths of the frequency groups vary from 1.5 kHz at the low end of the channel frequency range to 13 kHz at the upper end. A particular assembly can be adjusted over a somewhat wider range than the width of its assigned group since some overlay is necessary to allow for component tolerances. The nominal kHz adjustment ranges of the group are:

30.0-31.5	61.0- 64.0	113.0-119.5	207. 1-214.0
32.0-33.5	64.5- 68.0	120.0-127.0	214. 1-222.0
34.0-36.0	68.5- 72.0	127.5-135.0	222. 1-230.0
36.5-38.5	72.5- 76.0	135.5-143.0	230.1-240.0
39.0-41.0	76.5-80.0	143.5-151.0	240. 1-250.0
41.5-44.0	80.5-84.5	151.5-159.5	250. 1-262.0
44.5-47.0	85.0- 89.0	160.0-169.5	262.1-274.0
47.5-50.0	89.5- 94.5	170.0-180.0	274.1-287.0
50.5-53.5	95.0-100.0	180.5-191.5	287.1-300.0
54.0-57.0	100.5-106.0	192.0-220.0	
57.5-60.5	106.5-112.5	200. 1-207.0	

If the new frequency lies within the same frequency group as the original frequency, the filters can be readjusted. If the frequencies are in different groups, it is possible that changes only in the fixed capacitors may be required. In general, however, it is desirable to order complete filter assemblies adjusted at the factory for the specified frequency.

A signal generator, a frequency counter and a vacuum tube voltmeter are required for readjustment of FL101. The signal generator and the counter should be connected across terminals 4 and 5 of transformer T1 and the voltmeter across terminals 1 and 2 of transformer T2. The signal generator should be set at the channel center frequency and at 2 to 3 volts output. The core screw of the small inductor should be turned to the position that gives

a true <u>maximum</u> reading on the VTVM. Turning the screw to either side of this position should definitely reduce the reading. The change in inductance with core position is less at either end of the travel than when near the center and consequently the effect of core screw rotation on the VTVM reading will be less when the resonant inductance occurs near the end of core travel.

The procedure for readjustment of the 2nd and 3rd harmonic traps of filter FL102 is somewhat similar. A signal generator and a counter should be connected to terminals 3 and 4 of transformer T3, and a 500 ohm resistor and a VTVM to the terminals of protective gap G1. The ground or shield lead of all instruments should be connected to the grounded terminal of the transformer. Set the signal generator at exactly twice the channel center frequency and at 5 to 10 volts output. Turn the core screw of the large inductor, L102, to the position that gives a definite minimum_reading on the VTVM. Similarly, with the signal generator set at exactly three times the channel center frequency and 5 to 10 volts output, set the core screw of the small inductor, L103, to the position that gives a definite minimum reading on the VTVM. Then remove the instruments and the 500 ohm resistor.

After the new pair of matched crystals have been adjusted, as described under "ADJUSTMENTS", the transmitter can be operated with a 50 to 70 ohm load (depending on which tap of T4 is used) connected to its output, and inductor L105 can be readjusted for maximum output at the changed channel frequency by the procedure described in the same section.

If a frequency-sensitive voltmeter is available, the 2nd and 3rd harmonic traps may be adjusted without using an oscillator as a source of double and triple the channel frequency. Connect the frequency-sensitive voltmeter from TP109 to ground and adjust the transmitter for rated output into the selected load resistor. Set the voltmeter at twice the channel frequency and, using the tuning dial and db range switch, obtain a maximum on-scale reading of the 2nd harmonic. Then vary the core position of L102 until a minimum voltmeter reading is obtained. Similarly, tune the voltmeter to the third harmonic and adjust L103 for minimum voltmeter reading. Although the transmitter frequency will differ from the channel center frequency by 100 Hz, the effect of this difference on the adjustment of the harmonic traps will be negligible. It should be

noted that the true magnitude of the harmonics cannot be measured in this manner because of the preponderance of the fundamental frequency at the voltmeter terminals. Accurate measurement of the harmonics requires use of a filter between TP109 and the voltmeter that provides high rejection of the fundamental. The insertion losses of this filter for the 2nd and 3rd harmonics must be measured and taken into account.

RECOMMENDED TEST EQUIPMENT

- I. Minimum Test Equipment for Installation.
 - a. 60-ohm 10-watt non-inductive resistor.
 - b. A-C vacuum Tube Voltmeter (VTVM). Voltage range 0.003 to 30 volts, frequency range 60 hz to 330-kHz; input impedance 7.5 megohms.
 - c. D-C Vacuum Tube Voltmeter (VTVM). Voltage Range: 1.5 to 300 volts Input Impedance: 7.5 megohms.

- II. Desirable Test Equipment for Apparatus Maintenance.
 - a. All items listed in I.
 - b. Signal Generator
 Output Voltage
 Frequency Range:
 - c. Oscilloscope
 - d. Frequency counter
 - e. Ohmmeter
 - f. Capacitor checker.

Some of the functions of the recommended test equipment are combined in the type TCT carrier test meter unit, which is designed to mount on a standard 19" rack but also can be removed and used as a portable unit.

RENEWAL PARTS

Repair work can be done most satisfactorily at the factory. However, replacement parts can be furnished, in most cases, to customers who are equipped for doing repair work. When ordering parts, always give the complete nameplate data and identify the part by its designation on the Internal Schematic drawing.

up to 8 volts. 20-kHz to 330-kHz.

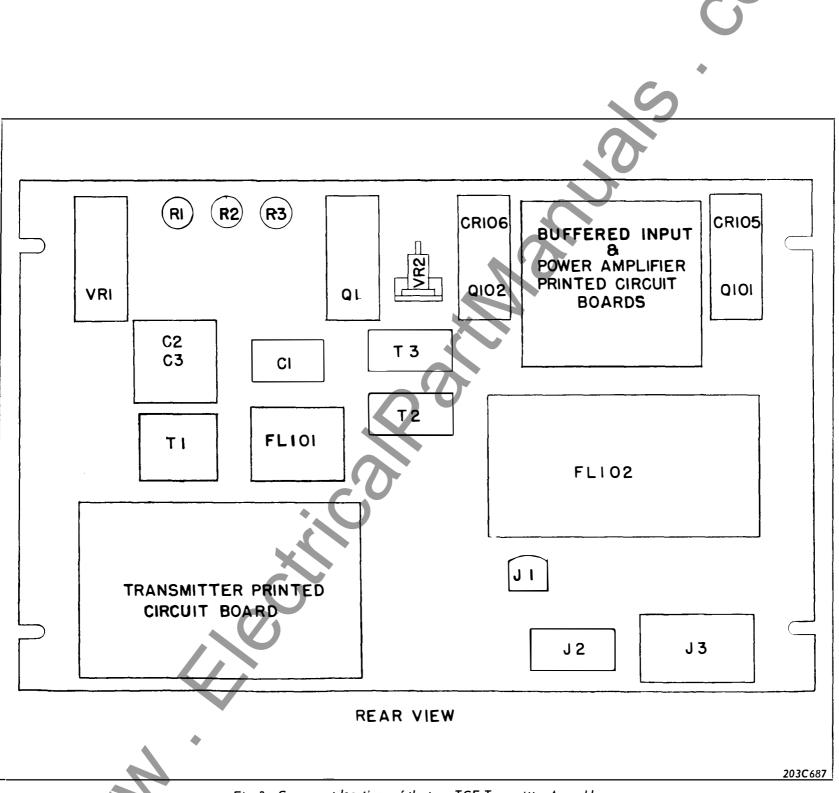
	ELECTRICAL PARTS LIST	
	DESCRIPTION	WESTINGHOUSE DESIGNATION
	CAPACITORS	
C1	Oil-filled; 0.45 mfd.; 330 V.A.C.	1723408
C2	Oil-filled; 0.5 mfd.; 1500 V.D.C.	1877962
C3	Oil-filled; 0.5 mfd.; 1500 V.D.C.	1877962
C11	Metallized Paper, .047 mfd.;	849A437H04
C21	Metallized Paper, .047 mfd.;	849A437H04
C51	Dur-Mica, 1500 pf.; 500 V.D.C.	762A757H03
C52	Variable, 5.5-18 pf.	879A834H01
C53	Variable 5.5 -18 pf.	879A834H01
C54	Metallized paper, .1 mfd.; 200 V.D.C.	187A624H01
C55	Variable, 5.5-18 pf.	762A736H01
C56	Dur-Mica, 2000 pf.; 500 V.D.C.	187A584H01
C57	Dur-Mica, 2000 pf.; 500 V.D.C.	187A584H01
C58	Metallized paper, 0.25 mfd.; 200 V.D.C.	187A624H02
C59	Dur-Mica, 100 pf., 500 V.D.C.	762A757H01
C60	Dur-Mica, 100 pf., 500 V.D.C.	762A757H01
C61	Metallized paper, 0.25 mfd,; 200 V.D.C.	187A624H02
C62	Dur-Mica, 4700 pf.; 500 V.D.C.	762A757H04
C 63	Dur-Mica, 1000 pf.; 500 V.D.C.	762A757H02
C64	Metallized paper, 0.25 mfd.; 200 V.D.C.	187A624H02
C65	Metallized paper, 0.25 mfd.; 200 V.D.C.	187A624H02
C66	Metallized paper, 0.25 mfd.; 200 V.D.C.	187A624H02
C67	Metallized paper, 0.25 mfd., 200 V.D.C.	187A624H02
C68	Metallized paper, 0.5 mfd., 200 V.D.C.	187A624H03
C69	Metallized paper, 0.25 mfd., 200 V.D.C.	187A624H02
C70	3 pf.	861A846H03
C71	Metallized paper, 0.25 mfd.; 200 V.D.C.	187A624H02
C72	Dur-Mica, 300 pf, 500 V.D.C.	187A584H09
C73	Variable, 5.5-18 pt.	879A834H01
C74	3 pf.	861A846H03
C75	3 pf.	861A846H03
C76	3 pf.	861A846H03
C101	Metallized paper, 0.25 mfd.; 200 V.D.C.	187A624H02
C102	Metallized paper, 0.25 mfd.; 200 V.D.C.	187A624H02
C103 & C104	(30-50 KC) - Extended foil, 0.47 mfd.; 400 V.D.C.	188A293H01
C103 & C104	(50.5-75 KC) - Extended foil, 0.22 mfd.; 400 V.D.C.	188A293H02
C103 & C104	(75.5 - 100 KC) - Extended foil, 0.15 mfd., 400 V.D.C.	188A293H03
C 103 & C 104	(100.5 - 150 KC) - Extended foil, 0.10 mfd., 400 V.D.C.	188 A 29 3H 04
C103 & C104	(150.5 - 300 KC) - Extended foil, 0.047 mfd.; 400 V.D.C.	188A293H05
	DIODES – GENERAL PURPOSE	
D11	1N645A	837 A69 2H03
D12	1N645A	837A692H03
D13	1N4822	188 A342H11
D14	1 N 48 22	188A 34 2H 11

I.L. 41-945.12

CIRCUIT SYMBOL	DESCRIPTION	WESTINGHOUSE DESIGNATION
<u>.</u>	DIODES - GENERAL PURPOSE	
D15	1N4822	188 A34 2H11
D16	1N4822	188A342H11
D21	1N645A	837A692H03
D22	1N4822	188A342H11
D23	1N4822	188 A34 2H 11
D24	1N4822	188A342H11
D 25	1N48 22	188A342H11
D51	1N628; 125 V.; 30 MA.	184A885H12
D52	1N628; 125 V., 30 MA.	1 84 A885H12
D53	1N457A; 60 V., 200 MA.	184A885H07
D55	1N 628; 125V; 30 MA.	184A885H12
D56	1N628; 125 V., 30 MA.	184A885H12
D57	1N457A; 60 V., 200 MA.	184A885H07
D 10 1	1N538; 200 V.; 750 M A.	407C703H03
D102	1N91; 100 V., 150 MA.	18 2A88 1H04
D103	1N538; 200 V., 750 MA.	407C703H03
D 104	1N906, 200 V.; 150 MA.	182A881H04
	DIODES - ZENER	
Z1	1N2828B; 45V. ±5%; 50 W.	184A854H06
 Z2	1N3009A; 130 V. ±10%; 10 W.	184A617H12
 Z11	1N957B	186A797H06
Z12	1N3688A	862A288H01
Z13	1N3688A	862A288H01
Z14	1N3686B	185 A 21 2H06
Z21	1N957B	186A797H06
Z22	1N3 688A	862A288H01
Z23	1N3688A	862A288H01
Z23	1N3686B	185A212H06
Z54	1N3686B; 20 V. ±5%; 750 MW.	185A212H06
Z105	1N2999A; 56 V. ±10%; 10 W.	184A617H13
Z106	1N2999A; 56 V. ±10%; 10 W.	184A617H13
	RESISTORS	
R1	26.5 ohms ±5%; 40 W. (For 125 V Supply)	04D1299H44
R2	26.5 ohms ±5%; 40 W. (For 125 V Supply)	04D1299H44
R3	26.5 ohms ±5%; 40 W. (For 48 V Supply)	04D1299H44
R3	500 ohms ±5%; 40 W. (For 125 V Supply)	1 26804 7
, R4	100 ohms ±10%; 1 W. Composition	187A644H03
R5 🔶	1K ±10%; ½ W. Composition	187A641H27
R6	$3K \pm 5\%$; 5 W. Wire Wound	188 A 317H01
R7	15K ±10%; 2 W. Composition	187A642H55
R11	4.7K ±2%; ½ W. Metal Glaze	629A531H48
R12	12K ±2%; ½ W. Metal Glaze	629A531H58
	$10K \pm 2\%; \frac{1}{2} \text{ W. Metal Glaze}$	629A531H56
R13	10K ± 276, 72 W. Metal Glaze	023A331H30

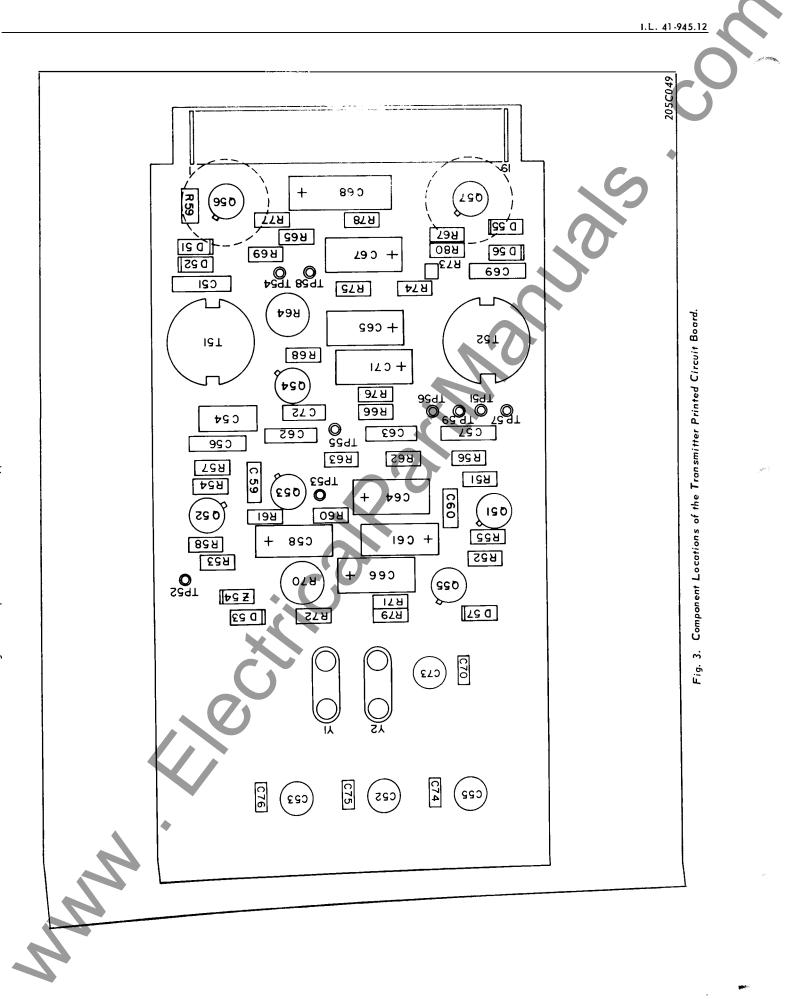
9

CIRCUIT Symbol	DESCRIPTION	WESTINGHOUSE DESIGNATION
	RESISTORS (Continued)	
R14	6.2K ±2%; ½ W. Metal Glaze	629A531H51
R15	4.7K ±2%; ½ W. Metal Glaze	629A531H48
R16	47K ±2%; ½ W. Metal Glaze (For 125 Vdc)	629A531H72
R17	4.7K ±2%; ½ W. Metal Glaze	629 A53 1H48
R21	4.7K ±2%; ½ W. Metal Glaze	629A531H48
R 22	12K ±2%; ½ W. Metal Glaze	629A531H58
R 23	10K ±2%; ½ W. Metal Glaze	629A531H56
R24	6.2K ±2%; ½ W. Metal Glaze	629 A531 H51
R 25	4.7K ±2%; ½ W. Metal Glaze	629A531H48
R26	15 K ±2%; ½ W. Metal Glaze (For 48 Vdc)	629A531H60
R 27	4.7K ±2%; ½ W. Metal Glaze	629A531H48
R51	10K ±5%; ½ W. Composition	184A763H51
R52	10K ±5%; ½ W. Composition	184A763H51
R53	10K ±5%; ½ W. Composition	184A763H51
R54	10K ±5%; ½ W. Composition	184A763H51
R55	100 ohms ±5%; ½ W. Composition	184A763H03
R56	3.6K ±5%; ½ W. Composition	184 A 76 3 H 40
R57	3.6K ±5%; ½ W. Composition	184 A763H40
R 58	100 ohms ±5%; ½ W. Composition	184A763H03
R 59	10K ±5%; ½ W. Composition	184A763H51
R60	5.6K ±5%; ½ W. Composition	184A763H45
R61	15K ±5%; ½ W. Composition	184A763H55
R62	10K ±5%; ½ W. Composition	184A763H51
R63	1K ±5%; ½ W. Composition	184A763H27
R64	Potentiometer, 1K; 1/4 W.	629A430H02
R 65	1.8K ±5%; ½ W. Composition	184A763H02
R66	8.2K ±5%; ½ W. Composition	184A763H49
R67	12K ±5%; ½ W. Composition	184A763H 53
R68	330 ohms ±5%; ½ W. Composition	184A763H15
R69	800 ohms ±5%; ½ W. Composition	184A859H06
R70	Potentiometer, 1K; ¹ / ₄ W.	629A430H02
R71	4.7K ±5%; ½ W. Composition	184A763H43
R72	39K ±5%; ½ W. Composition	184A763H65
R73	Thermistor, 30 ohms, Type 3D202 (G.E.C.)	185A211H06
R74	180 Ohms ±5%; ½ W. Composition	184A763H02
R75	100 ohms $\pm 5\%$; $\frac{1}{2}$ W. Composition	184A763H03
R76	$ 2K \pm 5\%; \frac{1}{2} \text{ W. Composition} $	184A763H34
R77	10 ohms ±5%; ½ W. Composition	187 A 290 H0 1
R78	10 ohms $\pm 5\%$; $\frac{1}{2}$ W. Composition	187 A 290 H0 1
R79	20K ±20%; ½ W. Metal Glaze	629A531H63
R 80	25K Potentiometer ± 20%; ¼ W.	629A430H09
R81	1100000000000000000000000000000000000	849A819H48
1.01		

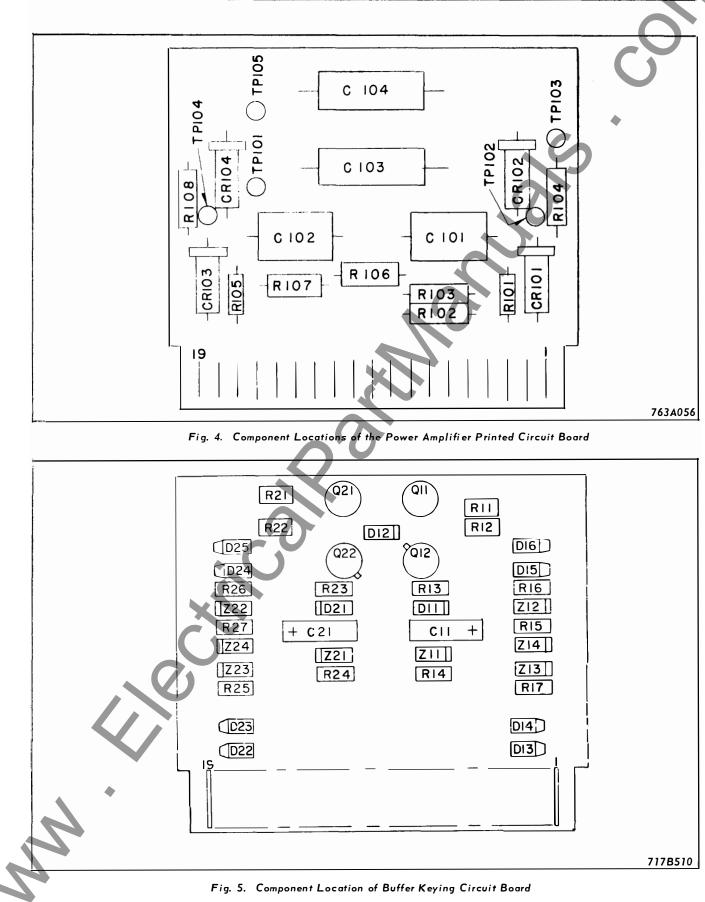

ŧ

I.L. 41-945.1

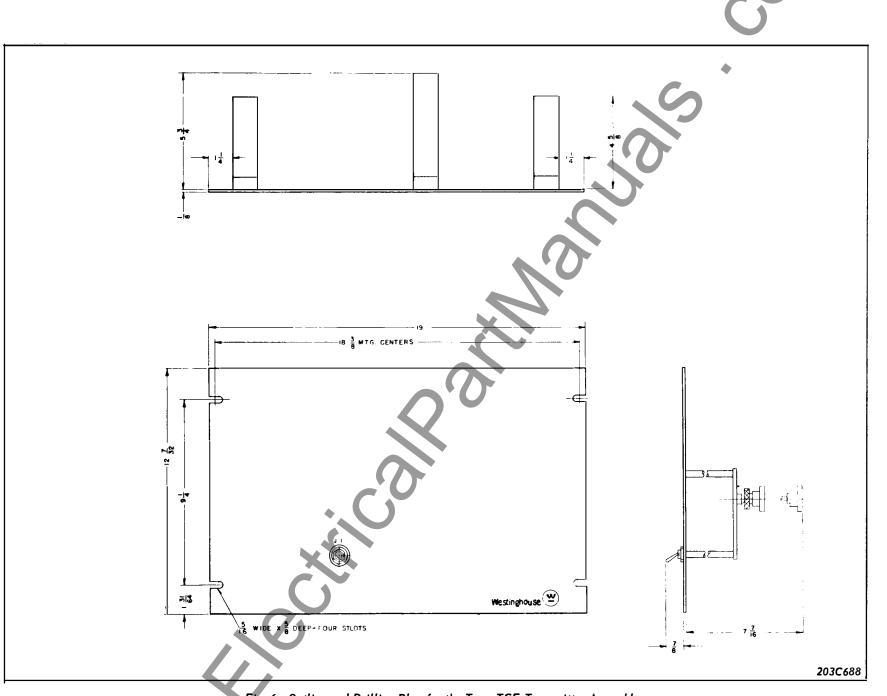
	CIRCUIT SYMBOL	DESCRIPTION	WESTINGHOUSE DESIGNATION		
	RESISTORS (Cont'd.)				
	R8 2	5K Pot. ± 20%; ½ W.	629A430H07		
	R83	10.2K ± 1%; ½ W. Metal Film	848A820H46		
	R84	27 Ohms ± 5%; ½ W. Composition	187A290H11		
	R85	Thermistor 3D402 10 ohms	185A211H03		
	R86	750 ohms ± 1%; ½ W. Metal Film	848A819H36		
	R87	10K ± 5%; ½ W. Composition	184 A763H51		
	R 10 1	10 ohms ±5%; ½ W. Composition	187A280H01		
	R102	2.2K ±10%; 1 W. Composition	187A644H35		
	R103	2.7 ohms ±10%; ½ W. Wire Wound	184A636H14		
	R 104	0.27 ohms ±10%; 1 W. Wire Wound	184A636H18		
	R105	10 ohms ±5%; ½ W. Composition	187A 290H01		
	R106	4.7K ±10%; 1 W. Composition	187A644H43		
	R 107	2.7 ohms ±10%; ½ W. Wire Wound	184A636H14		
	R 108	0.27 ohms ±10%; 1 W. Wire Wound	184 A 63 6H 18		
		TRANSFORMERS			
	T1	Driver Output Transformer	606B410G01		
	T2	Power Amp. Input Transformer	292B526G01		
	T3	Power Amp. Output Transformer	292B526G02		
	T4	Load-Matching Auto-Transformer	292B526G03		
	T51	Buffer Amplifier Transformer	60 6B5 37G0 1		
		Driver Input Transformer	60 6B 5 37G 0 2		
T52	152		0000001002		
	Q11	2N4356	849A441H02		
	Q12	2N 699	184A638H19		
	Q21	2N4356	849A441H02		
	Q22	2N699	184 A638H 19		
	Q51	2N697	184A638H18		
	Q52	2N697	184A638H18		
	Q53	2N 69 7	184 A638H18		
	Q54	2N699	184A638H19		
	Q55	2N697	184 A638H18		
	Q56	2N2726	762A672H07		
	Q57	2N2726	762A672H07		
		2N1908 (Use in Matched Pairs)	187A673H02		
	Q 10 1 Q 102	2N1908 (Use in Matched Pairs) 2N1908 (Use in Matched Pairs)	187A673H02		
	Q102	MISCELLANEOUS	1011010102		
	Y1-Y2	Supplied for Desired Channel Frequency in Pair Matched Per Specifications on Drawing	408C743		
	FL 101	Driver Filter	408C261 + (Req. Freq		
	FL102	Output Filter	541D214 + (Req. Freq		
	PL	Pilot Light Bulb - For 48 V. Supply (When supplied)	187 A 133 HO 2		
-		Pilot Light Bulb - For 125 or 250 V. Supply (When supplied)	183A955H01		
	F1, F2	Fuse, 1.5A (When supplied)	11D9195H26		


11

www.

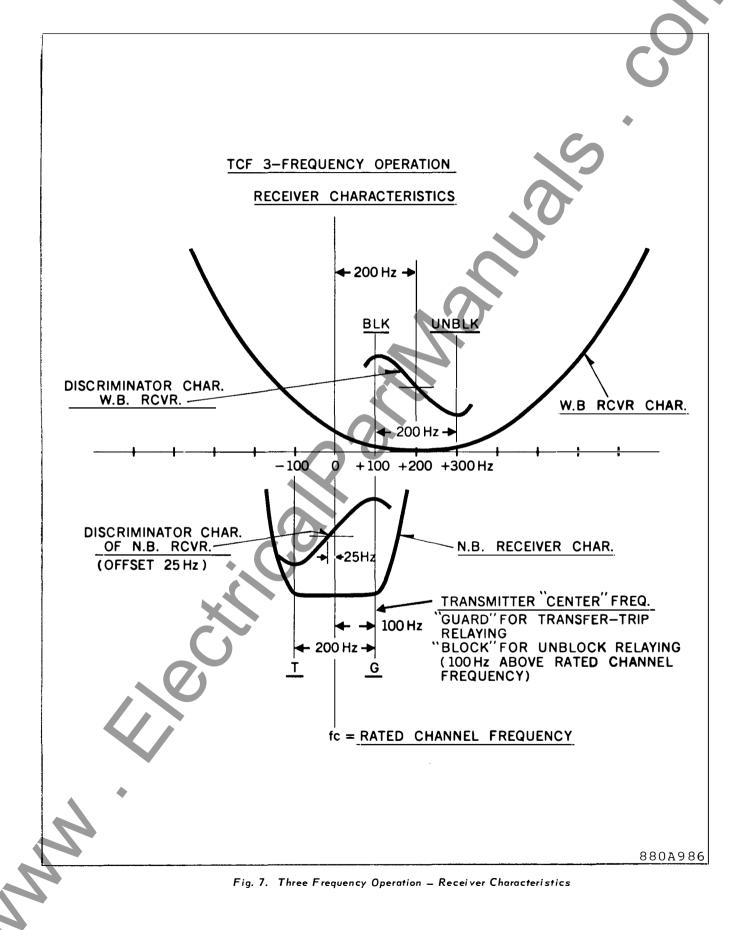


15


Fig. 2. Component locations of the type TCF Transmitter Assembly.

TYPE TCF POWER LINE CARRIER

I.L. 41-945.12



18

TYPE TCF POWER LINE CARRIER

TYPE TCF POWER LINE CARRIER

I.L. 41-945.12

TYPE

TCF POWER LINE CARRIER

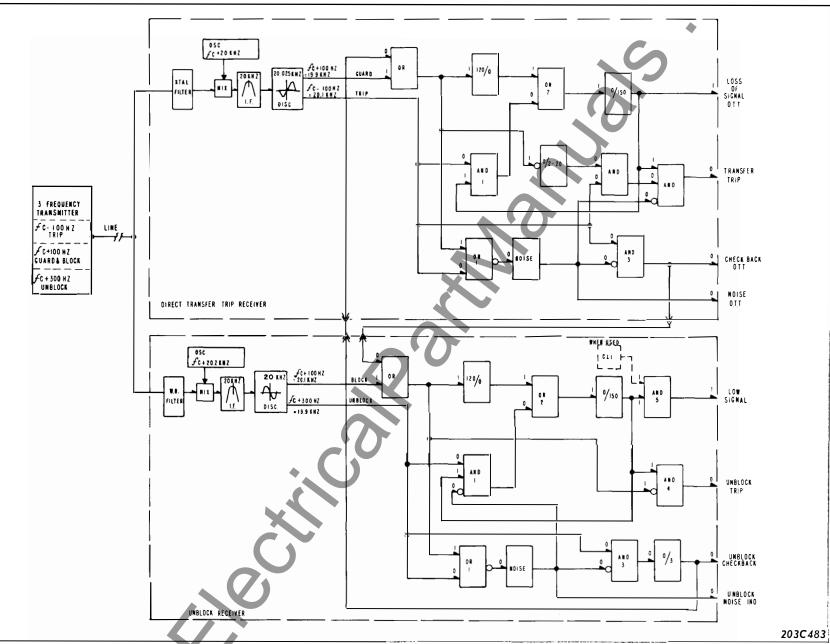
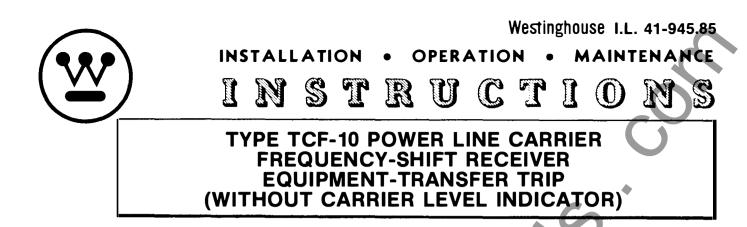



Fig. 8. Receivers Logic Diagram - 3 Frequency Operation for Direct Transfer Trip and Unblock Relaying

Printed in U.S.A.

CAUTION: It is recommended that the user of this equipment become acquainted with the information in this instruction leaflet and in the system instruction leaflet before energizing the system.

Printed circuit modules should not be removed or inserted when the relay is energized. Failure to observe this precaution can result in an undesired tripping output and cause component damage.

If the carrier set is mounted in a cabinet, it must be bolted down to the floor or otherwise secured before swinging out the equipment rack to prevent its tipping over.

APPLICATION

The TCF-10 frequency-shift receiver equipment as adapted for transfer-trip applications responds to carrier-frequency signals transmitted from the distant end of a power line and carried on the power line conductors. The Guard signal is transmitted continuously when conditions are normal. Its reception indicates that the channel is operative and that there is no fault in the protected equipment. The Guard frequency is 100 hertz above the center frequency of the channel. When a fault occurs within the protected equipment, protective relays switch the transmitter located there to a Trip frequency, 100 hertz below the center frequency, and also increase the power output of the transmitter (from 1 watt to 10 watts).

The reception of Trip frequency within a fixed interval after disappearance of the Guard frequency causes the energization of a high-speed electromechanical relay which closes the breaker trip circuit. If trip frequency is not received within this interval, the channel is not operating normally and a second relay closes contacts to sound an alarm. Simultaneously, the Trip relay is locked out so that a spurious Trip signal resulting later from line noise cannot cause false tripping. Other circuitry, described under OPERATION, provides security against false tripping caused by severe line noise that overrides a normal Guard signal and produces a spurious Trip signal.

CONSTRUCTION

The TCF-10 receiver unit for transfer-trip applications is mounted on a standard 19-inch wide Chassis 5 1/4 inches high (3 rack units) with edge slots for mounting on a standard relay rack. All components not mounted on Printed Circuit Modules are mounted at the rear of the panel. An input attenuator, a jack for metering the discriminator output current, and the control for the adjustable time delay in the logic circuit are accessible from the front of the Chassis See Fig. 15.

All of the circuitry that is suitable for mounting on printed circuit boards is contained on printed circuit modules that plug into the chassis from the front and are readily accessible by removing the transparent cover on the front of the chassis. The power supply components and external connectors are located at the rear of the chassis as shown in Figure 5. Reference to the internal schematic connections of Figure 1 will show the location of these components in the circuit.

All possible contingencies which may arise during installation, operation, or maintenance, and all details and variations of this equipment do not purport to be covered by these instructions. If further information is desired by purchaser regarding his particular installation, operation or maintenance of his equipment, the local Westinghouse Electric Corporation representative should be contacted.

The printed circuit modules slide into position in slotted guides at the top and bottom of the chassis, and the module terminals engage a terminal block at the rear of the chassis. A handle on the front of each module is labeled to identify its function, and also identify adjustments and indicating lights if any are available at the front of the module. Of particular significance, is the input attentuator contained on the front of the filter module which is used in adjusting the input receiver signal during initial field installation.

A module extender (Style No. 1447C86G01) is available for facilitating circuit measurements or major adjustments. After withdrawing any one of the circuit modules, the extender is inserted in that position. The module is then inserted into the terminal block on the front of the extender. This restores all circuit connections and renders all components and test points on the module readily accessible.

The receiver operates from a regulated +20Vsupply and a +10V supply operating from a regulated +45dc supply. These voltages are taken from three zener diodes mounted on a common heat sink. Variation of the resistance value between the positive side of the unregulated dc supply, and the 45 volt zener adapt the receiver for operation on 48 or 125 volts dc.

External connections to the receiver are made through a 36 terminal recepticle, J3. The r-f input connection to the receiver is made through a coaxial cable jack J2.

OPERATION

INPUT MODULE

The input module contains the input control and the input filter. The signals to which the TCF-10 receiver responds are fed through a coaxial cable connected to jack J2 at the rear of the chassis to the input module. The input control R5, accessible at the front of the input module, attenuates the signal to a level suitable for the best operating range of the receiver.

A scale on the panel is graduated in dB. While this scale is typical rather than individually calibrated, it is accurate within several dB and is useful in setting approximate levels. Settings should be made more accurately utilizing a suitable ac voltmeter with a dB scale when possible.

CRYSTAL FILTER

From the attenuator, the signal passes through a crystal filter, FL1. This filter has a narrow pass band, and frequencies several hundred cycles above

OSCILLATOR, MIXER, AND IF AMPLIFIER MODULE

From the input filter, the signal enters the oscillator and mixer stage of the receiver. Crystal Y11, transistors Q12 and Q13, and their associated resistors and capacitors, comprise a crystal-controlled oscillator that operates at a frequency 20kHz above the channel center frequency, f_c . The output from this local oscillator is fed through transformer T11 to potentiometer R12, and the latter is adjusted to feed a suitable input to the base of mixer transistor Q11. The output of filter FL201 is impressed on the emitter-collector circuit of Q11. As a result of mixing these two frequencies, the primary of transformer will contain frequencies of 20kHz, $2f_c + 20kHz$, $f_c + 20kHz$, and f_c .

The output from the secondary of T12 is amplified by Q31 in the intermediate frequency (IF) stage, and is impressed on FL2. This is a twosection filter, with both filters contained in a common case. Its pass band is centered at 20kHz. Since its pass band is narrower than that of the input filter, it eliminates the frequencies present at its input that are substantially higher than 20kHz. The output of this filter is the IF output which is fed to both the amplifier-limiter and the S/N Detection module. The output from the secondary of transformer T12, the RF output, is also fed to the S/N detection module.

AMPLIFIER LIMITER AND DISCRIMINATOR MODULE

AMPLIFIER AND LIMITER

The output from the second section of the IF amplifier stage is fed to potentiometer R52 at the input of the amplifier and limiter stage. Sufficient input is taken from R52 so that with minimum input signal (5 mv.) at J2 and with R5 set for zero attenuation, satisfactory amplitude limiting will be obtained at the output of the limiter stage.

DISCRIMINATOR

The output of the limiter stage is fed to the discriminator. The discriminator is adjusted at the factory to have zero output (as measured by a milliammeter inserted in the circuit at jack J1) at fc-25 hertz. The adjustment for zero output at fc-25 hertz is made by capacitor C68. C63 is adjusted to obtain a maximum voltage reading across R80 when the current output is zero. Maximum current output, of opposite polarities, will be obtained when the frequency is 100 hertz above or below the zero output frequency. This separation of 200 hertz between the current peaks is affected by the value of C66 (the actual value of which may be changed slightly from its typical value in factory calibration if required.)

The purpose of offsetting the zero output frequency of the discriminator by 25 hertz in the Trip direction is to reduce the band of noise-generated trip frequencies (between the discriminator center frequency and the skirt of the FL1 filter), and to similarly increase the band of noise-generated frequencies on the Guard side of the discriminator center. It should be observed that although Guard frequency is $f_c + 100$ herz, after leaving the mixer stage and as seen by the discriminator the Guard frequency is 20 kHz - 100 hertz. Similarly, the Trip frequency is 20 kHz + 100 hertz. The intermediate frequency at which the discriminator has zero output then is 20.025 kHz.

The discriminator output is connected to the bases of transistors Q55 and Q56 in such a manner that transistor Q56 is made conductive when current flows, from the discriminator output, in the forward direction of diode D54, (which occurs with Trip output) and Q55 is made conductive when current flows in the forward direction of diode D55 (which occurs with Guard output) Consequently, terminal 35 is at a potential of approximately +20 volts at Guard frequency and terminal 1 is at +20 volts at Trip frequency. These two outputs feed the logic circuit board, and through it they control the operation of the loss-of-channel alarm relay, AL, and the Trip relay, AR.

As a means of increasing further the security of the receiver against false tripping on noisegenerated Trip frequencies, diode D56 is connected in the emitter circuit of Q56. This requires an increase of three or four db. in the minimum Trip signal that will pick up the Trip relay. However, when the transmitter is keyed to Trip, its output is increased by 10 db. to assure the reliability of tripping at times of severe channel deterioration or simultaneous noise conditions, and this amply compensates for the reduction of Trip sensitivity caused by diode D56. For applications where severe noise conditions or channel deterioration are not encountered, a TCF-10 transmitter with 1 watt output rather than 10 watts can be supplied. If in such installations it is found desirable to increase the reliability of tripping, a jumper may be connected across diode D56.

LOGIC CIRCUITS

The logic stage of the receiver employs static circuitry that permits elimination of separate guard and lockout relays but provides all of the function of these relays as well as a unique method for minimizing the effect of noise signals. The block diagram of the logic circuits is shown on Fig. 3. When the discriminator receives Guard signal, its output terminal (15) supplies positive potential to blocks A, D, and F on the block diagram. Block A represents R108, C101 and D104 of Fig. 1. Capacitor C101 will charge in approximately 120 milliseconds to the breakdown voltage of Zener Z104 and block C (transistor Q102) then will receive input # 1. The function of O101 is not indicated on the block diagram, but it discharges C101 quickly when Guard signal disappears, so that the full 120 ms. delay is obtained on closely repetitive appearances of Guard signal. This avoids cancellation of a lossof-channel alarm by noise-produced Guard signal.

When Q102 (block C) receives input #1 or # 2, it is made conductive and capacitor C102 receives no charge. Q103 is non-conductive since it receives no base input through Z105, and its collector is held at approximately 10 volts by the voltage divider effect of R131 and R136. Note that under this condition, input #1 to block K is supplied. If Guard signal should disappear but be followed promptly by appearance of Trip signal, the trip input fed through R102 will not be diverted

through D102 to the collector of Q103 but will flow through D101 to the base of Q102 to keep it conductive. However, if Guard signal disappears and Trip signal does not appear in approximately 150 ms., C102 will charge to the breakdown point of Z105 making O103 conductive. This will remove base input from Q104 and the alarm relay will drop out, sounding the alarm through its normallyclosed contacts. (The copper slug on the alarm relay adds an additional delay of approximately 40 ms. before the alarm contacts close.) When Q103 becomes conductive, the saturation voltage at its collector is so low that any current flowing through R102 as a result of a subsequent Trip signal will be diverted through Q103 to negative instead of flowing through D101 and the base-emitter junction of Q102. If Guard signal reappears, the discriminator output at term. 15 will turn Q101 off. C101 will change and after 120 ms. it will reach the breakdown voltage of Z104 and turn Q102 on. This will allow C102 to quickly discharge through R123 and O102 and provide the full 150 ms, time delay to be effective on any subsequent loss of guard signal.

Guard signal also produces input to transistor, O109 (block D). With base input to O109 it has negligible voltage on its collector, but if Guard signal is lost, capacitor C104 will charge to the breakdown voltage of Z113 in a time ranging from about 2 to 20 ms., as determined by the setting of R7. This time delay also is quickly reset on reappearance of Guard signal, as C104 discharges through R114, Z113 and O109. Transistors O110 and Q111 are a part of logic block I. When C104 reaches the conduction voltage of Z113, Q110 conducts and removes base input from Q111. This raises the voltage on the collector of **Q111** to about 15 volts, which constitutes input # 2 to block K. The purpose of logic blocks D and I is to provide an adjustable delay between the loss of Guard signal and the pickup of the Trip relay. It is possible that a noise burst might momentarily cancel the Guard signal and produce a spurious Trip signal. Provision of this adjustable delay provides a considerable degree of protection against such incorrect operations. Resistor R7 is adjustable by means of a knob on the front of the panel, and the knob can be clamped at any desired setting.

When Trip signal appears, input is fed to transistor Q106 (block E) through R119. Under this

condition Q106 becomes conducting and does not supply input #1 to Q107 (block J). If input #2 (supplied through R115) also is lacking for Q107. the latter is non-conductive and its collector voltage is approximately 15 volts. This constitutes input # 3 to AND block K. Block K is a three-input diode-AND, with the inputs contributed by the collectors of transistors Q103, Q107 and Q111. When one or more of these transistors is conducting, input fed from the 45 volt supply through R138 cannot reach the base of Q108 to cause pickup of the Trip relay because the voltage drop across any of the three diodes plus the saturation resistance of a transistor is substantially less than the voltage drop across one diode (D110) plus the base-emitter voltage required to make Q108 conductive.

The logic blocks F and G provide further protection against incorrect tripping under noise conditions. Transistor Q105 is represented by block F; and diode D107 capacitor C103 and resistor R115 are represented by block G. Q105 receives input from either Trip or Guard signals through R101 or R106, and when either signal is present its collector voltage is a small fraction of a volt. When the transmitter is shifted from Guard to Trip by closure of a protective relay contact, the discriminator shifts its outputs very rapidly and the interval during which there is no input to Q105 is only 1.5 to 2.0 ms. Most of the charge that builds up in C103 during this interval flows to the base of Q107 and keeps it conducting after the appearance of Trip signal has removed the input through R125. However, this delay has approximately the same duration as the minimum delay obtained from block I and thus does not increase the minimum overall time for tripping following a legitimate Trip signal.

At times when severe random noise is present, such as might be produced by opening a nearby disconnect switch, the noise-produced signal may override the Guard signal and produce a discriminator output that no longer has a constant Guard output but rapidly fluctuates between Guard and Trip (and beyond). There will be relatively long periods when the discriminator has neither Guard nor Trip output. At such times capacitor C103 may approach or reach its maximum voltage, thereby keeping Q107 conducting for 40 to 50 ms. Also, because of the quick reset feature of logic block I, intermittent reappearance of Guard signal during noise will fully reactivate the time delay for which it has been set. If a fault should occur and Trip frequency be transmitted at a time when high level noise frequencies are present, tripping may be somewhat delayed but will be accomplished before the cessation of noise unless conditions are extremely severe. The recommended 10 db. increase of transmitter output level at Trip frequency minimizes such delay.

It may appear that the function of block E in the logic diagram is duplicated by block F and could have been omitted. This is correct when the time constants are as normally supplied, but block E was retained to make the circuit adaptable to possible extreme conditions with minimum change.

In summary, the logic circuit provides the following functions:

- 1. Energizes alarm in case of loss of signal.
- 2. Prevents cancellation of an alarm by noiseproduced signal.
- 3. Allows tripping upon reception of legitimate Trip signal.
- 4. Prevents tripping if channel is not operative immediately prior to reception of Trip signal.
- 5. Minimizes effect of noise-produced signals by utilizing noise characteristics to introduce additional Trip delay.

OUTPUT CIRCUITS

The output stage of the receiver contains the alarm relay (AL) and the tripping relay (AR). Either relay is energized from the regulated 45 volt supply when the logic circuit has determined that the existing conditions require such operation. The AL relay is a telephone type relay with a copper slug on the end of the core opposite the armature. It has two sets of Form C contacts, all points of which are connected to terminals of jack J3. The AR relay has two normally-open and two normally-closed contacts. The Four sets of contacts are connected to terminals of jack J3. The AR relay has been designed to provide very high speed operation with negligible contact bounce. While normally it is energized only briefly, it will not be damaged by continuous energization.

CARRIER LEVEL INDICATOR (WHEN SUP-PLIED)

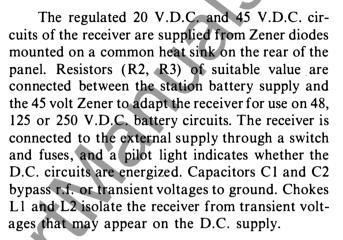
With the logic circuit connections shown on Fig. 1, the AL relay closes contacts to energize an alarm when there is absence of both Guard and Trip signal for a definite time interval. This is satisfactory when the channel fails suddenly and completely. However, the signal may weaken gradually from various causes, and it is desirable to have a means for providing a visual indication of the channel condition as well as for energizing an alarm when the signal has weakened seriously but has not reached the point of complete failure. These functions are provided if a carrier level indicator stage is included in the receiver.

The carrier level indicator is housed in the right-hand compartment of the enclosure that contains the circuit boards. Fig. 2 shows the connections of the components on this circuit board and also the external connections of the board. All other stages of the receiver are identical with those shown on Fig. 1. The same AL relay is used, but it is energized through transistor Q104 of the logic stage when the receiver does not include carrier level indication and through Q154 of the carrier level indicator when the latter is supplied. A TCF-10 receiver in which the carrier level indicator was not included at time of assembly can have this feature added later by installing the required circuit boards and making minor changes in the wiring.

The S/N detection module (carrier level indicator) has one basic function: to measure incoming in-band signal level and provide both an output to a carrier level indicating instrument and to an alarm circuit in the output module for alarming at the desired low level of signal.

This same output is also fed to an alarm circuit on the output module (contact output) for alarming at low signal levels.

The narrow-band signal of 220 hertz bandwidth called the I.F. is fed into the S/N detection board through isolation transformer T32. The amount of signal fed into the board is adjustable by means of potentiometer R111. The circuit composed of operational amplifiers IC7 and IC8 and associated components is an RMS circuit which converts the signals into a dc voltage proportional to the r.m.s. value of the ac signals present in the IF bandwidth.


The output of the IF rms circuit is then fed to the logarithmic circuit composed of IC11A, IC12A, and IC11B which puts out a dc signal level linearly proportional to signal level in dB for feeding a microammeter calibrated with a linear dB scale with 10dB equal to 33 1/3 microamperes, is contained on the output module (contact output).

The input to the carrier level indicator is not affected by frequency variations that are within the pass band of the crystal input filter, but only by the level of the receiver input signal. When the alarm relay is energized through transistor Q104 of the logic stage (in a receiver without carrier level indicator-Fig. 1), the alarm will be activated on complete loss of signal or on loss of Guard signal if Trip signal does not appear within approximately 150 ms. After the alarm relay has dropped out and activated the alarm, the relay will not be picked up by subsequent appearance of Trip signal but only by the reappearance of Guard signal. It is desirable to retain this alarm feature when the carrier level indicator is supplied, and a single alarm relay can be caused to respond to frequency change as well as to signal level by the interconnection between the terminals of the logic and carrier level indicator circuit boards.

When Guard signal is being received, the voltage at the collector of Q103 in the logic circuit is approximately 10 volts, but this voltage is blocked from the base of (Q154) in the carrier level indicator circuit by diode D155. However, if the discriminator Guard output should fail because of a sufficient frequency shift either above or below Guard frequency, Q103 would become conductive and the collector current of (Q153) would be diverted to negative through D155 and Q103 rather than entering the base of (Q154). The latter would become nonconductive and the alarm relay would drop out, closing the alarm circuit even though the signal level is unchanged.

With Guard signal being received, the signal level just below which the discriminator Guard output drops to zero is the minimum operating level of the receiver. The AL relay should energize the alarm at a signal level somewhat above this. For usual operating conditions it should be satisfactory to set the input attenuator (R5) 15 db. above the minimum operating level and set the AL relay (by means of R156) to drop out at a signal 5 db. above the minimum operating level.

POWER SUPPLY

CHARACTERISTICS

Frequency range	30-300 kHz
Sensitivity (noise- free channel)	0.005 volt (65 db below 1 watt for limiting)
Input Impedance	5000 ohms minimum
Bandwidth (crystal filter)	down < 3 db at 220 hertz down > 60 db at 1000 hertz
Discriminator	Set for 200 cycles shift from Guard to Trip frequency. Offset 25 hertz to favor Guard for all relay-output applications.
Operating time	 9 ms. channel (transm. and recvr.) 2 ms. min. logic delay + 3 ms. AR relay 14 ms. minimum time +18 ms. max. added logic time (if req'd. by noise conditions) 32 ms. maximum time

<u>32 ms.</u> maximum time

Frequency spacing A. For two or more signals over one-way channel B. For two-way channel	500 hertz minimum 1000 hertz, minimum between transmitter and adjacent receiver frequencies.
Ambient temperature range	-20° C to $+55^{\circ}$ C temperature around chassis.
Battery voltage variations	
Rated voltage	Allowable variation
48 V.D.C.	42 – 56 V.D.C.
125 V.D.C.	105 – 140 V.D.C.
250 V.D.C.	210 – 280 V.D.C.
Battery drain	0.20 a. at 48 V.D.C.
	0.27 a. at 125 or 250 V.D.C.
Dimensions	Chasis height $-5 1/4''$ or 3 r.u. Chassis width $-19''$
Weight	13 lbs.

INSTALLATION

The TCF-10 receiver is generally supplied in a cabinet or on a relay rack as part of a complete carrier assembly. The location must be free from dust, excessive humidity, vibration, corrosive fumes, or heat. The maximum ambient temperature around the chassis must not exceed 55° C.

ADJUSTMENTS

All factory adjustments of the TCF-10 receiver have been carefully made and should not be altered unless there is evidence of damage or malfunctioning. Such adjustments are: frequency and output level of the oscillator and mixer; input to the amplifier and limiter; discriminator offset from center frequency; frequency spacing and magnitude of discriminator output peaks. Adjustments that must be made at time of installation are: setting of input attenuator R5; setting of the logic time delay by R7. The input attenuator and the logic time delay adjustments are made by knobs on the front of the panel.

The receiver should not be set with a greater margin of sensitivity than is needed to assure correct operation with the maximum expected variation in attenuation of the transmitter signal. In the absence of data on this, the receiver may be set to operate on a signal that is 15 db below the expected maximum signal. After installation of the receiver and the corresponding transmitter, and with a normal Guard signal being received, input attenuator R5 should be adjusted to the position at which the alarm relay drops out. R5 then should be readjusted to increase the voltage supplied to the receiver by 15 db. The scale markings for R5 permit an approximate setting to be made but it is preferable to make this setting by means of the db scales of an ac VTVM connected from ground to the sliding contact of R5.

In case the transmitter has a 1 Watt/1 Watt output and diode D56 in the discriminator is not bypassed (see discussion under OPERATION-Discriminator), the transmitter should be keyed to trip, transistor Q103 should be kept non-conducting by connecting a short clip lead across R128, and R5 should be adjusted to the position at which the trip relay just picks up. R5 then should be readjusted for a 15 db increase in receiver input, and the jumper across R128 should be removed. If D56 is bypassed the input levels at which the AL and AR relays just operate will be approximately the same, and the AL relay minimum operating point can be used as reference for arriving at the R5 setting, as described in the preceeding paragraph.

The only other adjustment which may be necessary at the time of initial installation is the adjustment of the CL1 instrument to correspond to proper variation of signal level from normal. This may be necessary if the instrument was not supplied with the receiver and was not adjusted by the factory. If this instrument was supplied and adjusted by the factory, then it could be used in adjusting R5. In this case, it would be necessary only to adjust R5 with a normal signal being received so that the instrument indicates OdB.

If the instrument was not previously adjusted by the factory, then the following procedure should be used in adjusting the instrument. (Note: When CL1 instrument is supplied within the chassis, this is factory adjusted.)

- 1. Set incoming level into receiver at +10dB above normal level.
- 2. Adjust span adjustment, R147, so that the voltage at TP72 with respect ot TP62 (common) is +3.000 volts.
- 3. Reduce incoming signal into receiver by 30dB.
- 4. Adjust full scale adjustment, R153, so that instrument now reads -20dB. (This is approximately 0 microamperes).
- 5. Increase signal to +10dB level. (This is 100 microamperes).
- 6. Adjust slope adjustment R155 to read +10dB on instrument.
- 7. Reduce signal to normal level. Instrument should read OdB. If desired, instrument could be adjusted to read OdB with R155 with sacrifice in reading accuracy for +10dB.

It is recommended that R7 be set for maximum time delay (full clockwise rotation) unless field tests have shown that a shorter delay can be used without danger of false tripping under conditions of severe line noise, such as may be caused by the opening of nearby disconnect switches.

FACTORY ADJUSTMENTS

In case the factory adjustments have been altered or there is suspicion of improper adjustments or malfunctioning, then the following procedures can be used. In addition, alterations to the settings used by the factory for low signal level clamping and low signal-to-noise ratio clamping can be made using these procedures if desired.

Potentiometer R12 in the oscillator and mixer should be set for 0.3 volts, measured with a VTVM connected between TP11 and terminal 33 on the circuit board (ground terminal of voltmeter). A frequency counter can be connected to the same points for a check on the frequency which should be 20kHz above the channel center frequency. The frequency is fixed by the crystal used, except that it may be changed a few cycles by the value of capacitor C12. Reducing C12 increases the frequency, but the capacity should never be less than a value that assures reliable starting of oscillation. The frequency at room temperature is usually several cycles above the crystal nominal frequency as this reduces the frequency deviation at the temperature extremes.

The adustment of the amplifier and limiter is made by potentiometer R52. An oscilloscope should be connected from TP56 at the base of Q54 to terminal 33 of the limiter. With 5 millivolts of higher frequency on the receiver input (R5 set at zero), R52 should be adjusted to the point where the peaks of the oscilloscope trace begin to flatten. This should appear on the upper and lower peaks at approximately the same setting. (Note: Input attenuator R5 could be used to produce 5 mv of signal across input test jacks J1 and J2 if desired.)

Adjustment of the discriminator is made by capacitors C63 and C68. In order to offset the discriminator by 25 Hertz in the Trip direction. apply to the receiver input a 5 mv. signal taken from an oscillator set at fc-25 Hertz (R5 at zero.) Connect a 1.5-0-1.5 milliammeter in the circuit at J1 and a VTVM across R80. Adjust C68 for zero current in the milliammeter and C63 for maximum voltage across R80 rechecking the adjustments alternately until no further change is observed. Remove the VTVM from across R80 and observe the milliammeter reading as the oscillator frequency is varied. Postive and negative peaks should occur at fc + 75 Hertz and fc-125 Hertz, with the latter peak being 20% or 15% lower than the former because of diode D56 in the Trip output path.

In case a check is desired of any of the delay times of the reciver (such as channel time or logic delays), this can be done most conveniently by means of an oscilloscope with a calibrated triggered sweep. A two-pole toggle switch, checked to have less than 1 ms. interval between pole closures, can be used to impress the signal and trigger the sweep.

MAINTENANCE

Periodic checks of the received carrier signal and the receiver sensitivity will detect gradual deterioration and permit its correction before failure can result. The carrier level indicator, when provided, permits ready observation of the received signal level. With or without a carrier level indicator, an overall check can be made with the attenuation control R5. A change in operating margin from the original setting can be detected by observing the change in the dial setting required to drop out the alarm relay. If there is a substantial reduction in margin, the signal voltage at the receiver input should be checked to see whether the reduction is due to loss of signal or loss of receiver sensitivity.

All adjustable components on the printed circuit boards are accessible when the front cover is removed. However, as described under "CON-STRUCTION", any board may be made entirely accessible while permitting electrical operation by using board extender style no. 1447C86G01. This permits attaching instrument leads to the various test points of terminals when making voltage, oscilloscope or frequency checks. It also contains switches to facilitate trouble shooting.

It is advisable to record voltage values after adjustment in order to establish reference values which will be useful when checking the apparatus. The readings will remain fairly constant over an indefinite period unless a failure occurs. However, if transistors are changed, there may be considerable difference in these readings without the overall performance being affected.

Typical voltage values are given in Table I and II. Voltages should be measured with a VTVM. Some readings may vary as much as $\pm 20\%$.

TABLE 1 RECEIVER D-C MEASUREMENTS

NOTE: All voltage readings taken with ground of dc VTVM on terminal 9 (neg. d.c.). Receiver adjusted for 15 db operating margin with Guard signal down 50 db from 1 watt and Trip signal down 40 db. Unless otherwise indicated, voltage will not vary appreciably whether signal is Guard, Trip or zero.

	Collector Transistor		Volts (+)	
J.	Q11 Q12 Q13 Q31	<13 15 15 2.5	· · · ·	

		\sim
Q32	2.5	
Q51	11.5	
Q52	12	
Q53	15.5	
Q54	2.5	
Q55	< 1	(No. sig. or Trip)
Q55	19.5	(Guard)
Q56	< 1	(No sig. or Guard)
Q56	19.5	(Trip)
Q101	< 1	(No sig. or Trip)
Q101	7	(Guard)
Q102	21	(No signal)
Q102	< 1	(Guard or keyed Trip #)
Q103	< 1	(No signal)
Q103	10	(Guard or keyed Trip)
Q104	45	(No signal)
Q104	< 1	(Guard or keyed Trip)
Q105	40	(No signal)
Q105	< 1	(Guard or Trip)
Q106	15	(No sig. or Guard)
Q106	< 1	(Trip)
Q107	< 1	(No sig. or Guard)
Q107	15	(Trip)
Q108	45	(No sig. or Guard)
Q108	< 1	(Keyed Trip)
Q109	10	(No sig. or Trip)
Q109	< 1	(Guard)
Q110	< 1	(No sig. or Trip)
Q110	15	(Guard)
Q111	15	(No sig. or Trip)
Q111	< 1	(Guard)

- "Keyed Trip" signifies minimum transition time from Guard to Trip.

TABLE II RECEIVER RF MEASUREMENTS

NOTE: Voltmeter readings taken between receiver input and Q32 are not meaningful or feasible because of waveform or effect of instrument loading. Receiver adjusted as in Table I. Reference to +20V.

Collector of Transistor	Volts (1 watt-Guard)	Volts (10 watts-Trip)
Q32	.25	.8
Q51	.3	.9
Q52	.4	.65
Q53	2.1	2.2
Q54	4.8	4.5

RELAY MAINTENANCE AND ADJUSTMENT

The AL and AR relay contacts should

be cleaned periodically. A contact burnisher S # 182A836H01 is recommended for this purpose. The use of abrasive material for cleaning contacts is not recommended, because of the danger of embedding small particles in the face of the soft silver and thus impairing the contact. Care must be taken to avoid distorting the contact springs during burnishing, particularly in the case of the AR relay.

These relays have been properly adjusted at the factory to insure correct operation, and under normal field conditions they should not require readjustment. If, however, the adjustments are disturbed in error, or if it becomes necessary to replace some part, the following adjustment procedure should be used.

In the AL relay the armature gap should be approximately 0.004 inch with the armature closed. This adjustment is made with the armature closed. This adjustment is made with the armature stop screw and locknut. The contact leaf springs should be adjusted to obtain at least 0.015 inch gap on all contacts when fully open. There should be at least 0.010 inch follow on all normally-open contacts and 0.005 inch follow on all normally-closed contacts. The relay should pick up at approximately 35 volts.

FILTER RESPONSE MEASUREMENTS

The crystal input filter (FL1) and the IF filter (FL2) are in sealed containers and repairs can be made only by the factory. The stability of the original response characteristics is such that in normal usage no appreciable change in response will occur. However the test circuits of Dwg. 849A109 can be used in case there is reason to suspect that either of the filters has been damaged.

Fig. 4 shows the -3db and -60db check points for the crystal filters. The response curve of the IF filter shows the combined effect of the two sections, and was obtained by adding the attenuation of each section for identical frequencies. The scale of Fig. 4 was chosen to show the crystal filter response, which permitted only a portion of the IF filter curve to be shown. The check points for the pass band of each section of the latter are "down 3db maximum

at 19.75 and 20.25 kHz, and for the stop band are "down 18 db minimum at 19.00 and 21.00 kHz. The signal generator voltage must be held constant throughout the entire check. A value of 20 db (7.8 volts) is suitable. The reading of VM2 at the frequency of minimum attenuation should not be more than 22db below the reading of VM1. It should be noted that a limit measured in this manner is for convenience only and does not indicate actual insertion loss of the filter. The insertion loss would be approximately 16db less than the measured difference because of the input resistor and the difference in input and output impedances of the filter.

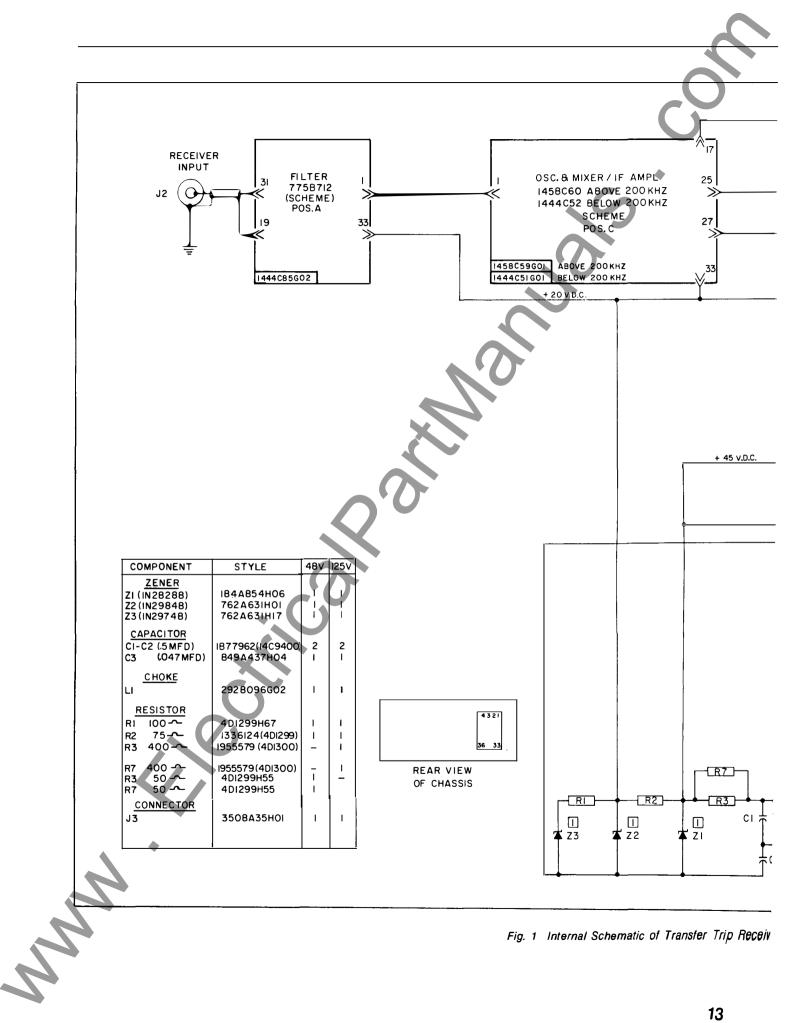
Because of the extreme frequency sensitivity of the crystal filter, the oscillator used in its test circuit should have very good frequency stability and a close vernier control. The oscillators used for factory testing have special modifications for this use. A value of approximately 10db (2.45 volts) is suitable for the constant voltage at which to hold VM1 throughout the check. The reading of VM2 at the frequency of minimum attenuation will vary somewhat with the channel frequency but should not be more than 11db below the reading of VM1. (The filter insertion loss is approximately 6db less than the difference in readings.)

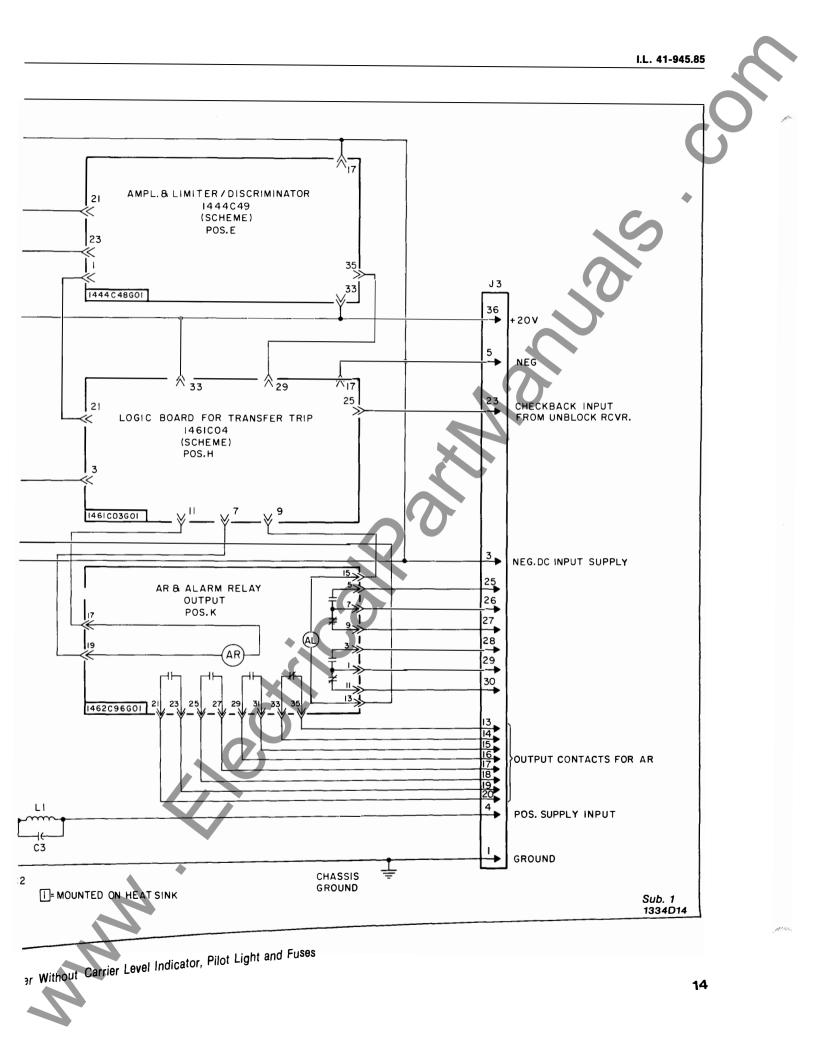
CONVERSION OF RECEIVER FOR CHANGED CHANNEL FREQUENCY

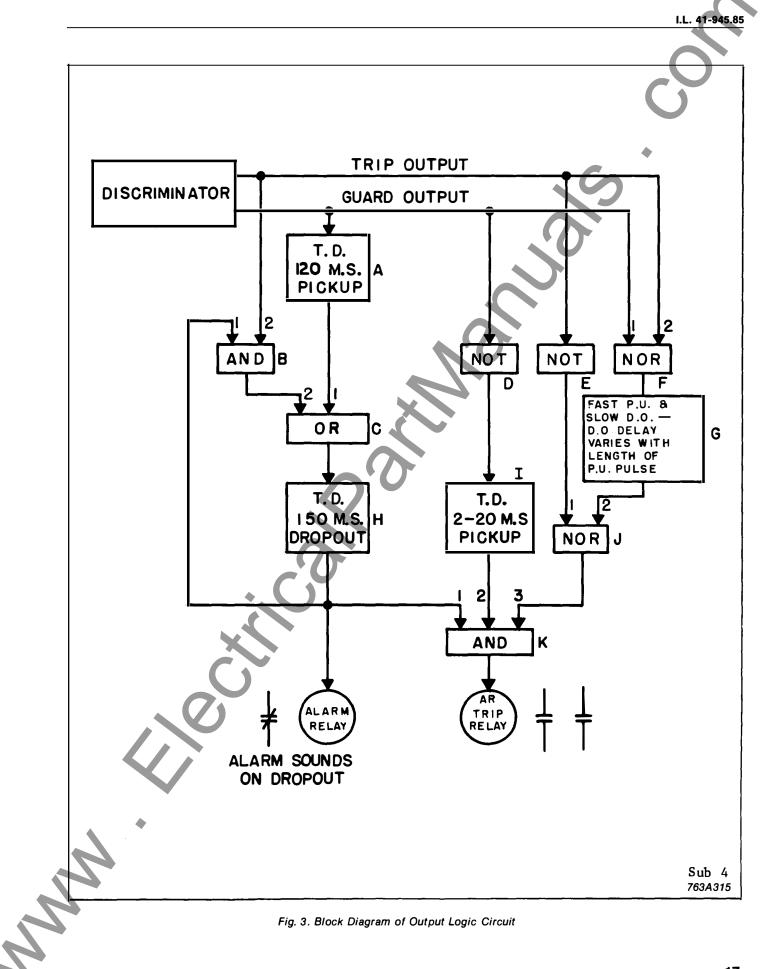
The parts required for converting a TCF-10 receiver for operating on a different channel frequency consist of a new crystal filter (FL1), a new local oscillator crystal (Y11) and probably a different feedback capacitor (C12). Because the wide range of channel frequencies precludes maintaining a factory stock of the various crystals, immediate shipment of the filter and the oscillator crystal cannot be made. After the crystals have been procured and the filter has been completed, it is recommended that the receiver be returned to the factory for the conversion and for complete test and adjustment. However, if the time that the receiver can be out of service must be kept to a minimum, the conversion may be made by customers who are equipped for this work.

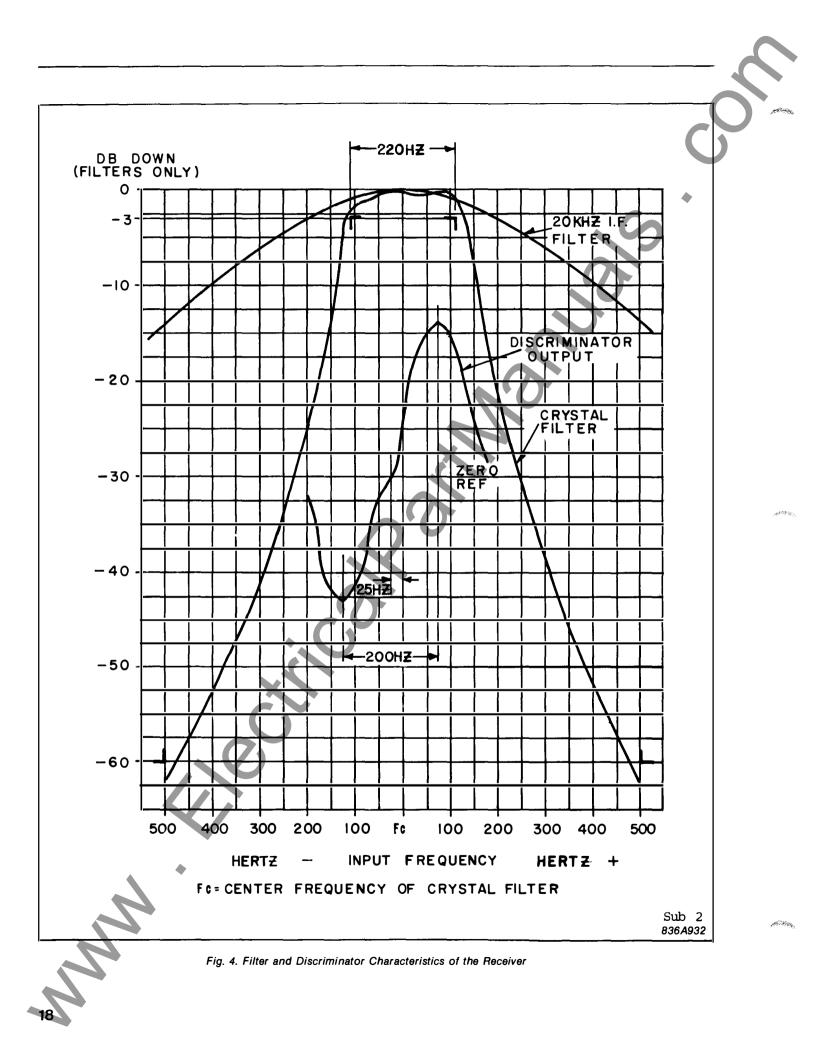
RECOMMENDED TEST EQUIPMENT

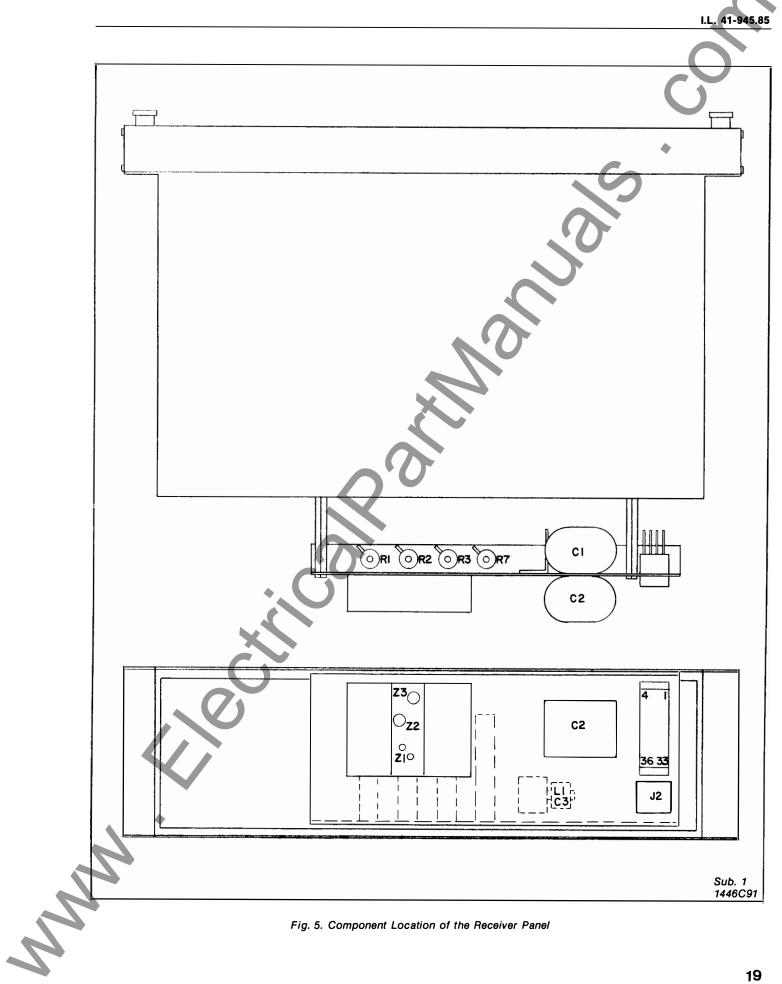
- I. Minimum Test Equipment for Installation.
 - a. AC vacuum Tube Voltmeter (VTVM). Voltage range 0.003 to 30 volts, frequency range 60 Hz to 330 kHz, input impedance 7.5 megohms.
 - b. DC Vacuum Tube Voltmeter (VTVM). Voltage Range: 1.5 to 300 volts Imput Impedance: 7.5 megohms
 - c. Milliammeter, 0-3 range (if receiver has carrier level indicator).
- II. Desirable Test Equipment for Apparatus Maintenance
 - a. All items listed in I.
 - b. Signal Generator Output Voltage: up to 8 volts Frequency Range: 20-kHz to 330-kHz
 - c. Oscilloscope
 - d. Frequency counter

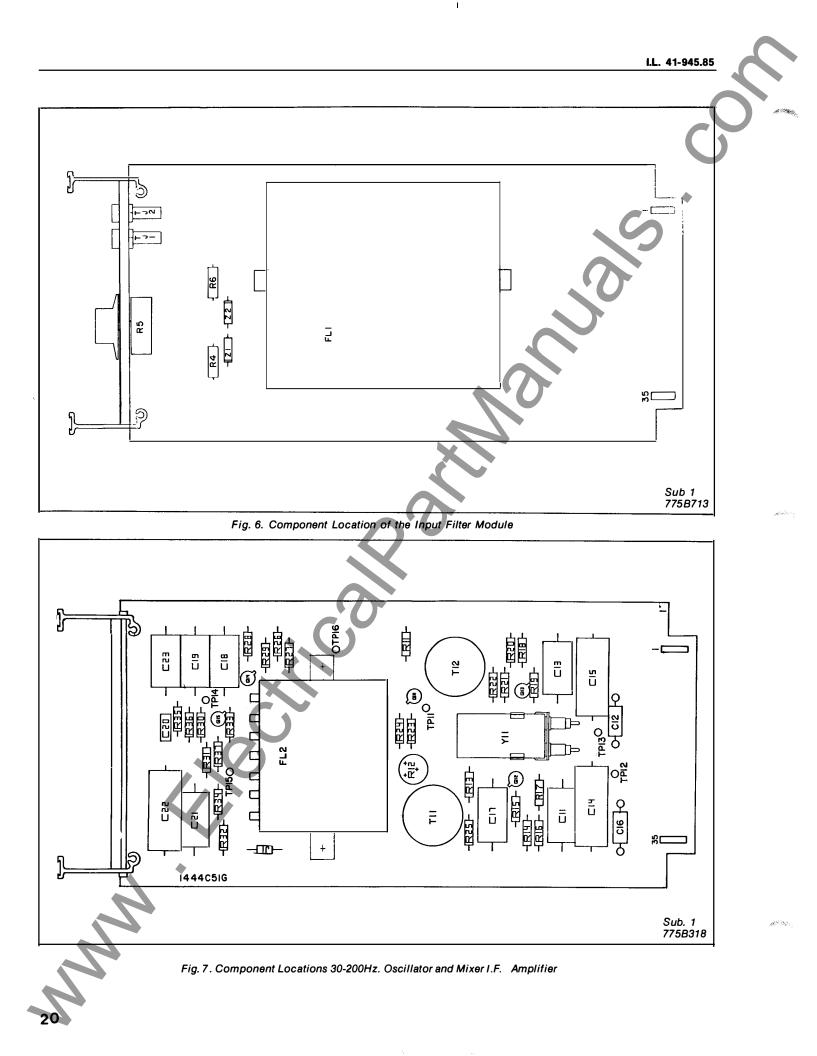

- e. Ohmmeter
- f. Capacitor checker
- g. Milliammeter, 0-1.5 or preferably 1.5-0-1.5 range, for checking discriminator.


Some of the functions of the recommended test equipment are combined in the type TCT carrier test meter unit, which is designed to mount on a standard 19" rack but also can be removed and used as a portable unit.


RENEWAL PARTS


Repair work can be done most satisfactorily at the factory. However, replacement parts can be furnished, in most cases, to customers who are equipped for doing repair work. When ordering parts, always give the complete nameplate data, the electrical value, style number, and identify the part by its designation on the Internal Schematic drawing.





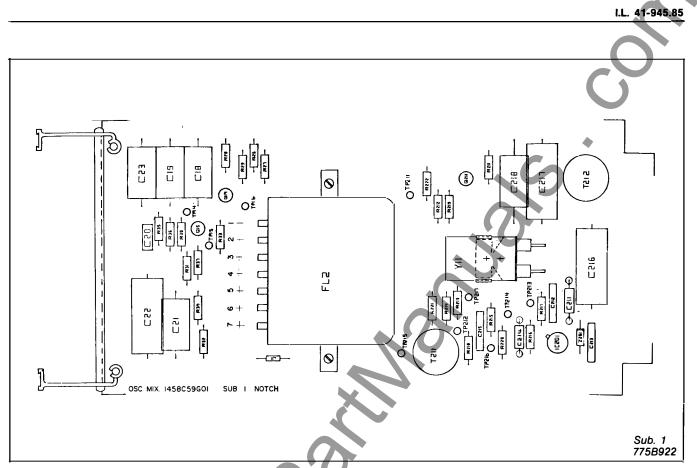
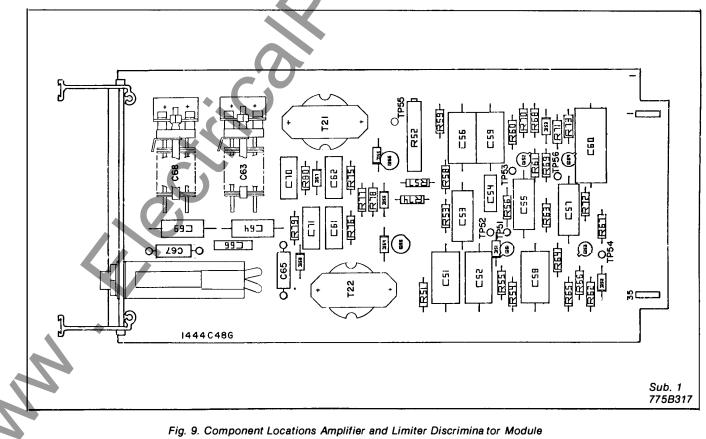
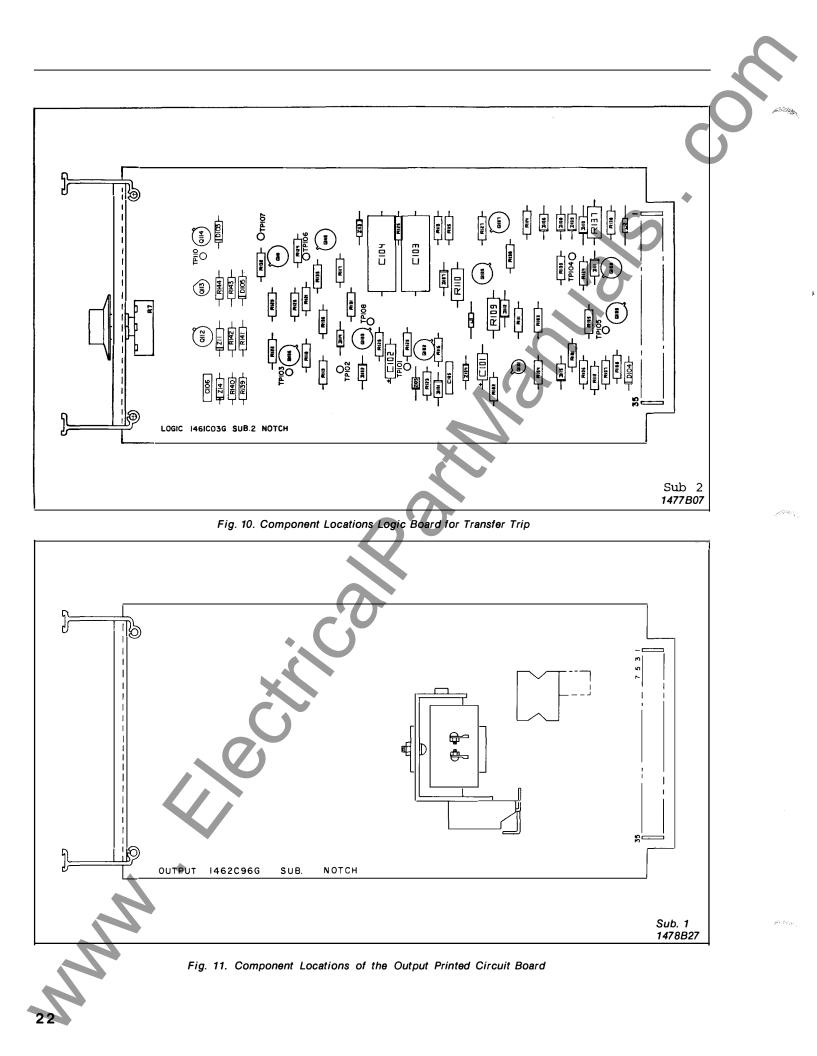
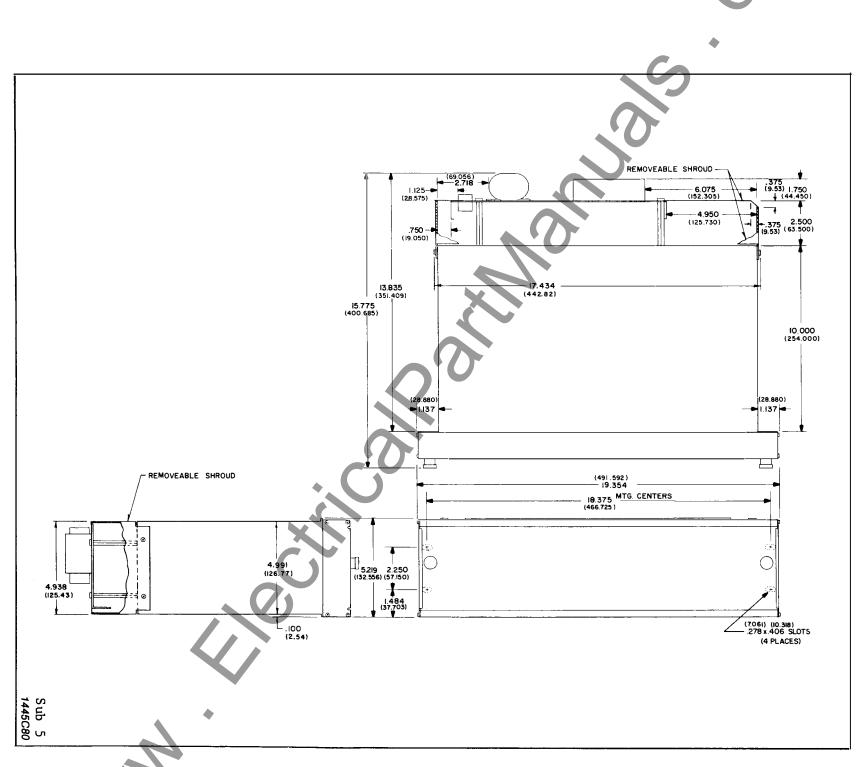
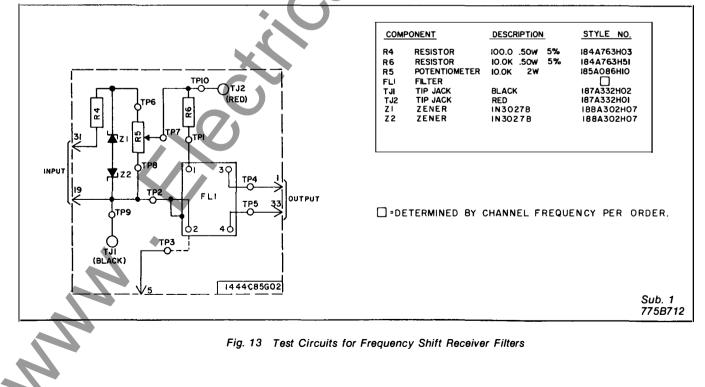




Fig. 8. Component Locations 200.5-300Hz. Oscillator and Mixer I.F. Amplifier




Fig. 12. Outline and Drilling for Receiver Assembly

I.L. 41-945.85

 \sim

Fig. 13. Test Currents for Frequency Shift Receiver Filters

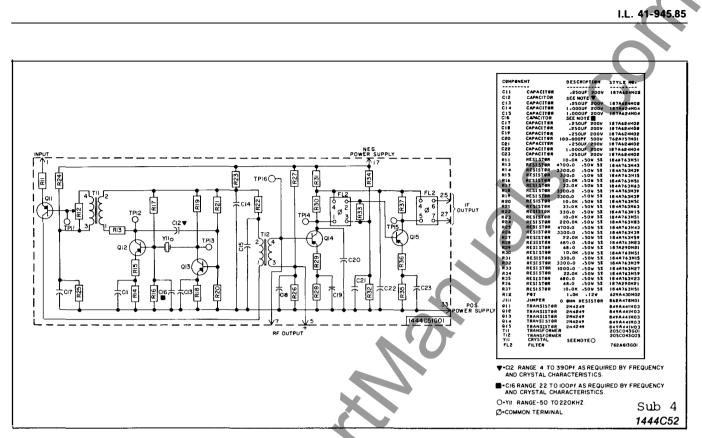


Fig. 15. Internal Schematic 30-200Hz. Oscillator and Mixer I.F. Amplifier Module

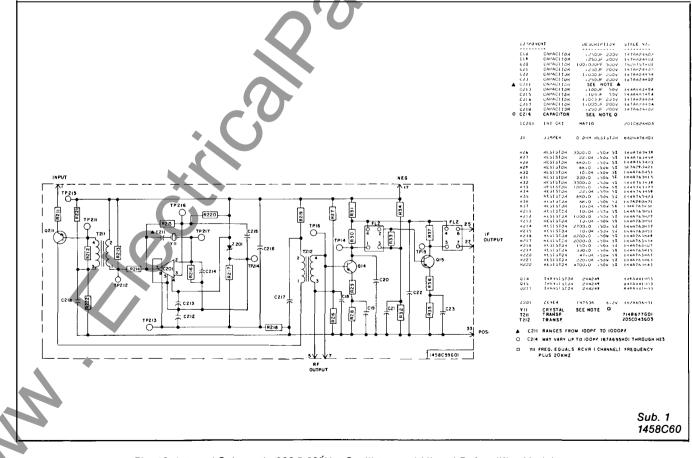
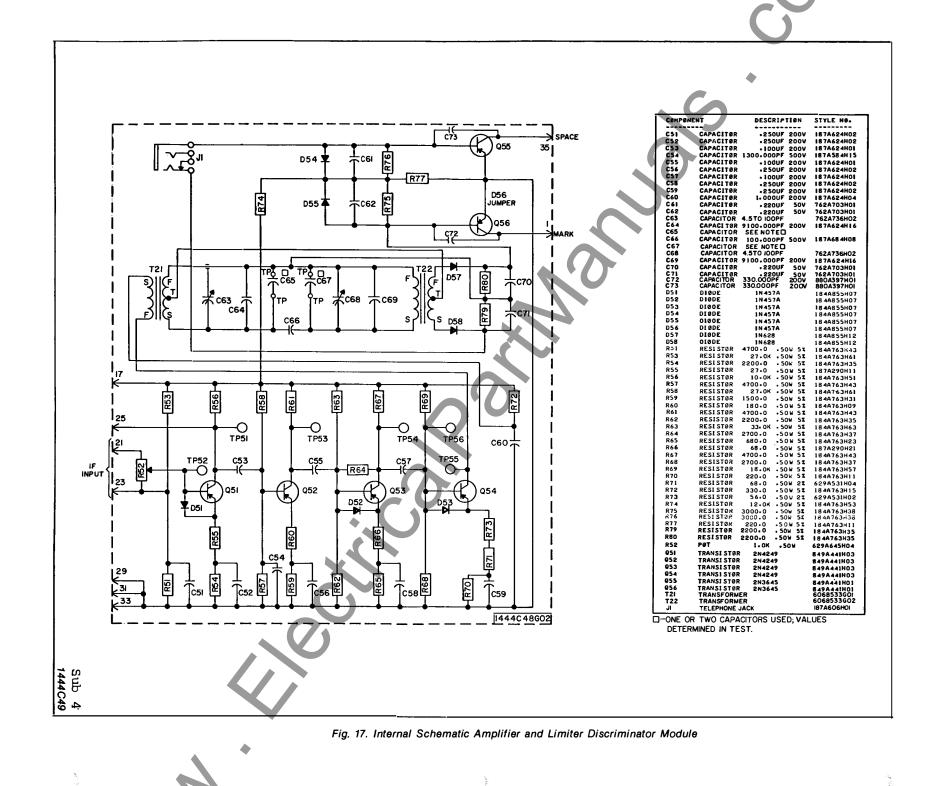
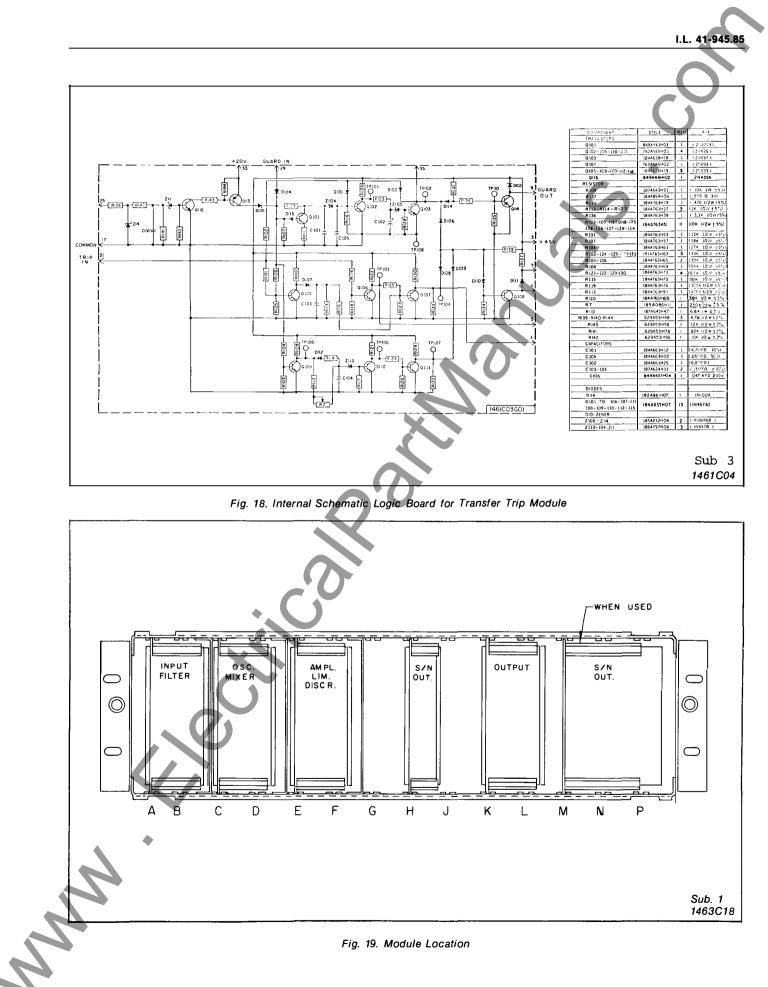
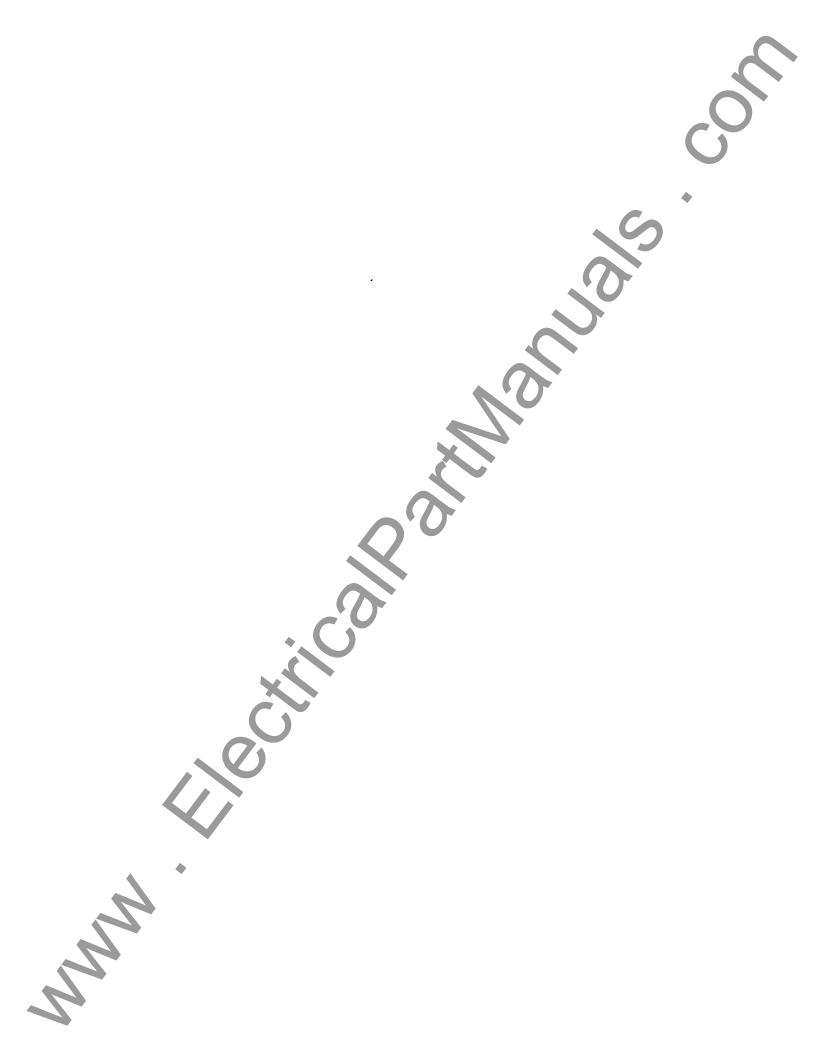
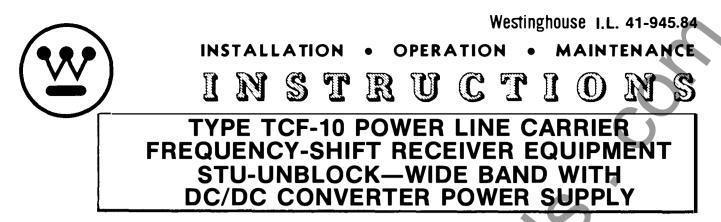





Fig. 16. Internal Schematic 200.5-300Hz. Oscillator and Mixer I.F. Amplifier Module



WESTINGHOUSE ELECTRIC CORPORATION

RELAY-INSTRUMENT DIVISION

CORAL SPRINGS, FL.

Printed in U.S.A.

CAUTION: It is recommended that the user of this equipment become acquainted with the information in this instruction leaflet and in the system instruction leaflet before energizing the system. Printed circuit modules should not be removed or inserted when energized. Failure to observe this precaution can result in an undesired tripping output and cause component damage.

If the carrier set is mounted in a cabinet, it must be bolted down to the floor or otherwise secured before swinging out the equipment rack to prevent its tipping over.

APPLICATION

The TCF-10 frequency-shift receiver equipment as adapted for STU-Unblock applications responds to carrier-frequency signals transmitted from the distant end of a power line and carried on the power line conductors. The block signal is transmitted continuously when conditions are normal. Its reception indicates that the channel is operative and that there is no fault in the protected equipment. The block frequency is 100 hertz above the center frequency of the channel. When a fault occurs at the distant end of the power line, protective relays switch the transmitter located there to an unblock frequency, 100 hertz below the center frequency, and also increases the power output of the transmitter (from 1 watt to 10 watts).

CONSTRUCTION

The TCF receiver unit for STU Unblock applications is mounted on a standard 19-inch wide chassis 5 1/4 inches high (3 rack units) with edge slots for mounting on a standard relay rack. An input attenuator and a jack for metering the discriminator output current, are accessible from the front of the chassis.

All of the circuitry that is suitable for mounting on printed circuit boards is contained on printed circuit modules that plug into the chassis from the front and are readily accessible by removing the transparent cover on the front of the chassis. The power supply components and external connectors are located at the rear of the chassis as shown in Figure 6. Reference to the internal schematic connections of Figure 1 will show the location of these components in the circuit.

The printed circuit modules slide into position in slotted guides at the top and bottom of the chassis, and the module terminals engage a terminal block at the rear of the chassis. A handle on the front of each module is labeled to identify its function, and also identify adjustments and indicating lights if any are available at the front of the module. Of particular significance, is the input attenuator contained on the front of the filter module which is used in adjusting the input receiver signal during initial field installation.

A module extender (Style No. 1447C86G01) is available for facilitating circuit measurements or major adjustments. After withdrawing any one of the circuit modules, the extender is inserted in that position. The module is then inserted into the terminal block on the front of the extender. This restores all circuit connections and renders all components and test points on the module readily accessible.

All possible contingencies which may arise during installation, operation, or maintenance, and all details and variations of this equipment do not purport to be covered by these instructions. If further information is desired by purchaser regarding his particular installation, operation or maintenance of his equipment, the local Westinghouse Electric Corporation representative should be contacted.

The receiver operates from a regulated +12Vand -12V supply derived from a self-contained DC to DC converter. The power supply module containing the DC to DC converter has links which enable it to operate from either 48 volts or 125 volts dc.

External connections to the receiver are made through a 36-terminal receptacle, J3. The r-f input connection to the receiver is made through a coaxial cable jack J2. (See Figures 1, 2, or 3).

OPERATION

INPUT MODULE

The input module contains the input control and the input filter. The signals to which the TCF-10 receiver responds are fed through a coaxial cable connected to jack J2 at the rear of the chassis to the input module. The input control R5, accessible at the front of the input module, attenuates the signal to a level suitable for the best operating range of the receiver.

A scale on the panel is graduated in dB. While this scale is typical rather than individually calibrated, it is accurate within several dB and is useful in setting approximate levels. Settings should be made more accurately utilizing a suitable ac voltmeter with a dB scale when possible.

LC FILTER (WIDE BAND RECEIVERS)

From the attenuator, the signal passes through a bandpass LC filter, FL 201. This filter has a passband of approximately 1600Hz which is relatively wide in comparison to the IF filter which has a passband of approximately 500Hz. Still, frequencies several kHz above or below the center frequency (fc) of the channel are greatly attenuated. Figure 5a shows a typical curve for the LC filter as well as a characteristics curve for the IF (intermediate frequency) filter, FL2, and the discriminator output. This apparently wide bandwidth for the input filter in relation to the IF filter is necessary to both achieve high speed data transmission and to achieve proper operation of the noise clamp by sampling noise in the frequency band surrounding the IF band.

This is generally recommended in STU-Unblock applications. However, if the frequency spectrum is too crowded to permit the use of the wide band channel and a slower response time can be tolerated, then the narrowband receiver using a crystal filter is recommended. This operation is described below.

CRYSTAL FILTER— NARROW BAND RECEIVERS ONLY (SHOWN FOR COMPARISON ONLY)

From the attenuator, the signal passes through a crystal filter, FL1. This filter has a narrow pass band, and frequencies several hundred cycles above or below the center frequency (f_c) of the channel are greatly attenuated. Figure 5b shows a typical curve for the crystal filter, as well as a characteristic curve for the intermediate frequency filter, FL2 and for the discriminator output. The narrow pass band of FL2 permits close spacing of channel frequencies and reduces the possibility of false operation caused by spurious signals such as may result from arcing disconnects or corona discharge. This narrow input filter does not permit the use of the same type of noise clamp as the wide band filter.

OSCILLATOR, MIXER, AND IF AMPLIFIER MODULE

From the input filter, the signal enters the oscillator and mixer stage of the receiver. Crystal Y11, transistors Q12 and Q13, and their associated resistors and capacitors, comprise a crystalcontrolled oscillator that operates at a frequency 20kHz above the channel center frequency, fc. The output from this local oscillator is fed through transformer T11 to potentiometer R12, and the latter is adjusted to feed a suitable input to the base of mixer transistor Q11. The output of filter FL1 is impressed on the emitter-collector circuit of Q11. As a result of mixing these two frequencies, the primary of transformer will contain frequencies of 20kHz, $2f_c + 20kHz$, $f_c + 20kHz$, and f_c .

The output from the secondary of T12 is amplified by Q31 in the intermediate frequency (IF) stage, and is impressed on FL2. This is a twosection filter, with both filters contained in a common case. Its pass band is centered at 20kHz. Since its pass band is narrower than that of the input filter, it eliminates the frequencies present at its input that are substantially higher than 20kHz. The output of this filter is the IF output which is fed to both the amplifier-limiter and the S/N Detection module. The output from the secondary of transformer T11, the RF output, is also fed to the S/N Detection module.

AMPLIFIER LIMITER AND DISCRIMINATOR MODULE

AMPLIFIER AND LIMITER

The output from the second section of the IF amplifier stage is fed to potentiometer R52 at the input of the amplifier and limiter stage. Sufficient input is taken from R52 so that with minimum input signal (16 mv.) at J2 and with R5 set for zero attenuation, satisfactory amplitude limiting will be obtained at the output of the limiter stage.

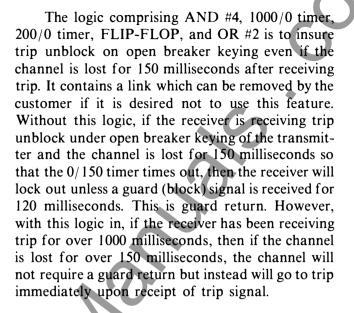
DISCRIMINATOR

The output of the limiter stage is fed to the discriminator. The discriminator is adjusted at the factory to have zero output (as measured by a milliammeter inserted in the circuit at jack J1) at fe-25 hertz. The adjustment for zero output at fc-25 hertz is made by capacitor C68. C63 also is adjusted to obtain a maximum voltage reading across R80 when the current output is zero. Maximum current output, of opposite polarities, will be obtained when the frequency is 100 hertz above or below the center frequency. This separation of 200 hertz between the current peaks is affected by the value of C66, (the actual value of which may be changed slightly from its typical value in factory calibration if required).

The purpose of offsetting the zero output frequency of the discriminator by 25 hertz in the unblock direction is to reduce the band of noisegenerated trip frequencies (between the discriminator center frequency and the skirt of the FL1 filter), and to similarly increase the band of noisegenerated frequencies on the block side of the discriminator center. It should be observed that although block frequency is fc + 100 hertz, after leaving the mixer stage and as seen by the discriminator the block frequency is 20 kHz-100 hertz. Similarly, the unblock frequency is 20 kHz + 100 hertz. The intermediate frequency at which the discriminator has zero output then is 20.025 kHz.

For use with a three frequency transmitter and a second receiver for transfer trip, the discriminator is adjusted opposite in sense to that described above for the standard STU-Unblock. That is, the discriminator is adjusted so that the block output is at 125 hertz below the zero output frequency instead of 125 hertz above while the unblock output is at 75 hertz above the zero output frequency. This is shown in Figure 5c. Since the channel center frequency, fc, is at 100 hertz below the block frequency, the discriminator is thus adjusted for block output at fc + 100 hertz and unblock at fc + 300hertz with zero output at fc + 225 hertz. Because of this requirement, the STU-Unblock receiver for three frequency operation can only be used with a wide band filter, FL201.

The discriminator output is connected to the bases of transistors Q55 and Q56 in such a manner that transistor Q56 is made conductive when current flows, from the discriminator output, in the forward direction of diode D54, (which occurs with trip output) and Q55 is made conductive when current flows in the forward direction of diode D55 (which occurs with guard output). Consequently, terminal 35 is at a potential of approximately +12 volts at guard (block) frequency and terminal 1 is at +12 volts at trip (unblock) frequency.


LOGIC CIRCUITS

The block diagram of the logic circuits is shown in Figure 4. Note that the logic involves three modules; the unblock logic module, the S/N output module, and the S/N detection module.

When the discriminator receives block signal, its output terminal 35 supplies positive potential to block AND #2 and 200/0 timer on the logic board. At the same time, if there is good signal level into the receiver, there will be a good signal input into AND #2 from the CL1 on the S/N detection module. This will result in an input to the 120/0 timer on the logic board which consists of R2, CI, and Z1. Capacitor C1 will charge in approximately 120 milliseconds to the breakdown voltage of Z1, and block OR #1 will receive an input #1. OR #1 consists of diodes D2, D3, and Q2. The function of Q1 is not indicated on the block diagram, but it discharges C1 quickly when Guard (block) signal disappears, so that the full 120 milliseconds delay is obtained on closely repetitive appearances of Guard signal. This avoids cancellation of a loss-ofchannel alarm by noise-produced Guard signal.

When OR #1 receives input #1 or input #2, Q2 is made conductive and capacitor C3 receives no charge. This capacitor along with Z2 and Q3 represents the 0/150 timer on the block diagram. Note that the absence of an input into the 0/150 timer represents an input #1 into AND #1. However, an input #2 which is a no input from AND #2 is required for AND #1 to put out a trip unblock signal. If guard (block) signal should disappear but be followed promptly by appearance of trip (unblock) signal, the unblock input fed through AND #3 and OR #1, will prevent the 0/150 timer from operating and input #1 will still be presented to AND #1. However, the loss of guard signal will be a no input for input #2 of AND #1, and there will be an immediate trip unblock output out of AND #1. This trip unblock output is fed through a buffer output on the S/N output board to the protective relaying system. However, if guard (block) signal disappears and unblock signal does not appear in approximately 150 milliseconds, then capacitor C3 of the 0/150 millisecond timer will change to the breakdown point of Z2, making Q3 conductive in effect removing input #1 to AND #1. This makes Q5 of AND #1 non-conducting and Q7 of AND #1 conducting thus removing the trip unblock output after 150 milliseconds loss of both guard and trip unblock signals. This bit of logic accounts for the receiver putting out a trip unblock signal for 150 milliseconds upon loss of channel.

The output of 0/150 timer is also fed through OR #2 to AND #3. OR #2 consists of D10, D11, and Q10 while AND #3 consists of D13, D14, D15, D16, and Q9. AND #3 assures that as long as you have good signal, no signal to noise clamp, a trip unblock signal, and have not timed out to 0/150timer, you will put out a trip unblock signal to the relaying system. However, if the 0/150 timer has timed out because you did not receive a trip signal within 150 milliseconds of losing the guard (unblock) signal, then the system will lock out and not trip for any subsequent trip signal unless it has been preceded by a guard signal for at least 120 milliseconds.

With the receipt of trip, input #1 is satisfied into AND #4. Also at this time, if the 0/150 timer has not timed out, (signifying a receipt of trip within 150 milliseconds of lost of guard) input #2 is also satisfied into AND #4. Thus, there will then be an input into the 1000/0 timer. After 1000 milliseconds of continuous receipt of trip, this timer will put out an input into the flip-flop setting the flipflop. This output is fed back to AND #3 where it is used in place of the trip signal to prevent the 0/150timer from timing out so that a lost of trip for over 150 milliseconds will not lock out the receiver and necessitate a guard return signal. This flip-flop output through OR #2 is also fed back to AND #4 to lock in the setting of the flip-flop. Now if a guard signal comes in and lasts for over 200 milliseconds, the 200/0 timer will time out and reset the flip-flop so that it again will take 1000 milliseconds of trip signal to set the flip-flop. AND #4 consists of D12, D17, and Q11; 1000/0 timer consists of R40, C4, Z5, and Q12; 200/0 timer consists of D20, Q15, C5, R51, Z6, and Q16; while the flip-flop consists of R46, D18, D19, R47, Q13, Q14 and associated resistors.

The checkback trip output is used for checking channel operation. It signifies a receipt of trip frequency. It is only supervised by the S/N clamp of the detection board. It will put out a checkback trip upon receipt of trip as long as there is no signal to noise clamp. It utilizes AND #5 composed of D77, R171, and Q65 of the S/N output module.

Please note also that it takes a good signal to noise ratio to prevent the 0/150 timer from timing out when receiving trip regardless of the CL1 condition or the flip-flop condition. However, a noise burst at the instant of sending trip will not delay trip unblock as the trip unblock is derived from the loss of guard (block) signal and not the receiving of the trip unblock signal.

It should also be noted that when a trip power boost in the order of 10 dB is used when sending trip, this sudden A.M. increase in power could momentarily activate the S/N clamp as this sudden increase in power level does generate A.M. sidebands which, after all, is noise. However, as noted above, it does neither delay nor effect trip as trip unblock is derived from the loss of guard signal. It manifests itself as only a momentary blip of the S/N noise clamp LED light and should be of no concern.

S/N DETECTION MODULE

The S/N detection module has three basic functions; first to determine the in-band signal to noise ratio and provide clamping output at the desired level of signal-to-noise ratio, second to measure incoming in band signal level and provide both an output to a carrier level indicating instrument and to a clamping circuit in the output module for clamping at the desired low level of signal, and third to provide a clamping output when the desired signal level exceeds the normal received level by a substantial amount, typically 25dB.

The method of determining signal to noise ratio utilizes the measurement of signal level in two different bandwidths, that of the input filter which is 1600 hertz, and that of the 1F filter which is 500 hertz. The total signal plus noise in the 500 hertz bandwidth is subtracted from the signal plus noise in the 1600 hertz bandwidth and this difference is then compared with the signal plus noise in the 500 hertz bandwidth to arrive at a true in-band signalto-noise ratio using logarithmic circuits. See Figure 29.

If the ratio of signal to noise is less than the value selected, typically 10dB, then there will be a +6V out of IC13 (TP75 and terminal 27). This is a high noise condition and this voltage is used as a clamp to prevent erroneous interpretation of data

being received due to high noise conditions. Under normal low noise conditions, typically signal to noise ratio greater than 10dB, the voltage out of IC13 (TP75) is -6V and no clamping is done.

The wide band signal of 1600 hertz bandwidth called the RF signal is fed into the S/N detection board through isolation transformer T31. Operational amplifiers IC1 and IC2 along with their associated components, R82 through R92 and C81 through C90, constitute a 4 pole low pass filter which passes the mixed band of frequencies in the bandwidth of 1600 Hz centered about the 20kHz IF frequency, and blocks all the higher multiples such as in the IF amplifier. Operational amplifier IC3 and associated components amplifies the signal for feeding into the RMS circuit composed of IC4 and IC5 with adjustable potentiometer R94 controlling the amount of amplification. This latter circuit converts the signals into a dc voltage proportional to the RMS value of the ac signals. Operational amplifier IC6A and associated components is used for inversion and isolation of this dc voltage before being fed into the summation amplifier IC6B.

The narrow-band signal of 500 hertz bandwidth called the IF is fed into the S/N detection board through isolation transformer T32. The amount of signal fed into the board is adjustable by means of potentiometer R111. The circuit composed of operational amplifiers IC7 and IC8 and associated components is an RMS circuit which converts the signals into a dc voltage proportional to the RMS value of the ac signals present in the IF bandwidth. The output of this circuit is also then fed into the summation amplifier IC6B.

The summation amplifier takes the difference between the RMS values of the IF signal and the RF signal and feeds it into one half of the logarithmic amplifier composed of IC9 and associated components. At the same time, the RMS value of the IF signal is fed into the other half of this logarithmic amplifier. The logarithmic amplifier takes the logarithmic difference between these two signals (which is equivalent to IF divided by (RF-IF) from the summer). The constants of the circuits are set up so that the output of the logarithmic amplifier is positive when the ratio of the signal to noise ratio in these bandwidths is greater than 10dB, and is negative when the signal to noise ratio is less than 10dB. (Note: The point at which the change in polarity occurs can be altered to other than 10dB signal to noise ratio by altering the adjustments of R94 and R111). In addition, the output of the logarithmic amplifier is also negative when the signal level is approximately 25dB above normal for high level clamping.

The output of the logarithmic amplifier is fed through networks consisting of IC10A and IC13A to the level detector circuit IC13B which has a fast pickup and slow dropout when it receives a signal from the logarithmic amplifier indicating a lower than desired signal to noise ratio (lower than 10dB is initially set when shipped). This will put out a +6 volts out of terminal 27 for this condition. For high signal to noise ratio this output will be -6 volts. This circuit will also put out +6 volts out of terminal 27 for very high signal levels. This is a high signal clamp and occurs for signal levels approximately plus 25dB above normal level.

The output of the IF RMS circuit is also fed to the logarithmic circuit composed of IC11A, IC12A, and IC11B which puts out a dc signal level linearly proportional to signal level in dB for feeding an external microammeter calibrated with a linear dB scale with 10dB equal to 33-1/3 microamperes.

OUTPUT MODULE

The output module provides four buffered outputs to the relay system. They are block, unblock, S/N level, and not low signal with red indicating light emitting diodes for these outputs and a yellow indicating light emitting diode for normal level (satisfactory signal level). In addition, the output module has logic which will prevent either a +12V block or +12V unblock output whenever the S/N level drops to an unsatisfactory level.

The higher frequency output of plus 12 volts (when present) from the discriminator is fed into the output module through terminal 25 into the "and" gate consisting of diodes D71, D72, D73, and D74, transistors Q62 and Q63, and associated components R163, R164, R165, R166, R167, R168, D88, D75, and Z22. If there is no low level signal or low signal to noise ratio signal to prevent transistor

Q62 from becoming conducting, then transistor Q62 becomes conducting, causing Q63 to become conducting and a plus 12 volts signal to appear out of terminal 29 from which it is fed to the outside world. In a similar manner, the lower frequency output of plus 12 volts when present from the discriminator is fed into the output module through terminal 15 into the "and" gate built around transistors Q65 and Q66. Just as in the case of the higher frequency output, the lower frequency output of plus 12 volts will appear out of terminal 27 for feeding to the data acquisition equipment if there is no low level clamp or low signal to noise ratio clamp. If there is a clamp, both of these outputs will be clamped to minus 12 volts output.

The low-signal-level clamp operates off the carrier level signal of the S/N detection module which is basically the same signal level fed to the CL1 instrument.

It is fed through terminal 7 into the voltage comparator circuit built around operational amplifier IC21B. This comparator compares this signal level with the voltage reference from IC21A, and if the signal level is greater than the low level at which clamping is desired, the output of IC21B will be negative causing the yellow LED to glow indicating OK level and there will consequently be no low signal clamping. If the signal level is below the level at which clamping is desired, then the output of IC21B will be positive causing the red LED to glow indicating low level. In addition, both transistors Q67 and Q64 will become conducting. Transistor Q64 conducting will prevent plus 12 volt signals from appearing on the outputs going to the outside world by preventing transistors Q65 and Q62 from conducting. Transistor Q67 conducting causes Q68 to become non-conducting and thus removes the not low signal output from terminal 1. Under good or OK signal level, this not low signal output at terminal 1 of this module is plus 12 volts.

The S/N clamp output from the S/N detection module is fed into terminal 35 of this module. At low signal-to-noise ratio level, this +6 volt signal will cause transistors Q70 and Q61 to conduct. Transistor Q70 conducting will cause both the red LED to glow indicating low S/N and transistor Q71 to conduct supplying plus 12 volts out of terminal 13 to the outside world. Transistor Q61 conducting will prevent both transistors Q62 and Q65 from conducting, and thus prevent plus 12 volt signals from appearing at their respective outputs to the outside world. It should be noted that the S/N clamp also operates for a high signal level of approximately plus 25dB above normal when set to operate at 10dB signal to noise ratio.

OUTPUT MODULE—CONTACT OUTPUT

The output module-contact output performs two functions; alarming on low signal level using a telephone relay with two form C contacts, and indicating signal level with its self-contained CL1 instrument.

The alarm circuit consists of all components associated with IC1, IC2, Q1, Q2, Q3, and relay AL. The signal level from the S/N detection module is fed into a level detector consisting of IC1B and resistors R6, R7, R8, and R9. An adjustable reference for the level detector consisting of ICIA and R1, R2, R17, R3, R4, and R5 is also fed into the level detector. As long as the signal level exceeds the value set by the reference, there will be approximately plus 12 volts out of the level detector into the photo-optical isolator. This causes Q1 to become non-conducting and thus transistors Q2 followed by transistor Q3 to become conducting. As a consequence, the alarm relay AL is picked up on signal levels above the alarm level. When the signal level drops below the alarm level set by the reference, the output of the level detector will be minus 12 volts causing Q1 to become conducting and Q2 and Q3 to become non-conducting and drop out the alarm relay AL. The alarm relay has a delay of approximately 40 milliseconds on dropout to prevent undesirable alarming on short temporary loss of signal. Note that the level of alarm is set by adjusting alarm level R17, accessible from front of module, independent of the low signal level output from the output module (which is set by L.L. ADJ. R178). Also both of these outputs operate on total signal level within the passband of the receiver.

The CLl instrument operates directly on signal level received from the S/N detection module. It measures signal level in the entire bandwidth of the receiver and thus closely correlates with the low level clamp (L.L. ADJ.) and the low signal alarm

AL (alarm level). It thus can be used in setting both of these adjustments.

POWER SUPPLY

The +12 volt dc, -12 volt dc, and the +45 volt dc supply voltages for the receiver are derived from the power supply module and R3, R7, and Z1 mounted in rear of chassis.

The +12 volt dc supply and the -12 volt dc supply are both derived from the DC to DC converter and are regulated for input voltages to the regulator of from 42 volts to 56 volts. For nominal 48 volt input units, the DC to DC converter has sufficient range so that the preregulator consisting of R3, R7, and Z1 is not necessary and is omitted. In this case, then, the +45 volt supply is derived directly from the input supply voltage and is not regulated.

For nominal 125 volt input units, the preregulator consisting of R3, R7, and Z1 is necessary and is supplied. In this case, then, the +45 volt supply is derived from this pre-regulator and is regulated.

The LED's D1 and D2 indicate when the power supply is energized with either 48V or 125V by the proper one glowing. Since this module is always supplied with 48V, the 48V diode will light. A 48V supply can be converted to a 125V supply simply by adding R3, R7, and Z1 jumpers. Similarly, a 125V supply can be converted to a 48V supply by removing R3, R7, and Z1. Capacitor C1 and C2 bypass rf or transient voltages to ground. Choke L1 with capacitor C3 form a trap to isolate the receiver from transient voltages in the 20kHz range that may appear on the dc supply and which could affect the receiver.

CHARACTERISTICS

Frequency Range 30kHz – 300kHz

Sensitivity (noise-free channel)

For crystal filter (narrow band) 0.005 volt = 65dB below 1 watt for limiting For L-C filter (wide band) 0.015 volt = 55dB below 1 watt for limiting Input Impedance 5000 ohms minimum

Bandwidth	Crystal filter (narrow band)
	Down <3 dB at 220 Hz B.W.
	Down $>$ 60dB at 1000 Hz B.W.
	L-C filter (wide band)
	Down $\leq 3dB$ at 600 Hz B.W.
	Down >40 dB at 2000 Hz B.W.
Discriminator	Set for 200 Hertz shift from block
	to unblock frequency. Offset 25
	Hertz to favor block.
Operating Time	Narrow Band
	9 ms channel (Transmitter
	and Receiver)
	Wide Band
	4 ms channel (Transmitter and
	Receiver)

Frequency spacing A. For two or more signals over a oneway channel B. For two-way channel

Narrow Band 500 Hertz minimum Wide Band 1000 Hertz minimum Narrow Band 1000 Hertz minimum Wide Band 2000 Hertz minimum

Signal-to-noise ratio clamp setting

Ambient Temperature Range

Battery Voltage Variations Nominal 48V dc Nominal 125V dc

Battery Drain

0.25 Amperes

42V dc-56V dc

105V dc-140V dc

 -20° C to $+55^{\circ}$ C

Dimensions

Panel Height = 5 1/4 inches (3RU) Panel Width = 19 inches

10dB SNR (as shipped) Nominal

for wide band receivers

Weight

13 pounds

CLI Accuracy

 $\pm 2dB$ between-15dB and 0dB.

INSTALLATION

The TCF-10 receiver is generally supplied in a cabinet or a relay rack as part of a complete carrier assembly. The location must be free from dust, excessive humidity, vibration, corrosive fumes, or heat. In particular equipment which generates excessive heat such as power supplies should not be mounted directly beneath the TCF-10. Heat rising will tend to raise the ambient temperature immediately around the chassis above acceptable levels. The maximum ambient temperature around the chassis must not exceed 55° C. In addition, sudden fluctuations in ambient temperature caused by these power supplies due to variations in load can cause variations in performance due to uneven heating of the receiver introducing abnormal temperature variations in the receiver.

ADJUSTMENTS

All factory adjustments of the TC-10 receiver have been carefully made and should not be altered unless there is evidence of damage or malfunctioning. Such adjustments are: frequency and output level of the oscillator and mixer; input to the amplifier and limiter; frequency spacing and magnitude of discriminator output peaks; pickup of alarm relay; and pickup of low signal level clamp. The adjustment that must be made at time of installation is the setting of input attenuator R5. The input attenuator adjustment is made by a knob on the front of the panel of the input module.

The receiver should not be set with a greater margin of sensitivity than is needed to assure correct operation with the maximum expected variation to attenuation of the transmitter signal. In the absence of data on this, the receiver may be set to operate on a signal that is 15dB below the maximum expected signal. After installation of the receiver and the corresponding transmitter, and with a normal space signal level being received, input attenuator R5 should be adjusted to the position at which the receiver low signal clamp operates. The attenuator R5 should then be readjusted to increase the voltage supplied to the receiver by 15dB. The scale markings for R5 permit approximate settings to be made, but it is preferable to make this setting by means of the dB scales of an ac VTVM connected across the terminals indicated at

the front panel of the input module. The red terminal is connected to the wiper arm of R5 and the black terminal is connected to ground. With this setting, a 15dB drop in signal will cause a low signal level clamp operation which will lock the output of the receiver into neither an unblock nor a low signal output at the point at which the receiver just drops out of limiting.

The only other adjustment which may be necessary at the time of initial installation is the adjustment of the CL1 instrument to correspond to proper variation of signal level from normal. This may be necessary if the instrument was not supplied with the receiver and was not adjusted by the factory. If this instrument was supplied and adjusted by the factory, then it could be used in adjusting R5. In this case, it would be necessary only to adjust R5 with a normal signal being received so that the instrument indicates 0dB.

If the instrument was not previously adjusted by the factory, then the following procedure should be used in adjusting the instrument. (Note: When CL1 instrument is supplied within the chassis, this is factory adjusted).

- 1. Set incoming level into receiver at +10dB above normal level.
- 2. Adjust span adjustment, R147, so that the voltage at TP72 with respect to TP62 (common) is +3.000 volts.
- 3. Reducing incoming signal into receiver by 30dB.
- 4. Adjust full scale adjustment, R153, so that instrument now reads -20dB. (This is approximately 0 microamperes).
- 5. Increase signal to +10dB level. (This is 100 microamperes).
- 6. Adjust slope adjustment R155 to read +10dB on instrument.
- 7. Reduce signal to normal level. Instrument should read 0dB. If desired, instrument could be adjusted to read 0dB with R155 with sacrifice in reading accuracy for +10dB.

FACTORY ADJUSTMENTS

In case the factory adjustments have been altered or there is suspicion of improper adjustments or malfunctioning, then the following procedures can be used. In addition, alterations to the settings used by the factory for low signal level clamping and low signal-to-noise ratio clamping can be made using these procedures if desired.

Potentiometer R 12 in the oscillator and mixer should be set for 0.3 volts, measured with a VTVM connected between TP11 and terminal 33 on the circuit board (ground terminal of voltmeter). A frequency counter can be connected to the same points for a check on the frequency which should be 20kHz above the channel center frequency. The frequency is fixed by the crystal used, except that it may be changed a few cycles by the value of capacitor C12. Reducing C12 increases the frequency, but the capacity should never be less than a value that assures reliable starting of oscillation. The frequency at room temperature is usually several cycles above the crystal nominal frequency as this reduces the frequency deviation at the temperature extremes.

The adjustment of the amplifier and limited is made by potentiometer R52. An oscilloscope should be connected from TP56 at the base of Q54 to terminal 33 of the limiter. With 5 millivolts of unblock frequency on the receiver input (R5 set at zero), R52 should be adjusted to the point where the peaks of the oscilloscope trace begin to flatten. This should appear on the upper and lower peaks at approximately the same setting.

The adjustment of the signal to noise ratio clamp for clamping at 10dB signal to noise ratio is as follows:

- 1. Set the incoming signal into receiver at nominal level (28 mv).
- 2. Adjust IF input with R111 so that signal at TP68 of the S/N detector module is +100 mv dc (with respect to TP62).
- 3. Adjust RF input with R94 so that signal at TP63 is +145 mv dc (with respect to TP62).
- Adjust log amplifier balance potentiometer R129 so that S/N clamps operates. This will be +6 volts dc at TP75. This will also appear as +12 volts at TP91 of the output board and the red S/N level indicator will light.
- 5. Go back and readjust RF input with R94 so that signal level at TP63 is now 74.4 mv dc.

The adjustments above are for operation of the clamp at 10dB or less signal to noise ratios. If it is desired to clamp at other than 10dB or less, the following values can be used in place of the 145 mv value in step 3.

For S/N of 0dB set TP63 to 297 mv. 5dB set TP63 to 200mv. 15dB set TP63 to 114mv. 20dB set TP63 to 97mv.

NOTE: When the SNR clamp is set to clamp at a 10dB signal to noise ratio, the receiver will also clamp at a high signal level of approximately 25dB above normal.

The low signal level clamp is set to operate at the signal level where the receiver just drops out of limiting. This is accomplished as follows:

- 1. With a normal unblock frequency signal being received and with an oscilloscope connected across TP56 and terminal 33 of the limited module, adjust input attenuator R5 to the point where the peaks of the oscilloscope trace just begin to flatten. (An alternate adjustment would be to set incoming signal level into receiver at 16mv with R5 set at zero which is the point at which limiting should begin.
- Adjust the -V Ref. adjustment R178 on the output module so that the low level clamp just picks up. This will be indicated by the red low level light of the output module coming on. There also will be +12 volts at TP86 on the output module.
- 3. Adjust input attenuator R5 to increase signal into receiver by desired margin of operation. This normally should be 15dB. This is done by reducing the R5 attenuator setting.

The alarm level is set to alarm at a signal level 5dB above the signal where the receiver just drops out of limiting. This will result in an alarm being given at a point where the signal level has dropped 10dB from the initial nominal setting but the receiver signal level is still 5dB above limiting.

1. With a normal higher frequency signal being received and with an RF voltmeter connected across the input module input test jacks TJ1 and TJ2 (available at front on module), adjust

input attenuator R5 to where signal level is 28mv across these test jacks.

- 2. Adjust the alarm level R17 on the output module—contact output to the point where the alarm relay AL just drops out.
- 3. Adjust input attenuator R5 to increase signal level into receiver by 10dB. (This is for operation with 15dB margin. For other than 15dB margin, this value should be changed accordingly). This is done by reducing the R5 attenuator setting by 10dB.

MAINTENANCE

Periodic checks of the received carrier signal level and the receiver sensitivity will detect gradual deterioration and permit its correction before failure can result. The carrier level indicator, when provided, permits ready observation of the received signal level. With or without a carrier level indicator, an overall check can be made with the attenuation control, R5. A change in operating margin from the original setting can be detected by observing the change in the dial setting required to cause a low signal level clamp to operate as indicated by the red low level LED becoming lit. If there is a substantial reduction in margin, the signal voltage at the receiver input should be checked to see whether the reduction is due to loss of signal level or loss in receiver sensitivity.

All adjustable components for normal field adjustments on the printed circuit modules are accessible when the front cover on the chassis is removed. All other adjustable components on the printed circuit modules may be made entirely accessible while permitting electrical operation by using module extender style number 1447C86G01. This permits attaching instrument leads to the various test points of terminals when making voltage, oscilloscope or frequency checks.

RELAY MAINTENANCE AND ADJUSTMENT

The AL relay contacts should be cleaned periodically. A contact burnisher S #182A836H01 is recommended for this purpose. The use of abrasive material for cleaning contacts is not recommended, because of the danger of embedding small particles in the face of the soft silver and thus impairing the

contact. Care must be taken to avoid distorting the contact springs during burnishing.

These relays have been properly adjusted at the factory to insure correct operation, and under normal field conditions they should not require readjustment. If, however, the adjustments are disturbed in error, or if it becomes necessary to replace some part, the following adjustment procedure should be used.

In the AL relay the armature gap should be approximately 0.004 inch with the armature closed. This adjustment is made with the armature stop screw and locknut. The contact leaf springs should be adjusted to obtain at least 0.015 inch gap on all contacts when fully open. There should be at least 0.010 inch follow on all normally-open contacts and 0.005 inch follow on all normally-closed contacts. The relay should pick up at approximately 35 volts.

TABLE I RECEIVER DC MEASUREMENTS

NOTE: All voltage readings taken with the negative of dc VTVM on terminal 17 (negative dc). Receiver adjusted for 15dB operating margin with space and mark signals down 50dB from 1 watt or 60dB down from 10 watts. Unless indicated otherwise, voltage will not vary appreciably whether signal is lower frequency, higher frequency, or zero.

	Collector of Transistor or Test Point Q11 Q12 (TP12) Q13(TP13) Q14(TP14) Q15(TP15) TP11 TP52 Q51(TP51)	Voltage (Positive) <15 17 (Lower or Higher Freq.) 17 (Lower or Higher Freq.) 3 3 22 19 14
	Q52(TP53)	14.5
	Q53(TP54)	18
	Q54(TP55)	3
	TP56	19
-	Q55	< 1 (Lower Freq. or No Signal)
	Q55	23 (Higher Freq.)
	Q56	23 (Lower Freq.)
	Q56	< 1 (Higher Freq. or No Signal)

NOTE: The following readings are taken with the negative of dc VTVM on terminal 3 (common of dc power supply) of either the S/N detection module or the output module.

•	
TP61	+ 4
TP62	0
TP63	+ 0.4
TP64	+ 6
TP65	-12
TP66	0
TP67	+ 0.5
TP68	+ 0.5
TP70	- 6
TP71	+ 6
TP72	+ 1.5
TP73	+ 0.8
TP74	+ 0.3
TP81	+12 (Higher Frequency)
TP81	-12 (Lower Freq. or No Signal)
TP82	+12 (Lower Frequency)
TP82	-12 (Higher Freq. or No Signal)
TP83	+12 (Higher Frequency)
TP83	-12 (Lower Freq. or No Signal)
TP84	+12 (Lower Frequency)
TP84	-12 (Higher Freq. or No Signal)
TP85	+ 0.3
TP86	+12 (Low Level clamp)
TP86	0 (No clamp)
TP87	+ 6 (Low SNR clamp)
TP87	- 6 (No SNR clamp)
TP88	+12
TP89	-12
TP90	+12 (Good Signal Level)
TP90	-12 (Low Signal Level clamp)

TABLE II RECEIVER RF MEASUREMENTS

NOTE: Voltmeter readings taken at any point from receiver input to stage involving transistor Q15 are neither meaningful or feasible because of either waveform variations or the effect of instrument loading on the readings. Receiver adjusted as in Table I.

Collector of Transistor or Test Point	Volts with Signal At +10dB Above Normal Level
Q15(TP15)	0.8
Q51(TP51)	0.9
Q52(TP53)	0.65
Q53(TP54)	2.2
Q54(TP55)	4.5
TP61	.013
TP67	.275

LC FILTER RESPONSE MEASUREMENTS

The LC input filter (FL201) and the IF filter (FL2) are in sealed containers, and repairs can only be made by the factory. The stability of the original response characteristics is such that in normal usage, no appreciable change in response will occur. However, the test circuits of Figure 27 can be used in case there is reason to suspect that either of the filters is not performing correctly.

Figure 5 shows the -3dB and -35dB checkpoints for the IF filter, and the -3dB checkpoints for the input filter. The response curve of the IF filter shows the combined effect of the two sections, and was obtained by adding the attenuation of each section for identical frequencies. The scale of Figure 5 was chosen to show the IF filter response. which permitted only a portion of the input filter curve to be shown. The checkpoints for the passband of each section of the IF filter are down 3dB maximum at 19.75 and 20.25 kHz, and for the stop band are down 18dB minimum at 19.00 and 21.00kHz for each section. The signal generator voltage (Figure 27) must be held constant throughout the entire check. A value of 7.8 volts is suitable. The reading of VM2 at the frequency of minimum attenuation should not be more than 22dB below the reading of VM1. It should be noted that a limit measured in this manner is for convenience only. and does not indicate actual insertion loss of the filter. The insertion loss would be approximately 16dB less that the measured difference because of the input resistance and the difference in input and output impedances of the filter.

In testing the LC filter, a value of approximately 2.45V is suitable for the constant voltage at which to hold VM1 throughout the check. The reading of VM2 at the frequency of minimum attenuation will vary somewhat with the channel frequency, but should not be more than 18dB below the reading of VM1. (The filter insertion loss is approximately 6dB less than the difference in readings.

CRYSTAL FILTER RESPONSE MEASUREMENTS

The input filter (FL1) and the IF filter (FL2) are in sealed containers and repairs can be made

only by the factory. The stability of the original response characteristics is such that in normal usage no appreciable change in response will occur. However, the test circuits of Figure 23 can be used in case there is reason to suspect that either of the filters has been damaged.

Figure 5 shows the -3dB and -60dB check points for the crystal filters. The response curve of the IF filter shows the combined effect of the two sections, and was obtained by adding the attenuation of each section for identical frequencies. The scale of Figure 5 was chosen to show the crystal filter response, which permitted only a portion of the IF filter curve to be shown. The check points for the pass band of each section of the latter are "down 3dB maximum at 19.75 and 20.25 kHz, and for the stop band are "down 18dB minimum at 19.00 and 21.00 kHz. The signal generator voltage must be held constant throughout the entire check. A value of 20dB (7.8 volts) is suitable. The reading of VM2 at the frequency of minimum attenuation should not be more than 22dB below the reading of VMI. It should be noted that a limit measured in this manner is for convenience only and does not indicate actual insertion loss of the filter. The insertion loss would be approximately 16dB less than the measured difference because of the input resistor and the difference in input and output impedances of the filter.

Because of the extreme frequency sensitivity of the crystal filter, the oscillator used in its test circuit should have very good frequency stability and a close vernier control. The oscillators used for factory testing have special modifications for this use. A value of approximately 10dB (2.45 volts) is suitable for the constant voltage at which to hold VM1 throughout the check. The reading of VM2 at the frequency of minimum attenuation will vary somewhat with the channel frequency but should not be more than 11dB below the reading of VM1. (The filter insertion loss is approximately 6dB less than the difference in readings).

CONVERSION OF RECEIVER FOR CHANGED CHANNEL FREQUENCY

The parts required for converting a TCF-10 receiver for operating at a different channel frequency consist of a new LC input filter (FL201), a

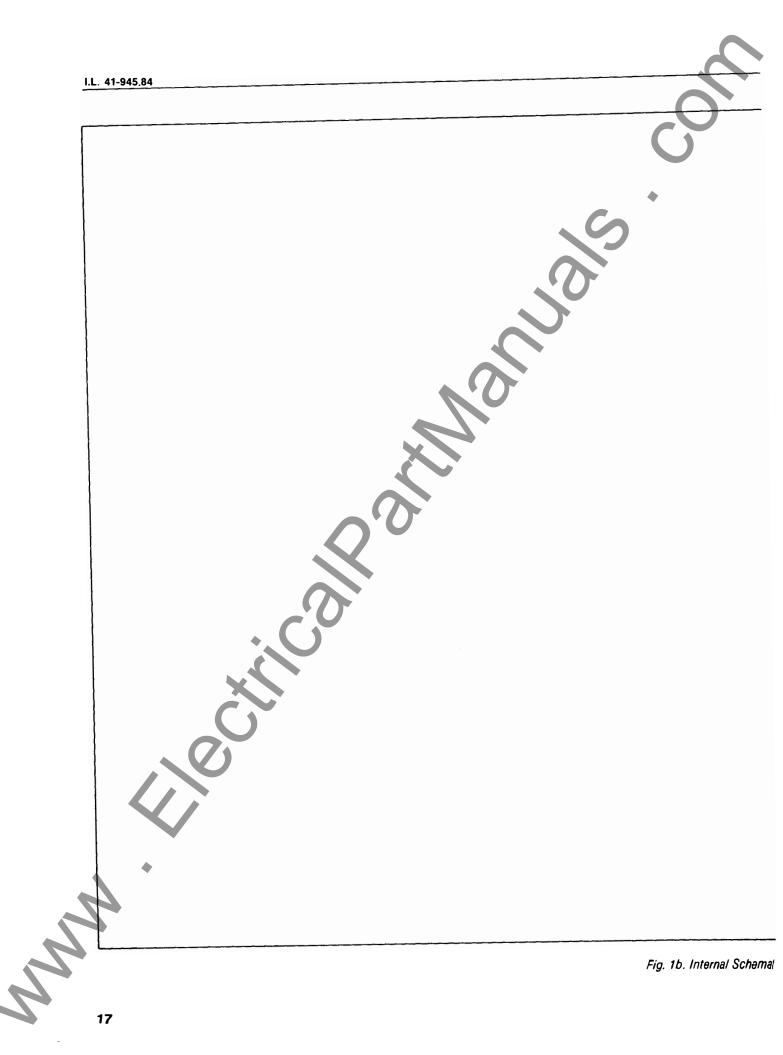
new local oscillator crystal (Y11) and probably a different feedback capacitor (Cl2). There are two ways of effecting this change. The easiest and preferred method is to order a new input filter module and a new oscillator mixer module for the new frequencies from the factory. The new modules would then just have to be plugged in as replacements for the original modules. The second method would involve ordering just replacement filter, FL201, and new local oscillator crystal for the new frequencies and making the substitution on the modules. These substitutions on the modules are not difficult as the crystal plugs in and the filter has five leads to be soldered. However, testing of the local oscillator for easy starting will have to be made, and the value of C12 chosen to assure this easy starting of oscillation. The whole receiver should then be checked out for correct performance.

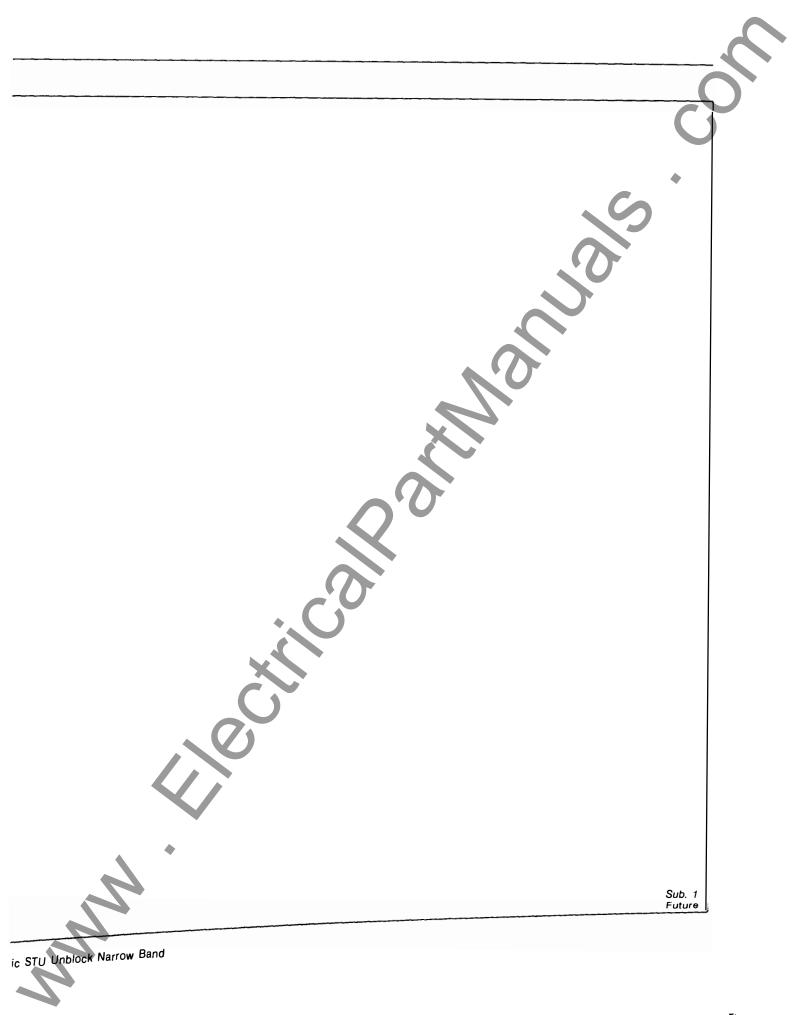
RECOMMENDED TEST EQUIPMENT

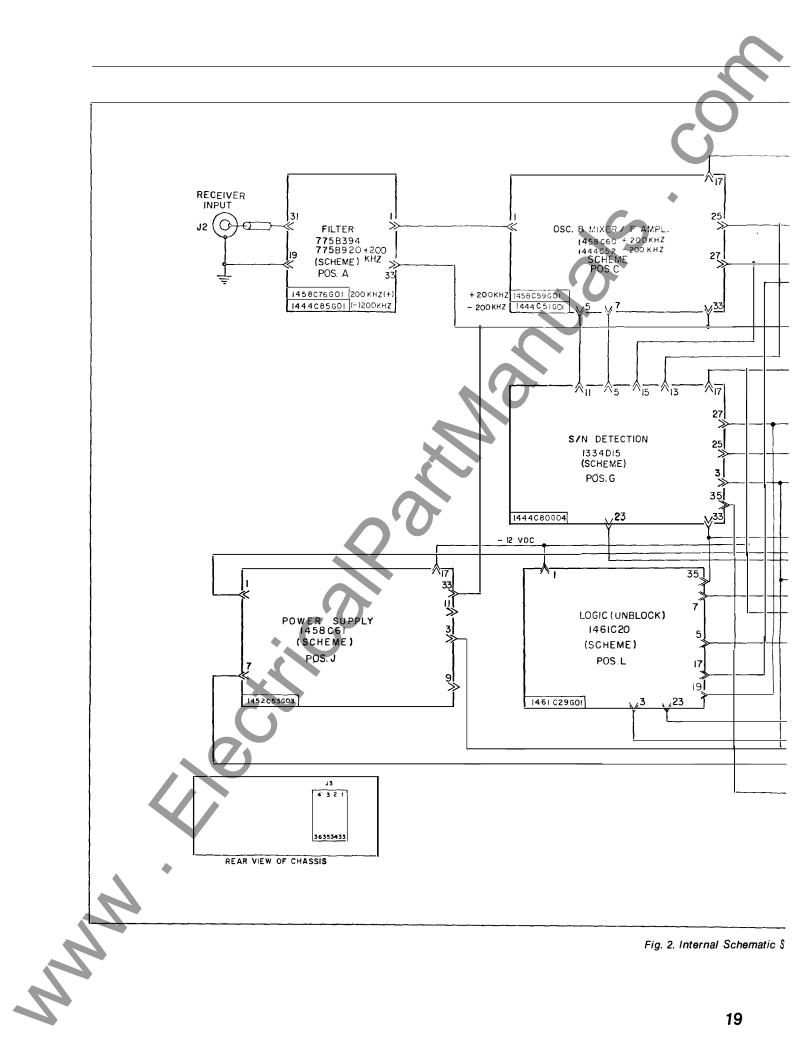
- I. Minimum Test Equipment for Installation
 - a. AC Vacuum Tube Voltmeter (VTVM). Voltage range 0.003 to 30 volts, frequency range 60 hertz to 330 kHz, input impedance 7.5 megohms.
 - b. DC Vacuum Tube Voltmeter (VTVM). Voltage range: 1.5 to 300 volts Input impedance: 7.5 megohms
 - c. CLI Microammeter, range 0-100 μ A, style number 606B592A26, (if receiver has carrier level indicator)

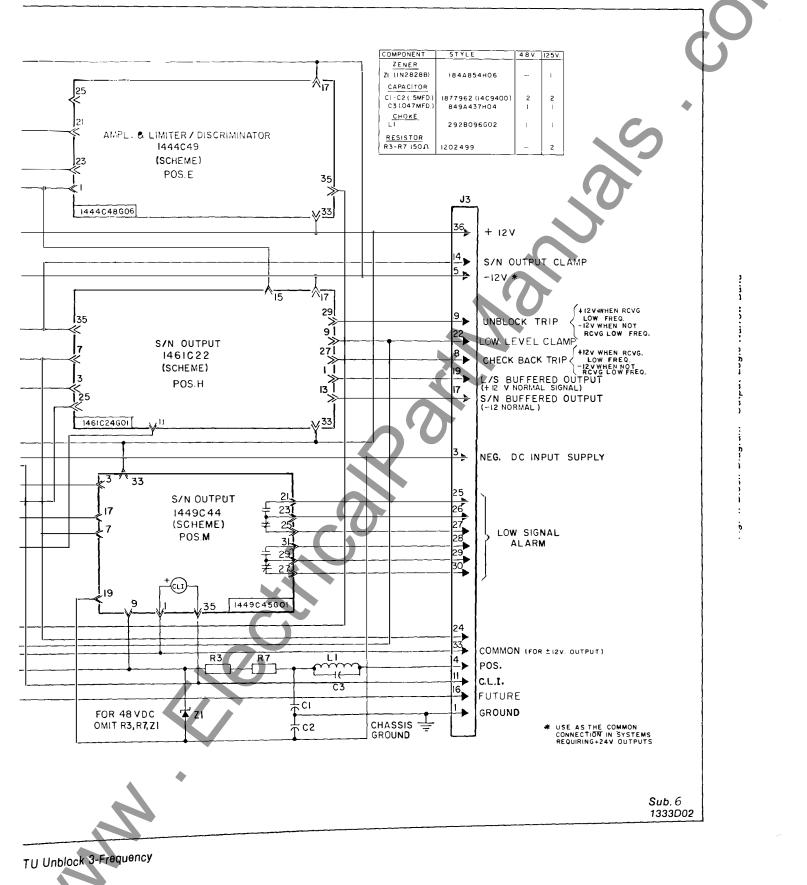
II. Desirable Test Equipment for Apparatus Maintenance

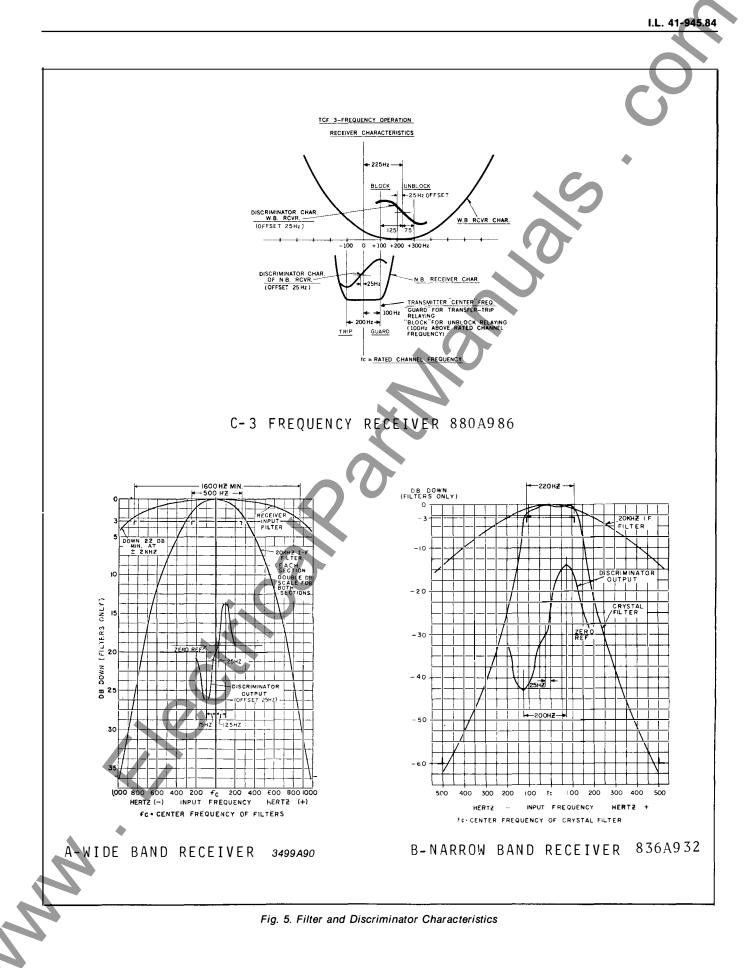
I.L. 41-945.84

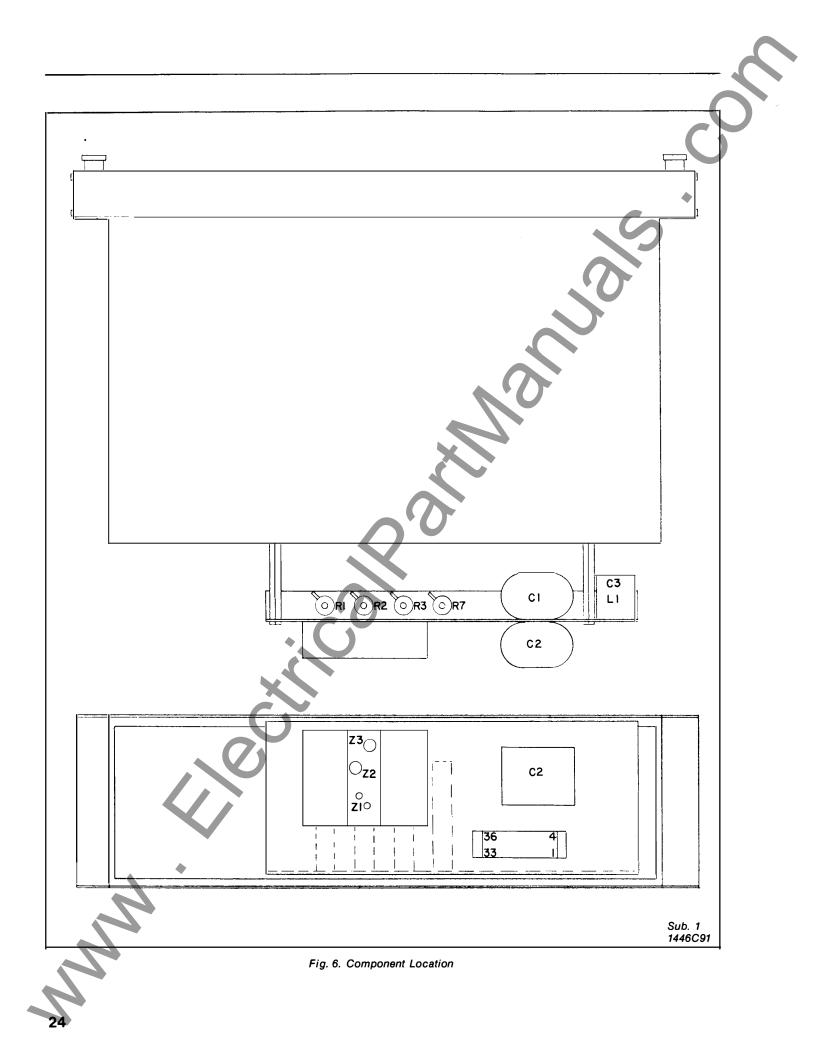

- a. All items listed in I.
- b. Signal Generator Output Voltage: up to 8 volts Frequency Range: 20kHz to 330kHz
- c. Oscilloscope
- d. Frequency counter
- e. Ohmmeter
- f. Capacitor checker
- g. Milliammeter, 0-1.5 or preferably 1.5-0-1.5 range, for checking discriminator.

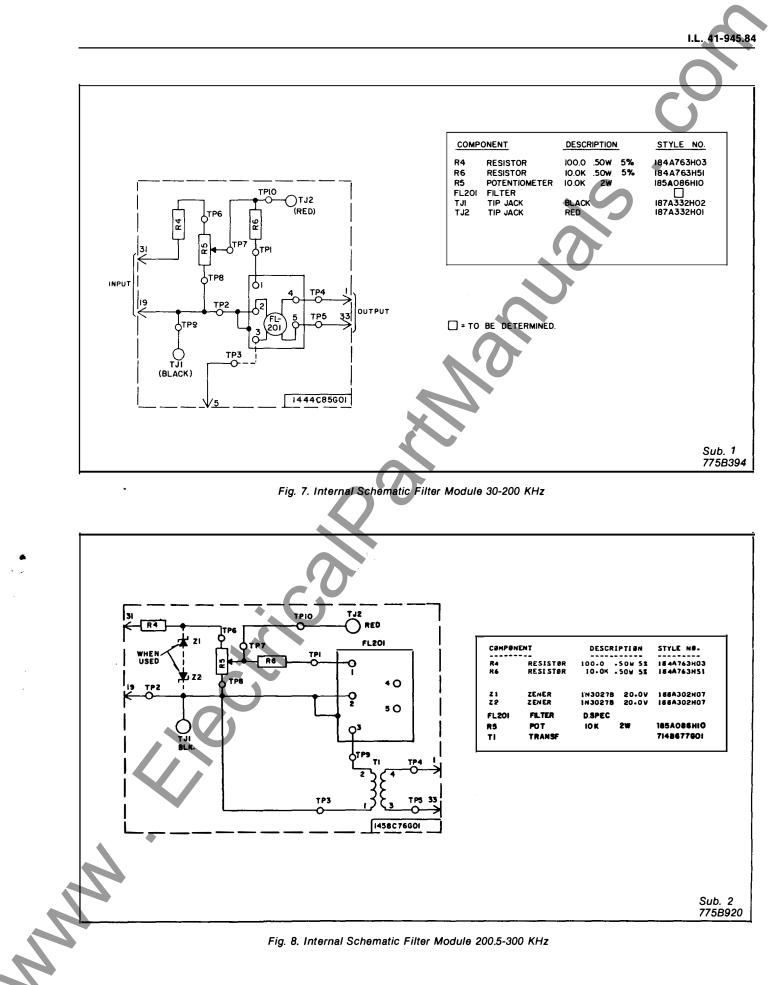

Some of the functions of the recommended test equipment are combined in the type TCT carrier test meter unit, which is designed to mount on a standard 19" rack but also can be removed and used as a portable unit.

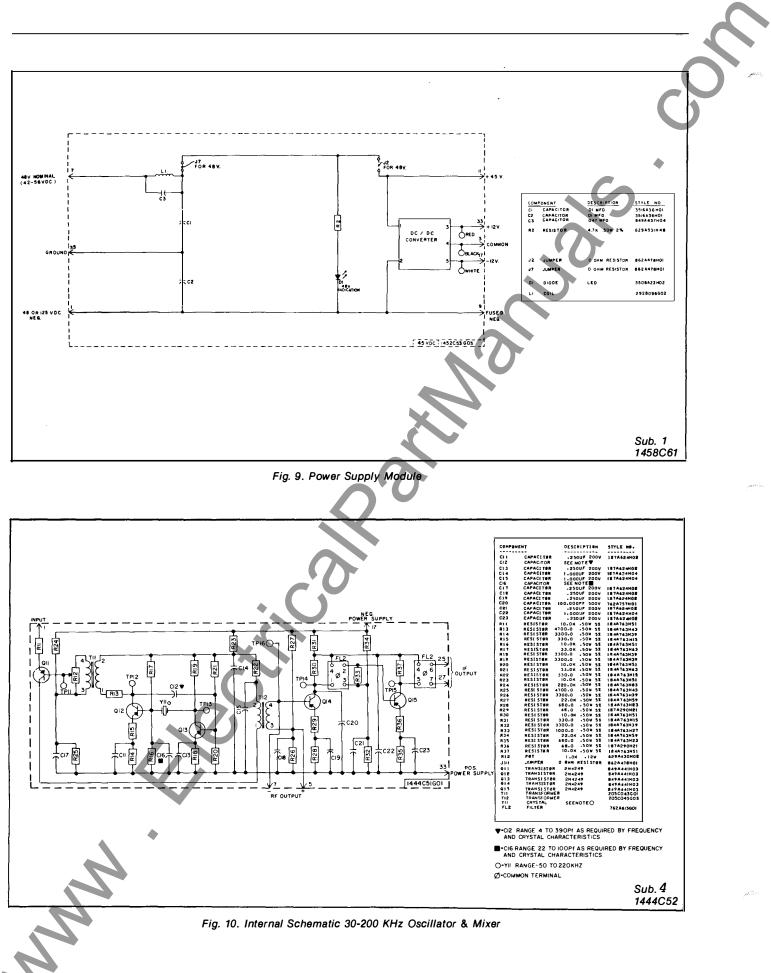

RENEWAL PARTS

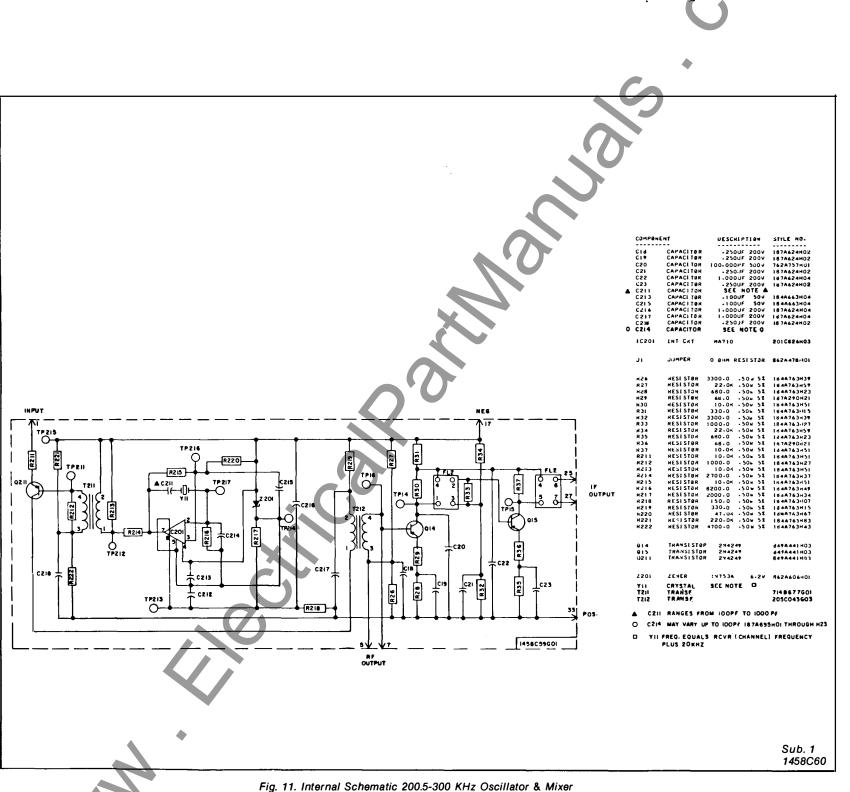

Repair work can be done most satisfactorily at the factory. However, replacement parts can be furnished, in most cases, to customers who are equipped for doing repair work. When ordering parts, always give the complete nameplate data, the electrical value, style number, and identify the part by its designation on the Internal Schematic drawing.

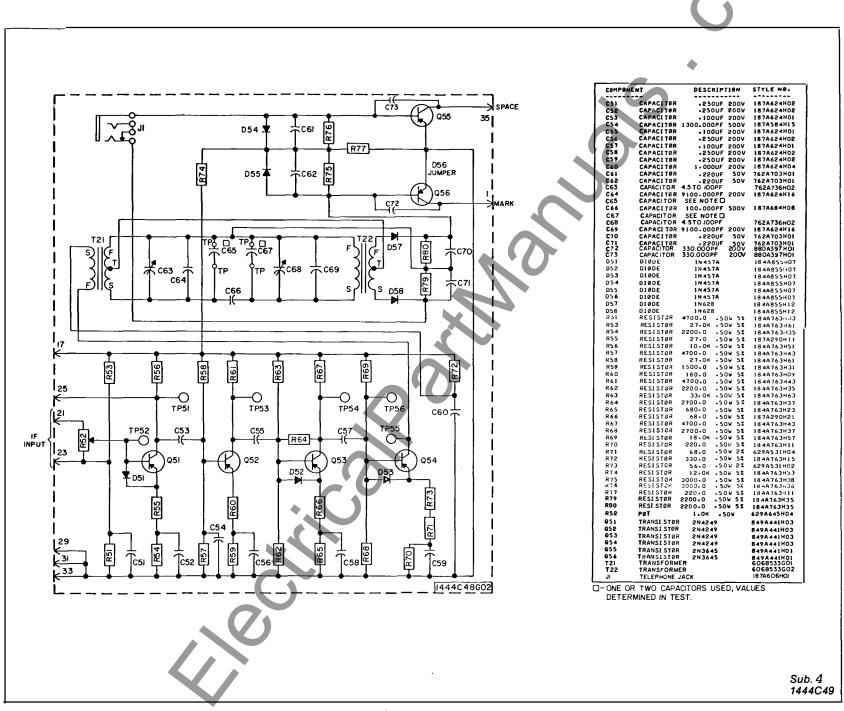


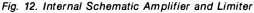


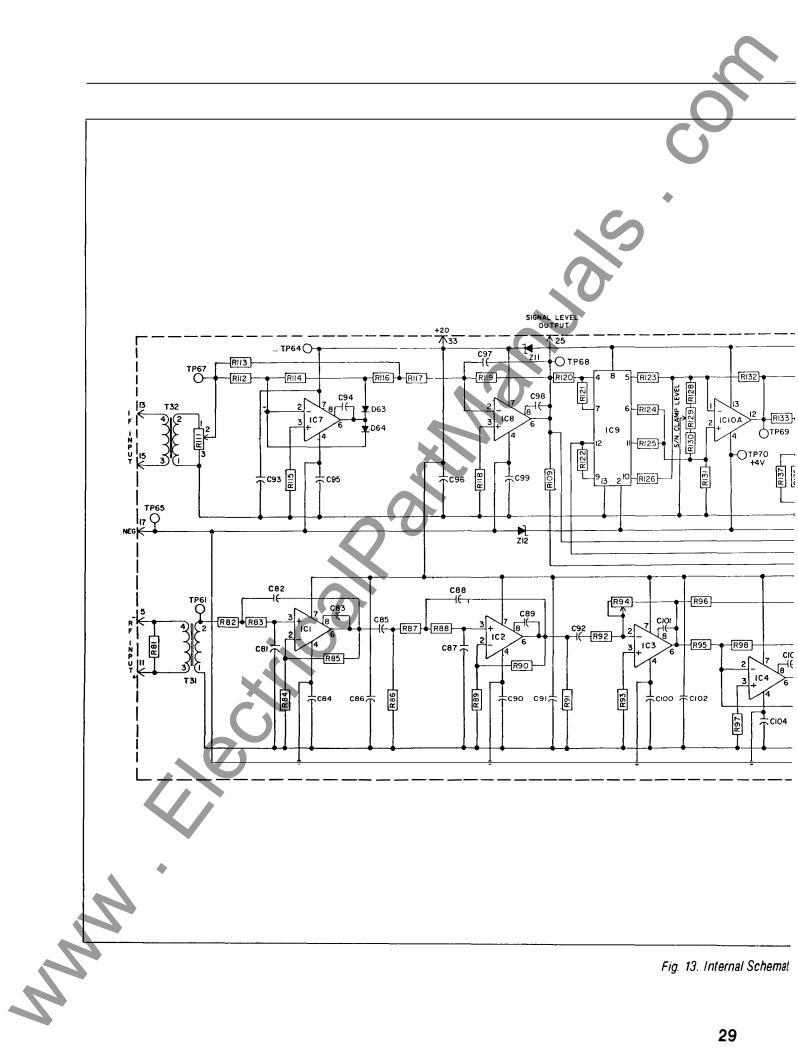


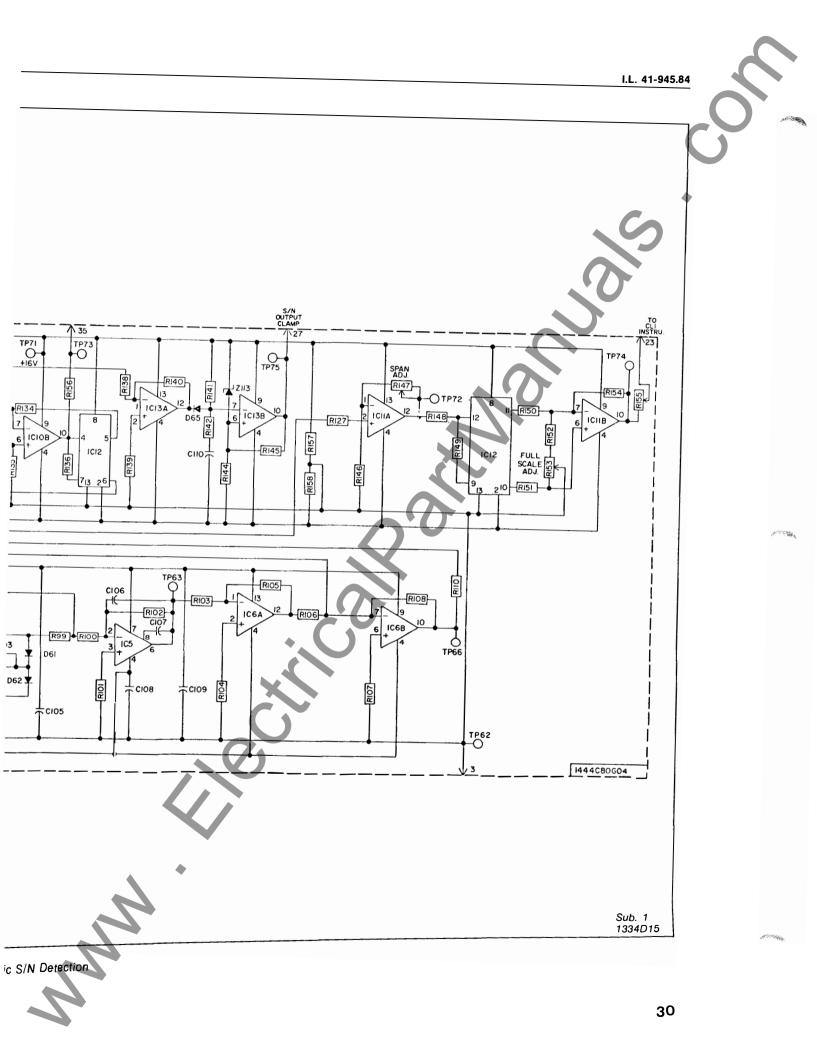


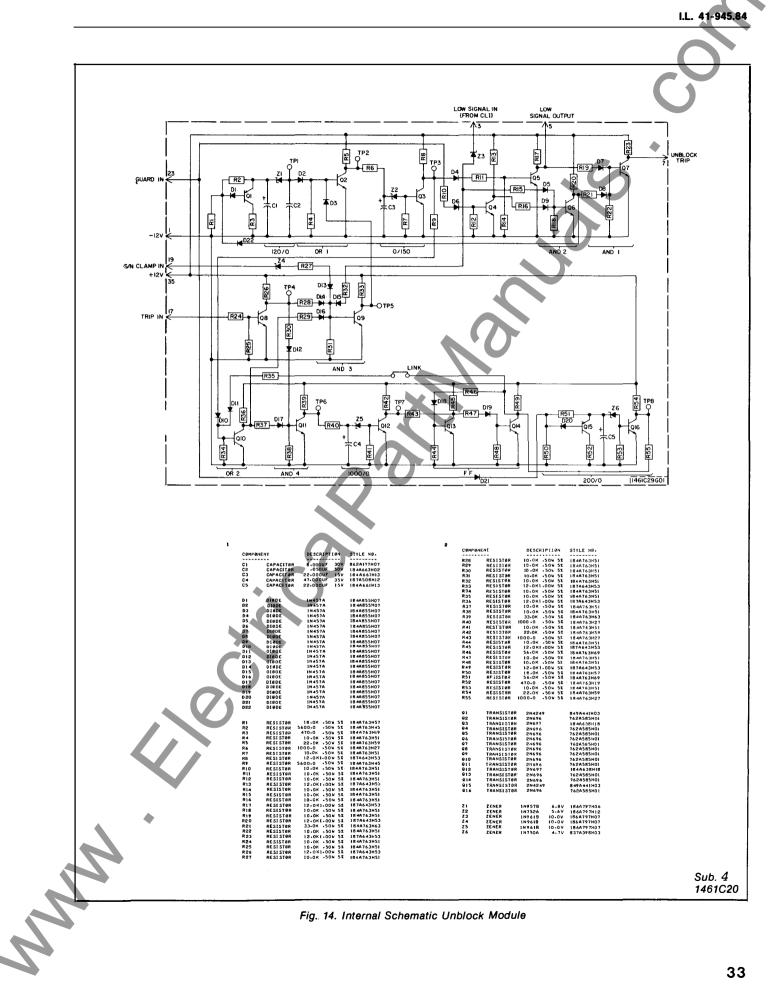


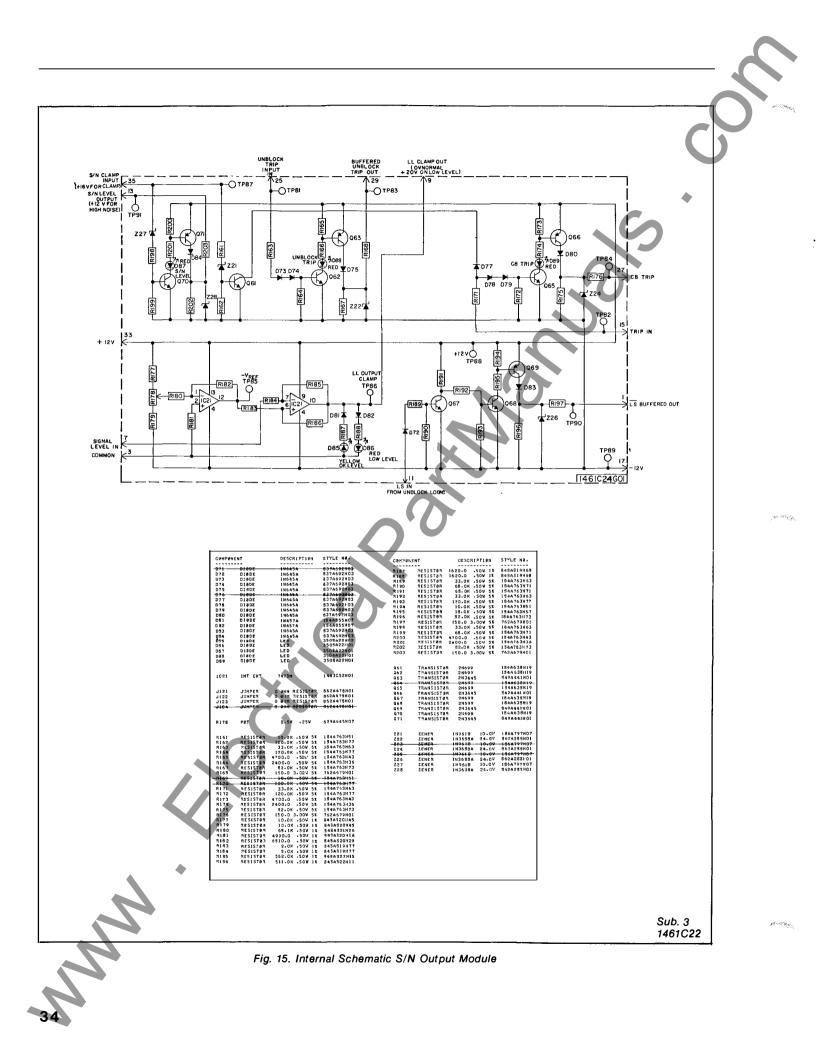


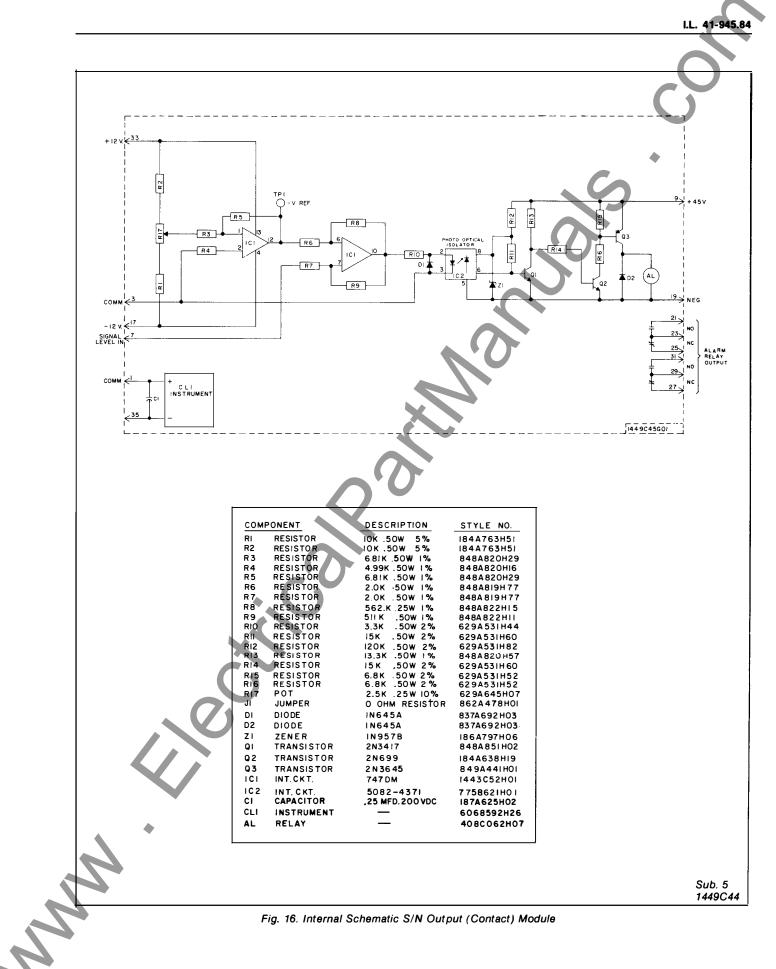


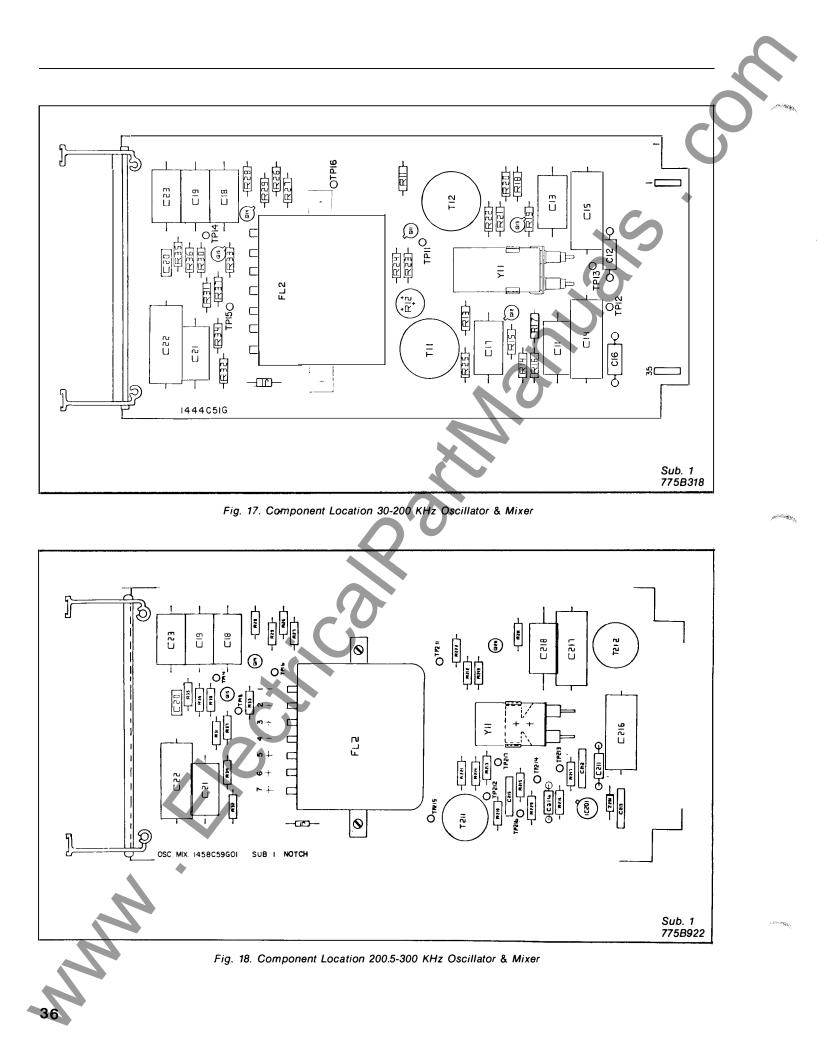


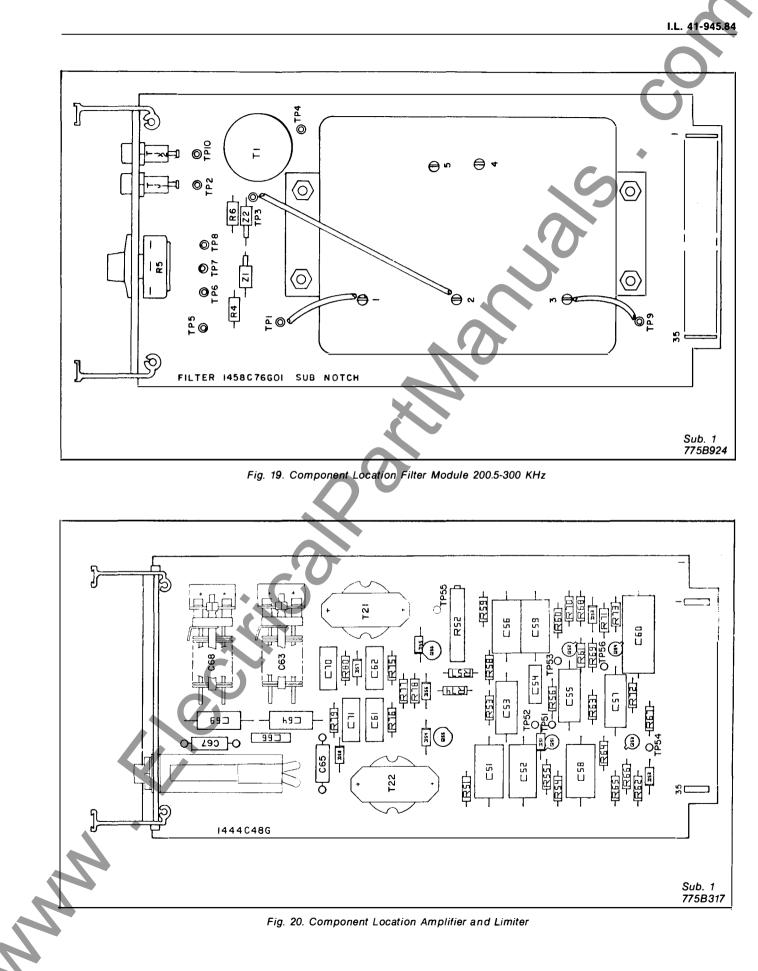


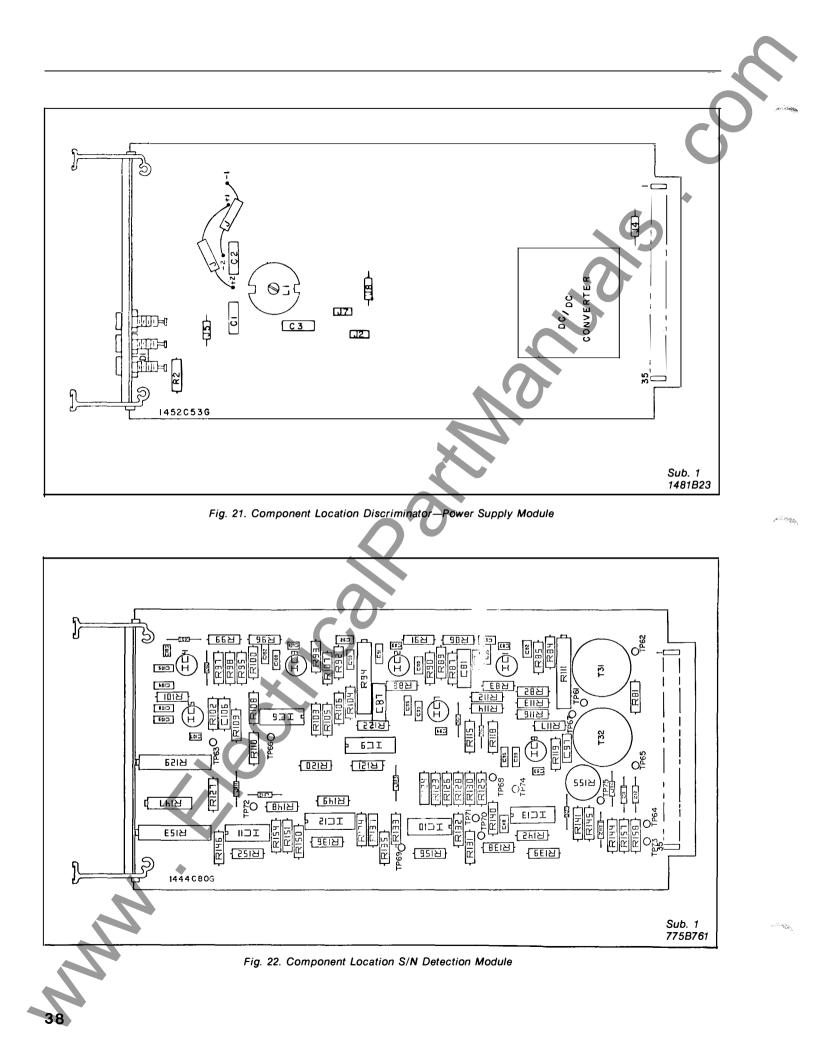


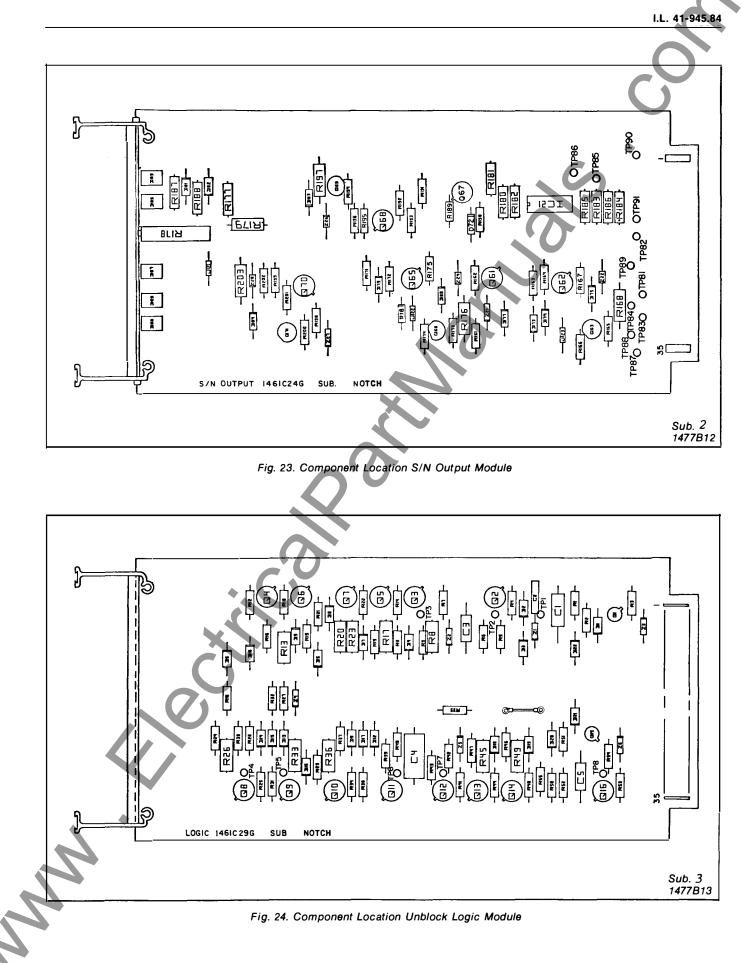




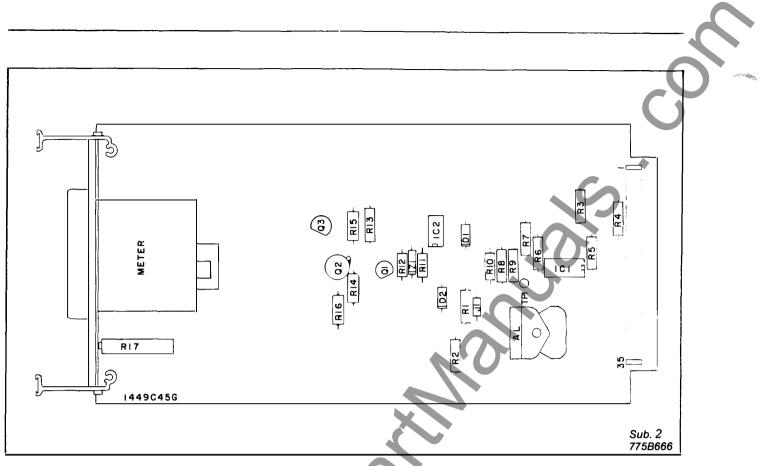
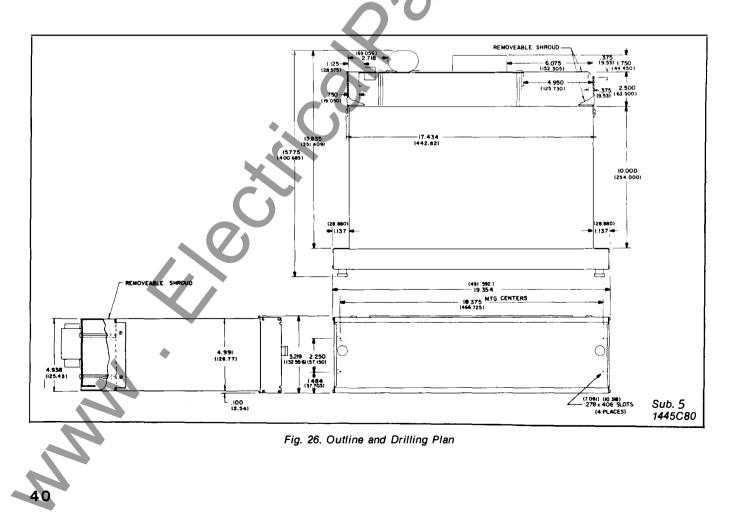
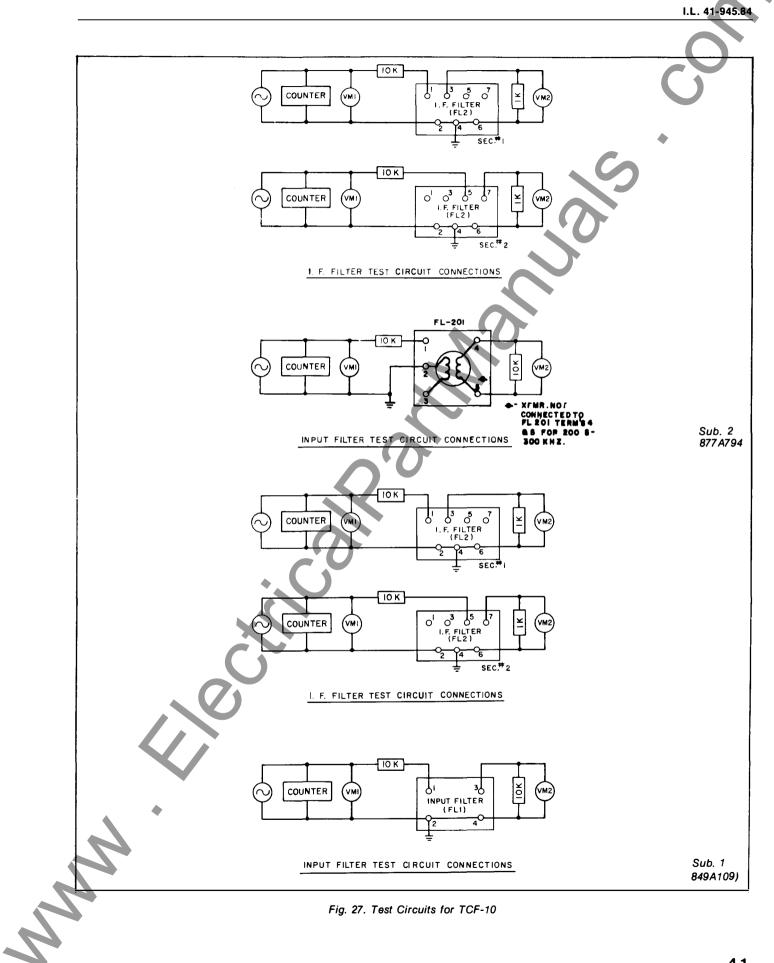
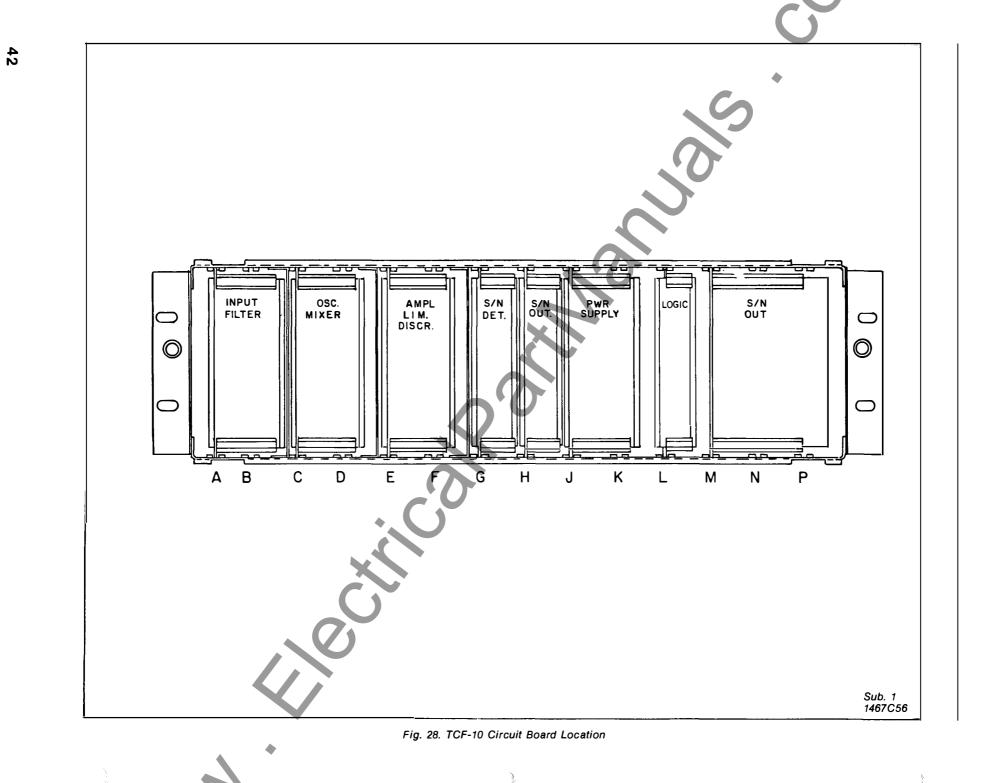


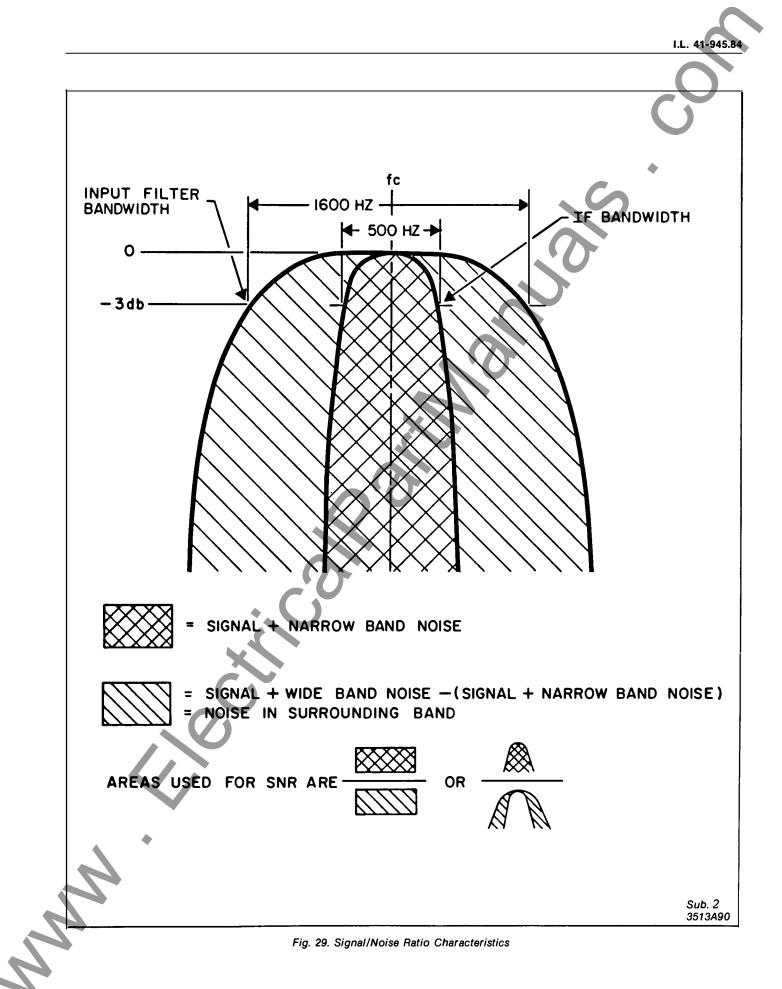


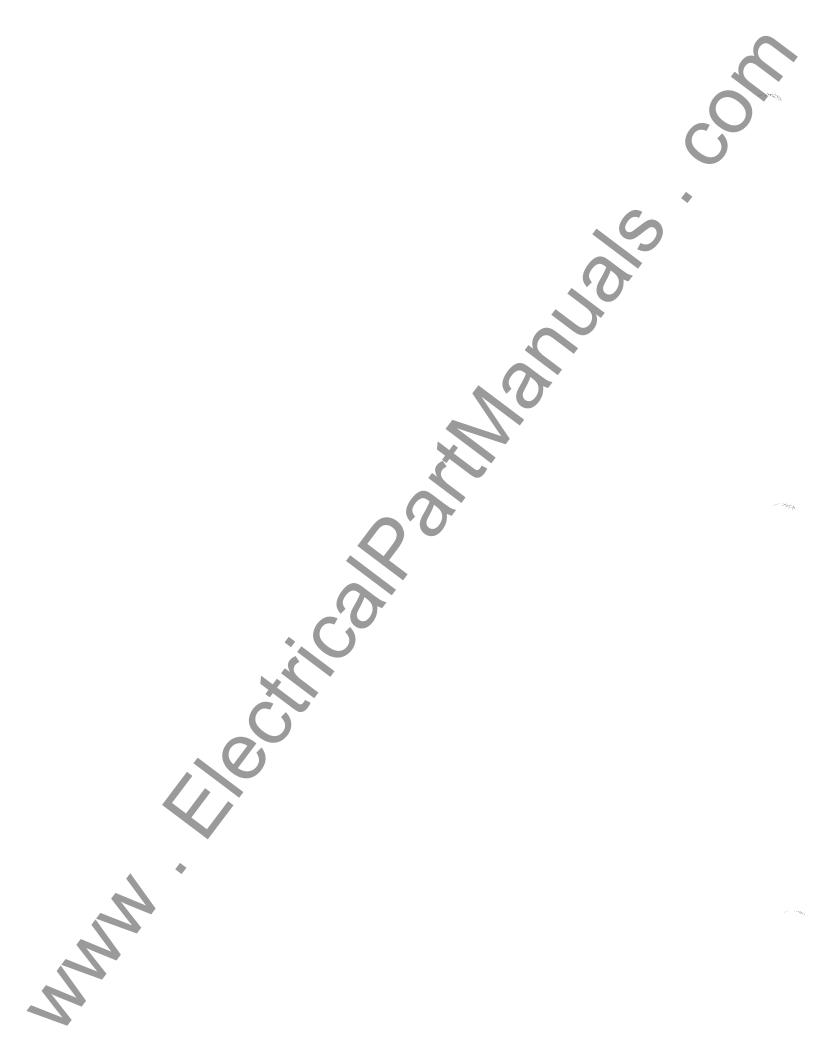

i

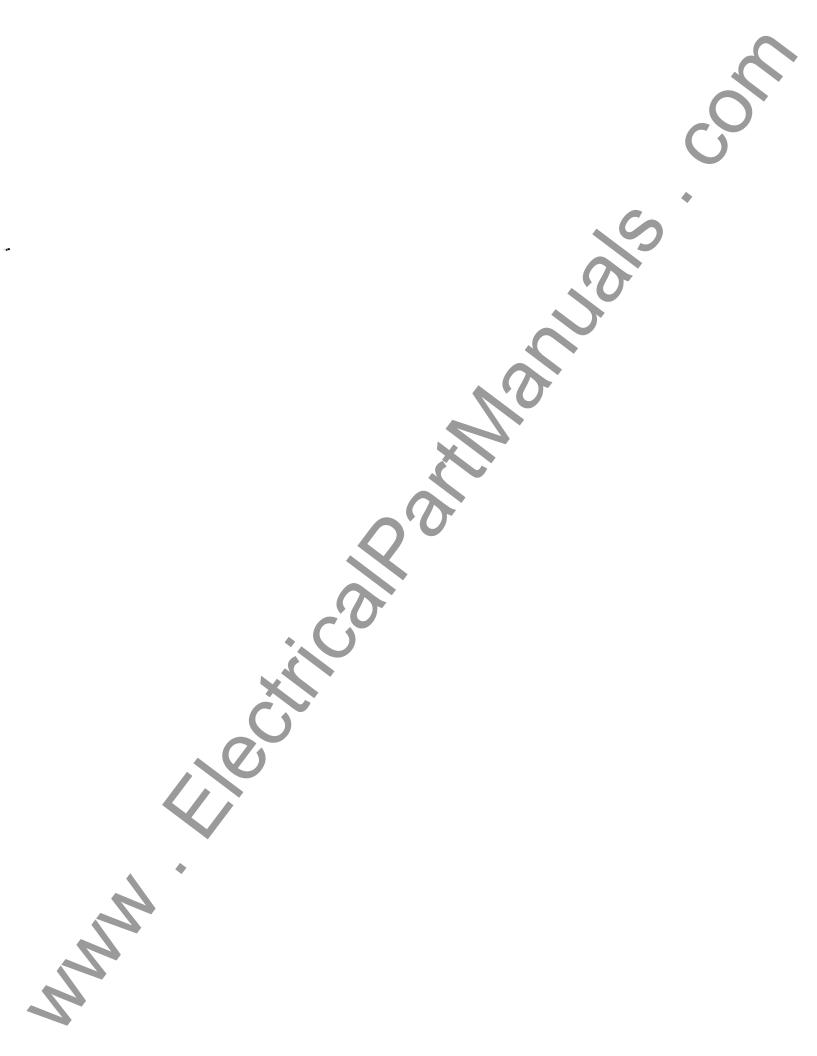

ż

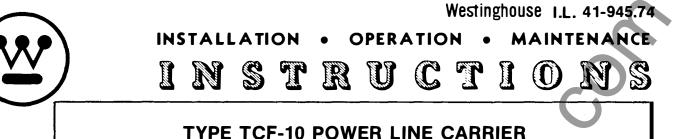
35


Fig. 25. Component Location S/N Output Contact and Meter Module




er Viking



Sec. 18

RELAY-INSTRUMENT DIVISION

WESTINGHOUSE ELECTRIC CORPORATION

CORAL SPRINGS, FL. Printed in U.S.A.

TYPE TCF-10 POWER LINE CARRIER FREQUENCY-SHIFT TRANSMITTER EQUIPMENT 3 FREQUENCY—10 WATT/1-3.25 WATT/10 WATT-WITH VOICE

CAUTION: It is recommended that the user of this equipment become thoroughly familiar with the information in this instruction leaflet before energizing the carrier assembly. Failure to observe this precaution may result in damage to the equipment.

If the carrier set is mounted in a cabinet, it must be bolted down to the floor or otherwise secured before swinging out the equipment rack to prevent its tipping over.

APPLICATION

A widely used high speed relaying system used for transmission line protection consists of directional-comparison unblock relaying plus a transfer-trip channel for breaker failure protection. Normally these systems of relaying require two frequency-shift channels, wideband for unblocking and narrowband for transfer trip. A saving in channel spectrum can be affected by using a three frequency transmitter for the two relaying functions and two separate receivers, one for each function, as shown in Figures 10 and 11.

SYSTEM OPERATION

The three frequency TCF-10 carrier transmitter provides for the transmission of any of three closely controlled discrete frequencies, all within the equivalent spacing of a single wideband channel. The center frequency of the channel can vary from 30 kHz to 300 kHz in 0.5 kHz steps. The transmitter normally operates at a frequency that is 100 Hz above the channel center frequency (fc). This frequency serves as the "guard" frequency for the transfer-trip receiver and as the "block" frequency for the unblock receiver. Note that the discriminator characteristic in the unblock receiver in this case is reversed from the normal unblock receiver used with the standard two frequency transmitter. This "guard" "block" frequency is transmitted continuously when conditions are normal. It indicates at the receiving end of the line that the channel is operative and serves to prevent false operation of the receiver by line noise. The lowest frequency, which is 100 Hz less than fc is the "transfer trip" frequency and is transmitted as a signal that an operation (such as tripping a circuit breaker) should be performed at the receiving end of the line. The highest frequency, which is 300 Hz above fc, is the "unblock" frequency and is transmitted as an unblock signal for directional comparison relaying. If a subsequent transfer-trip operation is called for, the transmitter will shift to fc-100 Hz which is the "trip" frequency for the transfer trip (narrow-band receiver.)

Note that when the transmitter shifts to "unblock," the frequency is completely outside the passband of the narrow band transfer-trip receiver. Normally, this would cause a low-signal alarm output from that receiver. In order to prevent a similar alarm output in this case, the checkback output of the unblock receiver is cross-connected to the guard or block input of the transfer trip receiver (through an OR logic circuit). This logic is shown in Figure 10. The checkback output is a receiver output that indicates that a proper signal has been received without going through any time delays or other logic used for the actual relaying output.

Il possible contingencies which may arise during installation, operation, or maintenance, and all details and variations of this equipment do not purport to be covered by these instructions. If further information is desired by purchaser regarding his particular installation, operation or maintenance of his equipment, the local Westinghouse Electric Corporation representative should be contacted.

NEW INFORMATION

With this cross-connected logic, both receivers will function when required, but will not give any incorrect output indications.

The transmitter normally operates at an output level of one watt at the "guard" "blocking" frequency, but increases to ten watts for either "trip" or "unblock" output. An interlock is provided in the transmitter keying circuit to give transfer-trip preference. This means that even while the transmitter is shifted to the "unblock" frequency, if the transfer-trip keying circuit is energized, the transmitter will shift to the "trip" frequency without delay.

The transmitter can also be amplitude modulated at 3.25 watts to provide a voice channel.

CONSTRUCTION

The 10 watt/1-3.25 watt/10 watt TCF-10 transmitter unit is mounted on a standard 19-inch wide chassis 5 1/4 inches (3 rack units) high with edge slots for mounting on a standard relay rack. See Fig. 8. All of the circuitry that is suitable for printed circuit board mounting is on four such boards, as shown in Fig. 15. The components mounted on each printed circuit board or other sub-assembly are shown enclosed by dotted lines on the internal schematic. Fig. 1. The location of components on the four printed circuit boards are shown on separate illustrations, Fig. 3, 4, 5, & 6.

External connections to the assembly are made through a 36-circuit receptacle, J3. The r.f. output connection to the assembly is made through a coaxial cable jack, J2.

OPERATION

The transmitter is made up of four main stages and two filters. The stages include two crystal oscillators operating at frequencies that differ by the desired channel center frequency, a mixer and buffer amplifier, a driver stage and a power amplifier. The interstage filter is located between the driver and the power amplifier. The output filter removes harmonics that may be generated by distortion in the power amplifier.

A single crystal designed for oscillation in the

30 kHz to 300 kHz range cannot be forced to oscillate away from its natural frequency by as much as \pm 100 hz. In order to obtain this desired frequency shift, it is necessary to use crystals in the 2 MHz range. The crystals are Y1 and Y2 of Fig. 1. The frequency of Y2 is 2.00 MHz when operated with a specified amount of series capacity, and the frequency of Y1 is 2.00 MHz plus the channel center frequency, or 2.03 MHz for 30 kHz center frequency. Capacitor C55 and crystal Y2 in series are connected between the positive side of the supply voltage and the base of transistor Q51 which operates in the emitter following mode. The emitter is coupled to the base through C57. With Y2 removed the base of Q51 would be held at approximately the midpoint of the supply voltage by R51 and R52. The crystal serves as a series-resonant circuit with very high inductance and low capacitance. The circuit can be made to oscillate at other than the natural frequency of the crystal by varying the series capacitor, C55. Increasing C55 will lower the frequency of oscillations and reducing C55 will raise the frequency.

Capacitor C79 (in parallel with C78) is not effective until D59 is biased in the forward direction and becomes conductive. It is biased in the reverse direction until the keying control for unblock is closed which places 45V. dc at terminal 12 of the printed circuit board. With D57 conducting, C79 and C78 are placed in parallel with C55 and C73. The adjustment of C79 will reduce the frequency of the Y2 circuit by 200 hz. Since Y2 is the lower of the two frequencies derived from Y1 and Y2, the difference frequency, which is the frequency transmitted, is now increased by 200 hz. Thus the frequency transmitted is now 200 hz above the guard frequency or 300 hz above the center frequency.

Crystal Y1 is connected in a circuit that is similar except for the addition of C53 and diodes D51 and D52. By adjustment of C52 this circuit is made to oscillate at 100 hz above its marked frequency. Capacitors C53 and C71 are not effective until D51 is biased in the forward direction and becomes conductive. It is biased in the reverse direction until the keying control is closed, which places 45 V. dc at terminal 1 of the printed circuit board. With D51 conducting, C53 and C71 are effectively in parallel with C52 and C72. The adjustment of C53 will reduce the frequency by 200 hz.

No.

The crystals taken individually have a greater variation of frequency with temperature than would be acceptable. However, by proper matching of the two crystals, the variation in their difference frequency can be kept within limits that permit holding the frequency stability of the overall transmitter to \pm 10 Hz over a temperature range of -20 to +55°C.

The frequencies produced by the two oscillators are coupled to the base of mixer transistor Q53 through C62 and C63. The sum of the two frequencies is so high that a negligible amount appears on the secondary of transformer T51, but the difference frequency is accepted and amplified by Q53 and Q54.

When the keying control is closed, it increases the output power from 1 watt to 10 watts as well as changing the frequency from Guard to Transfer or Unblock Trip. This is effected by reducing the emitter resistance of buffer-amplifier transistor Q54. When the keying control is open, transistor Q55 receives no base current and is nonconducting. Emitter resistor R70 therefore is effectively open-circuited. The level of output power is adjusted to 1 watt by means of R64. When Q55 is made conductive by closing the keying control circuit, R70 is placed in parallel with R68 and the amount of emitter resistance unbypassed by C66 can be adjusted as required to obtain a 10-watt output level.

Note in the keying board logic there is that interlocking logic between the keying for "unblock" and the keying for "transfer trip". This logic permits the "transfer trip" keying to take preference over the "unblock" keying. That is, even if we have "unlock" keying and then get "transfer trip" keying, the "transfer trip" will take immediate preference over the "unblock" keying. This is accomplished by the "transfer trip" keying causing transistor Q1 to conduct which in turn shunts out the keying voltage input to transistor Q3 through diode D9. Thus while Q1 becomes conducting and consequently Q2, effecting "transfer trip" keying, this conduction of Q1 also prevents Q3 from becoming conducting and prevents "unblocking" keying.

As is shown on the Internal Schematic, Fig. 1, the voltage for the keying circuit is obtained from

the 45-volt regulated supply in the transmitter.

The driver stage consists of transistors Q56 and Q57 connected in a conventional push-pull circuit with input supplied from the collector of Q54 through transformer T52.

The driver filter, FL101, consists of a seriesresonant inductor and capacitor connected between the driver and power amplifier stages by appropriate transformers T1 and T2. This filter greatly improves the waveform of this signal applied to the power amplifier.

The power amplifier uses two series-connected power transistors, Q101 and Q102, operating as a class B push-pull amplifier with single-ended output. Diodes D101 and D103 provide protection for the base-emitter junctions of the power transistors. Zener diodes Z105 and Z106 protect the collectoremitter junctions from surges that might come in from the power line through the coaxial cable.

The output transformer T3 couples the power transistors to the output filter FL102. The output filter includes two trap circuits (L102, CB and L103, CC) which are factory tuned to the second and third harmonics of the transmitter frequency. Capacitor CD approximately cancels the inductive reactance of the two trap circuits at the operating frequency. Protective gap G1 is a small lightning arrester to limit the magnitude of switching surges or other line disturbances reaching the carrier set through the line turner and coaxial cable. Autotransformer T4 matches the filter impedance to coaxial cable of 50, 60, or 70 ohms.

The series resonant circuit composed of L105, and CE is tuned to the transmitter frequency, and aids in providing resistive termination for the output stage. Jack J102 is mounted on the rear panel of FL102 and is used for measuring the r.f. output current of the transmitter into the coaxial cable. It should be noted that the filter contains no shunt reactive elements, thus providing a reverse impedance that is free of possible "across-the-line" resonances.

The power supply is a series-type transistorized dc voltage regulator which has a very low stand-by current drain when there is no output current demand. The Zener diode Z1 holds a constant baseto-negative voltage on the series-connected power darlington transistor Q1. Depending on the load current, the dc voltage drop through transistor Q1 and resistor R1 and R2 varies to maintain a constant output voltage. The Zener diode Z2 serves to drop the 100v regulated supply to 45v for use with both the keying circuit and the external TCF voice adapter. It is placed in series so that it does not draw current unless called upon by the external voice adapter. Capacitor C3 provides a low carrierfrequency impedance across the dc output voltage. Capacitors C1 and C2 by pass across the dc output voltage. Capacitors C1 and C2 by pass r.f. or transient voltages to ground, thus preventing damage to the transistor circuit.

When keyed for voice by the voice adapter, transistor Q55 is keyed into class A operation so that its conduction can be modulated by the voice input from the voice adapter. Potentiometer R82 is adjusted so that the nominal output of carrier is 3.25 watts (14 volts across 60 ohms). The voice input modulates the carrier through this transistor by varying the amount of conduction of Q55 so that the output power of carrier varies with the voice amplitude following the voice frequency components. Since with Q55 completely nonconducting, R64 has been set to produce a 1 watt output, maximum modulation on the side to shut off Q55 will not result in an output level of less than 1 watt carrier at any time. Also since the output level has been set at 10 watts with Q55 completely conducting by the adjustment of R70, the maximum modulation on the side of turn on of Q55 will not result in a carrier output level of greater than 10 watts at any time. Thus the modulation for voice will not result in the output carrier level dropping below 1 watt and endangering the guard frequency for relaying purposes.

The buffer keying board in addition to providing proper buffering, also contains logic for the proper keying of both frequency and output level in regards to protective relaying operation, voice adapter operation, and 52b contact operation.

It should be remembered that protective relaying operation has first priorty. If the protective relay operates and puts a voltage input into any of the three input points labeled carrier auxiliary keying, the transmitter will both frequency shift to trip frequency and full 10 watts output whether voice is called for or not.

The operation of the 52b contact will remove the 10 watt keying output and permit the voice adapter to key to 3.2 watts output for AM voice modulation. This allows voice modulation on unblock frequency after the 52b contact has operated.

CHARACTERISTICS

Frequency Range Output	30-300 kHz, 1 watt guard—10 watts trip—(both transfer and unblock)—3.2 watts voice (into 50 to
	70 ohm resistive load) at nominal rated input voltage (48 V. or 125 v.d.c.)
Frequency Stability	± 10 Hz from -20° C to $+55$ C.
Frequency Spacing	Two-way channel,—See Voice Adapter Instruction Leaflet. [41- 945.6]
Harmonics	Down 55 db (min.) from output level.
Input Voltage	48 or 125 v.d.c.
Supply Voltage Variation	42-56v. for nom. 48v. supply. 105-140v. for nom. 125v. supply.
Battery Drain	0.5 A. guard 48 v.d.c.
	0.2 A. guard 0.4 A. trip } 125 v.d.c.
Keying Circuit Current	4 mA.
Temperature Range	-20 to $+55^{\circ}$ C. around chassis.
Dimensions	Chassis height—5 1/4 or 3 r.u. Chassis width—19"
Weight	12 lbs.

INSTALLATION

TYPE TCF-10 transmitter is generally supplied in a cabinet or on a relay rack as part of a complete carrier assembly. The location must be free from dust, excessive humidity, vibration, corrosive fumes, or heat. The maximum ambient temperature around the chassis must not exceed 55° C.

ADJUSTMENTS

TYPE TCF-10 10W/1-3.2W/10W 3 Frequency transmitter is shipped with the power output controls R64, R82 and R70, set for outputs of 1 watt, 3.2 watts and 10 watts into a 60 ohm load. If it is desired to check the adjustments or if repairs have made readjustment necessary, the coaxial cable should be disconnected from the assembly terminals and replaced with a 50 to 70 ohm noninductive resistor of at least a 10 watt rating. Use the value of the expected input impedance of the coaxial cable and line tuner. If this is not known, assume 60 ohms. Connect the T4 output lead to the corresponding tap. Connect an ac vacuum tube voltmeter (VTVM) across the load resistor. Turn power output control R64 to minimum (full counter-clockwise). Turn on the power switch on the panel and note the dc voltage across terminals 3 and 7 of J3. If this is in the range of 42 to 46 volts, rotate R64 clockwise to obtain 4 or 5 volts across the load resistor used. At this point check the adjustment of the series output tuning coil L105 by loosening the knurled shaft-locking nut and moving the adjustable core in and out a small amount from its initial position. Leave it at the point of maximum voltage across the load resistor used. Then rotate R64 farther clockwise to obtain the correct voltage for 1 watt in the load resistor, as shown in the following table.

Then change to Trip frequency by connecting together terminals 7 and 12 of the transmitter connector J3, and rotate R70 until the voltage across the load resistor is as shown in the following table for a 10 watt output. Recheck the adjustment of L105 for maximum output voltage and readjust R70 for a 10 watt output if necessary. Tighten the locking nut on L105. Open the power switch and remove the jumper used to key the transmitter to the 10 watt level. Key for voice by opening any connection terminal to 10 of J3. Turn the power back on. Adjust R82 for a 3.2 watt output across the load resistor (14V across 60 ohms). Open the power switch, reconnect connection to terminal 10 of J3, remove the load resistor, and reconnect the coaxial cable circuit to the transmitter. Note on frequencies above 200 KHZ, L105 adjustment is a screw-driver adjustment. There is no knurled shaftlocking nut.

VOLTAGE FOR

T106	1 WATT	3.2 WATTS	10 WATTS
TAP	OUTPUT	OUTPUT	OUTPUT
50	7.1	12.7	22.4
60	7.8	14	24.5
70	8.4	15	26.5

Follow the procedure outlined in the line tuner instructions for its adjustment.

Normally the output filter (FL102) will require no readjustment except as noted above. It is factory tuned for maximum second and third harmonic rejection, and for series resonance (maximum output at the fundamental frequency) with a 60-ohm load. A small amount of reactance in the transmitter output load circuit may be tuned out by readjustment of the movable core of L105. This may be necessary with some types of line coupling equipment. The adjustable cores of L102 and L103 have been set for maximum harmonic rejection and no change should be made in these settings unless suitable instruments are available for measuring the second and third harmonic present in the transmitter output.

The operating frequencies of crystals Y1 and Y2 have been carefully adjusted at the factory and good stability can be expected. If it is desired to check the frequencies of the individual crystals, this can be done by turning the matched pair 180° and inserting a crystal in its proper socket with the other crystal unconnected. A sensitive frequency counter with a range of at least 2.3 MHz can be connected from TP51 to TP54. (Connection to TP54 rather than to TP53 provides a better signal to the counter and avoids some error from the effect of the counter input capacitance on the oscillator circuit.) While measurement of the oscillator crystals individually is necessary for the initial adjustment of the oscillators, generally any subsequent checks may be made with a lower range counter connected at the transmitter output. If any minor adjustment of the Guard and Trip frequencies should be needed, the Guard adjustment should be made with capacitor C52, the Transfer Trip Adjustment with C53, and the unblock frequency with C79.

MAINTENANCE

Periodic checks of the transmitter Guard and Trip power outputs will detect impending failure so that the equipment can be taken out of service for correction. At regular maintenance intervals, any accumulated dust should be removed, particularly from the heat sinks. It is also desirable to check the transmitter power output at such times, making any necessary readjustments to return the equipment to its initial settings.

Voltage values should be recorded after adjustment in order to establish reference values which will be useful when checking the apparatus. The readings will remain fairly constant over an indefinite period unless a failure occurs. However, if transistors are changed, there may be considerable difference in these readings without the overall performance being affected.

Typical voltage values are given in the following tables. Voltages should be measured with a VTVM. Readings may vary as much as $\pm 20\%$.

TABLE I TRANSMITTER DC MEASUREMENTS

Note: All voltages are positive with respect to Neg. (TP51). All voltages read with dc VTVM.

					🔹 Volt	age at
	Volta	ge at	Volta	ge at	3.2	Watts
Test	1 V	Vatt	10 V	Vatts 🦳	Οι	itput
Point	Out	put	Out	tput	(For	voice)
	48V	125V	48V	125V	48V	125V
	units	units	units	units	units	units
TP52	20	20	20	20	20	20
TP53	5.4		5.4		5.4	
TP54	3.4		3.4		3.4	
TP55	21	20	18.5	18.5		
TP56	21	20	18.5	18.5		
TP57	<1.0		◆<1.0			_ .
TP58	44.3	100	44.1	100		
TP59	<1.0		<1.0			
TP101	0	0	0	0		
TP103	21±2	50	21±2	50		
TP105	44.3	100	44.0	100		

TABLE II TRANSMITTER RF MEASUREMENTS

Note: Voltages taken with transmitter set to indicated output across 60 ohms. These voltages subject to variations, depending upon frequency and transistor characteristics. T51-3 = Terminal 3 of transformer T51. Other transformer terminals identified similarly. All read with a-c VTVM.

Test Point	Voltage at 1 watt Output		ge at vatts tput	3.2 v Ou	age at watts tput Voice)
TP54 to TP51	0.015-0.03	0.015	-0.03		
TP57 to TP51	0.05 -0.09	0.3	-1.2		
TP59 to TP51	0.05 -0.09	0.3	-1.2		
	48V	125V	48V	125V	
T1-1 to TP51	1.65		5.6		
T1-3 to TP51	1.45		4.9		
T1-4 to Gnd.	.6		2.0		<u> </u>
T2-1 to Gnd.	.57		1.85		<u> </u>
TP101-TP103	5.2		17.0		
TP103 to TP10	5.2		17.0		
T3-4 to Gnd.	35	35	112	112	
T4-2 to Gnd.	31	31	110	110	
TP109 to Gnd.	. 9.8	9.8	31	31	
J102 to Gnd.	7.8	7.8	24.5	24.5	14

CONVERSION OF TRANSMITTER FOR CHANGED CHANNEL FREQUENCY

The parts required for converting a 1W/10WTCF transmitter for operation on a different channel frequency consist of a pair of matched crystals for the new channel frequency, new capacitors C103 and C104 on the power amplifier circuit board if the old and new frequencies are not in the same frequency group (see table on internal schematic drawing) and, in general, new or modified filters FL101 and FL102. Inductors L101, L102 and L103 in these filters are adjustable over a limited range, but forty-two combinations of capacitors and inductors are required to cover the frequency range of 30 to 300 kHz. The widths of the frequency groups vary from 1.5 kHz at the low end of the channel frequency range to 13 kHz at the upper end. A particular assembly can be adjusted over a somewhat wider range than the width of its assigned group since some overlap is necessary to allow for component tolerances. The nominal kHz adjustment ranges of the group are:

30.0-31.5	61.0- 64.0	113.0-119.5	207.1-214.0
32.0-33.5	64.5- 68.0	120.0-127.0	214.1-222.0
34.0-36.0	68.5-72.0	127.5-135.0	222.1-230.0
36.5-38.5	72.5- 76.0	135.5-143.0	230.1-240.0
39.0-41.0	76.5-80.0	143.5-151.0	240.1-250.0
41.5-44.0	80.5- 84.5	151.5-159.5	250.1-262.0
44.5-47.0	85.0- 89.0	160.0-169.5	262.1-274.0
47.5-50.0	89.5- 94.5	170.0-180.0	274.1-287.0
50.5-53.5	95.0-100.0	180.5-191.5	287.1-300.0
54.0-57.0	100.5-106.0	192.0-200.0	
57.5-60.5	106.5-112.5	200.1-207.0	

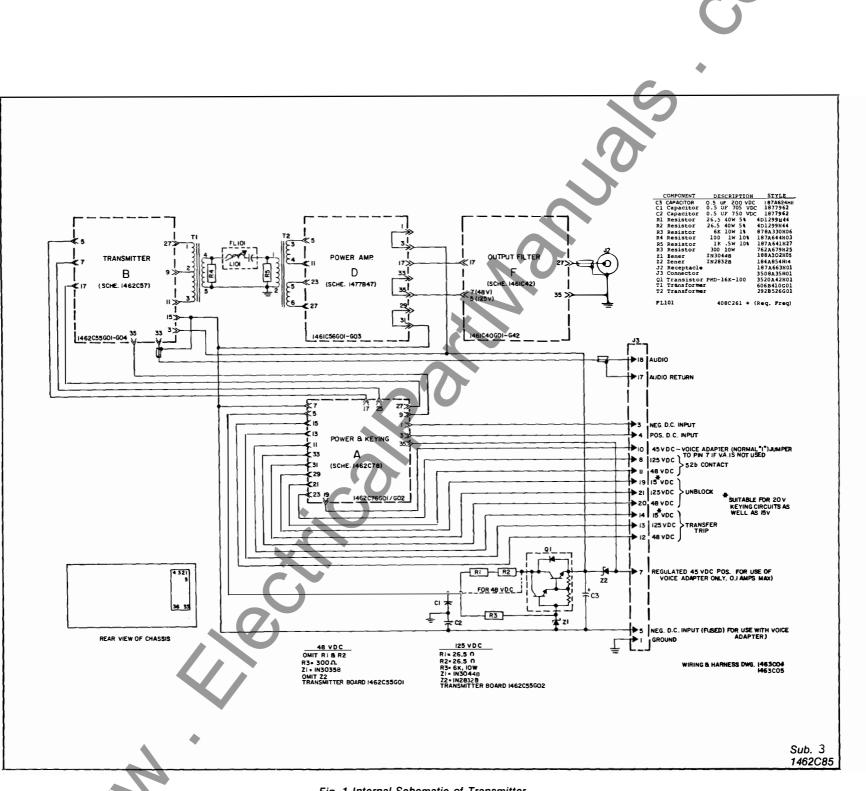
If the new frequency lies within the same frequency group as the original frequency, the filters can be readjusted. If the frequencies are in different groups, it is possible that changes only in the fixed capacitors may be required. In general, however, it is desirable to order complete filter assemblies adjusted at the factory for the specified frequency. Since all the modules are plug in modules frequency change is simply a matter of plugging in these new filters.

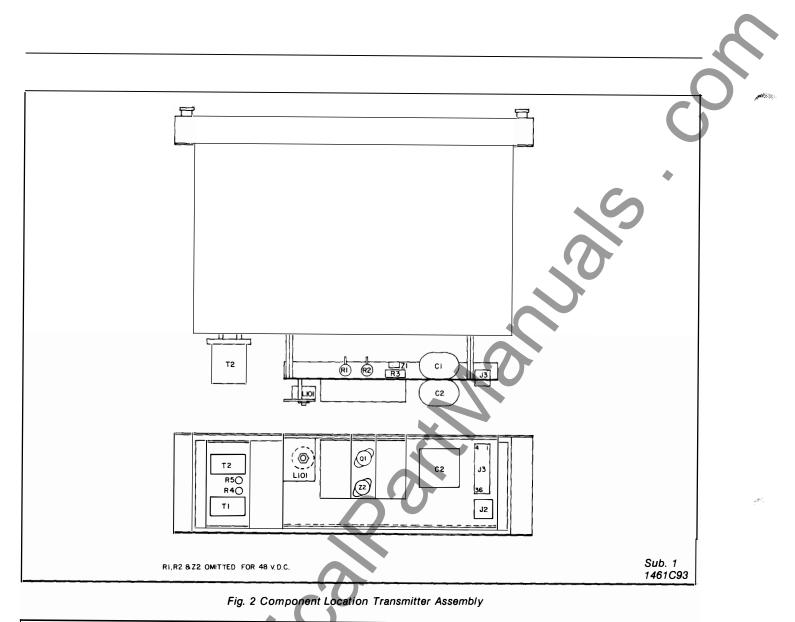
A signal generator, a frequency counter and a vacuum tube voltmeter are required for readjustment of FL101. The signal generator and the counter should be connected across terminals 4 and 5 of transformer T1 and the voltmeter across terminals 1 and 2 of transformer T2. The signal generator should be set at the channel center frequency and at 2 to 3 volts output. The core screw of the small inductor should be turned to the position that gives a true maximum reading on the VTVM. Turning the screw to either side of this position should definitely reduce the reading. The change in inductance with core position is less at either end of the travel than when near the center and consequently the effect of core screw rotation on the VTVM reading will be less when the resonant inductance occurs near the end of core travel.

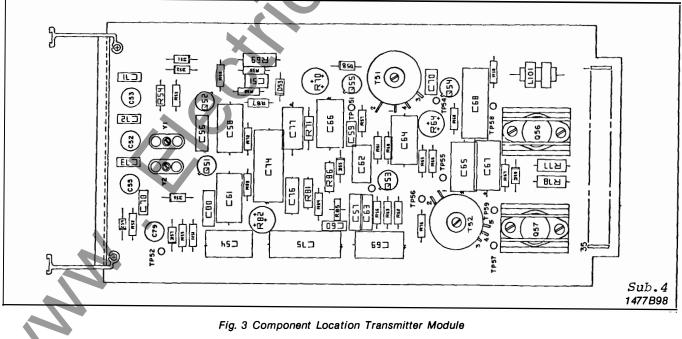
The procedure for readjustment of the 2nd and 3rd harmonic traps of filter FL102 is somewhat similar. A signal generator and a counter should be connected to terminals 3 and 4 of transformer T3, and a 500 ohm resistor and a VTVM to the terminals of protective gap G1. The ground or shield lead of all instruments should be connected to the grounded terminal of the transformer. Set the signal generator at exactly twice the channel center frequency and at 5 to 10 volts output. Turn the core screw of the large inductor, L102, to the position that gives a definite *minimum* reading on the VTVM. Similarly, with the signal generator set at exactly three times the channel center frequency and 5 to 10 volts output, set the core screw of the small inductor, L103, to the position that gives a definite *minimum* reading on the VTVM. Then remove the instruments and the 500 ohm resistor.

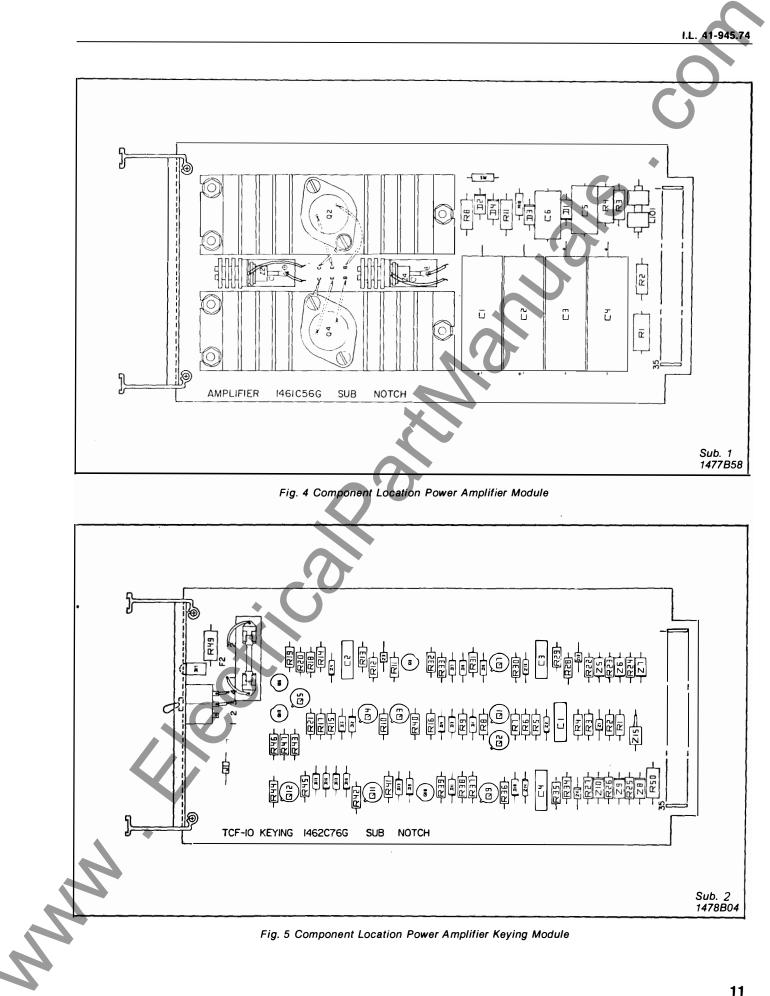
After the new pair of matched crystals have been adjusted, as described under "ADJUST-MENTS", the transmitter can be operated with a 50 to 70 ohm load (depending on which tap of T4 is used) connected to its output, and inductor L105 can be readjusted for maximum output at the changed channel frequency by the procedure described in the same section.

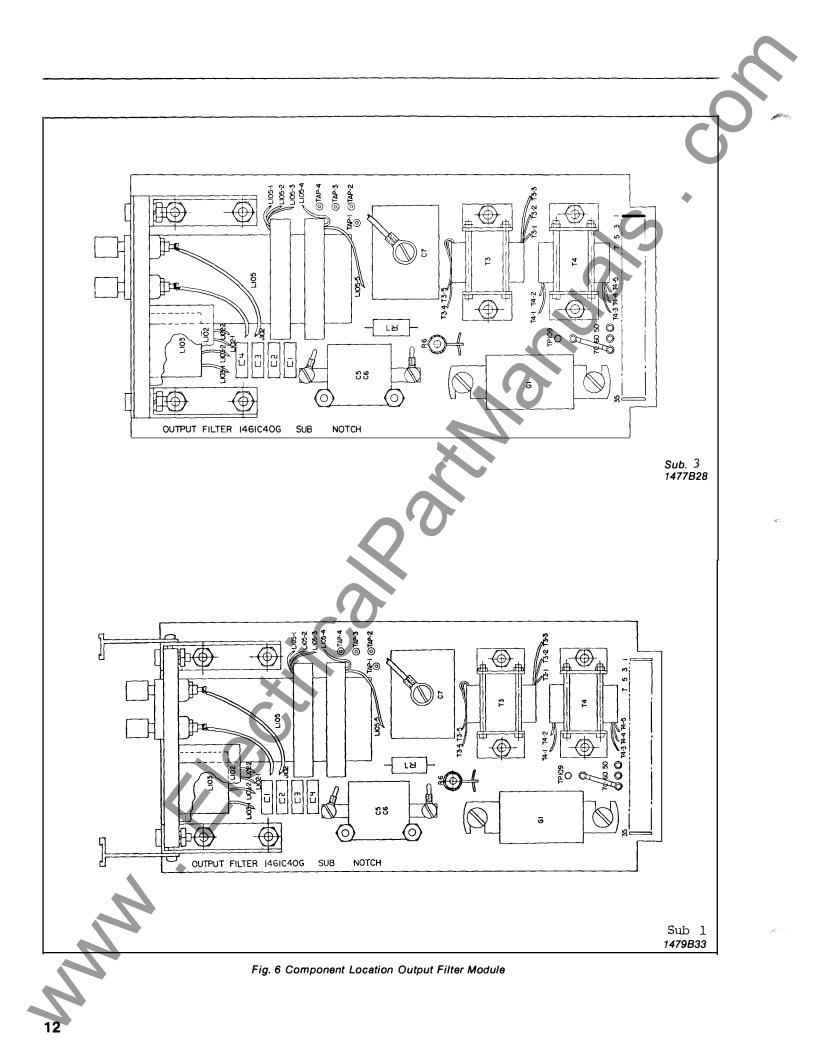
If a frequency-sensitive voltmeter is available, the 2nd and 3rd harmonic traps may be adjusted without using an oscillator as a source of double and triple the channel frequency. Connect the frequency-sensitive voltmeter from TP109 to ground and adjust the transmitter for rated output into the selected load resistor, set the voltmeter at twice the channel frequency and, using the tuning dial and dB range switch, obtain a maximum onscale reading of the 2nd harmonic. Then vary the core position of L102 until a minimum voltmeter reading is obtained. Similarly, tune the voltmeter to the third harmonic and adjust L103 for minimum voltmeter reading. Although the transmitter frequency will differ from the channel center frequency by 100 Hz, the effect of this difference on the adjustment of the harmonic traps will be negligible. It should be noted that the true magnitude of the harmonics cannot be measured in this manner because of the preponderance of the fundamental frequency at the voltmeter terminals. Accurate measurement of the harmonics requires use of a filter between TP109 and the voltmeter that provides high rejection of the fundamental. The insertion losses of this filter for the 2nd and 3rd harmonics must be measured and taken into account.

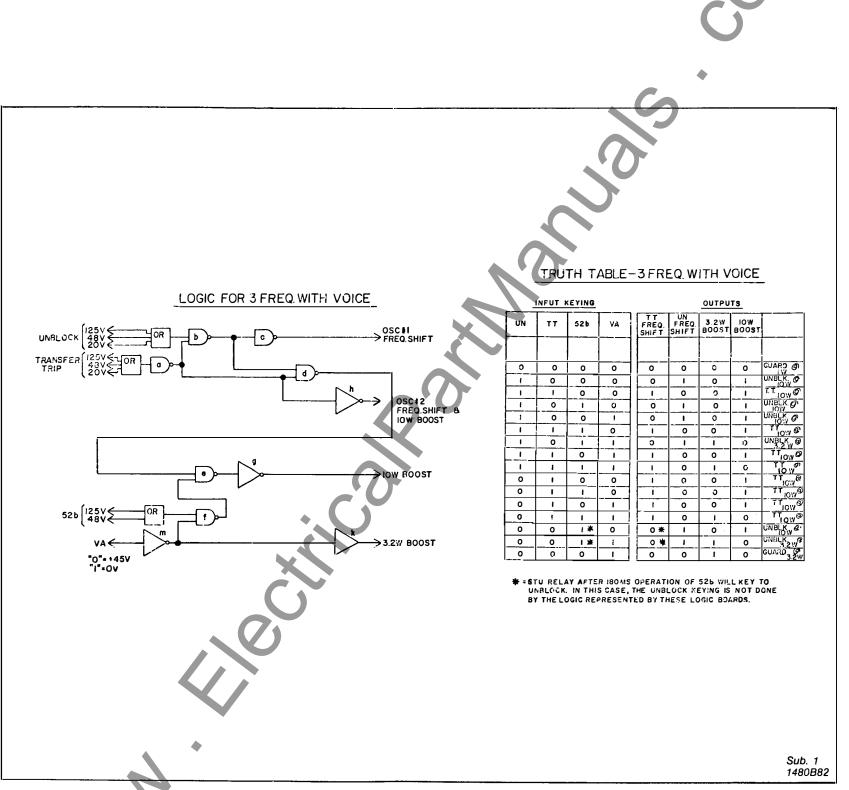

RECOMMENDED TEST EQUIPMENT


- I. Minimum Test Equipment for Installation.
 - a. 60-ohm 10-watt non-inductive resistor.
 - b. AC Vacuum Tube Voltmeter (VTVM). Voltage range 0.003 to 30 volts, frequency range 60 hz to 330-kHz; input impedance 7.5 megohms.
 - c. DC Vacuum Tube Voltmeter (VTVM). Voltage Range: 1.5 to 300 volts Input Impedance: 7.5 megohms.
- II. Desirable Test Equipment for Apparatus Maintenance.
 - a. All items listed in I.
 - b. Signal Generator Output Voltage: up to 8 volts. Frequency Range: 20-kHz to 330-kHz.
 - c. Oscilloscope
 - d. Frequency counter
 - e. Ohmmeter
 - f. Capacitor checker.


Some functions of the recommended test equipment are combined in the type TCT carrier test meter unit, which is designed to mount on a standard 19" rack but also can be removed and used as a portable unit.


RENEWAL PARTS


Repair work can be done most satisfactorily at the factory. However, replacement parts can be furnished, in most cases, to customers who are equipped for doing repair work. When ordering parts, always give the complete nameplate data and identify the part by its designation on the Internal Schematic drawing.



3

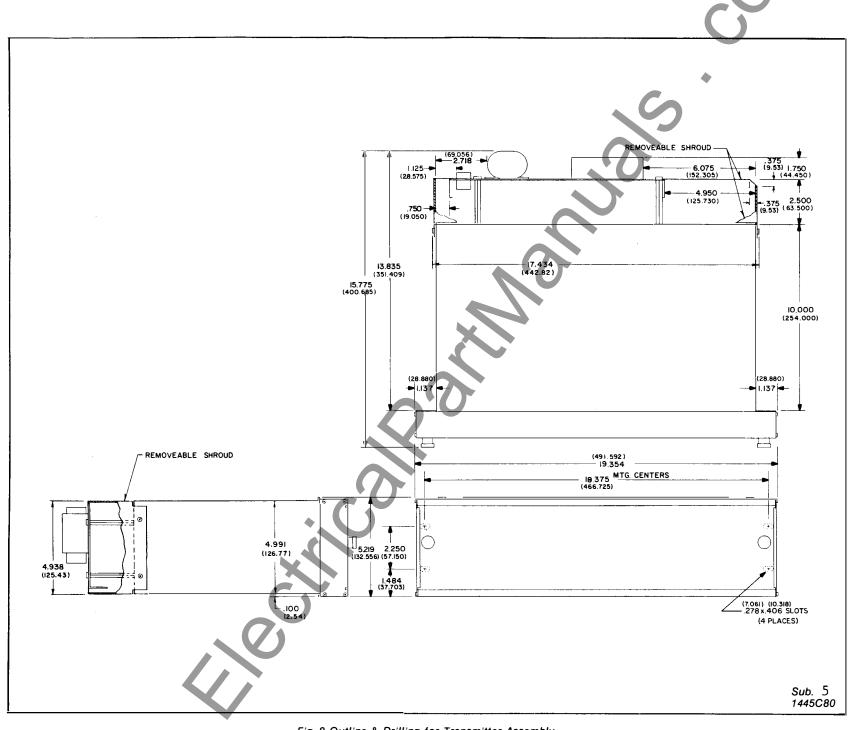
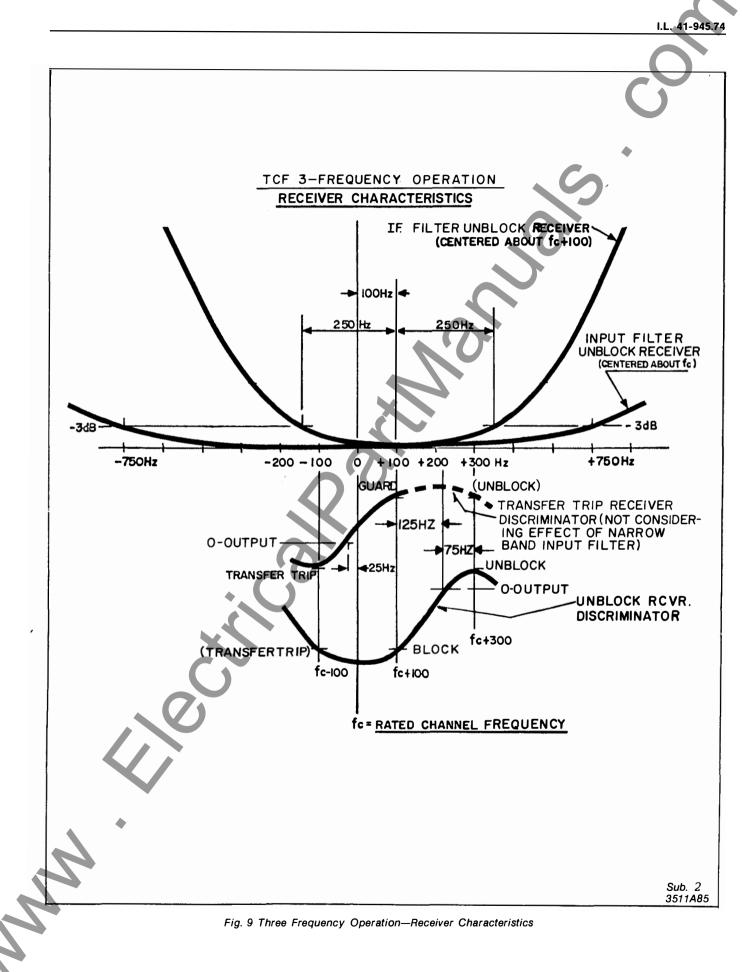



Fig. 8 Outline & Drilling for Transmitter Assembly

4

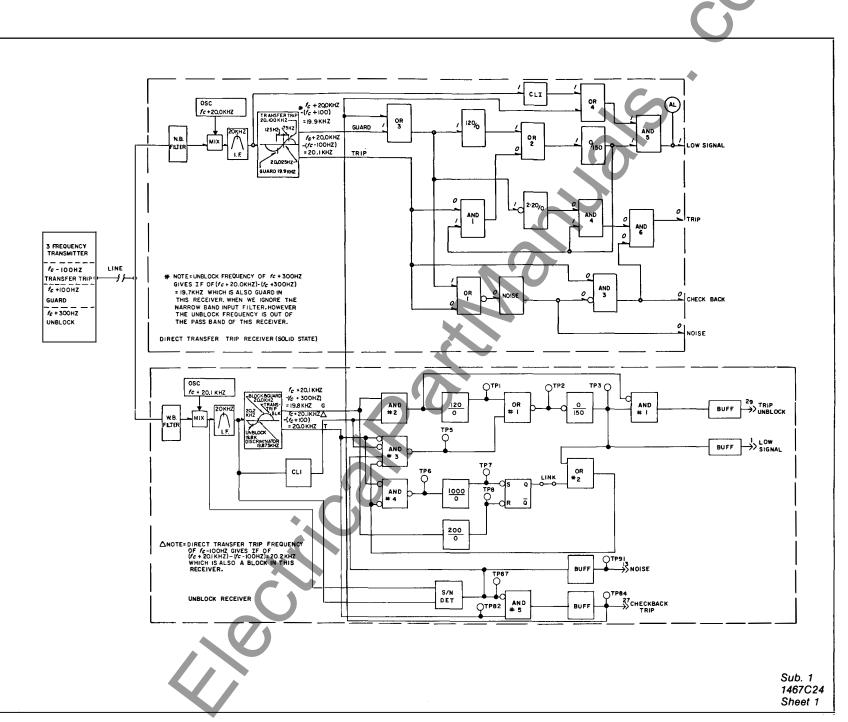
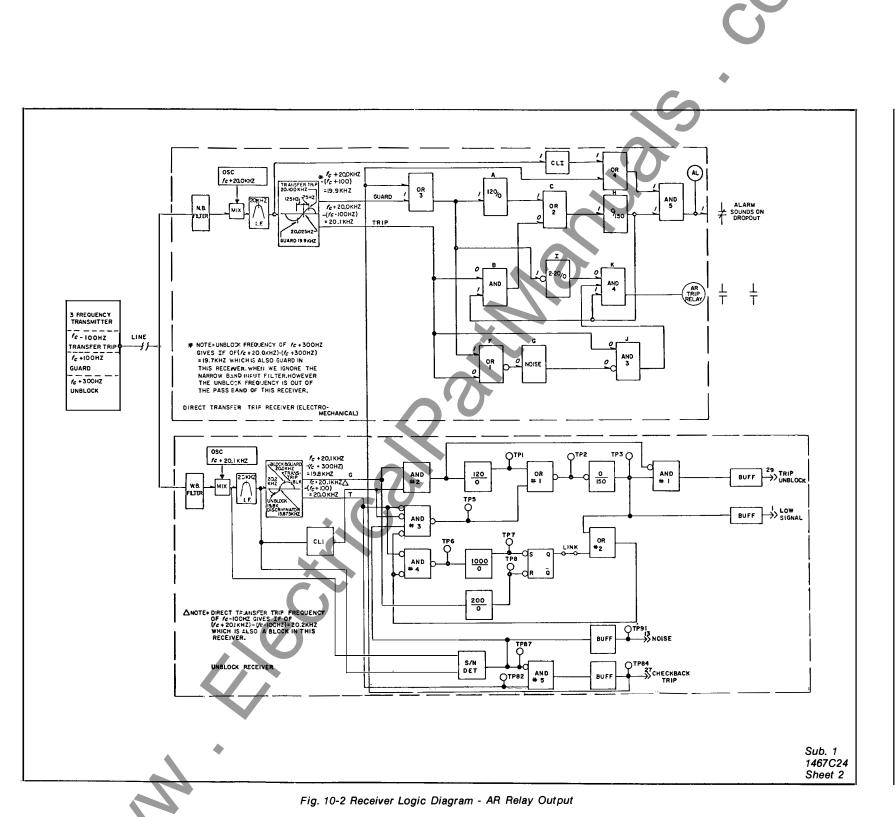
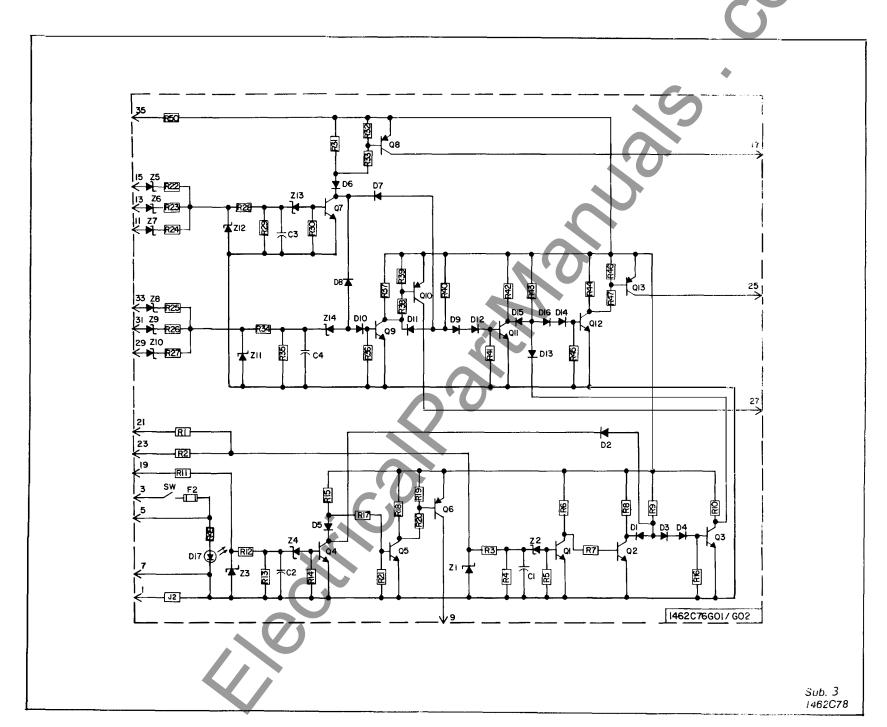
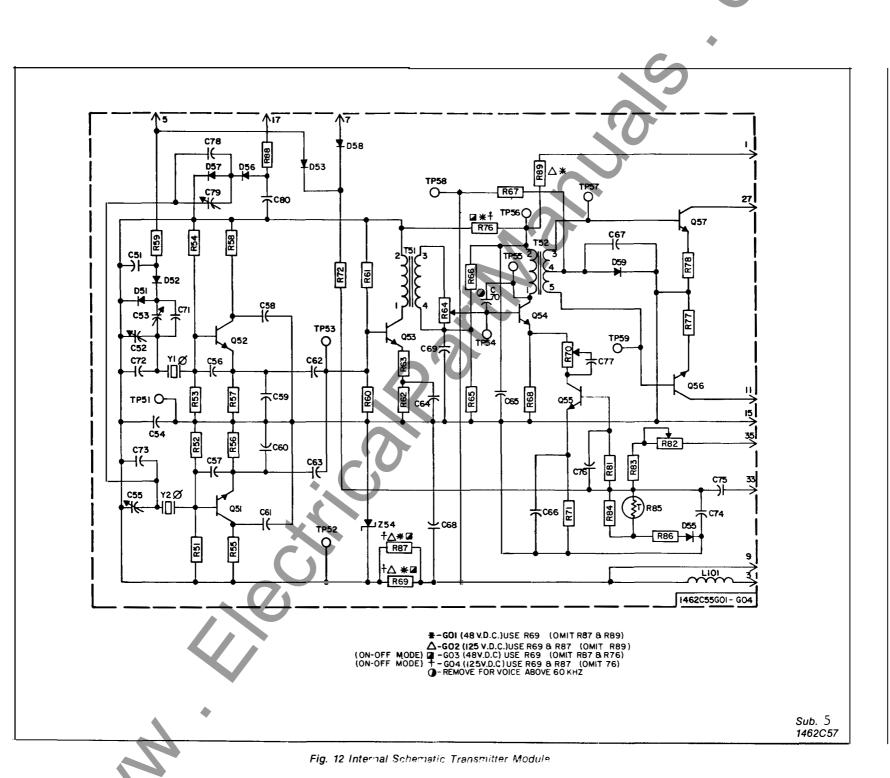
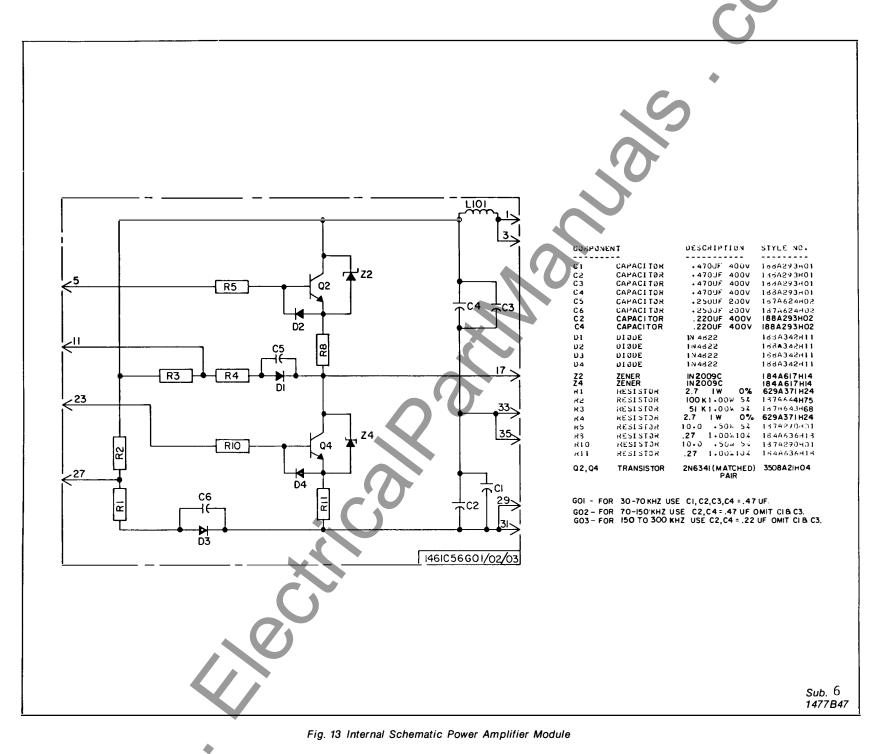



Fig. 10-1 Receiver Logic Diagram - Solid State Output

-

16


Fig. 11 Internal Schematic Power & Keying Module

18

 \checkmark

19

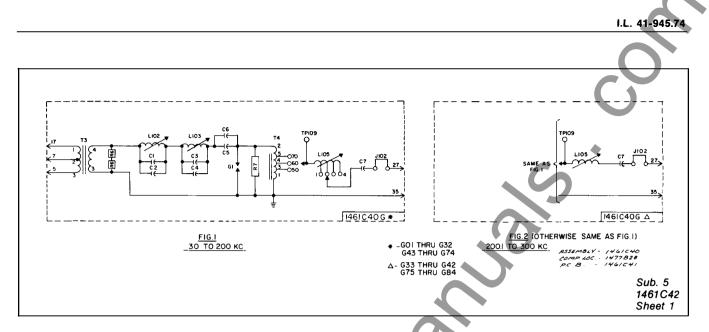
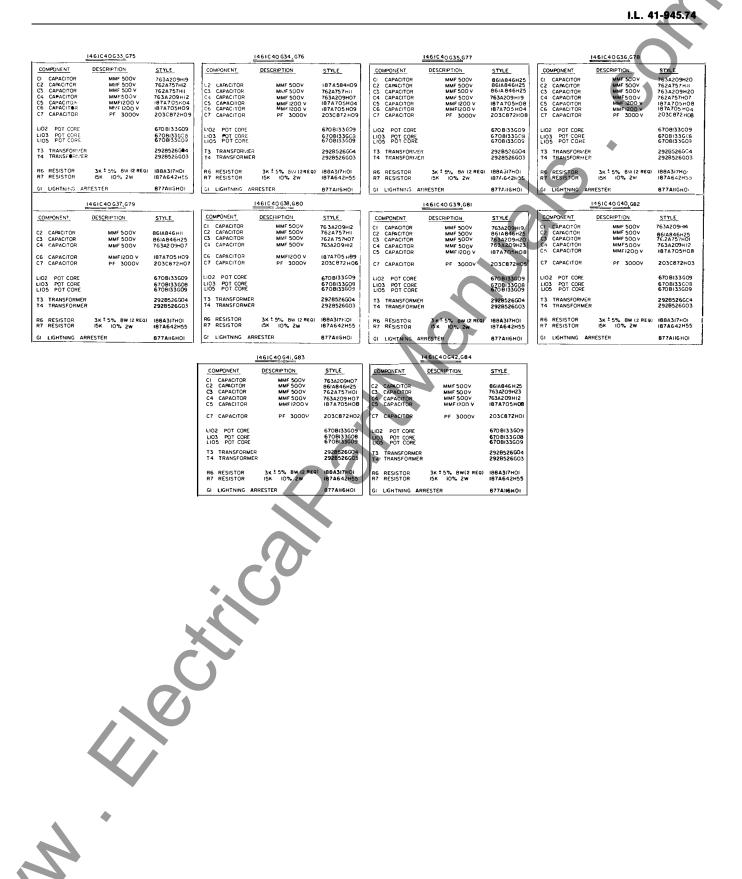
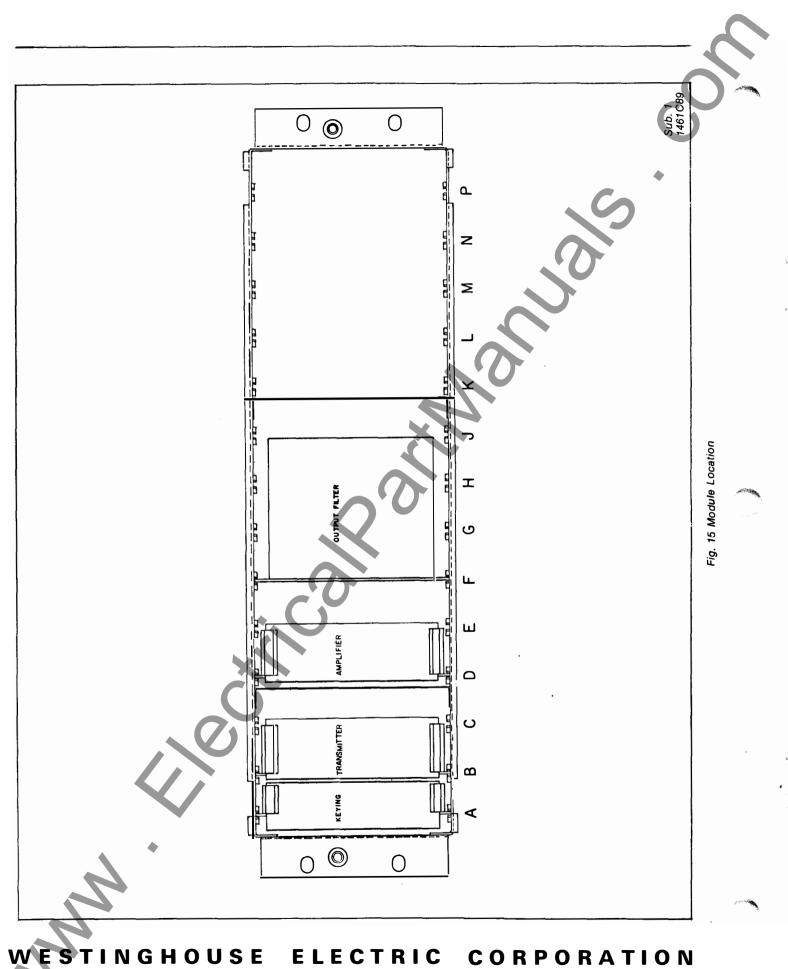


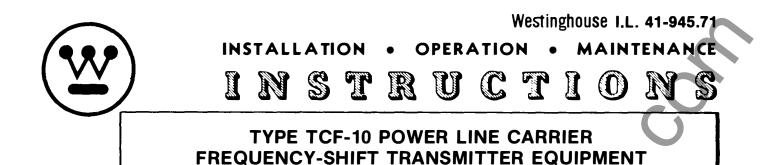
Fig. 14 Internal Schematic Output Filter


						PARI	S LIST	, i i i i i i i i i i i i i i i i i i i				
_	14	61C40 G01,G43			461C40 G02,G44			1461C40603, 645			1461C40604646	
	CI CAPACITOR C2 CAPACITOR C3 CAPACITOR C4 CAPACITOR C5 CAPACITOR C5 CAPACITOR	DESCRIPTION 2500 MMF 500V 2700 MMF 500V 1500 MMF 500V 3300 VMF 500V 4000 MMF 1200V 4000 MF 1200V 7000 PF 3000V	STYLE B6IAB46H20 B6IAB46H21 762A757H03 I87A584H26 I87A703H15 I87A705H15 203C872H25	COMPONENT CI CAPACITOR C2 CAPACITOR C3 CAPACITOR C4 CAPACITOR C5 CAPACITOR C5 CAPACITOR C7 CAPACITOR	DESCRIPTION 2500 VMF 500 V 2000 MMF 500 V 3000 MMF 500 V 2500 MMF 500 V 5000 MMF 1200 V 5000 PF 3000 V	<u>S17LE</u> 86(A846H2O 187A584 HOI 762A757HO2 187A 584H26 197A 705H13 187A 705H16 203C81/2H28	COMPONENT CI CAPACITOR C2 CAPACITOR C3 CAPACITOR C4 CAPACITOR C5 CAPACITOR C6 CAPACITOR C7 CAPACITOR	DESCRPTION 2000 MMF 500V 2000 MMF 500V 390 MMF 500V 2500 MMF 500V 2500 MMF 1200 V 4000 MMF 1200 V 5500 PF 300CV	<u>STYLE</u> 187A584H01 187A584H01 762A757H15 187A584H26 187A705H15 187A705H15 203C 872H27	COMPONENT CI CAPACITOR C2 CAFACITOR C4 CAPACITOR C5 CAPACITOR C6 CAPACITOR C7 CAPACITOR	DESCRIPTION 1500 MMF 500V 2000 MMF 500V 3300 MMF 500V 3000 MMF 200V 2500 MMF 200V 2500 PF 3000V	<u>\$TYLE</u> 762A757H03 187A584H01 187A584H26 187A705H14 187A705H13 203C872H26
	LIO2 POT CORE LIO3 POT CORE LIO5 COIL T3 TRANSFORMER		670 8133 604 6708133 606 2928086601 2928526604 2928526603	LIO2 POT CORE LIO3 POT CORE LIO5 COIL T3 TRANSFORMER		6708(33604 6708(33606 2928086601 2928526504 2928526603	L:02 POT CORE L:03 POT CORE L:05 COIL T3 TRANSFORMER		6708133604 6708133606 2928086::01 2928526604 2928526603	L.02 POT CORE L:03 POT CORE L:05 COIL T3 TRANSFORMET T4 TRANSFORMET	1	670 8133604 6708133606 2928086601 2928526604 2928526603
	T4 TRANSFORMER R6 RESISTOR R7 RESISTOR GI LIGHTNING ARRI	3 K [±] 5% BW (2 REQ) 15K 10% 2W ESTER		T4 TRANSFORMER R6 RESISTOR R7 RESISTOR GI LIGHTNING AR	3x 25% 8W 12 REQ 15K 10% 2W		T4 TRANSFORMER R6 RESISTOR R7 RESISTOR GI LIGHTNING AR	3K±57. 8w (2 REQ) I5K I07. 2W		R6 RESISTOR R7 RESISTOR GI LIGHTNING AF	3K ± 5% BW (2 REQ 15K 10% 2W	
Ì	14	61C40605,647		<u>14</u>	6IC 40 G06.G48		<u></u>	461040607,649			61C 40 GOB. G50	
	CI CAPACITOR C3 CAPACITOR C4 CAPACITOR C5 CAPACITOR C5 CAPACITOR C6 CAPACITOR	DESCRIPTION 3000 MMF 500V 320 MMF 500V 3200 MMF 500V 3200 MMF 1200 V 2500 MMF 1200 V 4200 PF 3000V	STYLE IB7A584H06 762A757H22 IB7A584H01 IB7A705H13 IB7A705H13 203CB72H25	CI CAPACITOR C2 CAPACITOR C3 CAPACITOR	00 MMF 1200 V	STYLE 86IA846H20 86IA846H25 86IA846H25 137A705H04 187A705H15 203C872H23	COMPONENT CI CAPACITOR C2 CAPACITOR C3 CAPACITOR C4 CAPACITOR C5 CAPACITOR C6 CAPACITOR C7 CAPACITOR	1500 MMF 1200 V 2000 MMF 1200 V	STYLE 187A584H09 187A584H01 762A757H10 187A584H01 187A584H01 187A705H11 187A705H12 203C872H122	C2 CAPACITOR C3 CAPACITOR C4 CAPACITOR C5 CAPACITOR C6 CAPACITOR	DESCRIPTION 30 MMF 500 V 2000 MMF 500 V 390 MMF 500 V 1500 MMF 500 V 3000 MMF 1200 V 200 MMF 1200 V 200 MMF 1200 V 200 PF 3000 V	<u>STYLE</u> 763A209HI2 187A584H01 762A757HI5 762A757H03 187A705H14 187A705H04 203C872H20
	LIO2 POT CORE LIO3 POT CORE LIO5 COIL		670 8133G04 6708133G06 2928086G01	LIOZ POT CORE LIO3 POT CORE LIO5 COIL		6708133604 6708133606 2928086601	LIO2 POT CORE LIO3 POT CORE LIO5 COIL		6708133604 6708133606 2926086601	LIOZ POT CORE LIO3 POT CORE LIO5 COIL		6708133604 6708133606 2928086601
	T3 TRANSFORMER T4 TRANSFORMER		2928526604 2928526603	T3 TRANSFORMER		29285266C4 2928526603	T3 TRANSFORMER T4 TRANSFORMER		29285260C4 2928526603	T3 TRANSFORMER T4 TRANSFORMER		2928526G04 2928526G03
	R7 RESISTOR	3× ± 5% BW (2 REQ) I5K I0% 2W	187A642H55	R6 RESISTOR R7 RESISTOR GI LIGHTNING ARR	3x ± 5% BW (2 REG) 15K 10% 2W	IBBA317HOI IB7A642∺55 B77A116HOI	R6 RESISTOR R7 RESISTOR GI LIGHTNING ARE	15K 10% 2W	188A317401 187A642H55 877A116H01	R6 RESISTOR R7 RESISTOR GI LIGHTNING ARR	15K 10% 2W	188A317H01 187A642H55 877A1 16 H01
	GI LIGHTNING ARRE		B77AIIGHOI	Carlie		влланьног			BTTAILBHUI			
•	COMPONENT CI CAPACITOR C2 CAPACITOR C3 CAPACITOR C4 CAPACITOR C5 CAPACITOR	2000 MMF12 00V	<u>S1YLE</u> 187A584H09 762A757H03 762A757H03 762A757H10 762A757H03 187A705H15 203C872H17	COMPONENT CI CAPACITOR C2 CAPACITOR C4 CAPACITOR C5 CAPACITOR C6 CAPACITOR	ISEC 40 GIO, 652 DESCR.PTION 82 VMF 500 V ISO0 VMF 500 V ISO0 VMF 500 V 3000 VMF 1200 V 3500 PF 3500 PF	<u>STYLE</u> 763A209H23 762A757H03 762A757H03 187A705H14 187A705H09 203C872H23		461240611,653 DESCRIPTION 1000 MMF 500V 390 MMF 500V 300 MMF 500V 300 MMF 500V 300 MMF 500V 300 PF 3000V	STYLE 762A757H02 762A757H15 762A757H02 187A584H 09 187A7C5H14 203C872H21		EIC40 GI2,654 DESCRIPTION 1000 MMF 500V 250 MMF 500V 180 MMF 500V 300 MMF 1200 V 2800 MF 1200 V 2800 PF 3000V	STYLE 762A757H02 861A846HII 762A757H02 762A757H02 762A757H00 187A705H06 187A705H13 203:C872H20
	LIO2 POT CORE LIO3 POT CORE LIO5 COIL	\checkmark	670 8133604 6708133006 2928086601	LIO2 POT CORE LIO3 POT CORE LIO5 COIL		6708133604 6708133606 2928086601	LIO2 POT CORE LIO3 POT CORE LIO5 COIL		6708133004 6708133006 292 8086601	1.02 POT CORE LIO3 POT CORE LIO5 COIL		670 8133604 670 8133606 2928086601
	T3 TRANSFORMER		2928526004 2928526003	T3 TRANSFORMER T4 TRANSFORMER		2928526/304 2928526603	T3 TRANSFORMER T4 TRANSFORMER		29285260-04 2928526003	T3 TRANSFORMER T4 TRANSFORMER		2928526GO4 2928526GO3
	R6 RESISTOR R7 RESISTOR	3K ± 5% BW (2 REQ) ISK 10% 2W	188A317H01 187A642H55	R6 RESISTOR R7 RESISTOR	3K [±] 5% BW (2 REO) 15K 10% 2W	188A317HOI 187A642H55	R6 RESISTOR R7 RESISTOR	3K ± 5% BW (2 REQ) 15K 10% 2W	138A317H01 187A642H55	R6 RESISTOR R7 RESISTOR	3K [±] 5% BW (2REQ) ISK IO% 2W	188A317HQI 187A642H55
	GI LIGHTNING ARRE	STER	877AII6HOI	GI LIGHTNING ARR	ESTER	877AINGHOI	GI LIGHTNING ARE	RESTER	877AII6H01	GI LIGHTNING ARR	STER	877AII6HOI
h	2											21

PARTS LIST


1461040	D G 13 ,655			4 <u>61C 40 614,</u> 656			1461040615,657			461C40016.058	
COMPONENT DESCRI		STYLE	COMPONENT	DESCR PTION	STYLE		DESCRIPTICN	STILE	COMPONENT	DESCRIPTION	STYLE
22 CAPACITOR 100 N 23 CAPACITOR 1000 N 24 CAPACITOR 36 N 25 CAPACITOR 36 N 25 CAPACITOR 2500 N	MMF 500 V MMF 500 V MMF 1200 V	762A757H02 762A757H01 762A757H02 763A209H14 187A705H13 203C872H19	CI CAPACITOR C2 CAPACITOR C3 CAPACITOR C4 CAPACITOR C5 CAPACITOR C6 CAPACITOR C7 CAPACITOR	360 MMF 500 V 620 MMF 500 V 920 MMF 500 V 100 MMF 500 V 200 MMF 12C0 V 2000 MMF 12C0 V 2000 PF 300C V	762A757HI4 187A584HI 762A757H22 762A757H01 187A705H04 187A705H12 203C872HI7	CI CAPACITOR C2 CAPAC TOR C3 CAPACITOR C5 CAPACITOR C7 CAPACITOR	250 MMF 500V 620 MMF 500V 820 MMF 500V ;500 MMF 1200 V 2000 PF 3000V	861A846HI I 187A584HII 762A757H22 187A705H11 203C872H15	CI CAPACITOR C2 CAPACITOR C3 CAPACITOR C4 CAPACITOR C5 CAPACITOR C6 CAPACITOR C7 CAPACITOR	180 MMF 500V 620 MMF 500V 130 MMF 500V 620 MMF 500V 300 MMF 1200V 1500 MMF 1200V 1800 PF	762A757HIO 187A584HII 762A 757HO7 187A584HII 1874705HO6 187A705HII 203C872HI3
NO2 YOT CORE		6708133604 6708133606 2928086601	LIO2 POT CORE LIO3 POT CORE LIO5 COIL		670 8 133 60 4 670 8 133 60 6 292 80 8 5 6 0 1	LIO2 POT CORE LIO3 POT CORE LIO5 COIL		6708133004 6708133006 2928086601	LIO2 POT CORE LIO3 POT CORE LIO5 COIL		570 B133G04 570 B133 G06 292 B086G01
3 "RANSFORMER		2928526G04 2928526G03	T3 TRANSFORMER T4 TRANSFORMER		2928526004 2928526603	T3 TRANSFORMER		2928526604 2928526603	T3 TRANSFORMER T4 TRANSFORMER		2928526604 2928526603
	10% 2W	182A317H01 187A642H55 877AH6H01	R6 RESISTOR R7 RESISTOR GI LIGHTNING AR	3K 1 5% BW (2 REQ) 15K 10% 2W	1884317H01 1874642H55 8774116H01	R6 RESISTOR R7 RESISTOR G1 LIGHTNING AR	3K ± 5% 8W (2 REQ) 15K 10% 2W	:884317H01 487A642H55 877A116H01	R6 RESISTOR R7 RESISTOR GI LIGHTNING AR	3K ± 5% 8W (2 REQ) 15K 10% 2W	88A317HOI 87A642H55 877Ali6H01
	0 617,659	BITAIRHUI		461C40618,660	BITAIICHUI	•	1461C40619,661	BTTAILGHUI		1461C40 620,662	ST Allenoi
COMPONENT DESCRI	IPTION	STYLE		DESCRIPTION	STYLE	COMPONENT	DESCRIPTION	STYLE		DESCRIPTION	STYLE
C3 CAPACITOR 270 I C4 CAPACITOR ISOO I C5 CAPACITOR 4000 I	MMF 500 V MMF 500 V MMF 500 V MMF 1200 V PF 3000 V	762A757H03 762A757H12 762A757H03 187A705H15 2C3C872H18	CI CAPACITOR C2 CAPACITOR C3 CAPACITOR C4 CAPACITOR C5 CAPACITOR C7 CAPACITOR	1000 MMF 500 V 360 MMF 500 V 82 MMF 500 V 1500 MMF 500 V 4000 MMF 1200 V 2100 PF 3000 V	762A757H02 762A757H14 763A209H23 762A757H03 187A705H15 2C3C872H16	CI CAPACITOR C2 CAPACITOR C3 CAPACITOR C4 CAPACITOR C5 CAPACITOR C6 CAPACITOR C7 CAPACITOR	1000 MMF 500V 200 MMF 500V 1000 MMF 500V 390 MMF 500V 3900 MMF 1200V 500 MMF 1200V 1900 PF 3000V	762A757H02 762A757H02 762A757H02 762A757H05 187A705H14 187A705H09 203C872H14	C CAPACITOR C2 CAPACITOR C3 CAPACITOR C4 CAPACITOR C5 CAPACITOR C7 CAPACITOR	1000 MMF 500 V 82 MMF 500 V 1000 MMF 500 V 250 MMF 500 V 3000 MMF 1200 V 1700 PF 3000 V	762A757H02 763A209H23 762A757H02 861A846 HII 187A705HH 203C872H12
LIO2 POT CORE LIO3 POT CORE LIO5 COIL T3 TRANSFORMER T4 TRANSFORMER		6708133605 6708133607 2928086301 2928526604 2928526603	LIO2 POT COME LIO3 POT CORE LIO5 COIL T3 TRANSFORMER T4 TRANSFORMER		6728133605 6728133607 2928086601 2928526604 2928526603	LIO2 POT CORE LIO3 POT CORE LIO5 COIL T3 TRANSFORMER T4 "RANSFORMER	i	6708133605 6708133607 2928086601 2928526604 2928526603	LIO2 POT CORE LIO3 POT CORE LIO3 COLL T3 TRANSFORMER T4 TRANSFORMER	ł	6708133605 6708133607 2928086601 2928526604 2928526603
	5% 8W (2 REQ) 10% 2W	188A317HOI 187A642H55	R6 RESISTOR R7 RESISTOR	3K ¹ 5% BW (2 REQ) 15K 10% 2W	188A317H01 167A642H55	R6 RESISTOR R7 RESISTOR	3K [±] 5% 8W (2 REQ) 15K 10% 2W	188A317H01 187A642H55	R6 PESISTOR R7 RESISTOR	3K [±] 5% 8W (2 REQ) I5K I0% 2W	188A317H01 187A642H55
GI LIGHTNING ARRESTER		877A116H01	GI LIGHTNING ARE	ESTER	877AII6HOI	GI LIGHTNING AR	RESTER	877AIIGHOI	GI LIGHTNING AR	RESTER	877AII6H0I
	0621,663	STYLE		DESCRIPTION	STYLE		1461C40623,665	STYLE	COMPONENT	DESCRIPTION	STYLE
CI CAPACITOR 360 A C2 CAPACITOR 620 A C3 CAPACITOR 1000 A C4 CAPACITOR 130 C C5 CAPACITOR 2500 J	MMF 500 V MMF 500 V MMF 500 V MMF 500 V MMF 500 V PF 300C V	7624757H4 1874584H11 7624757H07 7624757H07 1874705H13 203C872H11	CI CAPACITOR C2 CAPACITOR C3 CAPACITOR C5 CAPACITOR C7 CAPACITOR	250 MMF 500 V 620 MWF 500 V 1000 MMF 500 V 2500 MMF 1200 V 1300 PF 300 V	8618846Hil 1874584Hil 7624757H02 1874705H13 203C872HI0	CI CAPACITOR C2 CAPACITOR C3 CAPACITOR C4 CAPACITOR C5 CAPACITOR C6 CAPACITOR C7 CAPACITOR	150 MMF 500 V 620 MMF 500 V 62 MMF 500 V 820 MMF 500 V 200 MMF 500 V 2000 MMF 1200 V 100 PF 3000 V	BGIAB46H25 IB7A584HII 763A209H20 762A757H22 IB7A705H04 IB7A705H12 203CB72H08	CI CAPACITOR C2 CAPACITOR C3 CAPACITOR C4 CAPACITOR C6 CAPACITOR C7 CAPACITOR	56 MMF 500V 620 MMF 500V 390 MMF 500V 390 MMF 500V 2000 MMF 1200V 1000 PF 3000V	763A209H 19 187A 584HII 762A757HI5 762A757HI5 187A705HI2 203C872H07
LIQ2 POT CORE LIQ3 POT CORE LIQ5 COLL T3 TRANSFORMER T4 TRANSFORMER		6708133G05 6708133G07 2928086G01 2928526G04 2928526G03	LIO2 POT CORE LIO3 POT CORE LIO5 COIL T3 TRANSFORMER T4 TRANSFORMER		6728133605 6708133607 2928086601 2928526604 2928526603	LIO2 POT CORE LIO3 POT CORE LIO5 COIL T3 TRANSFORMER T4 TRANSFORMER		6708133605 6708133607 2928086601 2928526604 2928526603	LIO2 POT CORE LIO3 POT CORE LIO5 COIL T3 TRANSFORMED T4 TRANSFORMED	t R	670 8133605 670 8133607 2928086601 2928526604 2928526603
	10% 2W	188A317H01 187A642H55 877A116H01	R6 RESISTOR R7 RESISTOR GI LIGHTNING AR	3K ± 5% BW (2 REQ) 15K 10% 2W RESTER	182A317H01 187A642H55 877A146H01	R6 RESISTOR R7 RESISTOR GI LIGHTNING AR	3K1 5% EW (2REQ) 15K 10% 2W RRESTER	188A317H01 187A642H55 877A1I6H01	R6 RESISTOR R7 RESISTOR GI LIGHTNING A	3K ± 5% 8W (2 REQ) I5K I0% 2W RRESTER	188A317H01 187A642H55 877A16H01
1461040	0.625,667			461C40 G26.G68		<u> </u>	461040627.669			1461C40G28.G70	
C2 CAPACITOR 300 C3 CAPACITOR 82 C4 CAPACITOR 820 C5 CAPACITOR 200 C6 CAPACITOR 1500	MWF 500 V MMF 500 V MMF 500 V MMF 500 V MMF 1200 V MMF 1200 V	STYLE 187A584H09 187A584H09 763A209H23 187A584H11 187A705H04 187A705H04 187A705H11 203C872H06	COMPONENT CI CAPACITOR C2 CARCITOR C4 CAPACITOR C5 CAPACITOR C7 CAPACITOR	DESCRIPTION 270 MMF 50C V 270 M MF 50C V 620 MMF 50C V 1500 MMF 1200 V 800 PF 3002 V	<u>STYLE</u> 762A757H2 762A757H2 187A584HI 187A584HI 187A705HII 203C872H05	CONPONENT CL. CAPACITOR C2 CAPACITOR C3 CAPACITOR C4 CAPACITOR C5 CAPACITOR C5 CAPACITOR C7 CAPACITOR	DESCRIPTION 300 MMF 50CV 180 MMF 50CV 300 MMF 50CV 250 MMF 50CV 1500 MMF 50CV 1500 MMF 120CV 1600 PF	STYLE 187A584H 09 762A757H10 187A584H09 861A846H11 187A705H08 187A705H11 203C872H08	COMPONENT CI CAPACITOR C2 CAPACITOR C3 CAPACITOR C4 CAPACITOR C5 CAPACITOR C6 CAPACITOR C7 CAPACITOR	DESCRIPTION 180 MMF 500 V 250 MMF 500 V 250 MMF 500 V 250 MMF 500 V 1500 MMF 1200 V 1500 MMF 1200 V 1500 PF	STYLE 762A757HIO 861A846HII 861A846HII 861A846HII 187A705H04 187A705H11 203C872H07
LIO2 POT CORE LIO3 POT CORE LIO3 COLL T3 TRANSFORMER T4 TRANSFORMER		6708133605 6708133607 2928086601 2928526604 2928526603	LIO2 POT CORE LIO3 POT CORE LIO5 COIL T3 '(RANSFORMER T4 ''RANSFORMER		6708133605 6708133607 2928086501 2928526604 2928526603	LIO2 POT CORE LIO3 POT CORE LIO5 COIL T3 "RANSFORMER T4 "TRANSFORMER	2	6708133605 6708133607 2928086501 2928526604 2928526603	LIO2 POT CORE LIO3 POT CORE LIO5 COIL T3 TRANSFORMER T4 TRANSFORMER	8	6798133605 6798133607 2928086601 2928526604 2928526603
	10% 2W	188A317H01 1873642H55 877A16H01	R6 RESISTOR R7 RESISTOR GI LIGHTNING AR	3K 15% IIW 12 REQ) 15K 10% 2W RESTER	1884317H01 1874642H55 877Al16H01	R6 RESISTOR R7 RESISTOR GI LIGHTNING AR	3K ± 5% 8W (2 REQ) I5K I0% 2W RESTER	188A317H01 187A642H55 877A116H01	R6 RESISTOR R7 RESISTOR GI LIGHTNING AR	3K ± 5% BW (2 REQ) I5K I0% 2W RESTER	186A317H01 187A642H55 877A116H01
1461040	0 629,671			1461C40630.672			1461C40G31,G73			1461C40G32.G74	
CI CAPACITOR 180 C2 CAPACITOR 200 C3 CAPACITOR 200 C4 CAPACITOR 250 C5 CAPACITOR 1500	HPTION MMF 500 V MMF 500 V MMF 500 V MMF 500 V MMF 1200 V PF 3000V	STYLE 762A757HI0 762A757HI1 762A757HI1 861A846HI1 187A705H11 203C872H06	COMPONENT CI CAPACITOR C2 CAPACITOR C3 CAPACITOR C5 CAPACITOR C6 CAPACITOR C7 CAPACITOR	DESCRIPTION B2 MMF 500V 250 MMF 500V 390 MMF 500V 1000 MMF1200V 1000 MMF1200V 750 PF	STYLE 763A209H23 86IA846HII 762A757HI5 137A705H08 137A705H0 203C872H04	COMPONENT CI CAPACITOR C3 CAPACITOR C4 CAPACITOR C5 CAPACITOR C6 CAPACITOR C7 CAPACITOR	DESCRIPTION 300 MMF 500V 150 MMF 500V 200 MMF 500V 200 MMF 500V 100 MMF 1200V 650 PF	STYLE 1874584H09 86(4846H25 7624757H11 1874705H04 1874705H04 203C872H02	CONPONENT CI CAPACITOR C2 CAPACITOR C3 CAPACITOR C4 CAPACITOR C6 CAPACITOR C7 CAPACITOR	DESCRIPTION 20 MMF 500V 250 MMF 500V 130 MMF 500V 180 MMF 500V 180 MMF 500V 600 PF 3000V	STYLE 763A209H07 861A846HII 762A757H07 762A757H10 IB7A705H10 203C872H02
LIO2 POT CORE LIO3 POT CORE LIO5 COIL T3 TRANSFORMER T4 TRANSFORMER		6708133605 6708133607 2928086501 2928526604 2928526603	LIQ2 POY CORE LIQ3 POT CORE LIQ5 COIL T3 TRANSFORMER T4 TRANSFORMER	2	6708133605 6708133607 2928086601 2928526604 2928526603	LIO2 POT CORE LIO3 POT CORE LIO5 COIL T3 TRANSFORMER T4 TRANSFORMER	R	6708133605 6708133607 2928086601 2928526604 2928526603	LIO2 POT CORE LIO3 POT CORE LIO5 COIL T3 '(RANSFORME T4 TRANSFORME	R	6708:33605 6708:33607 292808660i 2928526604 2928526603
	5% BW (2REQ) 10% 2W	1864317H01 1674642H55 8774116H01	R6 RESISTOR R7 RESISTOR GI LIGHTNING AR	3K 2 5% BW (2 REQ) 15K 10% 2W RESTER	188A317H01 187A642H55 877A116H01	R6 RESISTOR R7 RESISTOR GI LIGHTNING AR	3K ± 5% BW (2 REQ) 15K 10% 2W RRESTER	186A317H01 187A642H55 877A116H01	R6 RESISTOR R7 RESISTOR GI LIGHTNING A	3K ± 5% 8W (2 REQ) I5K 10% 2W RRESTER	188A317H01 187A642H55 877A116H01

•


NNN

RELAY-INSTRUMENT DIVISION

CORAL SPRINGS, FL.

Printed in U.S.A.

1 WATT/10 WATT FOR KEYED AND VOICE APPLICATIONS

CAUTION: It is recommended that the user of this equipment become thoroughly familiar with the information in this instruction leaflet before energizing the carrier assembly. Failure to observe this precaution may result in damage to the equipment.

If the carrier set is mounted in a cabinet, it must be bolted down to the floor or otherwise secured before swinging out the equipment rack to prevent its tipping over.

APPLICATION

The Type TCF-10 carrier transmitter equipment provides for the transmission of either of two closely controlled discrete frequencies, both within a narrow-band channel, over high-voltage transmission lines. The center frequency of the channel can vary from 30 to 300 KHz in 0.5 KHz steps. The two frequencies transmitted are separated by 200 Hz, one being at center frequency (fc) plus 100 Hz and the others at center frequency minus 100 Hz. The higher frequency, termed the Guard frequency, is transmitted continuously when conditions are normal. It indicates at the receiving end of the line that the channel is operative and it also serves to prevent false operation of the receiver by line noise. The lower frequency, termed the Trip frequency, is transmitted as a signal that an operation (such as tripping a circuit breaker) should be performed at the receiving end of the line.

When frequency shift carrier is used in protective relaying applications, it is recommended that the trip frequency be transmitted at a higher power level to increase reliability of the system under conditions of abnormally high channel losses or line noise. The frequency is shifted from Guard to Trip by the closing of a protective relay contact, and the same contact also shifts the transmitter from a 1-watt to a 10-watt output level.

When electro-mechanical relays are used for keying from guard to trip frequency, the contact used is connected to the high voltage input of a buffering keying board. This board buffers the input so that random noise does not key the circuits. When solid state relays are used, the 20 V D.C. voltage used for keying is connected to the low voltage input of the buffering keying board.

CONSTRUCTION

The 1 watt/10 watt TCF-10 transmitter unit is mounted on a standard 19-inch wide chassis 5 1/4inches (3 rack units) high with edge slots for mounting on a standard relay rack. Fuses, a pilot light, and a power switch are accessible from the front of the panel. See Fig. 6. All of the circuitry that is suitable for printed circuit board mounting is on four such boards, as shown in Fig. 13 The components mounted on each printed circuit board or other sub-assembly are shown enclosed by dotted lines on the internal schematic. Fig. 2. The location of components on the four printed circuit boards are shown on separate illustrations, Fig. 3, 4, 5, & 6.

External connections to the assembly are made through a 36-circuit receptacle, J3. The r.f. output connection to the assembly is made through a coaxial cable jack, J2.

11 possible contingencies which may arise during installation, operation, or maintenance, and all details and variations of this equipment do not purport to be covered by these instructions. If further information is desired by purchaser regarding his particular installation, operation or maintenance of his equipment, the local Westinghouse Electric Corporation representative should be contacted.

A module extender test card, S#1447C86G01 is available to facilitate testing.

OPERATION

The transmitter is made up of four main stages and two filters. The stages include two crystal oscillators operating at frequencies that differ by the desired channel frequency, a mixer and buffer amplifier, a driver stage and a power amplifier. One filter is located between the driver and the power amplifier and the second filter removes harmonics that may be generated by distortion in the power amplifier.

A single crystal designed for oscillation in the 30 KHz to 300 KHz range cannot be forced to oscillate away from its natural frequency by as much as \pm 100 Hz. In order to obtain this desired frequency shift, it is necessary to use crystals in the 2 MHz range. The crystals are Y1 and Y2 of Fig.10 The frequency of Y2 is 2.00 MHz when operated with a specified amount of series capacity, and the frequency of Y1 is 2.00 MHz plus the channel frequency, or 2.03 MHz. Capacitor C55 and crystal Y2 in series are connected between the positive side of the supply voltage and the base of transistor Q51, which operates in the emitter follower mode. The emitter is coupled to the base through C57, and with Y2 removed the base of Q51 would be held at appoximately the midpoint of the supply voltage by R51 and R52. The crystal serves as a seriesresonant circuit with very high inductance and low capacitance. The circuit can be made to oscillate at other than the natural frequency of the crystal by varying the series capacitor, C55. Increasing C55 will lower the frequency of oscillations and reducing C55 will raise the frequency.

Crystal Y1 is connected in a circuit that is similar except for the addition of C53 and diodes D51 and D52. By adjustment of C52 this circuit is made to oscillate at 100 Hz above its marked frequency. Capacitor C53 is not effective until D51 is biased in the forward direction and becomes conductive. It is biased in the reverse direction until the relay control contact is closed, which places 45 V.D.C. at terminal 3 of the printed circuit board. With D51 conducting, C53 is effectively in parallel with C52, and adjustment of C53 will reduce the frequency by 200 Hz. The crystals taken individually have a greater variation of frequency with temperature than would be acceptable. However, by proper matching of the two crystals, the variation in their difference frequency can be kept within limits that permit holding the frequency stability of the overall transmitter to ± 10 Hz over a temperature range of -20 to $\pm 60^{\circ}$ C.

The frequencies produced by the two oscillators are coupled to the base of mixer transistor Q53 through C62 and C63. The sum of the two frequencies is so high that a negligible amount appears on the secondary of transformer T51, but the difference frequency is accepted and amplified by Q53 and Q54.

When the relay control, or keying, contact is closed, it increases the output power from 1 watt to 10 watts as well as changing the frequency from Guard to Trip. This is effected by reducing the emitter resistance of buffer-amplifier transistor Q54. When the keying contact is open, transistor Q55 receives no base current and is nonconducting. Emitter resistor R70 therefore is effectively open-circuited. The level of output power is adjusted to 1 watt by means of R64. When Q55 is made conductive by closing the keying contact. R70 is placed in parallel with R68 and the amount of emitter resistance not bypassed by C66 can be adjusted as required to obtain a 10-watt output level.

As is shown on the Internal Schematic, Fig. 1, the voltage for the keying circuit is obtained from the 45-volt regulated supply in the transmitter, and opening the single power switch deenergizes both the transmitter and the keying circuit.

The driver stage consists of transistors Q56 and Q57 connected in a conventional push-pull circuit with input supplied from the collector of Q54 through transformer T52.

The driver filter, FL101, consists of a seriesresonant inductor and capacitor connected between the driver and power amplifier stages by appropriate transformers T1 and T2. This filter greatly improves the waveform of the signal applied to the power amplifier. The power amplifier uses two series-connected power transistors, Q2 and Q4 operating as a class B push-pull amplifier with single-ended output. Diodes D2 and D4 provide protection for the baseemitter junctions of the power transistors. Zener diodes Z2 and Z4 protect the collector-emitter junctions from surges that might come in from the power line through the coaxial cable.

The output transformer T3 couples the power transistors to the output filter FL102. The output filter includes two trap circuits (L102, C_B and L103, C_c) which are factory tuned to the second and third harmonics of the transmitter frequency. Capacitor C_D approximately cancels the inductive reactance of the two trap circuits at the operating frequency. Protective gap G1 is a small lightning arrester to limit the magnitude of switching surges or other line disturbances reaching the carrier set through the line tuner and coaxial cable. Auto-transformer T4 matches the filter impedance to coaxial cables of 50, 60, or 70 ohms.

The series resonant circuit composed of L105 and CE is tuned to the transmitter frequency, and aids in providing resistive termination for the output stage. Jack J102 is mounted on the front panel of the filter module and is used for measuring the r.f. output current of the transmitter into the coaxial cable. It should be noted that the filter contains no shunt reactive elements, thus providing a reverse impedance that is free of possible "across-the-line" resonances.

The power supply is a series-type transistorized dc voltage regulator which has a very low stand-by current drain when there is no output current demand. The Zener diode Z1 holds a constant baseto-negative voltage on the series-connected power transistor Q1. Depending on the load current, the dc voltage drop through transistor Q1 and resistors R1 and R2 varies to maintain a constant output voltage. Capacitor C3 provides a low carrierfrequency impedance across the dc output voltage. Capacitors C1 and C2 bypass r.f. or transient voltages to ground, thus preventing damage to the transistor circuits.

When keyed for voice by the voice adapter, transistor Q55 is keyed into class A operation so that its conduction can be modulated by the voice input from the voice adapter. Potentiometer R82 is adjusted so that the nominal output of carrier is 3.25 watts (14 volts across 60 ohms). The voice input modulates the carrier through this transistor by varying the amount of conduction of Q55 so that the output power of carrier varies with the voice amplitude following the voice frequency components. Since with Q55 completely non-conducting, R64 has been set to produce a 1-watt output, maximum modulation on the side to shut off Q55 will not result in an output level of less than 1-watt carrier at any time. Also since the output level has been set at 10 watts with Q55 completely conducting by the adjustment of R70, the maximum modulation on the side of turn on of Q55 will not result in a carrier output level of greater than 10 watts at any time. Thus the modulation for voice will not result in the output carrier level dropping below 1 watt and endangering the guard frequency for relaying purposes.

The buffer keying board in addition to providing proper buffering, also contains logic for the proper keying of both frequency and output level in regards to protective relaying operation, voice adapter operation, and 52b contact operation.

It should be remembered that protective relaying operation has first priority. If the protective relay operates and puts a voltage input into any of the three input points labeled carrier auxiliary keying, the transmitter will both frequency shift to trip frequency and full 10 watts output whether voice is called for or not.

The operation of the 52b contact will remove the 10 watt keying output and permit the voice adapter to key to 3.2 Watts output for AM voice modulation. This allows voice modulation on the trip frequency after the 52b contact has operated.

CHARACTERISTICS

Frequency Range	30-300 kHz
Output	1 watt guard—10 watts trip—3.2 watts voice (into 50 to 70 ohm resistive load)
Frequency Stability	± 10 Hz from -20° C to $+55^{\circ}$ C.

Weight	12 lbs.				
Dimensions	Panel height—5 1/4" or 3 r.u. Panel width—19"				
Temperature Range	-20 to $+55^{\circ}$ C. around chassis.				
Keying Circuit Current	4 ma.				
	0.25 a. guard 125 v.d.c. 0.5 a. trip				
Battery Drain	0.5 a. guard 48 v.d.c. 1.15a. trip				
Supply Voltage Variation	42-56v. for nom. 48v. supply. 105- 140v. for nom. 125v. supply.				
Input Voltage	48 or 125 v.d.c.				
Harmonics	Down 55 db (min.) from output level.				
Frequency Spacing	Two-way channel,—See Voice Ad- apter Instruction Leaflet.				

INSTALLATION

The TCF-10 transmitter is generally supplied in a cabinet or on a relay rack as part of a complete carrier assembly. The location must be free from dust, excessive humidity, vibration, corrosive fumes, or heat. The maximum ambient temperature around the chassis must not exceed 55° C.

ADJUSTMENTS

The TCF-10 1W/10W transmitter is shipped with the power output controls R64, R82 and R70, set for outputs of 1 watt, 3.2 watts and 10 watts into a 60 ohm load. If it is desired to check the adjustments or if repairs have made readjustment necessary, the coaxial cable should be disconnected from the assembly terminals and replaced with a 50 to 70 ohm non-inductive resistor of at least a 10 watt rating. Use the value of the expected input impedance of the coaxial cable and line tuner. If this is not known, assume 60 ohms. Connect the T4 out-

put lead to the corresponding tap. Connect an ac vacuum tube voltmeter (VTVM) across the load resistor. Turn power output control R64 to minimum (full counter-clockwise). Turn on the power switch on the panel and note the dc voltage across terminals 5 and 7 of J3. If this is in the range of 42 to 46 volts, rotate R64 clockwise to obtain 4 or 5 volts across the load resistor used. At this point check the adjustment of the series output tuning coil L105 by loosening the knurled shaft-locking nut and rotating the adjustable core in and out a small amount from its initial position. Leave it at the point of maximum voltage across the load resistor used. Then rotate R64 farther clockwise to obtain the correct voltage for 1 watt in the load resistor, as shown in the following table.

Then change to Trip frequency by connecting together terminals 7 and 12 of J3), and rotate R70 until the voltage across the load resistor is as shown in the following table for a 10 watt output. Recheck the adjustment of L105 for maximum output voltage and readjust R70 for a 10 watt output if necessary. Tighten the locking nut on L105. Open the power switch and remove the jumper used to key the transmitter to the 10 watt level. Key for voice by opening connection between terminals 12 and 7 of J3. This is done by removing handset from telephone hook switch of corresponding voice adapter.

Turn the power back on Adjust R82 for a 3.2 watt output across the load resistor (14V across 60 ohms). Open the power switch, remove the jumper, remove the load resistor, and reconnect the coaxial cable circuit to the transmitter.

	V	OLTAGE FO	R
T106 T AP	1 WATT OUTPUT	3.2 WATTS OUTPUT	10 WATTS OUTPUT
50	7.1	12.7	22.4
60	7.8	14	24.5
70	8.4	15	26.5

Follow the procedure outlined in the line tuner instructions for its adjustment.

Normally the output filter (FL102) will require

no readjustment except as noted above. It is factory tuned for maximum second and third harmonic rejection, and for series resonance (maximum output at the fundamental frequency) with a 60-ohm load. A small amount of reactance in the transmitter output load circuit may be tuned out by readjustment of the movable core of L105. This may be necessary with some types of line coupling equipment. The adjustable cores of L102 and L103 have been set for maximum harmonic rejection and no change should be made in these settings unless suitable instruments are available for measuring the second and third harmonic present in the transmitter output.

The operating frequencies of crystals Y1 and Y2 have been carefully adjusted at the factory and good stability can be expected. If it is desired to check the frequencies of the individual crystals, this can be done by turning the matched pair 180° and inserting a crystal in its proper socket with the other crystal unconnected. A sensitive frequency counter with a range of at least 2.2 MHz can be connected from TP51 to TP54. (Connection to TP54 rather) than to TP53 provides a better signal to the counter and avoids some error from the effect of the counter input capacitance on the oscillator circuit.) While measurement of the oscillator crystals individually is necessary for the initial adjustment of the oscillators, generally any subsequent checks may be made with a lower range counter connected at the transmitter output. If any minor adjustment of the Guard and Trip frequencies should be needed, the Guard adjustment should be made with capacitor C52 and the Trip Adjustment with C53.

MAINTENANCE

Periodic checks of the transmitter Guard and Trip power outputs will detect impending failure so that the equipment can be taken out of service for correction. At regular maintenance intervals, any accumulated dust should be removed, particularly from the heat sinks. It is also desirable to check the transmitter power output at such times, making any necessary readjustments to return the equipment to its initial settings. Voltage values should be recorded after adjustment in order to establish reference values which will be useful when checking the apparatus. The readings will remain fairly constant over an indefinite period unless a failure occurs. However, if transistors are changed, there may be considerable difference in these readings without the overall performance being affected.

Typical voltage values are given in the following tables. Voltages should be measured with a VTVM. Readings may vary as much as $\pm 20\%$.

TABLE I TRANSMITTER DC MEASUREMENTS

Note: All voltages are positive with respect to Neg. 45 V. TP51). All voltages read with dc VTVM.

Test Point	Voltage at I Watt Output	10 V	ige at Vatts tput	3.2	age at Watts tput
	48V	125V	48V	125V	(For Voice)
TP52	20	20	20	20	20
TP53	5.4	5.4	5.4	5.4	5.4
TP54	3.4	3.4	3.4	3.4	3.4
TP55	21	21	18.5	18.5	
TP56	21	21	18.5	18.5	
TP57	*<1.0	1.0	*<1.0	1.0	
TP58	44.3	100	44.1	100	
ТР59	*<1.0	1.0	*<1.0	1.0	
TERM 1 POW	<i>TER</i> 0	0	0	0	
TERM 17 AMP	21 ± 2	50V	21 ± 2	50V	_
TERM 31) MOI	<i>ULE</i> 44.3	100	44.0	100	

TABLE II TRANSMITTER RF MEASUREMENTS

Note: Voltages taken with transmitter set to indicated output across 60 ohms. These voltages subject to variations, depending upon frequency and transistor characteristics. T51 - 3 = Terminal 3 of transformer T51. Other transformer terminals identified similarly. All read with ac VTVM.

Test Point	Voltage at 1 watt Output	Voltage at 10 watts Output	Voltage at 3.2 Watts Output (For Voice)
TP54 to TP51 TP57 to TP51 TP59 to TP51	$\begin{array}{r} 0.015-0.03\\ 0.05-0.09\\ 0.05-0.09 \end{array}$	$\begin{array}{r} 0.015-0.03\\ 0.3 \ -1.2\\ 0.3 \ -1.2 \end{array}$	- - -
T1-1 to TP51 T1-3 to TP51 T1-4 to Gnd.	1.65 1.45 .6	5.6 4.9 2.0	_ _ _
T2-1 to Gnd.POWERTERM 1 TERM 17AMPTERM 17 TERM 31MODULE	.57 5.2 5.2	1.85 17.0 17.0	-
T3-4 to Gnd. T4-2 to Gnd. TP109 to Gnd.	35 31 9.8	112 110 31	
J102 to Gnd.	7.8	24.5	14

CONVERSION OF TRANSMITTER FOR CHANGED CHANNEL FREQUENCY

The parts required for converting a 1W/10W TCF-10 transmitter for operation on a different channel frequency consist of a pair of matched crystals for the new channel frequency, new capacitors C103 and C104 on the power amplifier circuit board if the old and new frequencies are not in the same frequency group (see table on internal schematic drawing) and, in general, new or modified filters FL101 and FL102. Inductors L101, L102 and L103 in these filters are adjustable over a limited range, but forty-two combinations of capacitors and inductors are required to cover the frequency range of 30 to 300 kHz. The widths of the frequency groups vary from 1.5 kHz at the low end of the channel frequency range to 13 kHz at the upper end. A particular assembly can be adjusted over a somewhat wider range than the width of its assigned group since some overlap is necessary to allow for component tolerances. The nominal kHz adjustment ranges of the group are:

30.0-31.5	61.0-64.0	113.0-119.5	207.1-214.0
32.0-33.5	64.5-68.0	120.0-127.0	214.1-222.0
34.0-36.0	68.5-72.0	127.5-135.0	222.1-230.0
36.5-38.5	72.5-76.0	135.5-143.0	230.1-240.0
39.0-41.0	76.5-80.0	143.5-151.0	240.1-250.0
41.5-44.0	80.5-84.5	151.5-159.5	250.1-262.0
44.5-47.0	85.0-89.0	160.0-169.5	262.1-274.0
47.5-50.0	89.5-94.5	170.0-180.0	284.1-287.0
50.5-53.5	95.0-100.0	180.5-191.5	287.1-300.0
54.0-57.0	100.5-106.0	192.0-200.0	
57.5-60.5	106.5-112.5	200.1-207.0	

If the new frequency lies within the same frequency group as the original frequency, the filters can be readjusted. If the frequencies are in different groups, it is possible that changes only in the fixed capacitors may be required. In general, however, it is desirable to order complete filter assemblies adjusted at the factory for the specified frequency.

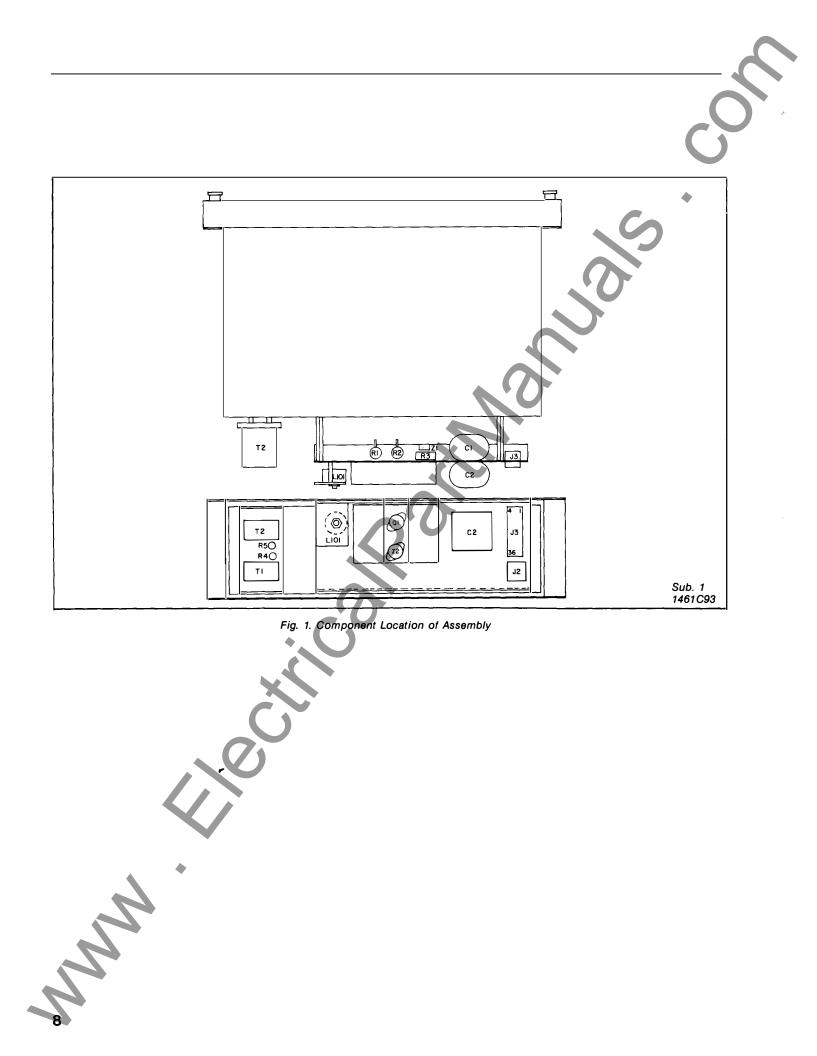
A signal generator, a frequency counter and a vacuum tube voltmeter are required for readjustment of FL101. The signal generator and the counter should be connected across terminals 4 and 5 of transformer T1 and the voltmeter across terminals 1 and 2 of transformer T2. The signal generator should be set at the channel center frequency and at 2 to 3 volts output. The core screw of the small inductor should be turned to the position that gives a true maximum reading on the VTVM. Turning the screw to either side of this position should definitely reduce the reading. The change in inductance with core position is less at either end of the travel than when near the center and consequently the effect of core screw rotation on the VTVM reading will be less when the resonant inductance occurs near the end of core travel.

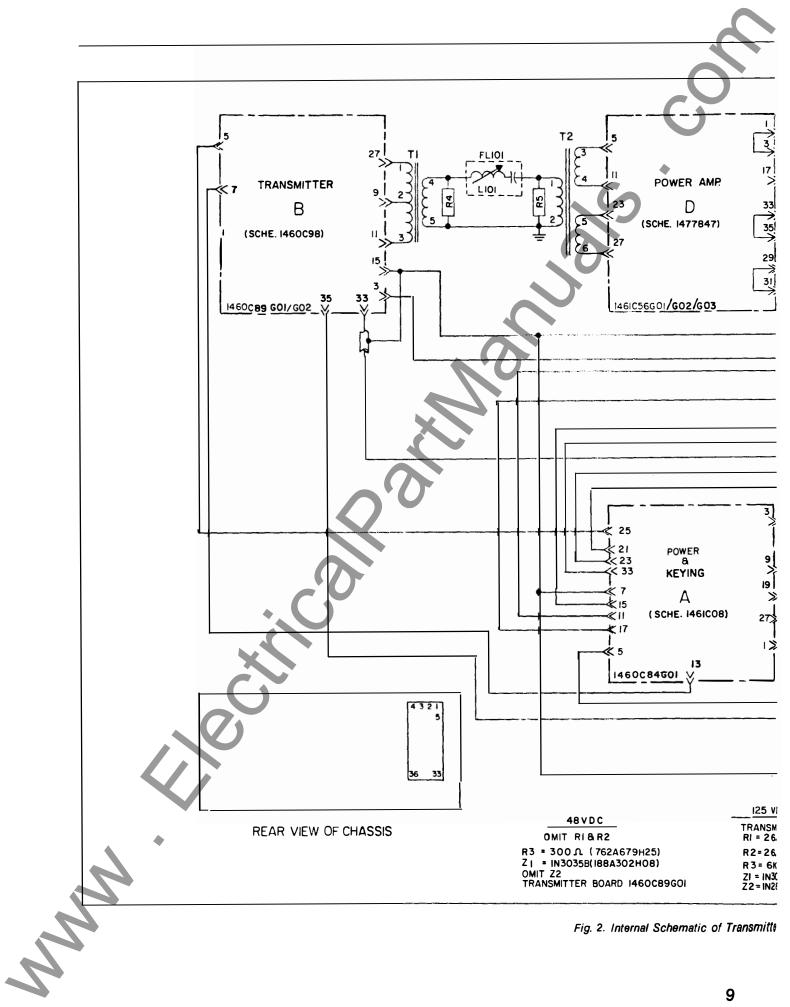
The procedure for readjustment of the 2nd and 3rd harmonic traps of filter FL102 is somewhat similar. A signal generator and a counter should be connected to terminals 3 and 4 of transformer T3, and a 500 ohm resistor and a VTVM to the terminals of protective gap G1. The ground or shield lead of all instruments should be connected to the grounded terminal of the transformer. Set the signal generator at exactly twice the channel center frequency and at 5 to 10 volts output. Turn the core screw of the large inductor L102, to the position that gives a definite *minimum* reading on the VTVM. Similarly, with the signal generator set at exactly three times the channel center frequency and 5 to 10 volts output, set the core screw of the small inductor, L103, to the position that gives a definite *minimum* reading on the VTVM. Then remove the instruments and the 500 ohm resistor.

After the new pair of matched crystals have been adjusted, as described under "ADJUST-MENTS", the transmitter can be operated with a 50 to 70 ohm load (depending on which tap of T4 is used) connected to its output, and inductor L105 can be readjusted for maximum output at the changed channel frequency by the procedure described in the same section.

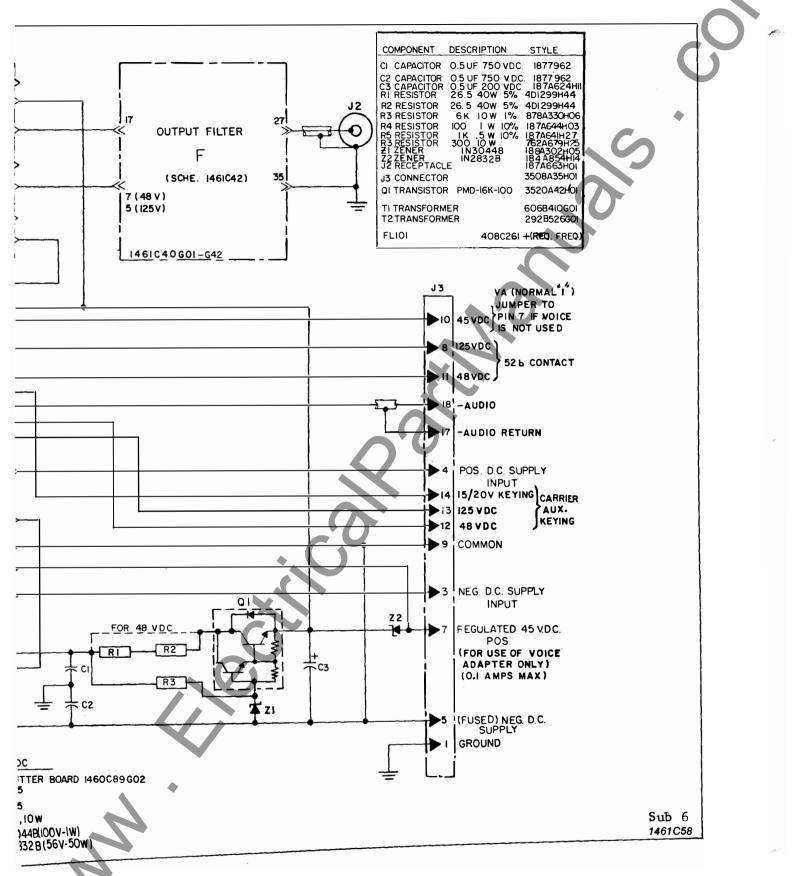
If a frequency-sensitive voltmeter is available, the 2nd and 3rd harmonic traps may be adjusted without using an oscillator as a source of double and triple the channel frequency. Connect the frequency-sensitive voltmeter from TP109 to ground and adjust the transmitter for rated output into the selected load resistor. Set the voltmeter at twice the channel frequency and, using the tuning dial and db range switch, obtain a maximum onscale reading of the 2nd harmonic. Then vary the core position of L102 until a minimum voltmeter reading is obtained. Similarly, tune the voltmeter to the third harmonic and adjust L103 for minimum voltmeter reading. Although the transmitter frequency will differ from the channel center frequency by 100 Hz, the effect of this difference on the adjustment of the harmonic traps will be negligible. It should be noted that the true magnitude of the harmonics cannot be measured in this manner, because of the preponderance of the fundamental frequency at the voltmeter terminals. Accurate measurement of the harmonics requires use of a filter between TP109 and the voltmeter that provides high rejection of the fundamental. The insertion looses of this filter for the 2nd and 3rd harmonics must be measured and taken into account.

RECOMMENDED TEST EQUIPMENT

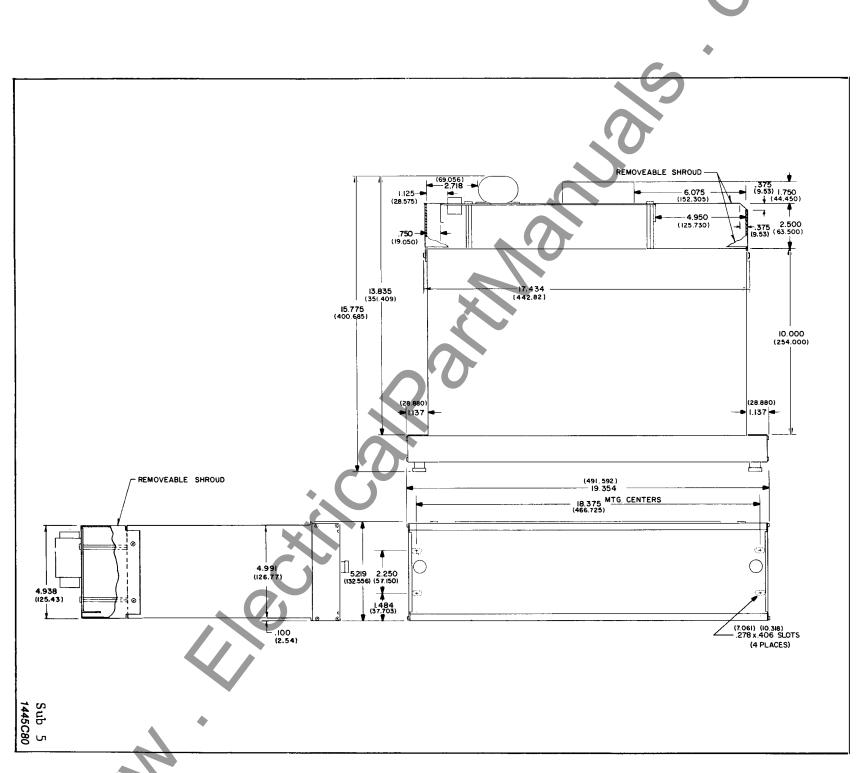

I. Minimum Test Equipment for Installation.

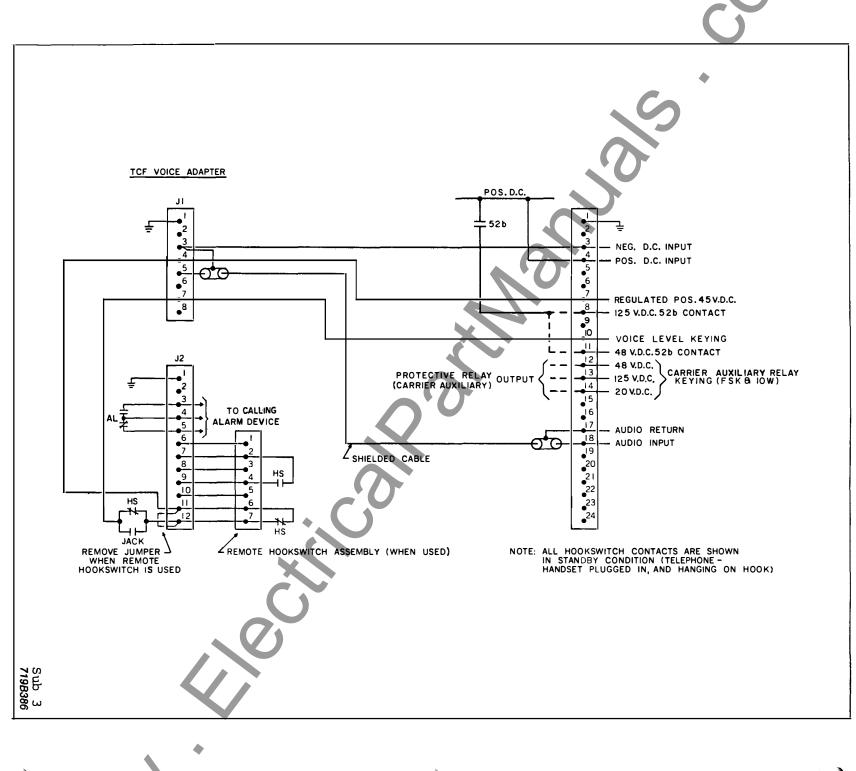

- a. 60-ohm 10-watt non-inductive resistor.
- b. AC vacuum Tube Voltmeter (VTVM) or equivalent. Voltage range 0.003 to 30 volts, frequency range 60 hz to 330 kHz; impedance 7.5 megohms.
- c. DC Vacuum Tube Voltmeter (VTVM) or equivalent.
- d. Module Extender Test Card S 1447C86G01
- II. Desirable Test Equipment for Apparatus Maintenance.
 - a. All items listed in I,
 - b. Signal Generator Output Voltage: up to 8 volts. Frequency Range: 20-kHz to 900 kHz
 - c. Oscilloscope
 - d. Frequency counter
 - e. Ohmmeter
 - f. Capacitor checker.

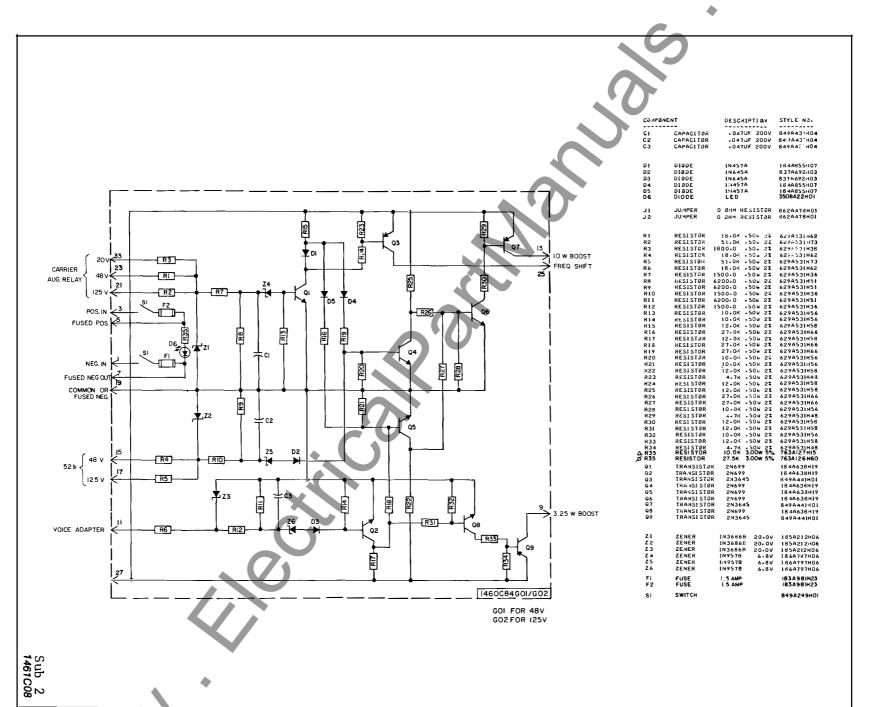
Some of the functions of the recommended test equipment are combined in the type TCT carrier test meter unit, which is designed to mount on a standard 19" rack but also can be removed and used as a portable unit.

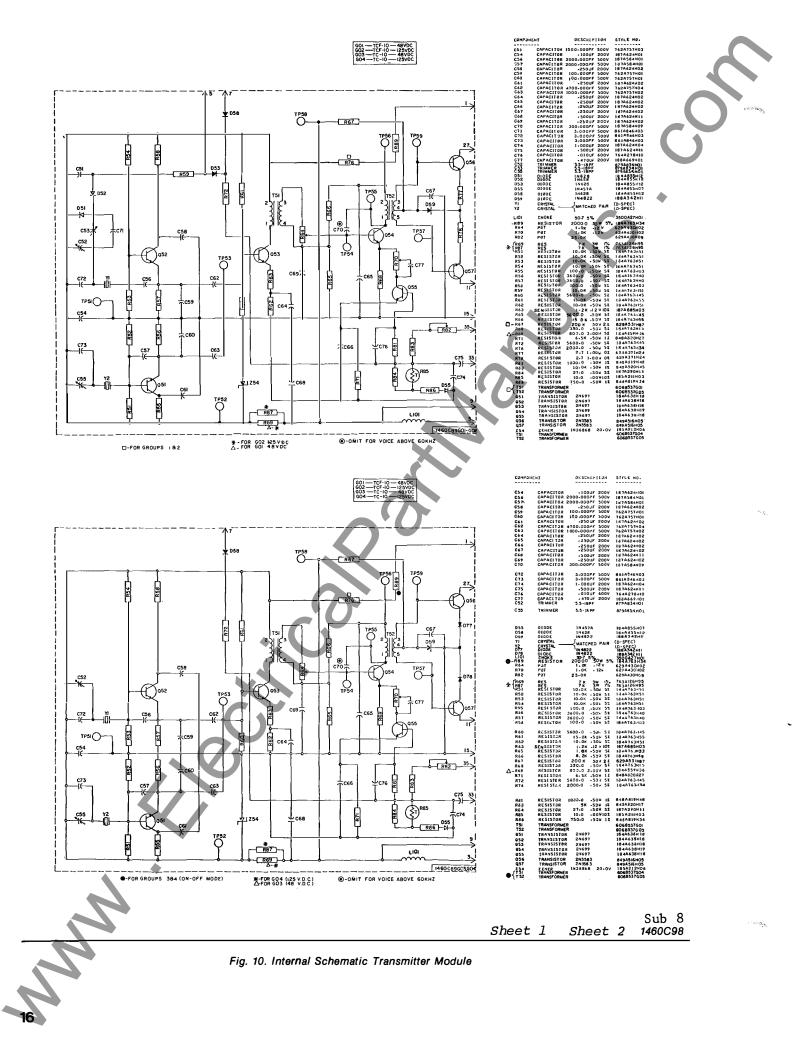

RENEWAL PARTS

Repair work can be done most satisfactorily at the factory. However, replacement parts can be furnished, in most cases, to customers who are equipped for doing repair work. When ordering parts, always give the complete nameplate data and identify the part by its designation on the Internal Schematic drawing.




r for Keyed and Voice Applications




1

ដ

Fig. 8. Voice Adapter, Relaying & Transmitter Interconnections

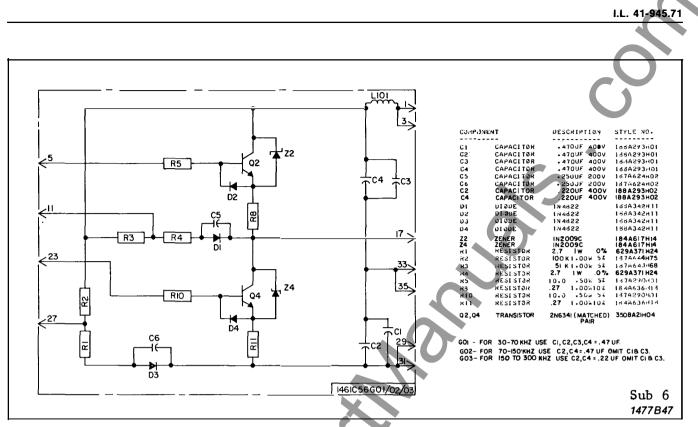
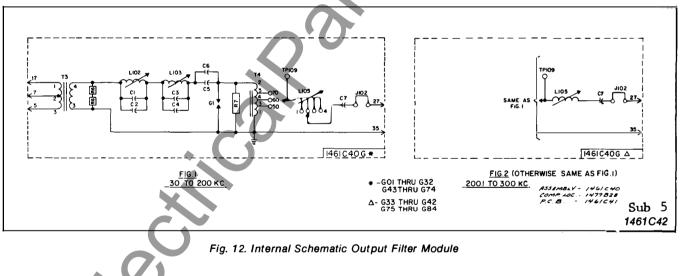
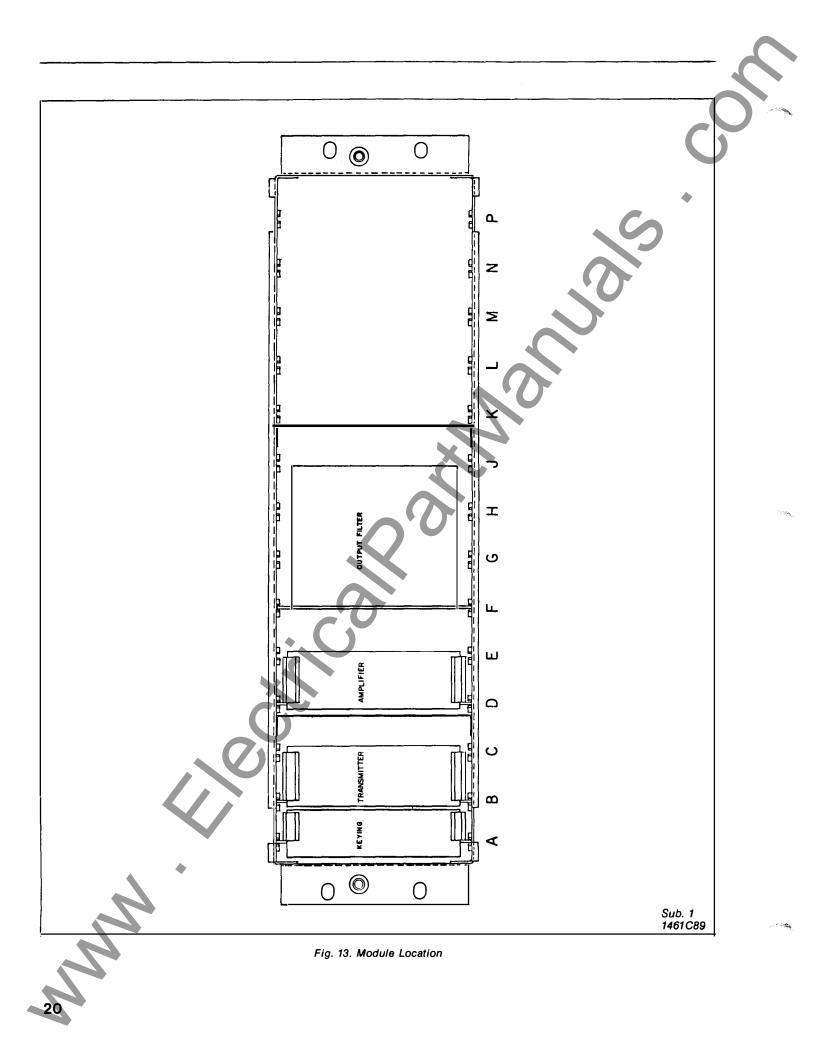
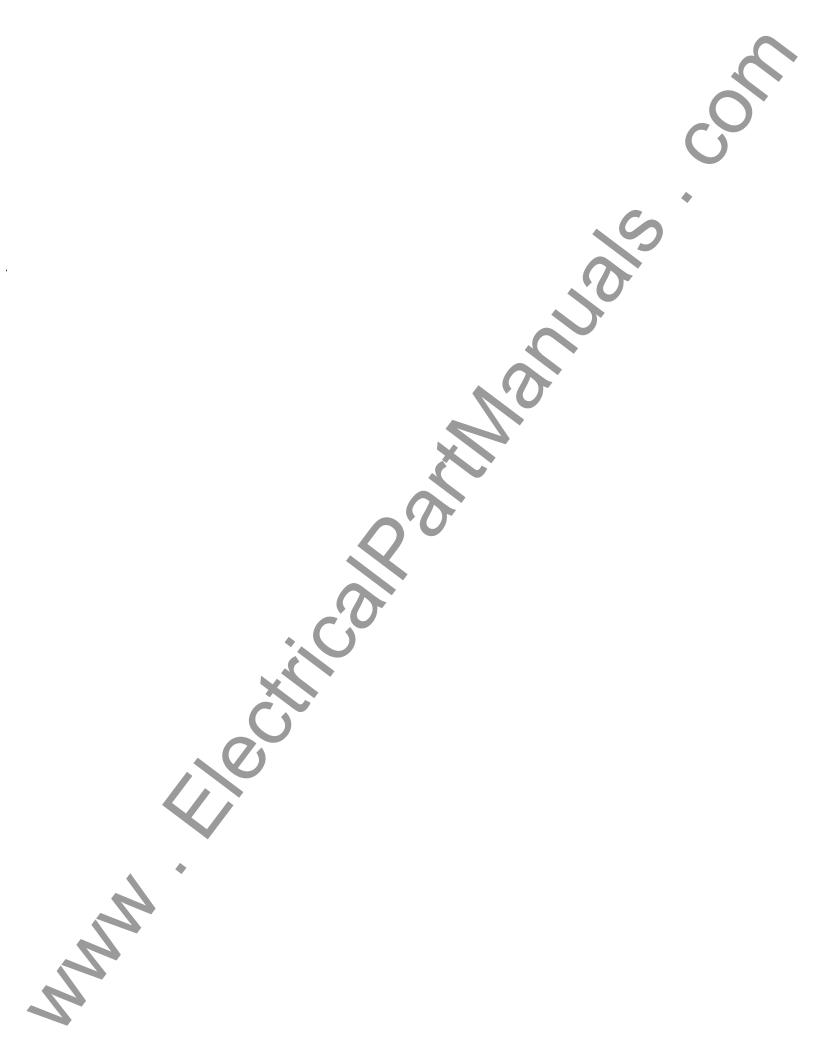



Fig. 11. Internal Schematic Power Amplifier Module




PARTS LIST

	1461C 40 GOI.G43		<u></u>	461C40G02,G44		1	461C 40 603, 645		<u></u>	461C40 604 G46	
COMPONENT	DESCRIPTION	STYLE	COMPONENT	DESCRIPTION	STYLE	COMPONENT	DESCRIPTION	STYLE	COMPONENT	DESCRIPTION	STYLE
CI CAPACITO C2 CAPACITO C3 CAPACITO	2500 MMF 500 v 2700 MMF 500 v 1500 MMF 500 v	86IA846H20 86IA846H2I 762A757H03	CI CAPACITOR C2 CAPACITOR C3 CAPACITOR	2500 VIMF 500 V 2000 MMF 500 V 1000 MMF 500 V	861A846H20 187A584H01 762A757H02	CI CAPACITOR C2 CARACITOR C3 CAPACITOR	2000 MMF 500 V 2000 MMF 500 V 390 MMF 500 V	187A584HOI 187A584HOI 762A757HI5	CI CAPACITOR C2 CAPACITOR	1500 MMF 500 V 2000 MMF 500 V	762A757H03 187A584H01
C4 CAPACITO C5 CAPACITO C6 CAPACITO C7 CAPACITO		187A584H26 187A705H15 187A705H15 203C872H25	C4 CAPACITOR C5 CAPACITOR C6 CAPACITOR C7 CAPACITOR	3300 MMF 500 V 2500 MMF 1200 V 5000 MMF 1200 V 6000 PF 3000 V	187A 584H26 187A705H13 187A705H16 203C672H28	C4 CAPACITOR C5 CAPACITOR C6 CAPACITOR C7 CAPACITOR	3300 MMF 500 V 2500 MMF1200 V 4000 MMF1200 V 5500 PF 3000 V	187A584H26 187A705H13 187A705H15 203C872H27	C4 CAPACITOR C5 CAPACITOR C6 CAPACITOR C7 CAPACITOR	3300 MMF 500 V 3000 MMF 1200 V 2500 MMF 1200 V 5000 PF 3000 V	187A584H26 187A705H14 187A705H13 203C872H26
LIO2 POT COL LIO3 POT COL LIO3 POT COL	e 🔶	670 8133G04 670 8133G04 670 8133G06 2928086G01	LIO2 POT CORE LIO3 POT CORE LIO5 COL		670 8133 604 6708133 606 2928086601	LIOZ POT CORE LIO3 POT CORE LIO5 COIL	3200 // 32001	6708133G04 6708133G06 2928086501	L.OZ POT CORE L:03 POT CORE L:05 COIL		670 8133 GO4 670 8133 GO5 29280 865 01
T3 TRANSFOR		2928526604 2928526603	T3 TRANSFORMER		292852/5604 2928526603	T3 TRANSFORMER T4 TRANSFORMER		2928526504 2928526603	T3 TRANSFORMER T4 TRANSFORMER		2928526G04 2928526G03
R6 RESISTOR	3K ± 5% 8W (2 REQ) 15K 10% 2W	188A317HOI 187A642H55	R6 RESISTOR R7 RESISTOR	3K ± 5% 8W (2 REQ) ISK 10% 2W	188A317HQI 187A642H55	R6 RESISTOR R7 RESISTOR	3K ± 5% 8W 12 REQ) 15K 10% 2W	188A317HOI 187A642H55	R6 RESISTOR	3K ± 5% BW (2 REQ) ISK 10% 2W	188A317H01 187A642H55
GI LIGHTNING	ARRESTER	877AII6HOI	GI LIGHTNING ARR	ESTER	877AIIGHOI	GI LIGHTNING AFT	RESTER	877A16H0I	GI LIGHTNING ARE	ESTER	877AI%HOI
2											

1461C40G05,G47	1461C40G06,G48		1461C40G08,650		
COMPONENT DESCRIPTION STYLE CI CAPACITOR 3000 MMF 500V 187A584H C3 CAPACITOR 820 MMF 500V 187A584H C4 CAPACITOR 200 MMF 500V 187A584H C5 CAPACITOR 200 MMF 200V 187A584H	6 CI CAPACITOR 2500 MMF 500V 661/ 800 2 CARACITOR 150 MMF 500V 661/ 800 2 CARACITOR 150 MMF 500V 661/ 861/ 861/ 800V 3 C5 CAPACITOR 200 MMF 1200 V 137.	TYLE COMPONENT DESCRPTION STYLE IAS65K20 C CAPACITOR 2000 MMF 500V 187A584H01 IAS66K25 C2 CAPACITOR 2000 MMF 500V 187A584H01 IAS66K25 C3 C4 CAPACITOR 1800 MMF 500V 187A584H01 IAS66K25 C3 C4 CAPACITOR 1800 MMF 500V 187A 584H01 C4 C5 APACITOR 1500 MMF 500V 187A 584H01 17A 197A	COMPONENT DESCRIPTION STYLE CI CAPACITOR 30 WHF 500V 187.4584H01 C2 CAPACITOR 300 WHF 500V 187.4584H01 C3 CAPACITOR 300 WHF 500V 762.4757H03 C4 CAPACITOR 1500 MHF 500V 762.4757H03 C5 CAPACITOR 1500 MHF 500V 762.4757H03		
C6 CAPACITOR 2500 MMF 1200 V 187A705 C7 CAPACITOR 4200 PF 3000V 202C 872 LI02 POT CORE 67081336 103 907 50133 LI03 POT CORE 67081336 2928086 103 2928086	25 C7 CAPACITOR 3500 PF 3000 V 203 4 LIO2 POT CORE 670	ZATOŠINIS CG CAPACITOR 2000 NUFI200 V IB "ATOŠINIZ JECBT2 H23 C7 CAPACITOR 3200 PF 300 CV 2010 GTOŠINIZ 0BI3 3004 LIO2 POT CORE 670BI33004 670BI33004 670BI33004 LIO3 POT CORE 670BI33004 2925066001 2925066001	CE CAPACITOR 200 MMF2CO \ IB7A705H04 C7 CAPACITOR 2800 PF 3000V 2012872H20 LI02 POT CORE 6708133G04 103 POT CORE 6708133G05 LI03 POT CORE 6708133G05 292808G06 LI05 COL 292808G06		
T3 TRANSFORMER 29285260 T4 TRANSFORMER 29285260	4 T3 TRANSFORMER 292 T4 TRANSFORMER 292	28526CC4 T3 TRANSFORMER 2928526CC4 28526C03 T4 TRANSFORMER 2928526C03	T3 TRANSFORMER 2928526604 T4 TRANSFORMER 2928526603		
R6 RESISTOR 3K ± 5% 8W (2 REQ) 188A317H1 R7 RESISTOR 15% 10% 2W 187A642b G1 LIGHTNING ARRESTER 877A16H		BA317HOI R6 RESISTOR 3K ± 5% BW (2 AEQ) B88A3174OI 7A6622H55 R7 RESISTOR ISK IO% 2W IB7A642H55 7AII6HOI GI LIGHTNING ARRESTER 877AII6HOI	R6 RESISTOR 3 K ¹ 5% 8W (2 REQ) 188 A 317 HOI R7 RESISTOR 15K 10% 2W 187 A 64 2 H 55 GI LIGHTNING ARRESTER 87 7 A 16 HOI 1		
<u>1461C40609,</u> 651	1461C40 GIO, G52	146/C406/1.653	146/C40612,654		
COMPONENT DESCRIPTION STYLE CI CARACITOR 300 MMF 500 V 187A584H C2 CARACITOR 500 MMF 500 V 187A584H C2 CARACITOR 1500 MMF 500 V 762A757H C3 CARACITOR 1800 MMF 500 V 762A757H C4 CARACITOR 1800 MMF 500 V 762A757H C5 CARACITOR 2000 MMF 1200 V 187A705H C7 LARACITOR 2200 PF 3000 V 203C872	S CI CAPACITOR B2 VMF 500V 763 3 C2 CARACTOR IS00 VMF 500V 762 3 C4 CAPACITOR IS00 VMF 500V 762 3 C4 CAPACITOR IS00 VMF 500V 762 5 C5 CAPACITOR 3000 VMF 1200V 187 C6 CAPACITOR 3000 VMF1200V 187	TYLE COMPONENT DESCRIPTION STYLE 3A209H23 CI CAPACITOR IOOO VMF 500V 762A757H03 2A757H03 C2 CAPACITOR IOOO VMF 500V 762A757H02 2A757H03 C3 CAPACITOR IOOO VMF 500V 762A757H02 2A757H03 C4 CAPACITOR IOOO VMF 500V 762A757H02 2A757H03 C4 CAPACITOR IOOO VMF 500V 762A757H02 2A757H03 C5 CAPACITOR IOOO VMF 500V 167A558H0 74705H04 C5 CAPACITOR 3000 MMF 12C0 V 187A564H0 1306872H23 C7 CAPACITOR 3D00 PF 3000V 202C872H21	COMPONENT DESCRIPTION STYLE CI CPACTIOR 1000 MMF 500V 762A737H02 C2 CARCITOR 1000 MMF 500V 762A737H02 C3 CAPACITOR 1000 MMF 500V 762A737H02 C4 CAPACITOR 1000 MMF 500V 762A737H02 C5 CAPACITOR 1000 MMF 500V 762A737H02 C5 CAPACITOR 1000 MMF 500V 162A757H02 C5 CAPACITOR 1000 MMF 500V 162A757H02 C5 CAPACITOR 1000 MMF 500V 162A757H02 C6 CAPACITOR 200 MMF 200V 167A705H03 C7 CAPACITOR 2800 PF 300CV 203C872H20		
LIO2 POT CORE 67081330 LIO3 POT CORE 67081330 LIO5 COLL 2928066 T3 TRANSFORMER 2928266 T4 TRANSFORMER 29285260	6 LIO3 POT CORE 670 1 LIO5 COL 292 4 T3 TRANSFORMER 292	OBI33:00 L/02 POT CORE 670 BI33:004 OBI33:006 L/03 POT CORE 670 BI33:004 28086:00 L/05 COL 2928086:00 28252:604 T3 TRANSFORMER 2928526:03 28252:603 T4 TRANSFORMER 2928526:03	LI02 POT CORE 670 8133 G04 LI03 POT CORE 670 8133 G06 LI05 COLL 2920096601 13 TRANSFORMER 292852604 14 TRANSFORMER 292852603		
R6 RESISTOR 3K ± 5% 8W (2 REQ) 188A317H R7 RESISTOR 15K 10% 2W 187A642H	5 R7 RESISTOR 15K 10% 2W 187	7A642H55 R7 RESISTOR 15K 10% 2W 187A642H55	R6 RESISTOR 3 K 2 5% BW (2 REG) 188A317H01 R7 RESISTOR 15K 10% 2W 187A642H55		
GI LIGHTNING ARRESTER 877A166H	GI LIGHTNING ARRESTER 877	17AII6H01 GI LIGHTNING ARRESTER 877AII6H01	GI LIGHTNING ARRESTER 877AIIGHOI	1	
COMPONENT DESCRIPTION STYLE CI CAPACITOR KOO MAF 500 V 762A757 C2 CARCITOR KOO MAF 500 V 762A757 C3 CARACITOR KOO MAF 500 V 762A757 C3 CARACITOR KOO MAF 500 V 762A757 C3 CARACITOR S6 MAF 500 V 762A757 C4 CARACITOR S6 MAF 500 V 763A299 C5 CARACITOR S6 MAF 500 V 18747631 C7 CAPACITOR 2500 PF 5003 V 203C872	COMPONENT OESCR PTION ST 2 CL CAPACITOR 360 NMF 500V 167 2 CL CAPACITOR 360 NMF 500V 167 2 CL CAPACITOR 820 NMF 500V 167 2 CL CAPACITOR 00 NMF 500V 766 3 C5 CAPACITOR 200 MMF 1200 V 187 3 C5 CAPACITOR 200 MMF 1200 V 187	D'LE COMPONENT DESCRIPTION STULE 124757144 CI CAPACITOR 250 MMF 500V BGABAGHII 224757122 CS CAPACITOR 250 MMF 500V BGABAGHII 224757122 CS CAPACITOR 620 MMF 500V BGABAGHII 2247571044 CS CAPACITOR 620 MMF 500V BGABATSNE2 2473571044 CS CAPACITOR 820 MMF 500V BGABATSNE2 3305872HIF CS CAPACITOR 800 MMF 12C0 V IB7A70.3HII 3305872HIF C CAPACITOR 2000 PF 3000V 2020872HIS	COMPONENT DESCRIPTION STYLE CI CAPACITOR IBO MMF 500V 762A757HI0 C2 CARCITOR IBO MMF 500V 187A584HII C3 CARACITOR ISO MMF 500V 187A584HII C3 CARACITOR ISO MMF 500V 187A705HII C5 CAPACITOR ISO MMF 200V 187A705HII C6 CAPACITOR ISO MMF 200V 187A705HII C7 CAPACITOR ISO MF200V 203C872HI3		
LIO2 POT COME 6768133 LIO3 POT CORE 6708133 LIO5 COL 222006 T3 TRANSFORMER 2928266 T4 TRANSFORMER 29283260	NG LIGS POT CORE 670 1 LIGS COIL 290 4 T3 TRANSFORMER 291 3 T4 TRANSFORMER 291	00133604 L02 POT CORE 670 8133604 1033604 L03 POT CORE 670 8133604 28200660 L03 COL 292808600 12852604 T3 TRANSFORMER 292852604 12852604 T4 TRANSFORMER 292852603	LI02 POT CORE 670 B133G04 LI03 FOT CORE 670 B133G06 LI05 COIL 2928096601 T3 TRANSFORMER 2928526G04 T4 TRANSFORMER 2928526G03		
R6 F:ESISTOR 3K \$ 5% 8W (2 MEQ) 182A317H R7 RESISTOR 15K 10% 2W 187A6420 GI LIGHTNING ARRESTER 877A166H	5 R7 RESISTOR 15K 10% 2W 187	8A317H01 7A642H55 R7 RESISTOR 3K 5% 8W (2 REQ) 188A317H01 7A642H55 R7 RESISTOR 15% 10% 2W 187A64(;H55 77A116H01 GI LIGHTNING ARRESTER 877A116H01	R6 RESISTOR 3K [±] 5% 8W (2 REQ) IBBA317HOI R7 RESISTOR 15K 10% 2W 137A642H55 GI LIGHTNING ARRESTER 877A16HO1		
1461C40617,659	1461C40G18,G60	1461C40G19,G61	1461C40620,662		
COMPONENT DESCRIPTION STYLE CI CAPACITOR ISO0 MMF 500 V 762A757 C3 CAPACITON ZTO MMF 500 V 762A757 C4 CAPACITON ISO0 MMF 500 V 762A757 C4 CAPACITON ISO0 MMF 500 V 162A757 C5 CAPACITOR ISO0 MMF 200 V 187A705	03 CI CAPACITOR 1000 MMF 500 V 762 C2 CAPACITOR 360 MMF 500 V 762 2 C3 CAPACITOR 82 MMF 500 V 763	COMPONENT DESCRIPTION STYLE 247571402 CI CAPACITOR 1000 MHF 500V 752A757H02 24757144 C2 CAPACITOR 200 MHF 500V 752A757H02 24757144 C2 CAPACITOR 200 MHF 500V 752A757H02 24757143 C4 CAPACITOR 500 MHF 500V 752A757H13 24757143 C4 CAPACITOR 390 MHF 500V 752A757H15 247571403 C5 CAPACITOR 390 MHF 500V 752A757H15 247571403 C5 CAPACITOR 390 MHF 500V 752A757H15	COMPONENT DESCRIPTION STYLE CI CAPACITOR DOO MMF 500V 762A757H02 C2 CARACITOR B2 MMF 500V 762A757H02 C3 CAPACITOR B2 MMF 500V 762A757H02 C4 CAPACITOR DOM MMF 500V 762A757H02 C4 CAPACITOR DOM MMF 500V 762A675H02		
C5 CAPACITOR 4000 MMF1200 V 187A705 C7 CAPACITOR 2400 PF 3000 V 2C3C872		74705HI5 C5 CAPACITOR 3000 MWFI200V I87A705HI4 C6 CAPACITOR 500 MMFI200V I87A705H09 I3C872HI6 C7 CAPACITOR I900 PF 300JV 203C872HI4	C5 CAPACITOR 3000 MMF 1200 V 187A705H14 C7 CAPACITOR 1700 PF 3000V 203C872H12		
LIO2 POT CORE 6728133 LIO3 POT CORE 6728133 LIO5 COIL 2928080	07 LIO3 POT CORE 670	28086601 LIO2 POT CORE 6708133605 108133607 LIO3 POT CORE 6708133607 128086601 LIO5 COIL 2928086601	LIO2 POT CORE 670BI33605 LIO3 POT CORE 670BI33607 LIO5 COIL 292B086601		
T3 TRANSFORMER 2928526	D4 T3 TRANSFORMER 292	28526604 T3 TRANSFORMER 2928526604 28526603 T4 "RANSFORMER 2928526603	T3 TRANSFORMER 2928526GO4		
T4 TRANSFORMER 2928526			T4 TRANSFORMER 2928526603		
T4 TRANSFORMER 2928526 R6 RESISTOR 3K \$5% BW (2 REG) 188A317h R7 RESISTOR ISK 10% 2W 187A642	D3 T4 TRANSFORMER 292 R6 RESISTOR 3 K 25% BW (2 RE0) 168 R7 RESISTOR 15K 10% 2W 167	7A642H55 R7 RESISTOR 15K 10% 2W 187A642H55	T4 TRANSFORMER 2928526603 R6 FIESISTOR 3K ± 5%, RW (2 REQ) 188A317HOI R7 RESISTOR 15K 10%, 2W 167A642H55		
T4 TRANSFORMER 2928526	D3 T4 TRANSFORMER 292 R6 RESISTOR 3 K 25% BW (2 RE0) 168 R7 RESISTOR 15K 10% 2W 167	74642H55 R7 PESISTOR 15K 10% 2W 1874642H55	T4 TRANSFORMER 2928526603 R6 FIESISTOR 3K ± 5% RW (2 REQ) 188A317HOI R7 RESISTOR 15K 10% 2W 167A642H55		
T4 TRANSFORMER 2928326 R6 RESISTOR 3K ± 5% BW (2 nEO) 188A377 R7 RESISTOR 3K ± 5% BW (2 nEO) 188A377 I LIGHTNING ARRESTER 877A161 I 1461C40521.g63 63 COMPONENT <u>DESCRIPTION</u> <u>STYLE</u> CI CARGUTOR 300 MH 500V 162A737 C2 CARCITOR 500 MH 500V 162A737 C4 CARCITOR 500 MH 500V 762A777 C4 CARCITOR 2500 MHF 500V 762A777 C4 CARCITOR 2500 MHF 500V 762A777 C4 CARCITOR 2500 MHF 200V 1762A777 C5 CARCITOR 2500 MHF 200V 1762A777	33 T4 TRANSFORMER 232 1 R6 RC51STOR 3.K [±] .5%, DW (2.RE0).168, R7 1 R51STOR 3.K [±] .6%, DW (2.RE0).168, R7 1 GI LIGHTMING ARRESTER 877 1 GI LIGHTMING ARRESTER 877 1 1.451C40.022,664 1.451C40.022,664 1.451C40.022,664 1 CI CARACITOR 250 MMF.500 V 1.67 1 C.1 CARACITOR 250 MMF.500 V 1.67 12 C.2 CARACITOR 0.00 MMF.500 V 1.67 13 C.3 CARACITOR 2500 MMF.1200 V 1.87	7A642H55 R7 PESISTOR I5× 10% 2W I87A642H55 TAIIGHOI GI LGHTNING ARRESTER 877AI6H0I I461C40 623,065 TYLE COMPONENT DESCRIPTION STTLE IA8646HII C2 CAPACITOR I50 MHF 500 V B6IA846H25 R2 CAPACITOR 62 MHF 500 V 167A36H11 C2 CAPACITOR 62 MHF 500 V 167A36H11 C2 CAPACITOR 62 MHF 500 V 167A36H2 R2 CAPACITOR 62 MHF 500 V 763A209H20 C4 C4PACITOR 820 MHF 500 V 167A05H12 167A705H13 C5 C4PACITOR 200 MHF1200 V 167A705H13 167A705H12 167A75	T4 TRANSFORMER 2928526503 R6 FIESISTOR 3K ± 5%, RW (2 REG) IBRA317H01 R7 RSISTOR 15%, IO%, 2W IBRA317H01 GI LICHTNING ARRESTER 877AIR6H01 COMPO:(ENT COMPO:(ENT DESCRIPTION C1 CAPACITOR 56 MMF 500V 7524279H15 C2 CAPACITOR 390 MMF 500V 7524279H15 C4 CAPACITOR 390 MMF 500V 7524279H15 C6 CAPACITOR 2000 MMF 1200V 187A 705H12		
T4 TRANSFORMER 2928326 R6 RESISTOR 3K ± 5% BW (2 nE0) 188A317 R7 RESISTOR 3K ± 5% BW (2 nE0) 188A317 JI LIGHTNING ARRESTER 877A161 14 61C40G21,G63 2004/2004ENT 05250R COMPONENT 0550NF10N 577LE C1 C1 CARCITOR 360 MHF 500V 762A737 C2 CARCITOR 1000 MHF 500V 762A737 C4 CARCITOR 1000 MHF 500V 762A737	Component Construction State	ZA642855 R7 PESISTOR I5× I0% 2W I87A642855 TAILGHOI GI LIGHTNING ARRESTER 677A16401 International Colspan="2">International Colspan="2" International Colspan="2" International Colspan="2" Component Component Strue International Colspan="2" International Colspan="2" International Colspan="2" International Colspan="2" International Colspan="2" International Colspan="2" International Colspan="2" International Colspan="2" International Colspan="2" International Colspan="2" <td cols<="" td=""><td>T4 TRANSFORMER 2928526503 R6 FIESISTOR 3K ± 5%, RW (2 REG) IBRA317H01 R7 RSISTOR 15%, IO%, 2W IBFA842H55 GI LICHTNING ARRESTER 877AIBH01 LIGEC40524,0565 COMPOIENT ESCRIPTION STYLE COMPOIENT ESCRIPTION COLAPACITOR 55 AMF 500V 753420 SHB COLAPACITOR 50 COLAPACITOR 500V 7624757H5 CAPACITOR 390 MMF 500V 7624757H5</td><td></td></td>	<td>T4 TRANSFORMER 2928526503 R6 FIESISTOR 3K ± 5%, RW (2 REG) IBRA317H01 R7 RSISTOR 15%, IO%, 2W IBFA842H55 GI LICHTNING ARRESTER 877AIBH01 LIGEC40524,0565 COMPOIENT ESCRIPTION STYLE COMPOIENT ESCRIPTION COLAPACITOR 55 AMF 500V 753420 SHB COLAPACITOR 50 COLAPACITOR 500V 7624757H5 CAPACITOR 390 MMF 500V 7624757H5</td> <td></td>	T4 TRANSFORMER 2928526503 R6 FIESISTOR 3K ± 5%, RW (2 REG) IBRA317H01 R7 RSISTOR 15%, IO%, 2W IBFA842H55 GI LICHTNING ARRESTER 877AIBH01 LIGEC40524,0565 COMPOIENT ESCRIPTION STYLE COMPOIENT ESCRIPTION COLAPACITOR 55 AMF 500V 753420 SHB COLAPACITOR 50 COLAPACITOR 500V 7624757H5 CAPACITOR 390 MMF 500V 7624757H5	
T4 TRANSFORMER 2928326 R6 RESISTOR 3K ± 5% BW (2 MED) B8A317 R7 RESISTOR 3K ± 5% BW (2 MED) B8A317 R7 RESISTOR 3K ± 5% BW (2 MED) B8A317 LIGHTNING ARRESTER 877A161 LIGHTNING ARRESTER 877A161 LIGHTNING ARRESTER 877A161 COMFONENT DESCRPTION STYLE C1 CAPACITOR 360 MHF 500 V F62A737 C2 CARCITOR 360 MHF 500 V 762A737 C3 <capacitor< td=""> 1000 MHF 500 V 762A737 C4<capacitor< td=""> 1500 MHF 500 V 762A737 C5<capacitor< td=""> 1000 MHF 500 V 762A737 C4<capacitor< td=""> 1500 MHF 1200 V 1874 344 LI03 F07 CORE 6708133 LI03 F07 CORE 6708133 LI03 F07 CORE 22020061 13 TRANSFORMEN 2202007</capacitor<></capacitor<></capacitor<></capacitor<>	Component Description St St< St< St< St<<	ZA642855 R7 PESISTOR I5× I0% 2W I87A642855 TAILGHOI GI LIGHTNING ARRESTER 677A16401 International Colspan="2">International Colspan="2" International Colspan="2" International Colspan="2" Component Component Strue International Colspan="2" International Colspan="2" International Colspan="2" International Colspan="2" International Colspan="2" International Colspan="2" International Colspan="2" International Colspan="2" International Colspan="2" International Colspan="2" <td cols<="" td=""><td>T4 TRANSFORMER 2928526503 R6 FIESISTOR 3K ± 5%, RW (2 REG) I8RA317H01 R7 RSISTOR 15%, D% I8RA317H01 IA 10%, 2W I87A642H55 GI LIGHTNING ARRESTER 877A16H01 I461C40624,066 COMPOIENT DESCRIPTION STYLE C1 CAPACITOR 56 MMF 50CV 763A203HB C2 CARCITOR 50 MMF 50CV 762A757H5 C4 CAPACITOR 390 MMF 50CV 187A 705H12 C4 CAPACITOR 2000 MMF 1200 V 187A 705H12 C7 CAPACITOR 500 MF 200 V 187A 705H12 C7 CAPACITOR 500 PT 200 V 187A 705H12 C7 CAPACITOR 500 MF 200 V 187A 705H12 C7 CAPACITOR 500 PF 3000V 2205026501 L102 POT CORE 6708133607 232805604 L103 FOT CORE</td><td></td></td>	<td>T4 TRANSFORMER 2928526503 R6 FIESISTOR 3K ± 5%, RW (2 REG) I8RA317H01 R7 RSISTOR 15%, D% I8RA317H01 IA 10%, 2W I87A642H55 GI LIGHTNING ARRESTER 877A16H01 I461C40624,066 COMPOIENT DESCRIPTION STYLE C1 CAPACITOR 56 MMF 50CV 763A203HB C2 CARCITOR 50 MMF 50CV 762A757H5 C4 CAPACITOR 390 MMF 50CV 187A 705H12 C4 CAPACITOR 2000 MMF 1200 V 187A 705H12 C7 CAPACITOR 500 MF 200 V 187A 705H12 C7 CAPACITOR 500 PT 200 V 187A 705H12 C7 CAPACITOR 500 MF 200 V 187A 705H12 C7 CAPACITOR 500 PF 3000V 2205026501 L102 POT CORE 6708133607 232805604 L103 FOT CORE</td> <td></td>	T4 TRANSFORMER 2928526503 R6 FIESISTOR 3K ± 5%, RW (2 REG) I8RA317H01 R7 RSISTOR 15%, D% I8RA317H01 IA 10%, 2W I87A642H55 GI LIGHTNING ARRESTER 877A16H01 I461C40624,066 COMPOIENT DESCRIPTION STYLE C1 CAPACITOR 56 MMF 50CV 763A203HB C2 CARCITOR 50 MMF 50CV 762A757H5 C4 CAPACITOR 390 MMF 50CV 187A 705H12 C4 CAPACITOR 2000 MMF 1200 V 187A 705H12 C7 CAPACITOR 500 MF 200 V 187A 705H12 C7 CAPACITOR 500 PT 200 V 187A 705H12 C7 CAPACITOR 500 MF 200 V 187A 705H12 C7 CAPACITOR 500 PF 3000V 2205026501 L102 POT CORE 6708133607 232805604 L103 FOT CORE	
T4 TRANSFORMER 2928326 R6 RESISTOR 3K ± 5%, BW (2 AEO) 188A317 R7 RESISTOR 3K ± 5%, BW (2 AEO) 188A317 R7 RESISTOR 3K ± 5%, BW (2 AEO) 187A642 J1 LIGHTNING ARRESTER 877A161 ILGHTNING OBSCRIPTION 5TTLE COMPONENT OSSCRIPTION 5TTLE C1 CARACITOR 360 MHF 500 V 1762A737 C2 CARCITOR 300 MHF 500 V 177A 584 C3 CAPACITOR 2500 MHF 500 V 187A 584 C4 CAPACITOR 2500 MHF 500 V 187A 1705 C5 CAPACITOR 1500 PF 300C V 203C872 LIO3 POT COME 6700 B133 1005 2528260 1<73	Component Discrete Component Discrete Component Component <thc< td=""><td>ZAG622455 R7 RESISTOR ISX 10% 2W I07AG642455 TAILGHOI GI LICHTNING ARRESTER 077AIIGHOI 077AIIGHOI IdiGLC400223,065 TTLE COMPONENT STTUE STTUE COMPONENT DESCRIPTION STTUE STTUE STTUE COMPONENT DESCRIPTION STTUE STAIGAN STAIGAN C2 CARACITOR SZO NMF 500V BEAD84HII C3 CAPACITOR SZO NMF 500V TESA209420 C4 CAPACITOR SZO NMF 200V 187A705403 C5 CAPACITOR SZO NMF 200V 187A705402 C3 CAPACITOR SZO SZOSCOV 187A705402 C4<td>T4 TRANSFORMER 2928526603 R6 FIESISTOR 3K ± 5%, RW (2 REG) IBRA317H01 R7 RSISTOR 15K 10%, 2W IBRA317H01 GI LICHTNING ARRESTER 877AIBH01 ILGE 0024,066 COMPOYEENT STYLE C1 CAPACITOR 56 MMF 50CV 763A209HB COMPOYEENT STYLE C1 CAPACITOR 56 MMF 50CV 763A209HB C2 CAPACITOR 50 MMF 50CV 763A209HB C3 CAPACITOR 50 MMF 50CV 763A209HB C4 CAPACITOR 2000 MMF 20CV 762A75HI5 C103 POT CORE 670B135G07</td><td></td></td></thc<>	ZAG622455 R7 RESISTOR ISX 10% 2W I07AG642455 TAILGHOI GI LICHTNING ARRESTER 077AIIGHOI 077AIIGHOI IdiGLC400223,065 TTLE COMPONENT STTUE STTUE COMPONENT DESCRIPTION STTUE STTUE STTUE COMPONENT DESCRIPTION STTUE STAIGAN STAIGAN C2 CARACITOR SZO NMF 500V BEAD84HII C3 CAPACITOR SZO NMF 500V TESA209420 C4 CAPACITOR SZO NMF 200V 187A705403 C5 CAPACITOR SZO NMF 200V 187A705402 C3 CAPACITOR SZO SZOSCOV 187A705402 C4 <td>T4 TRANSFORMER 2928526603 R6 FIESISTOR 3K ± 5%, RW (2 REG) IBRA317H01 R7 RSISTOR 15K 10%, 2W IBRA317H01 GI LICHTNING ARRESTER 877AIBH01 ILGE 0024,066 COMPOYEENT STYLE C1 CAPACITOR 56 MMF 50CV 763A209HB COMPOYEENT STYLE C1 CAPACITOR 56 MMF 50CV 763A209HB C2 CAPACITOR 50 MMF 50CV 763A209HB C3 CAPACITOR 50 MMF 50CV 763A209HB C4 CAPACITOR 2000 MMF 20CV 762A75HI5 C103 POT CORE 670B135G07</td> <td></td>	T4 TRANSFORMER 2928526603 R6 FIESISTOR 3K ± 5%, RW (2 REG) IBRA317H01 R7 RSISTOR 15K 10%, 2W IBRA317H01 GI LICHTNING ARRESTER 877AIBH01 ILGE 0024,066 COMPOYEENT STYLE C1 CAPACITOR 56 MMF 50CV 763A209HB COMPOYEENT STYLE C1 CAPACITOR 56 MMF 50CV 763A209HB C2 CAPACITOR 50 MMF 50CV 763A209HB C3 CAPACITOR 50 MMF 50CV 763A209HB C4 CAPACITOR 2000 MMF 20CV 762A75HI5 C103 POT CORE 670B135G07		
T4 TRANSFORMER 2928326 R6 RESISTOR 3K ± 5%, BW (2 MEO) 188A317 R7 RESISTOR 3K ± 5%, BW (2 MEO) 188A317 J1 LIGHTNING ARRESTER 877A161 I LIGHTNING ARRESTER 877A161 I LIGHTNING ARRESTER 877A161 I LIGHTNING ARRESTER 877A161 COMPONENT OSESCRIPTION STILE COMPONENT OSESCRIPTION STILE COMPONENT OSESCRIPTION STILE COMPONENT OSESCRIPTION STILE COMPONENT OSESCRIPTION COMPONENT STILE COMPONENT COMPONENT COMPONENT COMPONENT CONTORE GTO BIJS LIOS COL COSERT CONTORE COD BIJS LIOS POT CORE	Component Description ST 1 T4 TRANSFORMER 232 1 T4 TRANSFORMER 3x ² 5%, DW (2 RE0) (56, B7, RES) T07, BK, 10%, 2W 1 T6 RC7, RESISTOR BK, 10%, 2W 167, C 1 GL LIGHTNING ARRESTER B77 B77 1 GL LIGHTNING ARRESTER B77 1 GL CAMOTOR 200 MM 500 V B7 1 C. CAMPOTOR 200 MM 500 V B7 1 C. CAPACITOR 1000 MM F200 V B7 1 C. CAPACITOR 1000 PF 500 V 20 1 C. CAPACITOR 300 PF 500 V 20 1 C. CAPACITOR 300 PF 500 V 187 1 C. CAPACITOR 31 15, 10	ZAG422455 R7 RESISTOR ISX 10% 2W I07AG642455 TAILGHOI GI LICHTNING ARRESTER 077AIIGHOI 077AIIGHOI IdeiC40 623,065 ISDESCRIPTION STTLE COMPONENT DESCRIPTION STTLE COMPONENT DESCRIPTION STTLE COMPONENT DESCRIPTION STTLE SECAPACITOR 620 MHF 500 V 86/A044411 726347110 C1 CAPACITOR 620 MHF 500 V 187A059410 C3 CAPACITOR 620 MHF 500 V 187A059410 157A1725413 C3 CAPACITOR 8200 MHF 1200 V 187A705412 157A1725413 C3 CAPACITOR 1000 PF 5000 V 187A7054102 157A1725 C3 CAPACITOR 8200 MHF 1200 V 187A7054102 137A7054103 1370754102 1000 PF 500133607 1003 2203666004 137 TRAMSFORMER	T4 TRANSFORMER 2928526603 R6 FIESISTOR 3K ± 5%, RW (2 REG) IBRA317H01 R7 RSISTOR 15K 10%, 2W IBRA317H01 R7 RSISTOR 15K 10%, 2W IBRA317H01 ILCHTNING ARRESTER 677AIRH01 ILG 40624,066 COMPOYIENT 577LE C CARATOR 50 MMF 500 V 763A209HB C2 CARATOR 500 MMF 500 V 187A594HI C2 CARATOR 500 MMF 500 V 187A594HI C2 CARATOR 500 MMF 500 V 187A594HI C2 CARATOR		
T4 TRANSFORMER 2928326 R6 RESISTOR 3K 1 5%, BW (2 MED) 188A317 R7 RESISTOR 3K 1 5%, BW (2 MED) 187A624 JI LIGHTNING ARRESTER 877A161 COMPONENT DESCRIPTION 5TTLE CI CARACITOR 300 MMF 500 V 762A737 C3 CARACITOR 1500 MMF 500 V 762A737 C4 CARACITOR 1500 MMF 500 V 762A737 LIOS COL 252000 187A364 2708133 1003 COL LIOS COL 252000 187A364 2708133 1003 COL 22928061 T3 TRANSFORMER 22928061 2328326 174 186A3171 T3 TRANSFORMER 22928061	Component Description ST 1 T4 TRANSFORMER 232 1 R RESISTOR 3k ² 5%, BW (2 RE0) (E6, BY (2 RE0)) 1 GI LIGHTNING ARRESTER 877 1 GI CARACITOR 250 MMF 500 V 867 1 GI CARACITOR 250 MMF 500 V 867 1 GI CARACITOR 1500 PF 500 V 867 1 GI COMPONENT 1500 PF 500 V 87 1 GI LIGP FOT CORE 677 1103 674 1 GI LIGHTNING ARRESTER 87 874 1 GI LIGHTNING ARRESTER 87 1167	74642455 R7 R51STOR 15X 10%, 2W 1874642455 174116H01 GI LCHTNING ARRESTER 877416H01 L461C40023,055 TYLE, Stanson Stanson STLE STLE COMPONENT DSCRIPTION STTLE Stanson STLE COMPONENT DSCRIPTION STTLE Stanson STLE COMPONENT STLE COMPONENT STLE COMPONENT STLE COMPONENT STLE COMPONENT STLE STAND COMPONENT STLE STAND SCAPACTOR ROM MET SOCV RESUBSTOR STAND COLS CONSTANT SOCV RESUBSTOR STAND	T4 TAMSFORMER 2928526603 R6 FESISTOR 3K 1 5%, RW (2 REG) IBRA317H01 R7 RESISTOR 15% (2 REG) IBRA317H01 IA TARSFORMER 877AI6H01 IBRA317H01 IA STYLE GI LIGHTNING ARRESTER 877AI6H01 IA STYLE CI CAPACITOR 56 MMF 50CV T63A2020 HB C2 CARCITOR 50 MMF 50CV T62A757H5 C4 CAPACITOR 300 MMF 50CV T62A757H5 C6 CAPACITOR 300 MMF 50CV 167A 705H12 C7 CAPACITOR 300 MMF 50CV 167A 705H12 C4 CAPACITOR 3000 MF 50CV 762A757H5 C6 CAPACITOR 300 MF 50CV 762A757H5 C7 CAPACITOR 300 PF 3000V 20506501 L102 POT CORE 6708133607 292855603 L103 <t< td=""><td></td></t<>		

<u>1461C40</u>	G29,G71			4610 40 630,672			461C40G31,G73		<u>1</u>	461C40G32.G74	
COMPONENT DESCRIP		TYLE	COM PONENT	DESCRIPTION	STYLE 7634209H23		DESCRIPTION	STYLE	CONPONENT	DESCRIPTION	STYLE
CI CAPACITOR IBO MI CZ CAPACITOR 200 MI C3 CAPACITOR 200 MI	MF 500 V 76	2A757HIO 2A757HII 52A757HII	C1 CAPACITOR C2 CAPACITOR C3 CAPACITOR	82 MMF 500V 250 MMF 500V 390 MMF 500V	763A209H23 86IA846HII 762A757HI5	CI CAPACITOR	300 MMF 500V	187A584H09 86IA846H 25	C2 CAPACITOR C2 CAPACITOR C3 CAPACITOR	20 MMF500V 250 MMF500V 130 MMF500V	763A209H07 86IA846HII 762A757H07
C4 CAPACITOR 250 M	MF 500 V 86	51AB46HI	C5 CAPACITOR	400 MMF 1200 V	137 A 705 HOB	C4 CAPACITOR C5 CAPACITOR	200 MMF 50CV 200 MMF 1200 V	762A757HII 187A705H04	C4 CAPACITOR	180 MMF 500 V	762A757HIO
C7 CAPACITOR 900 P	F 3000V 20	030872406	C6 CAPACITOR C7 CAPACITOR	1000 MMF 1200 V 750 PF 3000V	137A705H0 203C872H04	C6 CAPACITOR C7 CAPACITOR	000 MMF 120() V 650 PF 3000V	187A705H10 203C872H02	C6 CAPACITOR C7 CAPACITOR	1000 MMF 1200 V 600 PF 3003V	187A705HIO 203C872H02
LIO2 POT CORE LIO3 POT CORE LIO5 COIL	67 29	708133605 708133607 928086301	LIO2 POT CORE LIO3 POT CORE LIO5 COIL		6708133G05 6708133G07 2928086G01	LIO2 POT CORE LIO3 POT CORE LIO5 COIL		6708133605 6708133607 2928086601	LIO2 POT CORE LIO3 POT CORE LIO5 COIL		6708133605 6708133607 2928086601
T3 TRANSFORMER T4 TRANSFORMER		928526604 928526603	T3 TRANSFORMER T4 TRANSFORMER		29285266C4 2928526G03	T3 TRANSFORMER T4 TRANSFORMER		2928526604 2928526603	T3 TRANSFORMER T4 TRANSFORMER	•	2928526G04 2928526G03
R6 RESISTOR 3K159 R7 RESISTOR 15K	V. BW (2 REQ) 18 0% 2W 16	6A317H01 7A642H55	R6 RESISTOR R7 RESISTOR	3K ± 5% BW (2 REO) ISK 10% 2W	188A317H01 187A642H55	R6 RESISTOR R7 RESISTOR	3K \$ 5% UW (2 REQ) 15K 10% 2W	186A317H01 187A642H55	R6 RESISTOR R7 RESISTOR	3K ± 5% {IW (2 REO) I5K I0% 2W	188A317H01 187A642H55
GI LIGHTNING ARRESTER		77AII6H0:	GI LIGHTNING ARE	· · · · · · · · · · · · · · · · · · ·	877A116H01	GI LIGHTNING AR		877AII6H01	GI LIGHTNING ARE		677AII6H0I
COMPONENT DESCRIPT				461C 40G34.G76	ETVI E		461C 40 G35.G77 DESCRIPTION	STYLE		DESCRIPTION	STYLE
CI CAPACITOR MM	AF 500V 763	<u>YLE</u> 3A209HI9			STYLE_	COMPONENT CI CAPACITOR	MMF 500V	86IA846H25	CI CAPACITOR	MMF 500V	763A209H20
C3 CAPACITOR MM	AF 500V 762	2A757HI2 2A757HI1	C2 CAPACITOR C3 CAPACITOR	MMF 500V MMF 500V MMF 500V	187A584H09 762A757HII 763A209H07	C2 CAPACITOR C3 CAPACITOR	MMF 500V MMF 500V	861A846H25 861A846H25 763A209H19	C2 CAPACITOR C3 CAPACITOR C4 CAPACITOR		762A757HII 763A209H20 762A757H07
C5 CAPACITOR MN	AF 1200 V 187	A 209H12 A 705H04	C4 CAPACITOR C5 CAPACITOR C6 CAPACITOR	MMF 200V MMF 200V MMF 200 V	763A209H07 187A705H04 187A705H09	C4 CAPACITOR C5 CAPACITOR C6 CAPACITOR	MMF 500V MMF1200 V MMF1200 V	763A209H19 187A705H08 187A705H04	C5 CAPACITOR	MMF 1200 V MMF 1200 V	187A705H08 187A705H04
		3C872H09	C7 CAPACITOR	PF 3000V	203C872H09	C7 CAPACITOR	PF 3000V	203C872H08	C7 CAPACITOR	PF 3000 V	203C872H08
LIO2 POT CORE LIO3 POT CORE LIO5 POT CORE	670 670 670	08133609 08133608 08133609	LIO2 POT CORE LIO3 POT CORE LIO5 POT CORE		6708133609 6708133603 6708133609	LIO2 POT CORE LIO3 POT CORE LIO5 POT CORE		6708133609 6708133608 6708133609	LIO2 POT CORE LIO3 POT CORE LIO5 POT CORE		6708133609 6708133608 6708133609
T3 TRANSFORMER T4 TRANSFORMER	292 292	28526GO4 28526GO3	13 TRANSFORMER T4 TRANSFORMER		2928526604 2928526603	T3 TRANSFORMER T4 TRANSFORMER		2928526G04 2928526G03	T3 TRANSFORMER T4 TRANSFORMEF:		2928526604 2928526603
R6 RESISTOR 3K±5% R7 RESISTOR I5K I0		A317HOI A642H55	R6 RESISTOR R7 RESISTOR	3K ± 5% 3W (2 REQ) I5K IO% 2W	188A317HOI 187A642H55	R6 RESISTOR R7 RESISTOR	3K ± 5% 8W (2 REQ) 15K 10% 2W	188A317HOI 187A642H55	R6 RESISTOR R7 RESISTOR	3K ± 5% BN (2 REQ) 15K 10% 2V/	188A317H01 187A642H55
GI LIGHTNING ARRESTER	877	7AIISHOI	GI LIGHTNING ARR	ESTER	B77AIISHOI	GI LIGHTNING AR	RESTER	8774.IIGH0I	GI LIGHTNING ARR	ESTER	877AIIGHOI
1461C40G	37,679		14	461C40G38,GB0		<u> </u>	461C40G39.GBI		<u></u>	461C 40 G40, GB2	
COMPONENT DESCRIPT		YLE	COMPONENT	DESCRIPTION	STYLE	COMPONENT	DESCRIPTION	STYLE	COMPONENT	DESCRIPTION	STYLE
C2 CAPACITOR MM C3 CAPACITOR MM		A846HII A846H25	CI CAPACITOR C2 CAFACITOR C3 CAPACITOR	MMF 500'v	763A209HI2 762A757HII 762A757H07	CI CAPACITOR C2 CAPACITOR C3 CAPACITOR	MMF 500V MMF 500V MMF 500V	763A209HI9 B6IA846H25 763A209H20	C2 CAPACITOR C3 CAPACITOR	MMF 500V MMF 500V MMF 500V	763A209HA 86IA846H25 762A757H0I
C4 CAPACITOR MM	AF 500V 763	A209H07	C4 CAPACITOR	MMF 500V	763A209HI2	C4 CAPACITOR C5 CAPACITOR	MMF 500V MMF 1200 V	763A2.09H23 187A705H08	C4 CAPACITOR C5 CAPACITOR	MMF 500V MMF 1200 V	763A209H12 187A705H08
C7 CAPACITOR PF	3000v 203	A705H09 3CB72H07	C6 CAPACITOR C7 CAPACITOR	MMF1200V PF 3000V	187A705H09 203C872H06	C7 CAPACITOR	PF 3000V	203C872H05	C7 CAPACITOR	PF 3000V	203C872H03
LIO2 POT CORE LIO3 POT CORE LIO5 POT CORE		08133609 08133608 08133609	LIO2 POT CORE LIO3 POT CORE LIO5 POT CORE		670BI33G09 670BI33G09 670BI33G09	LIO2 POT CORE LIO3 POT CORE LIO5 POT CORE		6708133609 6708133608 6708133609	LIO2 POT CORE LIO3 POT CORE LIO5 POT CORE		6708133608 6708133609
T3 TRANSFORMER T4 TRANSFORMER		28526G04 28526G03	T3 TRANSFORMER T4 TRANSFORMER		2928526G04 2928526G03	T3 TRANSFORMER T4 TRANSFORMER		2928526G04 2928526G03	T3 TRANSFORMER T4 TRANSFORMER		2928526GC4 2928526GO3
R6 RESISTOR 3K±5% R7 RESISTOR 15K 10		A317HOI A642H55	R6 RESISTOR R7 RESISTOR	3K ± 5% BW (2 REQ) 15K 10% 2W	188A317+:01 187A642H55	R6 RESISTOR R7 RESISTOR	3K ± 5% BW (2 REQ) 15K 10% 2W	188A317HOI 187A642H55	R6 RESISTOR R7 RESISTOR	3K \$ 5% BW (2 REQ) 15K 10% 2W	188A317H01 187A642H55
GI LIGHTNING ARRESTER	877	7AU6H01	GI LIGHTNING ARR	ESTER	877AIIGHOI	GI LIGHTNING AR	RESTER	877A116H01	GI LIGHTNING ARE	RESTER	877AII6HOI
			-	1461C40 G41.G83		-	461040642.684				
		[DESCRIPTION MMF 500V	STYLE	COMPONENT	DESCRIPTION	STYLE			
			CI CAPACITOR C2 CAPACITOR C3 CAPACITOR	MMF 500V MMF 500 V	763A209H07 86IA846H25 762A757H01	C2 CAPACITOR C3 CAPACITOR	MMF 500V MMF 500V	86IA846H25 763A209H23			
			C4 CAPACITOR C5 CAPACITOR	MMF 500 V MMF 1200 V	763A209H07 187A705H08	C4 CAPACITOR C5 CAPACITOR	MMF 500 V MMF1200 V	763A209HI2 187A705H08			
			C7 CAPACITOR	PF 3000V	203C872H02	C7 CAPACITOR	PF 3000V	2030872H01			
			LIO2 POT CORE LIO3 POT CORE LIO5 POT CORE	Y U	6708133609 6708133608 6708133609	LIO2 POT CORE LIO3 POT CORE LIO5 POT CORE		6708133609 6708133608 6708133609			
			T3 TRANSFORMER		2928526G04 2928526G03	T3 TRANSFORMER		2928526G04 2928526G03			
			R6 RESISTOR	3K \$ 5% BW (2 REO)		R6 RESISTOR	3K \$ 5% BW (2 REQ)	188A317HOI			
			R7 RESISTOR	15K 107. 2W	187A642H55 877A116H01	R7 RESISTOR	15K 10% 2W	187A642H55 877AII6H01			



CORAL SPRINGS, FL.

Printed in U.S.A.

. Alexandra

CAUTION

It is recommended that the user of this equipment become acquainted with the information in this instruction leaflet, and in the system instruction leaflet before energizing the system.

Printed circuit modules should not be removed or inserted when the equipment is energized. Failure to observe this precaution may result in an undesired tripping output or cause component damage. Care should also be exercised when replacing modules to assure that they are replaced in the same chassis position from which they either were removed or the module they are replacing was removed.

If the carrier set is mounted in a cabinet, it must be bolted down to the floor or otherwise secured before swinging out the equipment rack to prevent its tipping over.

APPLICATION

The TCF-10 Receiver described is for use with either the SPCU or SKBU Dual Phase Comparison relaying systems or similar systems utilizing frequency-shift keying (FSK). The TCF-10 frequency shift receiver responds to carrierfrequency signals transmitted from the distant end of a power line, and carried on the power line conductors. The space frequency (sometimes referred to as trip negative) is 100 hertz above the center frequency of the channel (which can be selected within the range of 30 kHz to 300 kHz). The mark frequency (sometimes referred to as trip positive) is 100 hertz below the channel center frequency. Generally, phase comparison information is conveyed over the channel during load current flow or fault conditions. The transmitter at each end of the channel is switched at a 60-hertz rate between space (or trip negative) and mark (or trip positive) so as to produce at the receiving end, the desired operation of the relaying system.

CONSTRUCTION

The TCF-10 receiver unit for dual phase comparison

relaying applications such as the SPCU or SKBU systems, is mounted on a standard 19 inch wide chassis 5¼ inches high (3 rack units) with edge slots for mounting on a standard relay rack.

All of the circuitry that is suitable for mounting on printed circuit boards is contained on printed circuit modules that plug into the chassis from the front and are readily accessible by removing the transparent cover on the front of the chassis. The power supply components and external connectors are located at the rear of the chassis as shown in Figure 9. Reference to the internal schematic connections of Figure 1 will show the location of these components in the circuit.

The printed circuit modules slide into position in slotted guides at the top and bottom of the chassis, and the module terminals engage a terminal block at the rear of the chassis. A handle on the front of each module is labeled to identify its function, and also identify adjustments and indicating lights if any are available at the front of the module. Of particular significance, is the input attentuator contained on the front of the filter module which is used in adjusting the input receiver signal during initial field installation.

A module extender (Style No. 1447C86G01) is available for facilitating circuit measurements or major adjustments. After withdrawing any one of the circuit modules, the extender is inserted in that position. The module is then inserted into the terminal block on the front of the extender. This restores all circuit connections and renders all components and test points on the module readily accessible. A carrier level indicator instrument, Style No. 606B592A26, with a linear dB scale is also available.

The receiver operates from a regulated +20V supply and a +10V supply operating from a regulated +45dc supply. These voltages are taken from three zener diodes mounted on a common heat sink. Variation of the resistance value between the positive side of the unregulated dc supply, and the

All possible contingencies which may arise during installation, operation, or maintenance, and all details and variations of this equipment do not purport to be covered by these instructions. If further information is desired by purchaser regarding his particular installation, operation or maintenance of his equipment, the local Westinghouse Electric Corporation representative should be contacted.

45 volt zener adapt the receiver for operation on 48 or 125 volts dc.

External connections to the receiver are made through a 36 terminal recepticle, J3. The r-f input connection to the receiver is made through a coaxial cable jack J2.

OPERATION

INPUT MODULE

The input module contains the input control and the input filter. The signals to which the TCF-10 receiver responds are fed through a coaxial cable connected to jack J2 at the rear of the chassis to the input module. The input control R5, accessible at the front of the input module, attentuates the signal to a level suitable for the best operating range of the receiver.

A scale on the panel is graduated in dB. While this scale is typical rather than individually calibrated, it is accurate within several dB and is useful in setting approximate levels. Settings should be made more accurately utilizing a suitable ac voltmeter with a dB scale when possible.

From the attentuator, the signal passes through a bandpass LC filter, FL 201. This filter has a passband of approximately 1600Hz which is relatively wide in comparison to the IF filter which has a passband of approximately 500Hz. Still, frequencies several kHz above or below the center frequency (f_c) of the channel are greatly attentuated. Figure 15 shows a typical curve for the LC filter as well as a characteristics curve for the IF (intermediate frequency) filter, FL2, and the discriminator output. This apparently wide bandwidth for the input filter in relation to the IF filter is necessary to both achieve high speed relaying by minimizing channel delay and to achieve proper operation of the noise clamp by sampling noise in the frequency band surrounding the LF band.

OSCILLATOR, MIXER, AND IF AMPLIFIER MODULE

From the input filter, the signal enters the oscillator and mixer stage of the receiver. Crystal Y11, transistors Q12 and Q13, and their associated resistors and capacitors, comprise a crystal-controlled oscillator that operates at a frequency 20kHz above the channel center frequency, f_c . The output from this local oscillator is fed through transformer T11 to potentiometer R12, and the latter is adjusted to feed a suitable input to the base of mixer transistor Q11. The output of filter FL201 is impressed on the emitter-collector circuit of Q11. As a result of mixing these two frequencies, the primary of transformer T12 will contain frequencies of 20kHz, $2f_c + 20$ kHz, $f_c + 20$ kHz, and f_c .

The output from the secondary of T12 is amplified by Q31 in the intermediate frequency (IF) stage, and is impressed on FL2. This is a two-section filter, with both filters contained in a common case. Its pass band is centered at 20kHz. Since its pass band is narrower than that of the input filter, it eliminates the frequencies present at its input that are substantially higher than 20kHz. The output of this filter is the IF output which is fed to both the amplifier-limiter and the S/N Detection module. The output from the secondary of transformer T12, the RF output, is also fed to the S/N detection module.

AMPLIFIER LIMITER AND DISCRIMINATOR MODULE

The IF output signal from the IF amplifier is fed into the amplifier limiter through potentiometer R52 at the input of the amplifier limiter stage. Sufficient input is taken from R52 so that with minimum input signal (5 mv.) at J2 and with input control R5 set for zero attentuation, satisfactory amplitude limiting will be obtained at the output of the limiter stage.

The output of the limiter stage is fed to the discriminator. The discriminator is adjusted at the factory to have zero output (as measured by a milliammeter inserted in the circuit at jack J1) at the channel center frequency, f_c . The adjustment for zero output at f_c is made by capacitor C68. In addition, C63 is adjusted for maximum voltage reading across R80 when the output current is zero. Maximum current output, of opposite polarities, will be obtained when the frequency is 100 hertz above or below the zero current output frequency. This separation of 200 hertz between the current peaks is affected by the value of C66 (the actual value of which may be changed slightly from its typical value in factory calibration if required).

It should be observed that although the space frequency is $f_c + 100$ hertz, after leaving the mixer stage, and as seen by the discriminator, the space frequency is 20kHz-100 hertz. Similarly the mark frequency as seen by the discriminator is 20kHz + 100 hertz. The intermediate frequency at which the discriminator has zero output then is 20kHz. The discriminator is adjusted so that the mark and space outputs are of equal lengths for equal periods of mark and space signal frequencies.

The discriminator output is connected to the bases of transistors Q55 and Q56 in such a manner that transistor Q56 is made conductive when current flows, from the discriminator output, in the forward direction of diode D54, (which occurs with mark output) and Q55 is made conductive when current flows in the forward direction of diode D55 (which occurs with space output.) Consequently, terminal 35 is at a potential of approximately +20 volts at space frequency and terminal 1 is at +20 volts at mark frequency.

S/N DETECTION MODULE

The S/N detection module has three basic functions; first

TYPE TCF-10 RECEIVER

to determine the in-band signal-to-noise ratio and provide clamping output at the desired level of signal-to-noise ratio, second to measure incoming in-band signal level and provide both an output to a carrier level indicating instrument and to a clamping circuit in the output module for clamping at the desired low level of signal, and third to provide a clamping output when the desired signal level exceeds the normal received level by a substantial amount, typically 25dB.

The method of determining signal-to-noise ratio utilizes the measurement of signal level in two different bandwidths, that of the input filter which is 1600 hertz, and that of the IF filter which is 500 hertz. The total signal plus noise in the 500 hertz bandwidth is subtracted from the signal plus noise in the 1600 hertz bandwidth and this difference is then compared with the signal plus noise in the 500 hertz bandwidth to arrive at a true in-band signal-to-noise ratio using logarithmic circuits. See Figure 21.

If the ratio of signal to noise is less than the value selected, typically 10, then there will be a +16V out of IC13 (TP75 and terminal 27). This is a high noise condition and this voltage is used as a clamp to prevent erroneous interpretation of data being received due to high noise conditions. Under normal low noise conditions, typically signal-to-noise ratio greater than 10, the voltage out of IC13 (TP75) is +4V and no clamping is done.

The wide band signal of 1600 hertz bandwidth called the RF signal is fed into the S/N detection board through isolation transformer T31. Operational amplifiers IC1 and IC2 along with their associated components, R82 through R92 and C81 through C90, constitute a 4-pole low-pass filter which passes the mixed band of frequencies in the bandwidth of 1600 Hz centered about the 20kHz I.F. frequency, and blocks all the higher multiples such as in the LF. amplifier. Operational amplifier IC3 and associated components amplifies the signal for feeding into the rms circuit composed of IC4 and IC5 with adjustable potentiometer R94 controlling the amount of amplification. This latter circuit converts the signals into a dc voltage proportional to the rms value of the ac signals. Operational amplifier IC6A and associated components is used for inversion and isolation of this dc voltage before being fed into the summation amplifier IC6B.

The narrow-band signal of 500 hertz bandwidth called the I.F. is fed into the S/N detection board through isolation transformer T32. The amount of signal fed into the board is adjustable by means of potentiometer R111. The circuit composed of operational amplifiers IC7 and IC8 and associated components is an rms circuit which converts the signals into a de voltage proportional to the rms value of the ac signals present in the IF bandwidth. The output of this circuit is also then fed into the summation amplifier IC6B.

The summation amplifier takes the difference between the rms values of the IF signal and the RF signal and feeds it into one half of the logarithmic amplifier composed of IC9 and associated components. At the same time, the rms value of the IF signal is fed into the other half of this logarithmic amplifier. The logarithmic amplifier takes the logarithmic difference between these two signals (which is equivalent to IF divided by [RF-IF] from the summer). The constants of the circuits are set up so that the output of the logarithmic amplifier is positive when the ratio of the signal to noise ratio in these bandwidths is greater than 10dB, and is negative when the signal to noise ratio is less than 10dB. (Note: The point at which the change in polarity occurs can be altered to other than 10dB signal to noise ratio by altering the adjustments of R94 and R111). In addition, the output of the logarithmic amplifier is also negative when the signal level is approximately 25dB above normal for high-level clamping.

The output of the logarithmic amplifier is fed through networks consisting of IC10A and IC13A to the level detector circuit IC13B which has a fast pickup and slow dropout when it receives a signal from the logarithmic amplifier indicating a lower than desired signal-to-noise ratio (lower than 10dB is initially set when shipped). This will put out a +16 volts out of terminal 27 for this condition. For high signal-to-noise ratio this output will be +4 volts. This circuit will also put out +16 volts out of terminal 27 for very high signal levels. This is a high signal clamp and occurs for signal levels approximately plus 25dB above normal received level.

The output of the IF rms circuit is also fed to the logarithmic circuit composed of IC11A, IC12A, and IC11B which puts out a dc signal level linearly proportional to signal level in dB for feeding an external microammeter calibrated with a linear dB scale with 10dB equal to 33-1/3 microamperes.

OUTPUT MODULE

The output module provides four buffered outputs to the relaying system. They are mark (or trip positive), space (or trip negative), S/N level. and "not low signal" with red indicating light emitting diodes for these outputs and a yellow indicating light emitting diode for normal level (satisfactory signal level). In addition, the output module has logic which will prevent either a mark or space output whenever the S/N level drops to an unsatisfactory level.

The space output of plus 20 volts (when present) from the discriminator is fed into the output module through terminal 25 into the "and" gate consisting of diodes D71, D72, D73, and D74, transistors Q62 and Q63, and associated com-

fixed by the crystal used, except that it may be changed a few hertz by the value of capacitor of C12. Reducing C12 increases the frequency, but the capacity should never be less than a value that assures reliable starting of oscillation. The frequency at room temperature is usually several hertz above the crystal nominal frequency as this reduces the frequency deviation at the temperature extremes.

The adjustment of the amplifier and limiter is made by potentiometer R52. An oscilloscope should be connected from TP56 at the base of Q54 to terminal 33 of the limiter. With 16 millivolts of space frequency on the receiver input (R5 set at zero), R52 should be adjusted to the point where the peaks of the oscilloscope trace begin to flatten. This should appear on the upper and lower peaks at approximately the same setting. (For greater sensitivity when required, the receiver can be set to 5 millivolts for beginning of limiting. However this makes the receiver more susceptible to locally generated noise within the cabinet and should not be used unless absolutely necessary and chassis is located in a noise free area.)

The adjustment of the signal-to-noise ratio clamp for clamping at 10dB signal-to-noise ratio is as follows:

- Set the incoming signal into receiver at nominal level (90 mv. for 16 mv normal clipping level; 28mv. for 5 mv maximum sensitivity level).
- Adjust I.F. input with R111 so that signal at TP68 of the S/N detector module is +100 mv dc (with respect to TP62).
- 3. Adjust RF input with R94 so that signal at TP63 is +145 mv dc (with respect to TP62).
- 4. Adjust log amplifier balance potentiometer R129 so that S/N clamps operates. This will be +6 volts dc at TP75 to TP62. This will also appear as +12 volts at TP91 of the output board with respect to board terminal 3, and the red S/N level indicator will light.
- 5. Go back and readjust RF input with R94 so that signal level at TP63 is now 74.4 mv dc. (with respect to TP62).

The adjustments above are for operation of the clamp at 10dB or less signal-to-noise ratios. If it is desired to clamp at other than 10dB or less, the following values can be used in place of the 145 mv value in step 3.

For S/N of 0dB set TP63 to 297mv. 5dB set TP63 to 200mv.

15dB set TP63 to 114mv.

20dB set TP63 to 97mv.

Note: When the SNR clamp is set to clamp at a 10dB signal-

to-noise ratio, the receiver will also clamp at a high signal level of approximately 25dB above normal.

The low signal level clamp is set to operate at the signal level where the receiver just drops out of limiting. This is accomplished as follows:

- With a normal space frequency signal being received and with an oscilloscope connected across TP56 and terminal 33 of the limiter module, adjust input attenuator R5 to the point where the peaks of the oscilloscope trace just begin to flatten. (An alternate adjustment would be to set incoming signal level into receiver at 16mv with R5 set at zero which is the point at which limiting should begin).
- Ad just the low-level (LL) adjustment R178 on the output module panel so that the low level clamp just picks up. This will be indicated by the red low level light on the output module coming on. There also will be +12 volts at TP86 on the output module.
- Adjust input attenuator R5 to increase signal into receiver by desired margin of operation. This normally should be 15dB. This is done by reducing the R5 attenuator setting.

MAINTENANCE

Periodic checks of the received carrier signal level and the receiver sentitivity will detect gradual deterioration and permit its correction before failure can result. The carrier level indicator, when provided, permits ready observation of the received signal level. With or without a carrier level indicator, an overall check can be made with the attenuation control, R5. A change in operating margin from the original setting can be detected by observing the change in the dial setting required to cause a low signal level clamp to operate as indicated by the red LED becoming lit. If there is a substantial reduction in margin, the signal voltage at the receiver input should be checked to see whether the reduction is due to loss of signal level or loss in receiver sensitivity.

All adjustable components for normal field adjustments on the printed circuit modules are accessible when the front cover on the chassis is removed. All other adjustable components on the printed circuit modules may be made entirely accessible while permitting electrical operation by using module extender style number 1447C86G01. This permits attaching instrument leads to the various test points of terminals where making voltage, oscilloscope or frequency checks.

TABLE I RECEIVER D-C MEASUREMENTS

NOTE: All voltage readings taken with ground of dc VTVM on terminal 17 (negative dc). Receiver adjusted for 15dB operating margin with Space and Mark signals down 40dB from 1 watt or 50dB down from 10 watts. Unless indicated otherwise, voltage will not vary appreciably whether signal is mark, space or zero.

Collector of Transistor or Test Point	Voltage (Positive)
Q11	15
Q12 (TP12)	17 (Mark or Space)
Q13 (TP13)	17 (Mark or Space)
Q14 (TP14)	3
Q15 (TP15)	3
TP11	22
TP52	19
Q51 (TP51)	14
Q52 (TP53)	14.5
Q53 (TP54)	18
Q54 (TP55	3
TP56	19
Q55	l (Lower Freq. or No Signal
Q55	23 (Higher Freq.)
Q56	23 (Lower Freq.)
Q56	l (Higher Freq. or No Signa

NOTE: The following readings are taken with the negative of dc VTVM on terminal 3 (common of dc power supply) of either the S/N detection module or the output module.

	TP61	+4
	TP62	0
	TP63	+ 0.4
	TP64	+ 6
	TP65	-12
	TP66	0
	TP67	+ 0.5
	TP68	+ 0.5
	TP70	- 6
	TP71	+ 6
	TP72	+ 1.5
	TP73	+ 0.8
	TP74	+ 0.3
	TP81	+ 12 (Higher Frequency)
	TP81	- 12 (Lower Freq. or No
		Signal)
	TP82	+ 12 (Lower Frequency)
	TP82	 – 12 (Higher Freq. or No
	2	Signal)
	TP83	+ 12 (Higher Frequency)
	TP83	- 12 (Lower Freq. or No
		Signal)
-	TP84	+ 12 (Lower Frequency)

ZN

I.L. 41-945.61

RECEIVER RF MEASUREMENTS

TP84

TP85

TP86

TP86

TP87

TP87

TP88

TP89 TP90

TP90

NOTE: Voltmeter readings taken at any point from receiver input to stage involving transistor Q15 are neither meaningful or feasible because of either waveform variations or the effect of instrument loading on the readings. Receiver adjusted as Table I.

C	ollector of Transistor or Test Point	Volts with Signal At + 10dB Above Normal Level
	Q15 (TP15)	0.8
	Q51 (TP51)	0.9
	Q52 (TP53)	0.65
	Q53 (TP54)	2.2
	Q54 (TP55)	4.5
	TP61	.013
	TP67	.275

FILTER RESPONSE MEASUREMENTS

The LC input filter (FL201) and the IF Filter (FL2) are in sealed containers, and repairs can only be made by the factory. The stability of the original response characteristics is such that in normal usage, no appreciable change in response will occur. However, the test circuits of Figure 16 can be used in case there is reason to suspect that either of the filters is not performing correctly.

Figure 15 shows the -3dB and -35dB checkpoints for the IF filter, and the -3dB checkpoints for the input filter. The response curve of the IF filter shows the combined effect of the two sections, and was obtained by adding the attenuation of each section for identical frequencies. The scale of Figure 15 was chosen to show the IF filter response, which permitted only a portion of the input filter curve to be shown. The checkpoints for the passband of each section of each section of the IF filter are down 3dB maximum at 19.75 and 20.25k Hz, and for the stop band are down 18dB minimum at 19.00 and 21.00k Hz for each section. The signal generator voltage (Figure 16) must be held constant throughout the entire check. A value of 7.8 volts is suitable. The reading of VM2 at the frequency of minimum attenuation should not be

TYPE TCF-10 RECEIVER

more than 22dB below the reading of VM1. It should be noted that a limit measured in this manner is for convenience only, and does not indicate actual insertion loss of the filter. The insertion loss would be approximately 16dB less than the measured difference because of the input resistance and the difference in input and output impedances of the filter.

In testing the LC filter, a value of approximately 2.45V is suitable for the constant voltage at which to hold VM1 throughout the check. The reading of VM2 at the frequency of minimum attenuation will vary somewhat with the channel frequency, but should not be more than 18dB below the reading of VM1. (The filter insertion loss is approximately 6dB less than the difference in readings).

CONVERSION OF RECEIVER FOR CHANGED CHANNEL FREQUENCY.

The parts required for converting a TCF receiver for operating at a different channel frequency consist of a new LC input filter (FL201), a new local oscillator crystal (Y11) and probably a different feedback capacitor (C12). There are two ways of effecting this change. The easiest and preferred method is to order a new input filter module and a new oscillator mixer module for the new frequencies from the factory. The new modules would then just have to be plugged in as replacements for the original modules. The second method would involve ordering just replacement filter, FL201, and new local oscillator crystal for the new frequencies and making the substitution on the modules. These substitutions on the modules are not difficult as the crystal plugs in and the filter has five leads to be soldered. However, testing of the local oscillator for easy starting will have to be made, and the value of C12 chosen to assure this easy starting of oscillation. The whole receiver should then be checked out for correct performance.

RECOMMENDED TEST EQUIPMENT

1. Minimum Test Equipment for Installation

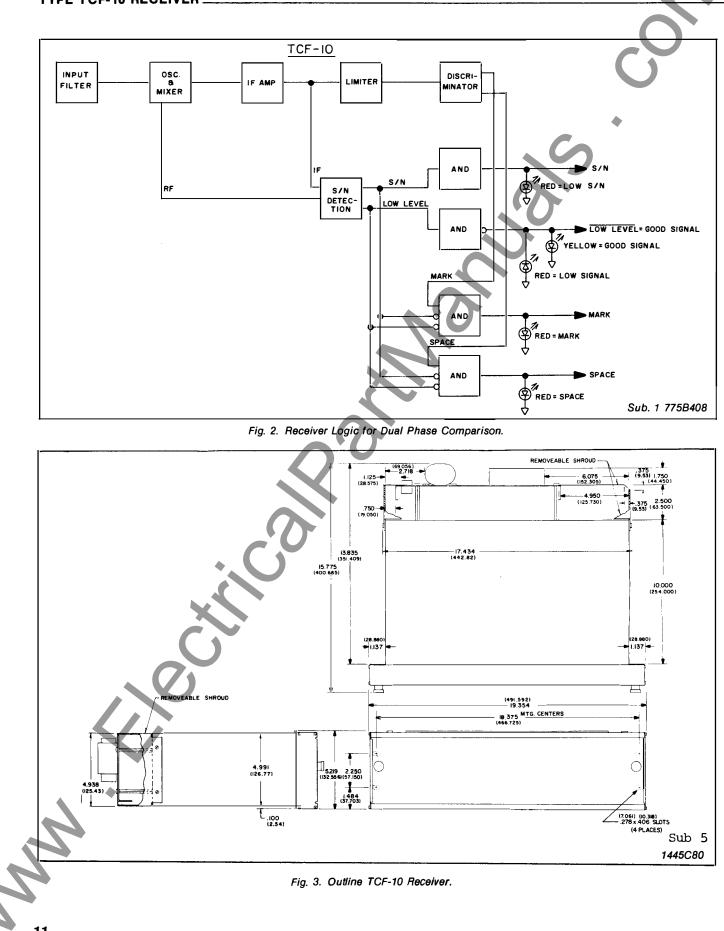
a. A-C vacuum Tube Voltmeter (VTVM). Voltage range

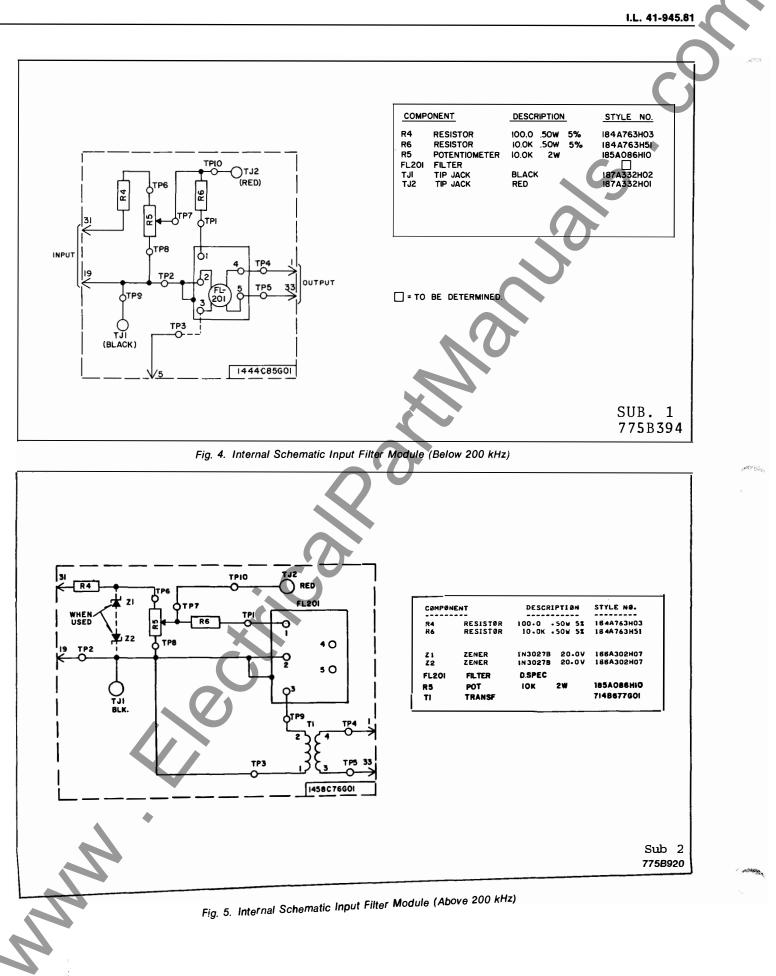
0.003 to 30 volts, frequency range 60Hz to 330kHz, in put impedance 7.5 megohms.

- b. D-C Vacuum Tube Voltmeter (VTVM). Voltage Range: 1.5 to 300 volts Input Impedance: 7.5 megohms
- c. CLI Microammeter, range 0-100 µ A, style number 606B592A26, (if receiver has carrier level indicator)
- II. DESIRABLE TEST EQUIPMENT FOR APPARATUS MAINTENANCE
 - a. All items listed in I
 - b. Signal Generator Output Voltage: Frequency Range:
- up to 8 volts 20kHz to 330kHz
- c. Oscilloscope
- d. Frequency counter

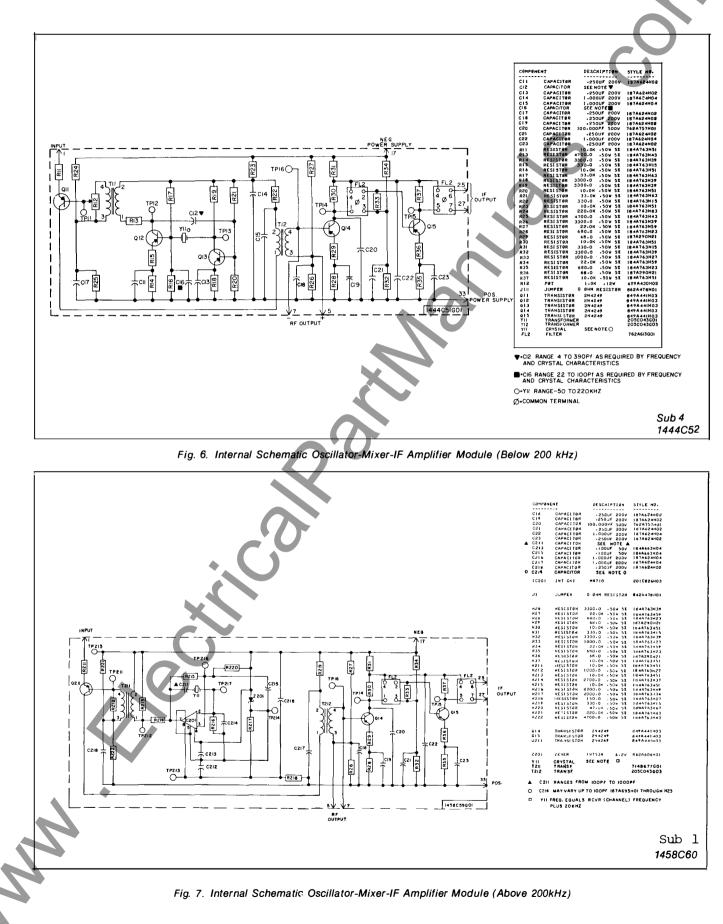
e. Ohmmeter

Capacitor checker

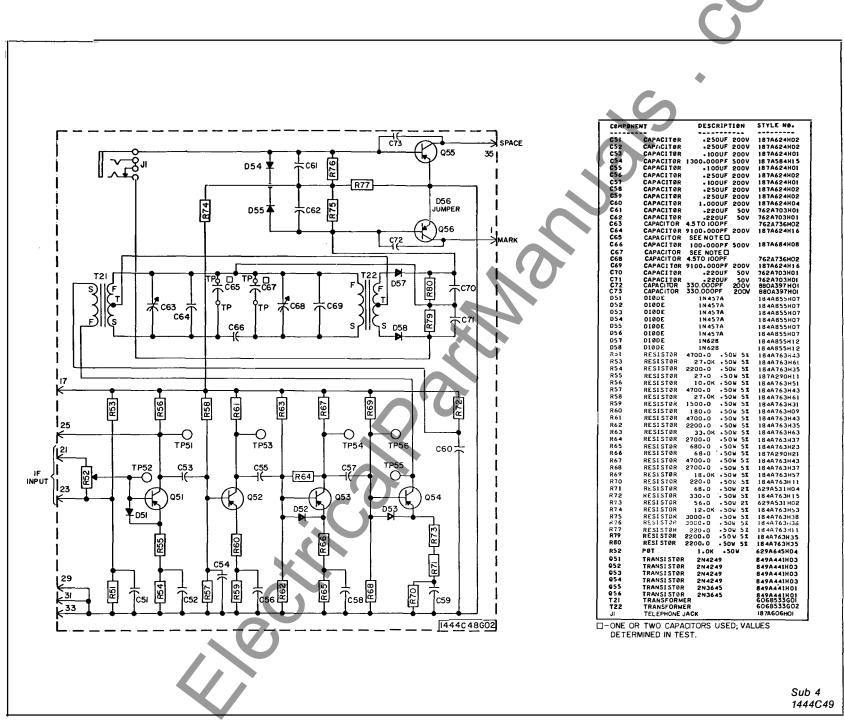

Milliammeter, 0-1.5 or preferably 1.5-0-1.5


Some of the functions of the recommended test equipment are combined in the type TCT carrier test meter unit which is designed to mount on a standard 19" rack but also can be removed and used as a portable unit.

RENEWAL PARTS


Repair work can be done most satisfactorily at the factory. However, replacement parts can be furnished, in most cases, to customers who are equipped for doing repair work. When ordering parts, always give the complete nameplate data, the electrical value, style number, and identify the part by its designation on the Internal Schematic drawing.

TYPE TCF-10 RECEIVER



I.L. 41-945.61

TYPE TCF-10 RECEIVER

TYPE TCF-10 RECEIVER.

	COMPONENT DESCRIPTION STYLE NO.
	R81 RESISTOR 1000.0 .50% 12 8484819148
	R82 RESISTØR 2210+0 +50% 1% 848A319H81 R83 RESISTØR 10+2K +25% 1% 848A320H46
	R84 RESISTOR 10.0K .25% 12 848A820H45 R85 RESISTØR 56.2K .25% 12 848A821H18
	R86 RESISTOR 10.0K .50M 12 848A820H45
	R88 RESISTOR 10.28 .25% 12 848A320H46
	R89 RESISTOR 10.0K 25W 12 848A320H45 R90 RESISTOR 82.5K 50W 12 848A821H34
	R91 RESISTOR 10.0K .50% 12 848A320H45 R92 RESISTOR 6190.0 .50% 12 848A320H25
	R93 RESISTOR 4990.0 .50W 12 8484820H16
	R95 RESISTOR 4750-0 25% 17 843A320H14 R96 RESISTOR 4750-0 -25% 17 848A820H14
	R97 RESISTOR 4990.0 .50% 12 848A820H16 R98 RESISTOR 15.0K .50% 12 848A820H62
	R99 RESISTOR 4990.0 .50W 12 848A820H16
	R100 RESISTOR 4990.0 .50W 17 848A820H16 R101 RESISTOR 4990.0 .50W 17 848A820H16
	R102 RESISTOR 10.0K .50% 12 848A820H45
	R103 RESISTOR 10.0K .50W 12 848A820H45 R104 RESISTOR 10.0K .50W 12 848A320H45
	R105 RESISTOR 10.0% .50W 12 848A820H45 R106 RESISTOR 10.0K .50W 12 848A820H45
	R107 RESISTOR 10.0K .50% 17 848A820H45
	R108 RESISTOR 100.0K .50W 1% 848A821H42 R109 RESISTOR 10.0K .50W 1% 848A820H45
	R110 RESISTOR 1000.0 .50% 17 848A819H48
	R112 RESISTOR 4750.0 .25W 12 848A820H14 R113 RESISTOR 4750.0 .25W 17 848A820H14
	R114 RESISTOR 15.0K .50W 12 848A820H62 R115 RESISTOR 4990.0 .50W 12 848A320H16
	R116 RESISTOR 4990.0 .50W 1% 848A820H16
	R117 RESISTOR 4990.0 .50W 12 848A820H16 R118 RESISTOR 4990.0 .50W 12 848A820H16
	R119 RESISTOR 10.0K .50W 17 848A820H45
	R121 RESISTOR 15.0K .50% 12 848A320H62
	R122 RESISTØR 15+0K +50W 12 848A820H62 R123 RESISTØR 10+0K +50W 12 848A820H45
	R124 RESISTOR 10.0K .50W 12 848A820H45
	R125 RESISTOR 10+0K +50W 1% 848A820H45 R126 RESISTOR 10+0K +50W 1% 848A820H45
	R127 RESISTOR 2.0K .50W 1% 848A819H77 R128 RESISTOR 9530.0 .50W 1% 848A820H43
• · · · · · · · · · · · · · · · · · · ·	R130 RESISTOR 9530.0 .50% 1% 848A820H43
	R131 RESISTOR 10+0K +50W 12 848A320H45 R132 RESIST3R 10+0K +50W 12 848A820H45
	R133 RESISTOR 10.0K .50% 12 8 48 48 20 H 45 R134 RESISTOR 10.0K .50% 12 8 48 48 20 H 45
	R135 RESISTOR 10.0K .50% 12 848A320H45
	R136 RESISTOR 15.0K .50% 12 848A820462 R137 RESISTOR 10.0K .50% 12 848A920H45
	R138 RESISTOR 10.0K .50W 12 848A320H45 R139 RESISTOR 10.0K .50W 12 848A820H45
	R140 RESISTCR 475.0K .25% 1% 848A822H08
	R141 RESISTOR 200.0K .50% 1% 848A821H71 R142 RESISTOR 150.0 .50% 1% 848A818H68
	R144 RESISTOR 750.0 .50% 17 848A819H36 R145 RESISTOR 18.7K .50% 17 848A820H71
	R146 RESISTOR 4990.0 .50% 1% 848A820H16
	R148 RESISTOR 1000+0 +50% 1% 848A319H48 R149 RESISTOR 15+0K +50% 1% 848A320H62
	R150 RESISTOR 2.0K .50W 17 848A819H77
	R152 RESISTOR 17.8K .25% 12 848A320469
•	R154 RESISTOR 1.0K .50% 1% 848A819H48 R155 RESISTOR I.OK .25W 20% 629A430H02
	R156 RESISTOR 150.0 .50W 17 848A818H68
	R157 RESISTOR 20.0K 50W 1% 848A820H74 R158 RESISTOR 20.0K 50W 1% 848A820H74
<u>}</u>	Component
17	Component

I.L. 41-945.81

ation -

NOT THE PARTY

Sub 1 1334D15

List - SNR Detection Module

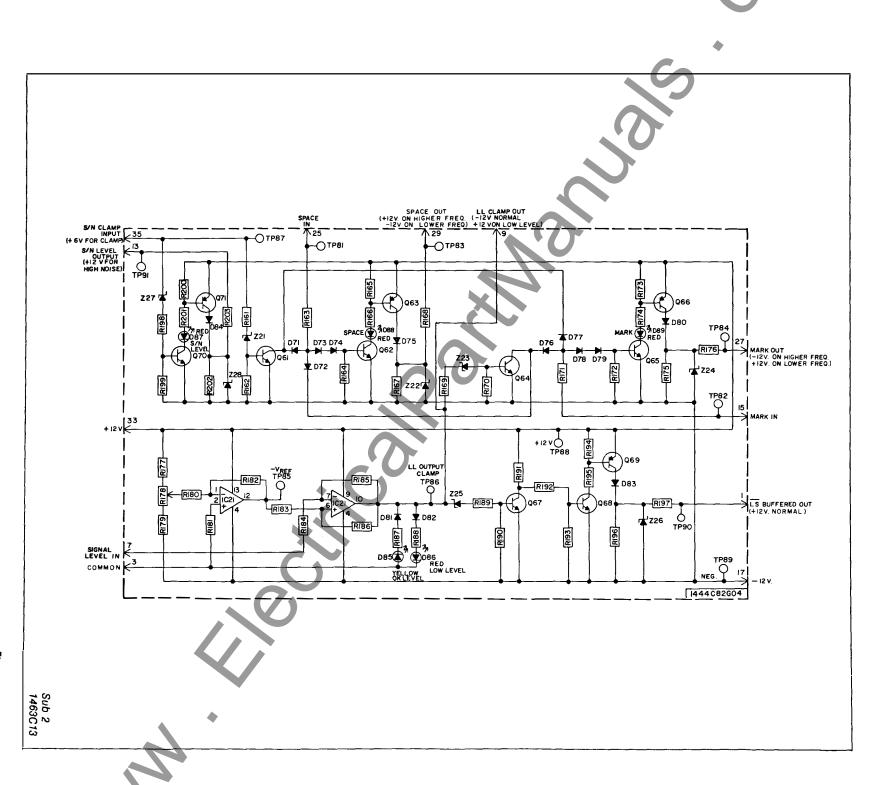


Fig. 10. Internal Sche

natic Output Module.

COMPONENT		DESCRIPTION	STYLE NO.	COMPONENT		DESCRIPTION	STYLE NO.
D71	DIØDE	1N645A	837A692H03	R192	RESISTOR	33.0K .50% 5%	184A763H5
D72	DIODE	1N645A	8378692803	R193		120.0K .50W 5%	184A763H7
D73	DIØDE	1N645A	837A692H03	R194	RESISTOR	10.0K .50k 5%	184A763H5
D74	DIØDE	1N645A	837A692H03	R195	RESISTOR	18.0K .50W 57	184476345
D75	DIØDE	1N645A	837A692H03	R196	RESISTOR	10.0K .50W 1%	848882004
D76	DIODE	1N645A	837A692H03	R197		499.0 .50W 1%	8488819119
D77	DIODE	1N645A	837A692H03	R198	RESISTOR	33.0K .50W 57	184A763H6
D78	DIODE	1N645A	837A692H03	R199	RESISTOR	68.0K .50W 5%	184A763H7
D79	DIODE	1N645A	837A692H03	R200		4700.0 .50% 5%	184A763H4
D80	DIØDE	1N645A	837A692H03	R201	RESISTOR		184476393
D80 D81	DIØDE	1N457A	184A855H07	R202	RESISTOR	10.0K .50W 1%	8488820H4
	DIØDE	1N457A	184A855H07	R203		499.0 .50W I%	
D82	DIØDE						848881911
D83	DIODE	1 N 6 45A 1 N 6 45A	837A692H03 837A692H03	061	TRANSI STOR	21699	184A638H1
D8 4	DIODE	LED		062	TRANSISTOR	21699	184A638H1
D85			3508A22H02	063	TRANSI STOR	213645	849644180
D86	DIØDE	LED	3508A22H01	064	TRANSISTOR	21699	184A638H1
D87	DIØDE	LED	3508A22H01	065	TRANSI STØR	2N699	184A638H1
R161	RESISTOR	10.0K .50W 5%	184A763H51	066	TRANSI STOR	2N3645	849A441H0
R162	RESISTOR	120.0K .50% 57	184A763H77	067	TRANSI STOR	21699	184A633H1
R163	RESISTOR	33.0K .50W 5%	184A763H63	063	TRANSISTOR	2N699	184A,639H1
R164	RESISTOR	120.0K .50W 57	184A763H77	Q69	TRANSI STOR	2N3645	849A441H0
R165	RESI STOR	4.7K .50W 5%	184A763H51	070	TRANSI STOR	2N699	1844638H1
R166	RESISTOR	2.4K •50W 5%	184A763H57	071	TRANSI STOR	213645	849A441HC
R167	RESISTOR	10.0K .50W 1%		Z21	ZENER	1N961B 10.0V	186079 7 H0
R168	RESISTØR	499.0 .50W i%		Z22	ZENER	IN4752A 33.0V	849A515H0
R169	RESISTOR	10.0K .50W 5%	184A763H51	Z23	ZENER	1N961B 10.0V	186479780
R170	RESI STOR	120.0K .50W 5%	184A763H77	Z24	ZENER	IN4752A 33.0V	849A515H0
R171	RESI STØR	33.0K .50W 5%	184A763H63	7.25	ZENER	1N961B 10.0V	186079740
R172	RESISTOR	120.0K .50W 5%	184A763H77	Z26	ZENER	IN4752 33.0V	849A515H0
R173	RESISTOR	4.7K .50W 5%	184A763H51	Z27	ZENER	1N961B 10.0V	186A797H0
R174	RESI STOR	2.4K .50W 5%	184A763H57	Z28	ZENER	IN4752 33.0V	8494515H0
R175	RESISTOR	10.0K .50W 1%	848A820H45				
R176	RESI STOR	499.0 .50W I%		R178	POT	2•5K •25W	629A645H)
R177	RESISTOR RESISTOR	10.0K .50W 17 10.0K .50W 17	848A820H45 848A820H45	1C21	INT CKT	747DM	1443C52H0
R179		68.1K .50% 1%		J 121	JUMPER	O OHM RESISTOR	862A478H0
R180	RESISTOR	-	848A820H16	J122	JUMPER	O OHM RESISTOR	862A478H
R181	RESISTOR	4990.0 .50N 1% 6810.0 .50W 1%		J123	JUMPER	O OHM RESISTOR	862A478HO
R182	RESISTOR						-
R183	RESISTOR	2.0K .50W 17 2.0K .50W 17		D88	DIODE	LED	3508A22H
R184	RESI STOR RESI STOR			D89	DIODE	LED	3508A22H
R185		562.0% .25% 1% 511.0K .50% 1%			DIODE		JJUUALLIN
R186	RESISTOR			3			
R187	RESISTOR	1620.0 .25k 17 1620.0 .25k 17					
R188	RESISTOR RESISTOR	1620.0 .25W 17 33.04 .50W 57	184A763H63	{			
R189 R190	RESISTOR	68.04 .50k 57					
	RESISTOR	68.0K .50W 5%	1044763671				
R191	RESISTOR	05.04 .30% JA	1040/030/1				
		$\overline{\langle }$					
		·····					

Strates .

Sterner'

20

Ŋ

J'

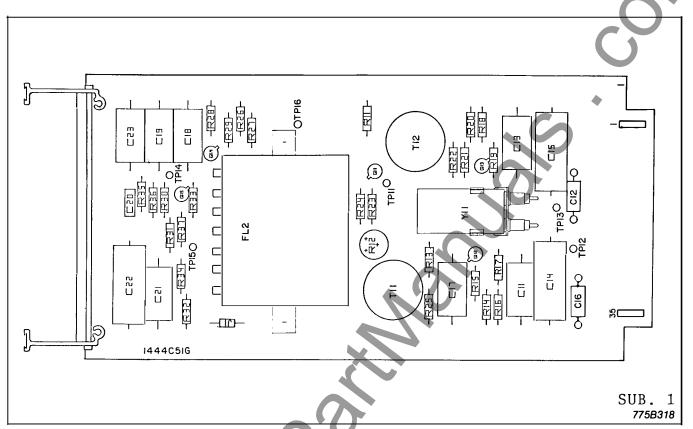


Fig. 14. Component Location Oscillator Mixer IF Amplifier Module (Below 200kHz)

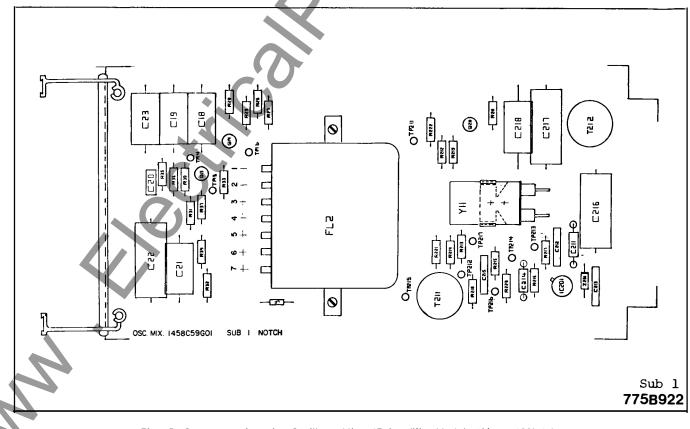
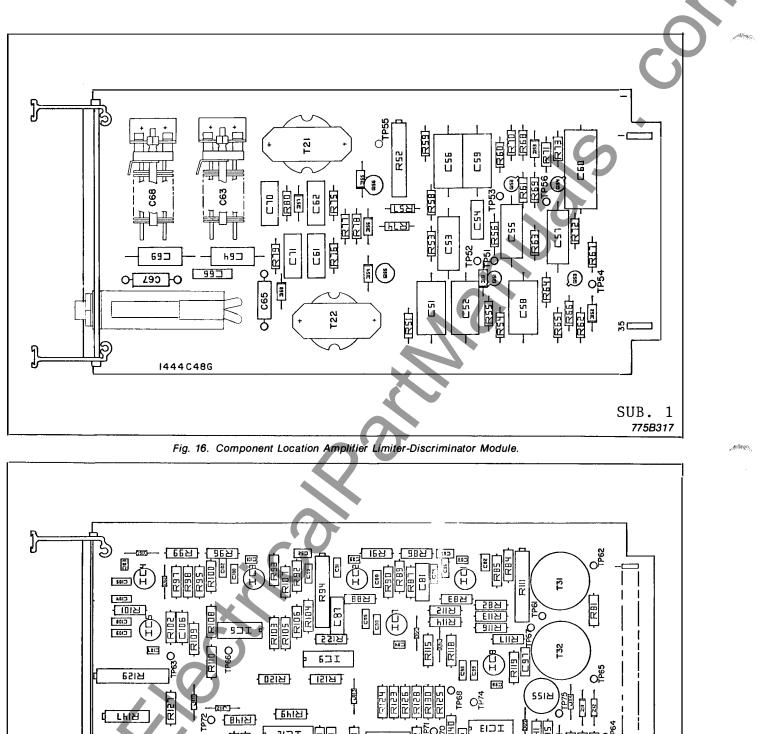
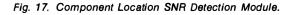




Fig. 15. Component Location Oscillator-Mixer-IF Amplifier Module (Above 200kHz)

I.L. 41-945.61

SEIR

דכום

951H

(<u>9619</u>)

R150

ľ r

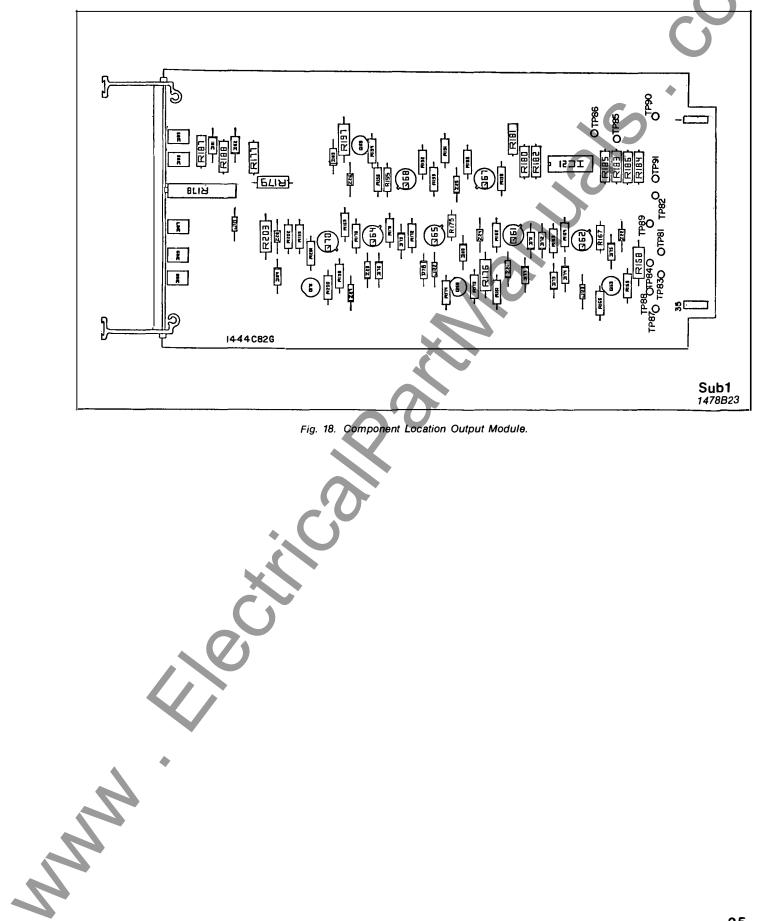
ESIN

1444C80G

IIDI

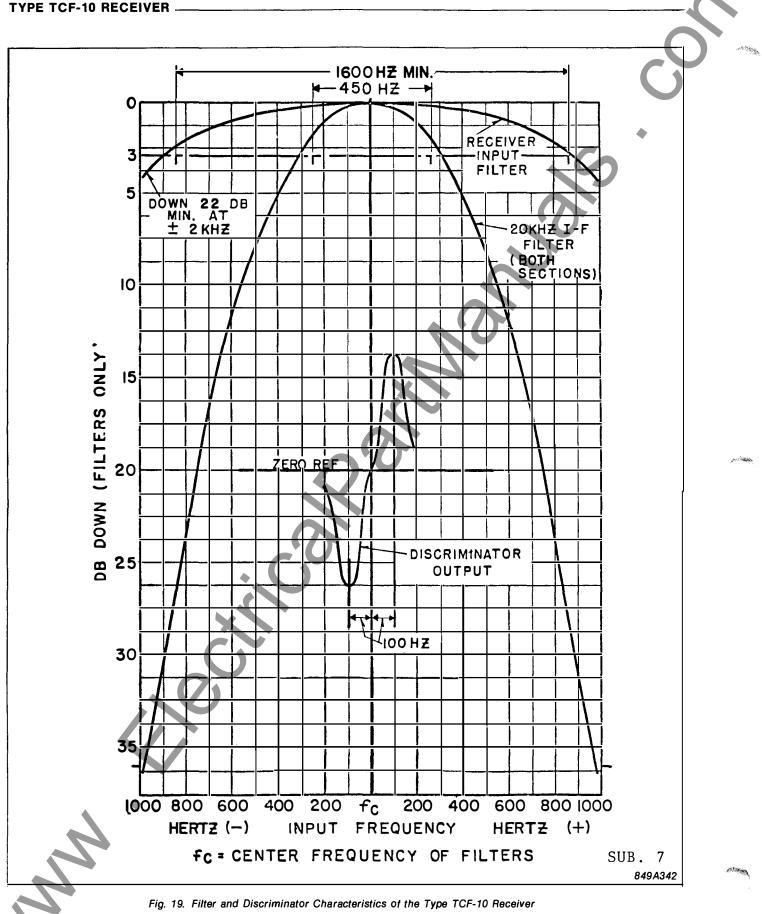
2518

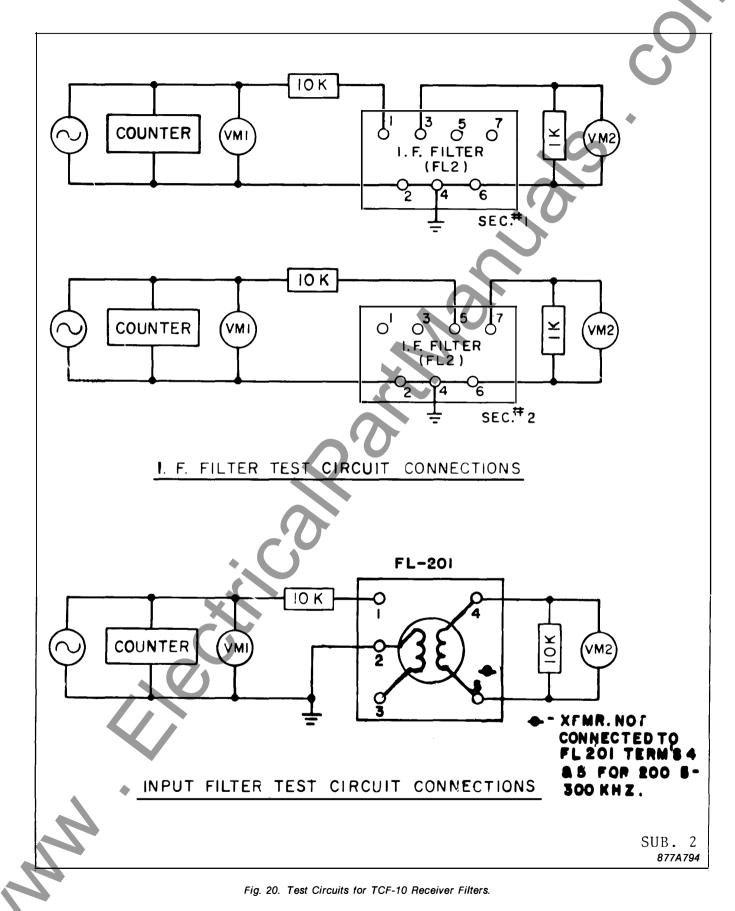
Ē

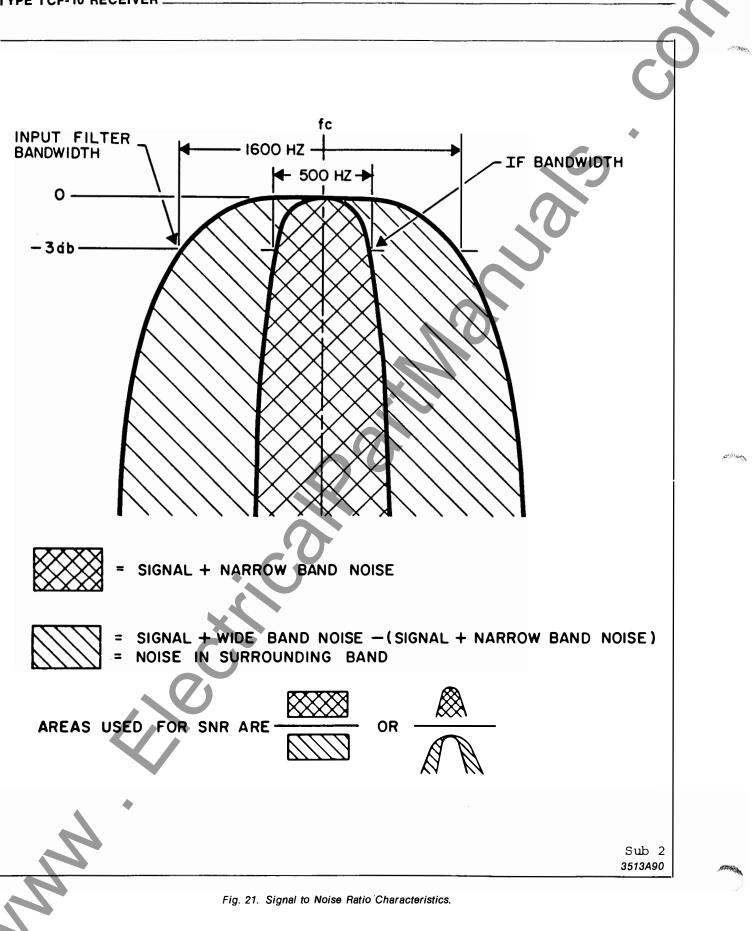

EIDI

(GEIY)

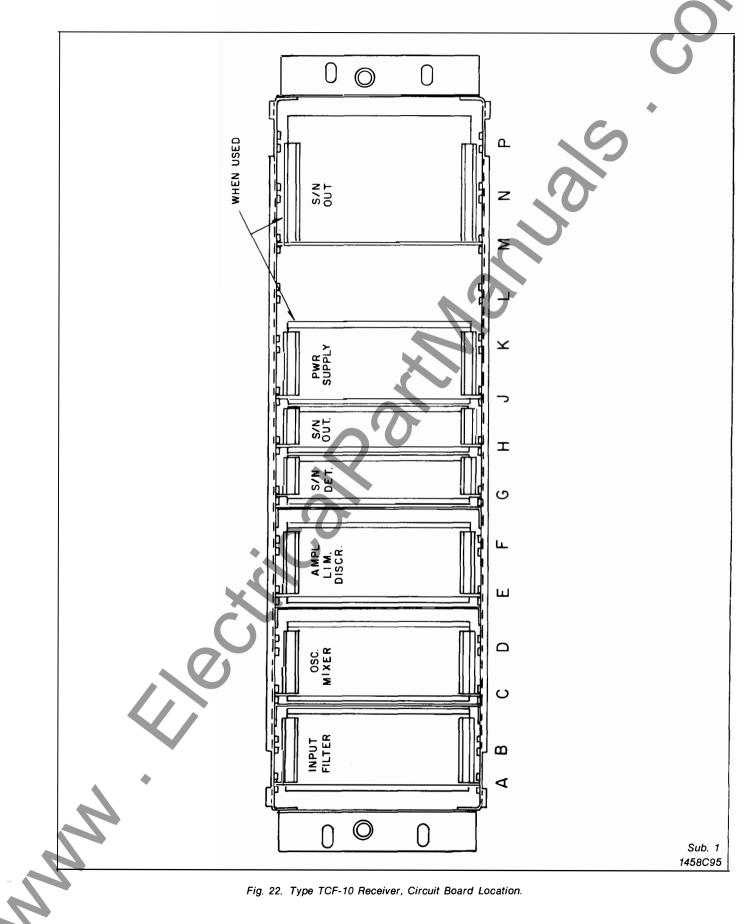
Sub 1 7758761

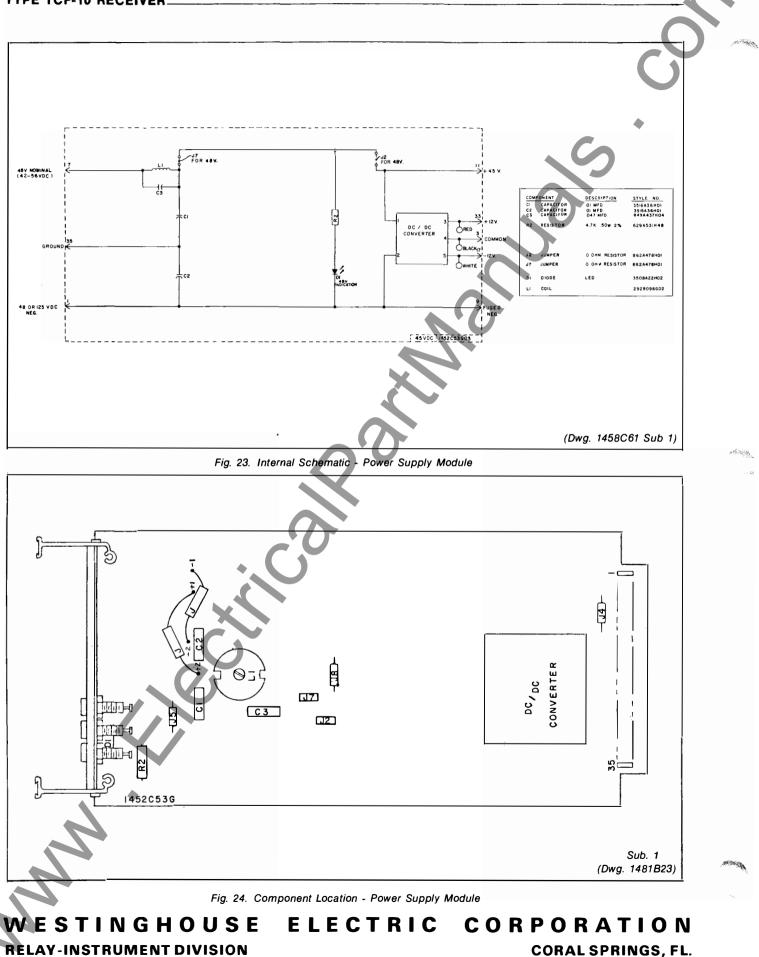

(BEIR)


ñ



I.L. 41-945.61





I.L. 41-945.61

Printed in U.S.A.

Westinghouse I.L. 41-945.59A INSTALLATION • OPERATION • MAINTENANCE INSTALLATION • OPERATION • MAINTENANCE INSTALLATION • OPERATION • MAINTENANCE INSTALLATION • OPERATIONS Westinghouse I.L. 41-945.59A • MAINTENANCE INSTALLATION • OPERATION • MAINTENANCE

CAUTION

It is recommended that the user of this equipment become acquainted with the information in this instruction leaflet, and in the system instruction leaflet before energizing the system.

Printed circuit modules should not be removed or inserted when the equipment is energized. Failure to observe this precaution may result in an undesired tripping output or cause component damage. Care should also be exercised when replacing modules to assure that they are replaced in the same chassis position from which they either were removed or the module they are replacing was removed.

If the carrier set is mounted in a cabinet, it must be bolted down to the floor or otherwise secured before swinging out the equipment rack to prevent its tipping over.

APPLICATION

The TCF-10 frequency-shift receiver equipment as adapted for data set applications responds to carrier-frequency signals transmitted from the distant end of a power line and carried on the power line conductors. The Mark frequency is 100 hertz above the center frequency of the channel (which can be selected within the range of 30kHz to 300kHz), and it is transmitted continuously when conditions are normal and no information is to be conveyed over the channel. Its reception indicates that the channel is operative. The space frequency is 100 hertz below the channel center frequency. When data is to be conveyed over the channel, the transmitter at one end of the channel is switched alternately between mark and space so as to produce at the receiving end a desired number of mark and space outputs. Control of the durations of the intervals of the marks and spaces can be utilized to convey information over the channel.

CONSTRUCTION

The TCF-10 receiver is mounted on a standard 19-inch wide chassis 5¼ inches high (3 rack units) with edge slots for mounting on a standard relay rack.

All of the circuitry that is suitable for mounting on printed circuit boards is contained on printed circuit modules that plug into the chassis from the front and are readily accessible by removing the transparent cover on the front of the chassis. The external connectors are located at the rear of the chassis as shown in Figure 10. Reference to the internal schematic connections of Figure 1 will show the location of these components in the circuit.

The printed circuit modules slide into position in slotted guides at the top and bottom of the chassis, and the module terminals engage a terminal block at the rear of the chassis. A handle on the front of each module is labeled to identify its function, and also identify adjustments and indicating lights if any are available at the front of the module. Of particular significance is the input attenuator contained on the front of the filter module which is used in adjusting the input receiver signal during initial field installation.

A module extender (Style No. 1447C86G01) is available for facilitating circuit measurements or major adjustments. After withdrawing any one of

All possible contingencies which may arise during installation, operation, or maintenance, and all details and variations of this equipment do not purport to be covered by these instructions. If further information is desired by purchaser regarding his particular installation, operation or maintenance of his equipment, the local Westinghouse Electric Corporation representative should be contacted. the circuit modules, the extender is inserted in that position. The module is then inserted into the terminal block on the front of the extender. This restores all circuit connections and renders all components and test points on the module readily accessible.

The receiver operates from a regulated +12Vand -12V supply derived from a self-contained DC to DC converter. The power supply module containing the DC to DC converter has links which enable it to operate from either 48 volts or 125 volts dc.

External connections to the receiver are made through a 36-terminal receptacle, J3. The r-f input connection to the receiver is made through a coaxial cable jack J2.

OPERATION

INPUT MODULE

The input module contains the input control and the input filter. The signals to which the TCF-10 receiver responds are fed through a coaxial cable connected to jack J2 at the rear of the chassis to the input module. The input control R5, accessible at the front of the input module, attenuates the signal to a level suitable for the best operating range of the receiver.

A scale on the panel is graduated in dB. While this scale is typical rather than individually calibrated, it is accurate within several dB and is useful in setting approximate levels. Settings should be made more accurately utilizing a suitable ac voltmeter with a dB scale when possible.

From the attenuator, the signal passes through a bandpass LC filter, FL 201. This filter has a passband of approximately 1600Hz which is relatively wide in comparison to the IF filter which has a passband of approximately 500Hz. Still, frequencies several kHz above or below the center frequency (f_c) of the channel are greatly attenuated. Figure 2 shows a typical curve for the LC filter as well as a characteristics curve for the IF (intermediate frequency) filter, FL2, and the discriminator output. This apparently wide bandwidth for the input filter in relation to the IF filter is necessary to both achieve high speed data transmission and to achieve

proper operation of the noise clamp by sampling noise in the frequency band surrounding the IF band.

OSCILLATOR, MIXER, AND IF AMPLIFIER MODULE

From the input filter, the signal enters the oscillator and mixer stage of the receiver. Crystal Y11, transistors Q12 and Q13, and their associated resistors and capacitors, comprise a crystal-controlled oscillator that operates at a frequency 20kHz above the channel center frequency, f_c . The output from this local oscillator is fed through transformer T11 to potentiometer R12, and the latter is adjusted to feed a suitable input to the base of mixer transistor Q11. The output of filter FL1 is impressed on the emittercollector circuit of Q11. As a result of mixing these two frequencies, the primary of transformer will contain frequencies of 20kHz, $2f_c + 20kHz$, $f_c + 20kHz$, and f_c .

The output from the secondary of T12 is amplified by Q31 in the intermediate frequency (IF) stage, and is impressed on FL2. This is a two-section filter, with both filters contained in a common case. Its pass band is centered at 20kHz. Since its pass band is narrower than that of the input filter, it eliminates the frequencies present at its input that are substantially higher than 20kHz. The output of this filter is the IF output which is fed to both the amplifier-limiter and the S/N Detection module. The output from the secondary of transformer T12, the RF output, is also fed to the S/N Detection module.

AMPLIFIER LIMITER AND DISCRIMINATOR MODULE

The IF output signal from the IF amplifier is fed into the amplifier limiter through potentiometer R52 at the input of the amplifier limiter stage. Sufficient input is taken from R52 so that with minimum input signal (5 mv.) at J2 and with input control R5 set for zero attenuation, satisfactory amplitude limiting will be obtained at the output of the limiter stage.

The output of the limiter stage is fed to the discriminator. The discriminator is adjusted at the factory to have zero output (as measured by a milliammeter inserted in the circuit at jack J1) at the channel center frequency, f_c . The adjustment for zero output at f_c is made by capacitor C68. In addition, C63 is adjusted for maximum voltage reading across R80 when the output current is zero. Maximum current output, of opposite polarities, will be obtained when the frequency is 100 hertz above or below the zero current output frequency. This separation of 200 hertz between the current peaks is affected by the value of C66 (the actual value of which may be changed slightly from its typical value in factory calibration if required).

It should be observed that although the mark frequency is $f_c + 100$ hertz, after leaving the mixer stage, and as seen by the discriminator, the mark frequency is 20kHz-100 hertz. Similarly the space frequency as seen by the discriminator is 20kHz +100 hertz. The intermediate frequency at which the discriminator has zero output then is 20kHz. The discriminator is adjusted so that the mark and space outputs are of equal lengths for equal periods of mark and space signal frequencies.

The discriminator output is connected to the bases of transistors Q55 and Q56 in such a manner that transistor Q56 is made conductive when current flows, from the discriminator output, in the forward direction of diode D54, (which occurs with space output) and Q55 is made conductive when current flows in the forward direction of diode D55 (which occurs with mark output.) Consequently, terminal 35 is at a potential of approximately +12 volts at mark frequency and terminal 1 is at +12 volts at space frequency.

S/N DETECTION MODULE

The S/N detection module has three basic functions; first to determine the in-band signal to noise ratio and provide clamping output at the desired level of signal-to-noise ratio, second to measure incoming in band signal level and provide both an output to a carrier level indicating instrument and to a clamping circuit in the output module for clamping at the desired low level of signal, and third to provide a clamping output when the desired signal level exceeds the normal received level by a substantial amount, typically 25dB.

The method of determining signal to noise ratio utilizes the measurement of signal level in two different bandwidths, that of the input filter which is 1600 hertz, and that of the IF filter which is 500 hertz. The total signal plus noise in the 500 hertz bandwidth is subtracted from the signal plus noise in the 1600 hertz bandwidth and this difference is then compared with the signal plus noise in the 500 hertz bandwidth to arrive at a true in-band signal-to-noise ratio using logarithmic circuits. See Figure 21.

If the ratio of signal to noise is less than the value selected, typically 10dB, then there will be a +6V out of IC13 (TP75 and terminal 27). This is a high noise condition and this voltage is used as a clamp to prevent erroneous interpretation of data being received due to high noise conditions. Under normal low noise conditions, typically signal to noise ratio greater than 10dB, the voltage out of IC13 (TP75) is -6V and no clamping is done.

The wide band signal of 1600 hertz bandwidth called the RF signal is fed into the S/N detection board through isolation transformer T31. Operational amplifiers IC1 and IC2 along with their associated components, R82 through R92 and C81 through C90, constitute a 4 pole low pass filter which passes the mixed band of frequencies in the bandwidth of 1600 Hz centered about the 20kHz IF frequency, and blocks all the higher multiples such as in the IF amplifier. Operational amplifier IC3 and associated components amplifies the signal for feeding into the RMS circuit composed of IC4 and IC5 with adjustable potentiometer R94 controlling the amount of amplification. This latter circuit converts the signals into a dc voltage proportional to the RMS value of the ac signals. Operational amplifier IC6A and associated components is used for inversion and isolation of this dc voltage before being fed into the summation amplifier IC6B.

The narrow-band signal of 500 hertz bandwidth called the IF is fed into the S/N detection board through isolation transformer T32. The amount of signal fed into the board is adjustable by means of potentiometer R111. The circuit composed of operational amplifiers IC7 and IC8 and associated components is an RMS circuit which converts the signals into a dc voltage proportional to the RMS value of the ac signals present in the IF bandwidth. The output of this circuit is also then fed into the summation amplifier IC6B.

The summation amplifier takes the difference between the RMS values of the IF signal and the RF signal and feeds it into one half of the logarithmic amplifier composed of IC9 and associated components. At the same time, the RMS value of the IF signal is fed into the other half of this logarithmic amplifier. The logarithmic amplifier takes the logarithmic difference between these two signals (which is equivalent to IF divided by [RF-IF] from the summer). The constants of the circuits are set up so that the output of the logarithmic amplifier is positive when the ratio of the signal to noise ratio in these bandwidths is greater than 10dB, and is negative when the signal to noise ratio is less than 10dB. (Note: The point at which the change in polarity occurs can be altered to other than 10dB signal to noise ratio by altering the adjustments of R94 and R111). In addition, the output of the logarithmic amplifier is also negative when the signal level is approximately 25dB above normal for high level clamping.

The output of the logarithmic amplifier is fed through networks consisting of IC10A and IC13A to the level detector circuit IC13B which has a fast pickup and slow dropout when it receives a signal from the logarithmic amplifier indicating a lower than desired signal to noise ratio (lower than 10dB is initially set when shipped). This will put out a +6 volts out of terminal 27 for this condition. For high signal to noise ratio this output will be -6 volts. This circuit will also put out +6 volts out of terminal 27 for very high signal levels. This is a high signal clamp and occurs for signal levels approximately plus 25dB above normal level.

The output of the IF RMS circuit is also fed to the logarithmic circuit composed of IC11A, IC12A, and IC11B which puts out a dc signal level linearly proportional to signal level in dB for feeding an external microammeter calibrated with a linear dB scale with 10dB equal to 33-1/3 microamperes.

OUTPUT MODULE

The output module provides four buffered outputs to the data aquisition system. They are mark, space, S/N level, and not low signal with red indicating light emitting diodes for these outputs and a yellow indicating light emitting diode for normal

level (satisfactory signal level). In addition, the output module has logic which will prevent either a +12V mark or +12V space output whenever the S/N level drops to an unsatisfactory level or the received signal level drops to an unsatisfactory level.

The higher frequency output of plus 12 volts (when present) from the discriminator is fed into the output module through termical 25 into the "and" gate consisting of diodes D71, D72, D73, and D74, transistors Q62 and Q63, and associated components R163, R164, R165, R166, R167, R168, D88, D75, and Z22. If there is no low level signal or low signal to noise ratio signal to prevent transistor Q62 from becoming conducting, then transistor Q62 becomes conducting, causing Q63 to become conducting and a plus 12 volts signal to appear out of terminal 29 from which it is fed to the outside world. In a similar manner, the lower frequency output of plus 12 volts when present from the discriminator is fed into the output module through terminal 15 into the "and" gate built around transistors Q65 and Q66. Just as in the case of the higher frequency output, the lower frequency output of plus 12 volts will appear out of terminal 27 for feeding to the data acquisition equipment if there is no low level clamp or low signal to noise ratio clamp. If there is a clamp, both of these outputs will be clamped to minus 12 volts output.

The low-signal-level clamp operates off the carrier level signal of the S/N detection module which is basically the same signal fed to the CLI instrument.

It is fed through terminal 7 into the voltage comparator circuit built around operational amplifier IC21B. This comparator compares this signal level with the voltage reference from IC21A, and if the signal level is greater than the low level at which clamping is desired, the output of IC21B will be negative causing the yellow LED to glow indicating OK level and there will consequently be no low signal clamping. If the signal level is below the level at which clamping is desired, then the output of IC21B will be positive causing the red LED to glow indicating low level. In addition, both transistors Q67 and Q64 will become conducting. Transistor Q64 conducting will prevent plus 12 volt signals

4

from appearing on the outputs going to the outside world by preventing transistors Q65 and Q62 from conducting. Transistor Q67 conducting causes Q68 to become non-conducting and thus removes the not low signal output from terminal 1. Under good or OK signal level, this not low signal output at terminal 1 of this module is plus 12 volts.

The S/N clamp output from the S/N detection module is fed into terminal 35 of this module. At low signal-to-noise ratio level, this +6 volt signal will cause transistors Q70 and Q61 to conduct. Transistor Q70 conducting will cause both the red LED to glow indicating low S/N and transistor Q71 to conduct supplying plus 12 volts out of terminal 13 to the outside world. Transistor Q61 conducting will prevent both transistors Q62 and Q65 from conducting, and thus prevent plus 12 volt signals from appearing at their respective outputs to the outside world. It should be noted that the S/N clamp also operates for a high signal level of approximately plus 25dB above normal when set to operate at 10dB signal to noise ratio.

OUTPUT MODULE - CONTACT OUTPUT

The output module-contact output performs two functions; alarming on low signal level using a telephone relay with two form C contacts, and indicating signal level with its self-contained CLI instrument.

The alarm circuit consists of all components associated with IC1, IC2, Q1, Q2, Q3, and relay AL. The signal level from the S/N detection module is fed into a level detector consisting of IC1B and resistors R6, R7, R8, and R9. An adjustable reference for the level detector consisting of IC1A and R1, R2, R17, R3, R4, and R5 is also fed into the level detector. As long as the signal level exceeds the value set by the reference, there will be approximately plus 12 volts out of the level detector into the photo-optical isolator. This causes Q1 to become non-conducting and thus transistors Q2 followed by transistor Q3 to become conducting. As a consequence, the alarm relay AL is picked up on signal levels above the alarm level. When the signal level drops below the alarm level set by the reference, the output of the level detector will be minus 12 volts causing Q1 to become conducting and Q2 and Q3 to become non-conducting and drop out the alarm relay AL. The alarm relay has a delay of approximately 40 milliseconds on dropout to prevent undesirable alarming on short temporary loss of signal. Note that the level of alarm is set by adjusting alarm level R17, accessible from front of module, independent of the low signal level output from the output module (which is set by L.L. ADJ. R178). Also both of these outputs operate on total signal level within the passband of the receiver.

The CLI instrument operates directly on signal level received from the S/N detection module. It measures signal level in the entire bandwidth of the receiver and thus closely correlates with the low level clamp (L.L. ADJ.) and the low signal alarm AL (alarm level). It thus can be used in setting both of these adjustments.

POWER SUPPLY

The ± 12 volt dc, -12 volt dc, and the ± 45 volt dc supply voltages for the receiver are derived from the power supply module.

The +12 volt dc supply and the -12 volt dc supply are both derived from the DC to DC converter and are regulated for input voltages to the regulator of from 42 volts to 56 volts. For nominal 48 volt input units, the DC to DC converter has sufficient range so that the preregulator consisting of R1, R4, and Z1 is not necessary and is not connected by omitting jumpers J1 and J3 and supplying J7 and J2. In this case, then, the +45 volt supply is derived directly from the input supply voltage and is not regulated.

For nominal 125 volt input units, the pre-regulator consisting of R1, R4, and Z1 is necessary and is connected by supplying jumpers J1 and J3 and omitting J7 and J2. In this case then, the +45 volt supply is derived from this pre-regulator and is regulated.

The LED's D1 and D2 indicate when the power supply is energized with either 48V or 125V by the proper one glowing. Since all components are supplied in each power supply, a 48V supply can be converted to a 125V supply simply by removing jumpers J7 and J2 and inserting J1 and J3. Similarly, a 125V supply can be converted to a 48V supply by removing jumpers J1 and J3 and inserting J7 and J2. Capacitor C1 and C2 bypass rf or transient voltages to ground. Choke L1 with capacitor C3 form a trap to isolate the receiver from transient voltages in the 20kHz range that may appear on the dc supply and which could affect the receiver.

CHARACTERISTICS

Center Frequencies Available	30kHz to 300kHz in 0.5kHz increments
Maximum Sensitivity (Noise free	0.005 volts (65dB below 1 watt for limiting)
Input Impedence	5000 ohms minimum
Bandwidth (Input L C Filter)	Down 3dB at ±800 hertz Down 30dB at ±5000 hertz
Overall receiver selectivity	Down 3dB at ±225 hertz Down 35dB at ±1000 hertz
Operating Time	4 milliseconds channel (Transmitter and receiver back to back)
Signal-to-noise ratio clamp setting	10dB SNR (as shipped) Nominal
Ambient Tempera- ture Range	-20°C to +55°C
Battery Voltage Varia Nominal 48V dc Nominal 125V dc	ations 42V dc - 56V dc 105V dc - 140V dc
Battery Drain	0.25 Amperes
Dimensions	Panel Height=5¼ inches (3RU)
	Panel Width=19 inches
Weight	13 pounds
CLI Accuracy	± 2 dB between -15 dB and 0dB.
INST	

The TCF-10 receiver is generally supplied in a cabinet or a relay rack as part of a complete carrier assembly. The location must be free from dust,

excessive humidity, vibration, corrosive fumes, or heat. In particular equipment which generates excessive heat such as power supplies should not be mounted directly beneath the TCF-10. Heat rising will tend to raise the ambient temperature immediately around the chassis above acceptable levels. The maximum ambient temperature around the chassis must not exceed 55°C. In addition, sudden fluctuations in ambient temperature caused by these power supplies due to variations in load can cause variations in performance due to uneven heating of the receiver introducing abnormal temperature variations in the receiver.

ADJUSTMENTS

All factory adjustments of the TCF-10 receiver have been carefully made and should not be altered unless there is evidence of damage or malfunctioning. Such adjustments are: frequency and output level of the oscillator and mixer; input to the amplifier and limiter; frequency spacing and magnitude of discriminator output peaks; pickup of alarm relay; and pickup of low signal level clamp. The adjustment that must be made at time of installation is the setting of input attenuator R5. The input attenuator adjustment is made by a knob on the front of the panel of the input module.

The receiver should not be set with a greater margin of sensitivity than is needed to assure correct operation with the maximum expected variation to attenuation of the transmitter signal. In the absence of data on this, the receiver may be set to operate on a signal that is 15dB below the maximum expected signal. After installation of the receiver and the corresponding transmitter, and with a normal space signal level being received, input attenuator R5 should be adjusted to the position at which the receiver clamps into neither a mark nor space output. The attenuator R5 should then be readjusted to increase the voltage supplied to the receiver by 15dB. The scale markings for R5 permit approximate settings to be made, but it is preferable to make this setting by means of the dB scales of an ac VTVM connected across the terminals indicated at the front panel of the input module. The red terminal is connected to the wiper arm of R5 and the black terminal is connected to ground. With this setting, a 15dB drop in signal will cause a low signal level clamp operation which will lock the output of the receiver into nether a mark nor a space output at the point at which the receiver just drops out of limiting.

The only other adjustment which may be necessary at the time of initial installation is the adjustment of the CL1 instrument to correspond to proper variation of signal level from normal. This may be necessary if the instrument was not supplied with the receiver and was not adjusted by the factory. If this instrument was supplied and adjusted by the factory, then it could be used in adjusting R5. In this case, it would be necessary only to adjust R5 with a normal signal being received so that the instrument indicates 0dB.

If the instrument was not previously adjusted by the factory, then the following procedure should be used in adjusting the instrument. (Note: When CL1 instrument is supplied within the chassis, this is factory adjusted.)

- 1. Set incoming level into receiver at +10dB above normal level.
- Adjust span adjustment, R147, so that the voltage at TP72 with respect to TP62 (common) is +3.000 volts.
- 3. Reduce incoming signal into receiver by 30dB.
- 4. Adjust full scale adjustment, R153, so that instrument now reads -20dB. (This is approximately 0 microamperes).
- 5. Increase signal to +10dB level. (This is 100 microamperes).
- 6. Adjust slope adjustment R155 to read +10dB on instrument.
- Reduce signal to normal level. Instrument should read 0dB. If desired, instrument could be adjusted to read 0dB with R155 with sacrifice in reading accuracy for +10dB.

FACTORY ADJUSTMENTS

In case the factory adjustments have been altered or there is suspicion of improper adjustments or malfunctioning, then the following procedures can be used. In addition, alterations to the settings used by the factory for low signal level clamping and low signal-to-noise ratio clamping can be made using these procedures if desired.

Potentiometer R12 in the oscillator and mixer should be set for 0.3 volts, measured with a VTVM connected between TP11 and terminal 33 on the circuit board (ground terminal of voltmeter). A frequency counter can be connected to the same points for a check on the frequency which should be 20k Hz above the channel center frequency. The frequency is fixed by the crystal used, except that it may be changed a few cycles by the value of capacitor C12. Reducing C12 increases the frequency, but the capacity should never be less than a value that assures reliable starting of oscillation. The frequency at room temperature is usually several cycles above the crystal nominal frequency as this reduces the frequency deviation at the temperature extremes.

The adjustment of the amplifier and limiter is made by potentiometer R52. An oscilloscope should be connected from TP56 at the base of Q54 to terminal 33 of the limiter. With 5 millivolts of space frequency on the receiver input (R5 set at zero), R52 should be adjusted to the point where the peaks of the oscilloscope trace begin to flatten. This should appear on the upper and lower peaks at approximately the same setting.

The adjustment of the signal to noise ratio clamp for clamping at 10dB signal to noise ratio is as follows:

- 1. Set the incoming signal into receiver at nominal level (28 mv.)
- 2. Adjust IF input with R111 so that signal at TP68 of the S/N detector module is +100 mv dc (with respect to TP62).
- 3. Adjust RF input with R94 so that signal at TP63 is +145 mv dc (with respect to TP62).
- 4. Adjust log amplifier balance potentiometer R129 so that S/N clamps operates. This will be +6 volts dc at TP75. This will also appear as +12 volts at TP91 of the output board and the red S/N level indicator will light.

5. Go back and readjust RF input with R94 so that signal level at TP63 is now 74.4 mv dc.

The adjustments above are for operation of the clamp at 10dB or less signal to noise ratios. If it is desired to clamp at other than 10dB or less, the following values can be used in place of the 145 mv value in step 3.

For S/N of 0dB set TP63 to 297mv. 5dB set TP63 to 200mv. 15dB set TP63 to 114mv. 20dB set TP63 to 97mv.

NOTE: When the SNR clamp is set to clamp at a 10dB signal to noise ratio, the receiver will also clamp at a high signal level of approximately 25dB above normal.

The low signal level clamp is set to operate at the signal level where the receiver just drops out of limiting. This is accomplished as follows:

- 1. With a normal space frequency signal being received and with an oscilloscope connected across TP56 and terminal 33 of the limited module, adjust input attenuator R5 to the point where the peaks of the oscilloscope trace just begin to flatten. (An alternate adjustment would be to set incoming signal level into receiver at 5mv with R5 set at zero which is the point at which limiting should begin.
- Adjust the -V Ref. adjustment R178 on the output module so that the low level clamp just picks up. This will be indicated by the red low level light of the output module coming on. There also will be +12 volts at TP86 on the output module.
- 3. Adjust input attenuator R5 to increase signal into receiver by desired margin of operation. This normally should be 15dB. This is done by reducing the R5 attenuator setting.

The alarm level is set to alarm at a signal level 5dB above the signal where the receiver just drops out of limiting. This will result in an alarm be given at a point where the signal level has dropped 10dB from the initial nominal setting but the receiver signal level is still 5dB above limiting.

1. With a normal higher frequency signal being received and with an RF voltmeter connected across the input module input test jacks TJ1 and TJ2 (available at front on module), adjust input attenuator R5 to where signal level is 9mv across these test jacks.

2. Adjust the alarm level R17 on the output module - contact output to the point where the alarm relay AL just drops out.

3. Adjust input attenuator R5 to increase signal level into receiver by 10dB. (This is for operation with 15dB margin. For other than 15dB margin, this value should be changed accordingly.) This is done by reducing the R5 attenuator setting by 10dB.

MAINTENANCE

Periodic checks of the received carrier signal level and the receiver sensitivity will detect gradual deterioration and permit its correction before failure can result. The carrier level indicator, when provided, permits ready observation of the received signal level. With or without a carrier level indicator, an overall check can be made with the attenuation control, R5. A change in operating margin from the original setting can be detected by observing the change in the dial setting required to cause a low signal level clamp to operate as indicated by the red low level LED becoming lit. If there is a substantial reduction in margin, the signal voltage at the receiver input should be checked to see whether the reduction is due to loss of signal level or loss in receiver sensitivity.

All adjustable components for normal field adjustments on the printed circuit modules are accessible when the front cover on the chassis is removed. All other adjustable components on the printed circuit modules may be made entirely accessible while permitting electrical operation by using module extender style number 1447C86G01. This permits attaching instrument leads to the various test points of terminals when making voltage, oscilloscope or frequency checks.

RELAY MAINTENANCE AND ADJUSTMENT

The AL relay contacts should be cleaned periodically. A contact burnisher S#182A836H01 is recommended for this purpose. The use of abrasive

 Q54 (TP55)
 3

 TP56
 19

 Q55
 < 1 (Lower Freq. or No Signal)</td>

 Q55
 23 (Higher Freq.)

 Q56
 23 (Lower Freq. or No Signal)

 Q56
 < 1 (Higher Freq. or No Signal)</td>

NOTE: The following readings are taken with the negative of dc VTVM on terminal 3 (common of dc power supply) of either the S/N detection module or the output module.

TP61	+ 4	
TP62	0	4
TP63	+ 0.	4
TP64	+ 6	
TP65	-12	
TP66 TP67	0	5
TP68	+ 0. + 0.	
TP70	+ 0. - 6	5
TP71	+ 6	
TP72	+ 1	5
TP73	+ 0.	
TP74	+ 0.	
TP81		(Higher Frequency)
TP81	-12	(Lower Freq. or No
		Signal)
TP82	+12	0
TP82	-12	
		Signal)
TP83	+12	
TP83	-12	
		Signal)
TP84	+12	(Lower Frequency)
TP84	-12	(Higher Freq. or No
		Signal)
TP85	+ 0.	
TP86	+12	(Low level clamp)
TP86	0	v 17
TP87	+ 6	(· · · · · · · · · · · · · · · · · · ·
TP87	- 6	(No SNR clamp)
TP88	+12	
TP89	-12	
TP90	+12	(Good Signal Level)
TP90	-12	(Low Signal Level
		clamp)

material for cleaning contacts is not recommended, because of the danger of embedding small particles in the face of the soft silver and thus impairing the contact. Care must be taken to avoid distorting the contact springs during burnishing.

These relays have been properly adjusted at the factory to insure correct operation, and under normal field conditions they should not require readjustment. If, however, the adjustments are disturbed in error, or if it becomes necessary to replace some part, the following adjustment procedure should be used.

In the AL relay the armature gap should be approximately 0.004 inch with the armature closed. This adjustment is made with the armature stop screw and locknut. The contact leaf springs should be adjusted to obtain at least 0.015 inch gap on all contacts when fully open. There should be at least 0.010 inch follow on all normally-open contacts and 0.005 inch follow on all normally-closed contacts. The relay should pick up at approximately 35 volts.

TABLE I RECEIVER D-C MEASUREMENTS

NOTE: All voltage readings taken with the negative of dc VTVM on terminal 17 (negative dc). Receiver adjusted for 15dB operating margin with space and mark signals down 50dB from 1 watt or 60dB down from 10 watts. Unless indicated otherwise, voltage will not vary appreciably whether signal is lower frequency, higher frequency, or zero.

Collector of Transis	tor Voltage
or Test Point	(Positive)
Q11	<15 17 (Mark as Second)
Q12 (TP12)	17 (Mark or Space)
Q13 (TP13)	17 (Mark or Space)
Q14 (TP14)	3
Q15 (TP15)	3
TP11	22
TP52	19
Q51 (TP51)	14
Q52 (TP53)	14.5
Q53 (TP54)	18

N.N.

TABLE II RECEIVER RF MEASUREMENTS

NOTE: Voltmeter readings taken at any point from receiver input to stage involving transistor Q15 are neither meaningful or feasible because of either waveform variations or the effect of instrument loading on the readings. Receiver adjusted as in Table I.

Collector of Transistor or Test Point	Volts with Signal At +10dB Above Normal Level				
Q15(TP15)	0.8				
Q51 (TP51)	0.9				
Q52 (TP53)	0.65				
Q53 (TP54)	2.2				
Q54 (TP55)	4.5				
TP61	.013				
TP67	.275				

FILTER RESPONSE MEASUREMENTS

The LC input filter (FL201) and the IF filter (FL2) are in sealed containers, and repairs can only be made by the factory. The stability of the original response characteristics is such that in normal usage, no appreciable change in response will occur. However, the test circuits of Figure 19 can be used in case there is reason to suspect that either of the filters is not performing correctly.

Figure 2 shows the -3dB and -35dB checkpoints for the IF filter, and the -3dB checkpoints for the input filter. The response curve of the IF filter shows the combined effect of the two sections, and was obtained by adding the attenuation of each section for identical frequencies. The scale of Figure 2 was chosen to show the IF filter response, which permitted only a portion of the input filter curve to be shown. The checkpoints for the passband of each section of the IF filter are down 3dB maximum at 19.75 and 20.25kHz, and for the stop band are down 18dB minimum at 19.00 and 21.00kHz for each section. The signal generator voltage (Figure 19) must be held constant throughout the entire check. A value of 7.8 volts is suitable. The reading of VM2 at the frequency of minimum attenuation should not be more than 22dB below the reading of VM1. It should be noted that a limit measured in this manner is for convenience only, and does not indicate actual insertion loss of the filter. The insertion loss would be approximately 16dB less that the measured difference because of the input resistance and the difference in input and output impedances of the filter.

In testing the LC filter, a value of approximately 2.45V is suitable for the constant voltage at which to hold VM1 throughout the check. The reading of VM2 at the frequency of minimum attenuation will vary somewhat with the channel frequency, but should not be more than 18dB below the reading of VM1. (The filter insertion loss is approximately 6dB less than the difference in readings.

CONVERSION OF RECEIVER FOR CHANGED CHANNEL FREQUENCY

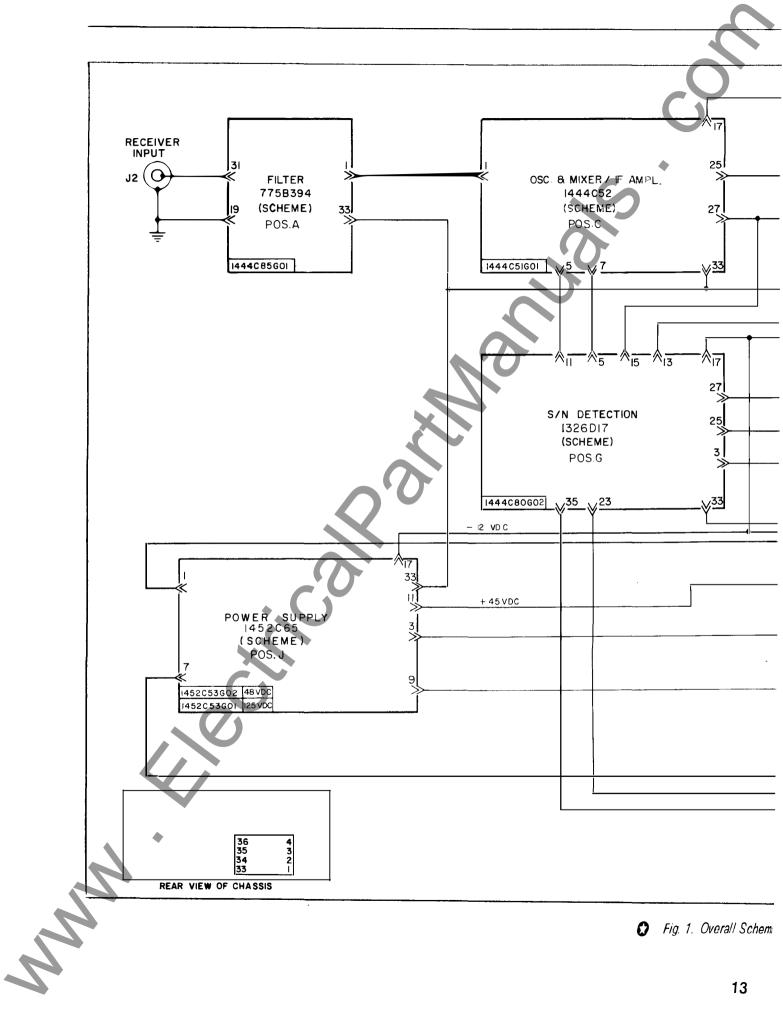
The parts required for converting a TCF-10 receiver for operating at a different channel frequency consist of a new LC input filter (FL201), a new local oscillator crystal (Y11) and probably a different feedback capacitor (Cl2). There are two ways of effecting this change. The easiest and preferred method is to order a new input filter module and a new oscillator mixer module for the new frequencies from the factory. The new modules would then just have to be plugged in as replacements for the original modules. The second method would involve ordering just replacement filter, FL201, and new local oscillator crystal for the new frequencies and making the substitution on the modules. These substitutions on the modules are not difficult as the crystal plugs in and the filter has five leads to be soldered. However, testing of the local oscillator for easy starting will have to be made, and the value of C12 chosen to assure this easy starting of oscillation. The whole receiver should then be checked out for correct performance.

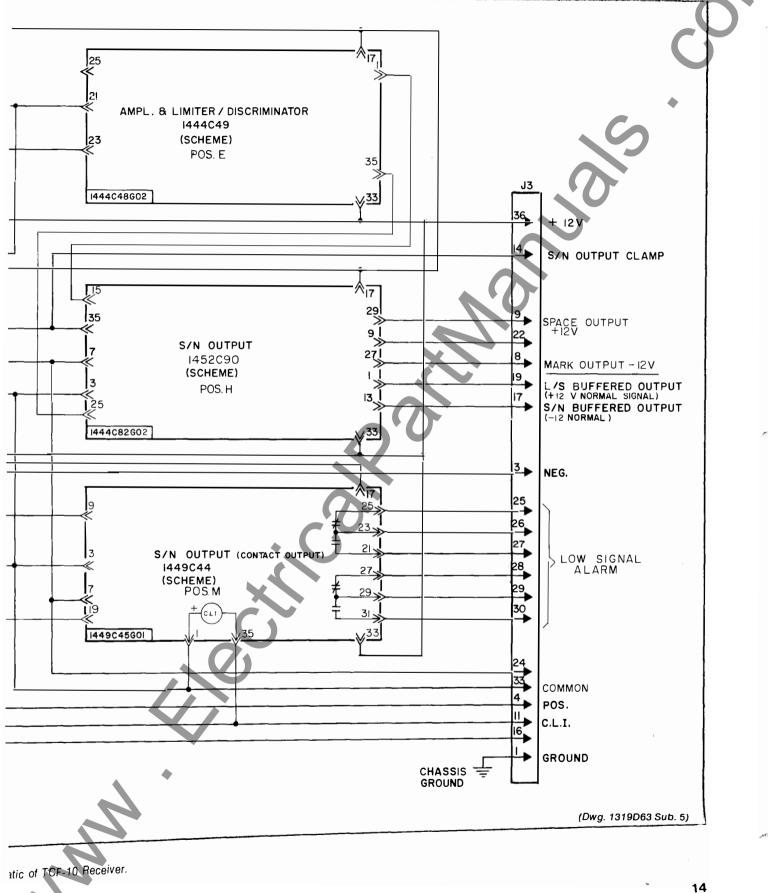
RECOMMENDED TEST EQUIPMENT

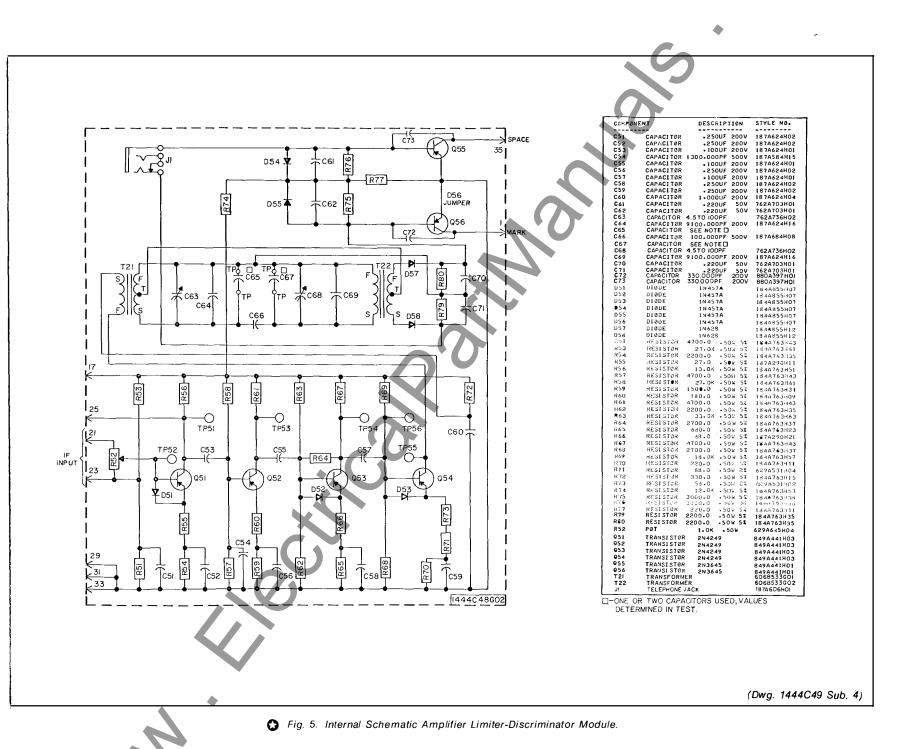
I. Minimum Test Equipment for Installation

- a. A-C Vacuum Tube Voltmeter (VTVM). Voltage range 0.003 to 30 volts, frequency range 60 hertz to 330 kHz, input impedance 7.5 megohms.
- b. D-C Vacuum Tube Voltmeter (VTVM).
 Voltage range: 1.5 to 300 volts
 Input impedance: 7.5 megohms

- c. CLI Microammeter, range $0-100\mu A$, style number 606B592A26, (if receiver has carrier level indicator)
- II. Desirable Test Equipment for Apparatus Maintenance
 - a. All items listed in I.
 - b. Signal Generator Output Voltage: up to 8 volts Frequency Range: 20kHz to 330kHz
 - c. Oscilloscope
 - d. Frequency counter
 - e. Ohmmeter
 - f. Capacitor checker


g. Milliammeter, 0-1.5 or preferably 1.5-0-1.5 range, for checking discriminator.


Some of the functions of the recommended test equipment are combined in the type TCT carrier test meter unit, which is designed to mount on a standard 19" rack but also can be removed and used as a portable unit.


RENEWAL PARTS

Repair work can be done most satisfactorily at the factory. However, replacement parts can be furnished, in most cases, to customers who are equipped for doing repair work. When ordering parts, always give the complete nameplate data, the electrical value, style number, and identify the part by its designation on the Internal Schematic drawing.

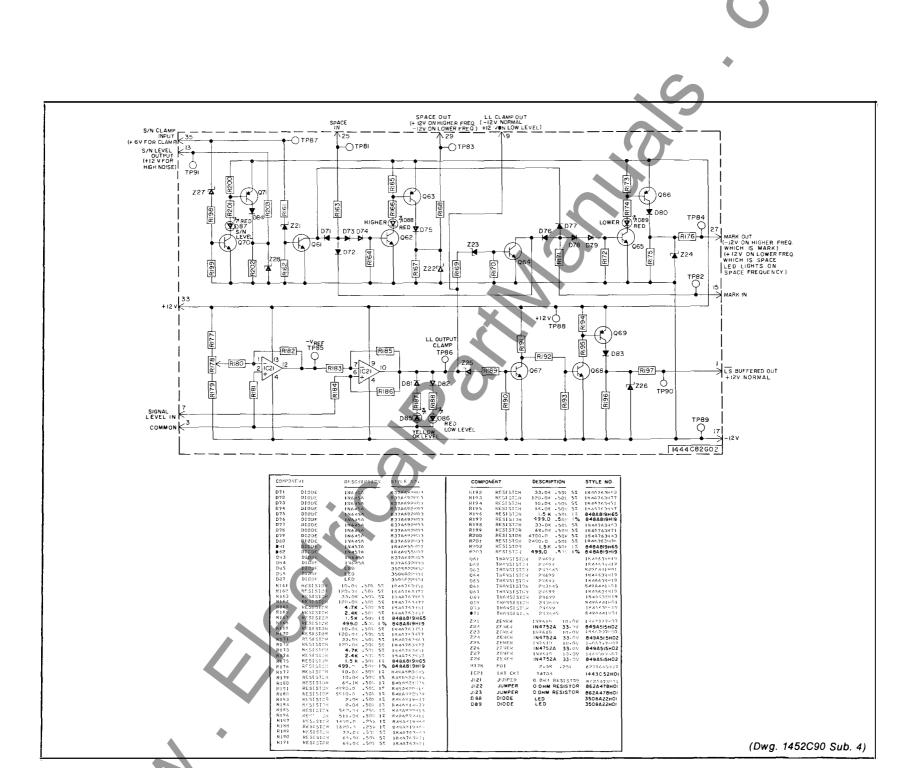
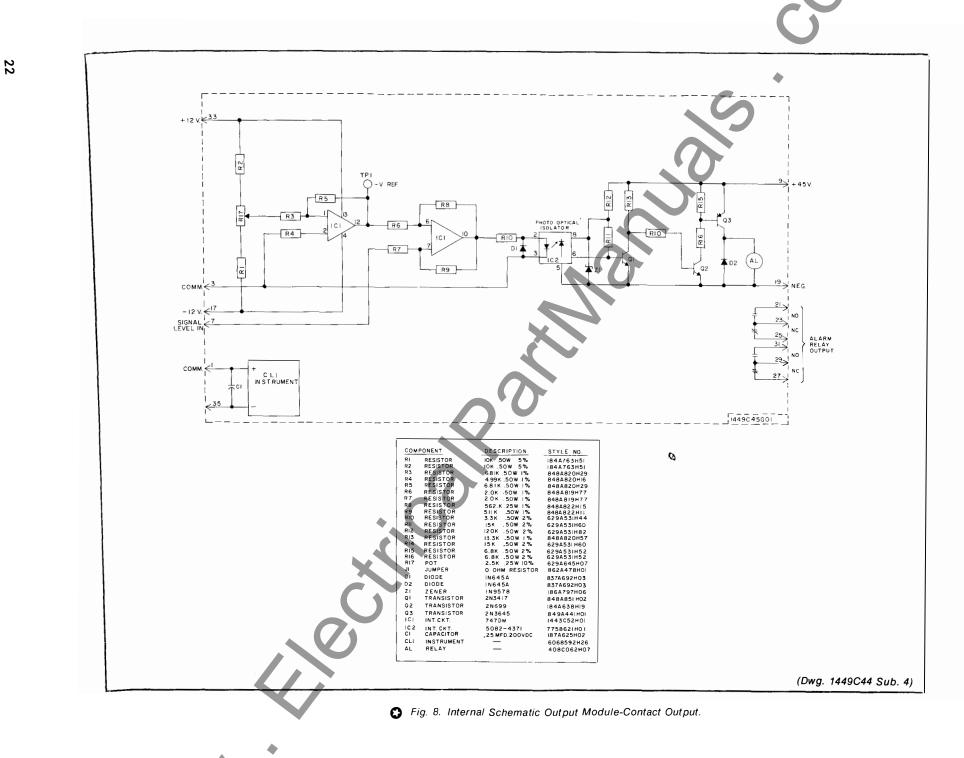
17

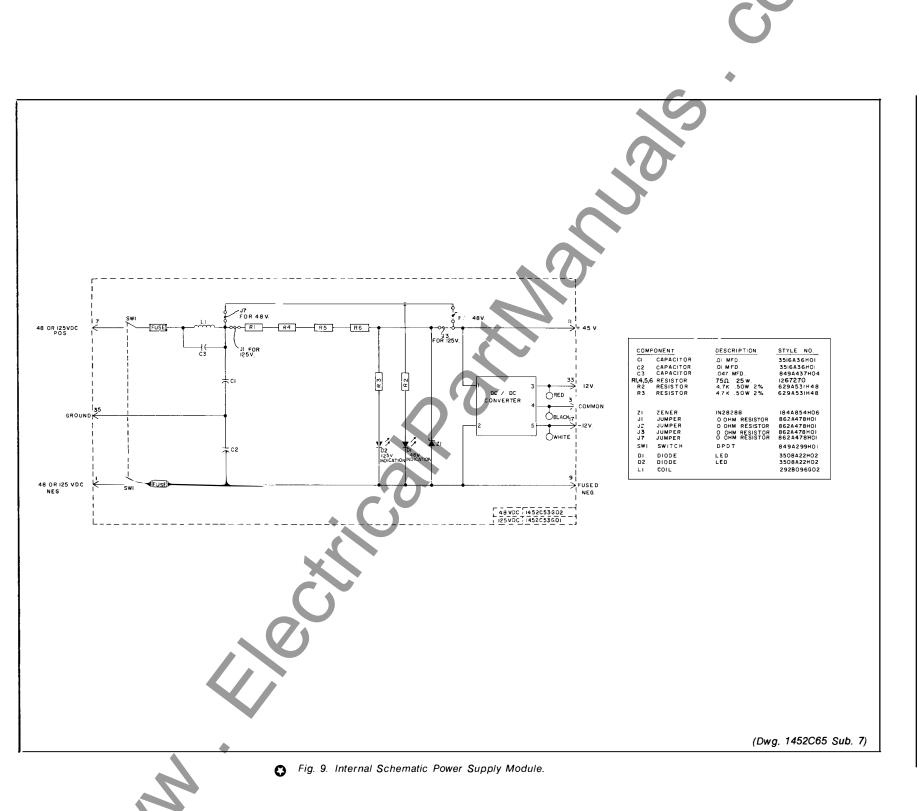
COMPONE	ENT	DESCRIPTION	STYLE NO.		COMPONE	NT	DESCRIPTION	STYLE NO.
881	RE SI STOR	1000.0 .50V 1%	8486819868	1	R9 4	POT	20.0K .50%	629A645H05
R82	RESISTOR	2210.0 .50% 1%	848AS19H81		R111	POT	50.0K .50W	629A645H12
R83	RESI STOR	10.24 .25% 1%	8436820446	1	R129	POT	2.5K .25N	629A645H07
R8 4	RESISTOR	10.0K .251 12	84348201145	1	R147	POT	250.0K .75W	880/326410
R85	RESISTOR	56.2K .25% 1%	848A821H18	1	R153	POT	2.5K .25W	629A645H07
R86	RESI STOR	10.0K .50W 1%	848A820H45		C81	CAPACITOR	2000.000PF 500V	1876584801
R87	RESISTOR	2210.0 .501 1%	843A319H81		C82		1000.000PF 200V	
R88	RESISTOR	10.2K .25W 1%	8434320846		C83	CAPACITOR	220.000PF 200V	879 4989817
R89	RESISTOR	10.0K .25K 1%	8 48A 820H 45		C84	CAPACITOR	.010UF 50V	18 44 663101
R90	RESI STOR	82.5K .50¥ 1%	8484821134		C85	CAPACITOR	1.000UF 50V	3512A08H01
R91	RESI STOR	10.0K .50V 12	848A320H45		C86	CAPACITOR	.010UF 50V	1844663H01
R92	RESISTOR	6190.0 .50% 1%	8.4GA320H25		C87		2000.000PF 500V	187A584H01
R9 3	RESISTOR	4990.0 .508 1%	848A820H16		C88	CAPACITOR	1000.000PF 200V	\$80A397H07
R95	RESISTOR	4750.0 .258 12	843A320H14		C89	CAPACITOR	33.000PF 200V	879A989H07
R9 6	RESISTOR	4750.0 .25% 1%	848A820H14		C90	CAPACITOR	.010UF 50V	18446631101
R97	RESISTOR	4990.0 .50% 1%	848A320H16		C91	CAPACI TOR	.010UF 50V	1344663401
R98	RESI STOR	15.0% .50% 1%	848A820H62		C92	CAPACITOR	1.000UF 50V	
R99	RESI STOR	4990.0 .50W 1%	848A320H16		C93	CAPACITOR	.010UF 50V	
R100	RESI STOR	4990.0 .50% 1%	\$43A520H16		C94	CAPACITOR	33.000PF 200V	
R101	RESISTOR	4990.0 .50% 1%	848A320H16		C95	CAPACITOR		184A663H01
R102	RESISTOR	10.€K .50% 1%	848A820H45		C96	CARACITOR	.010UF 50V	1840663401
R103	RESISTOR	10.0X .50V 1%	848A820525		C98 C97	CAPACITOR	.470UF 50V	
R104	RESISTOR	10.04 .50% 1%	848A320H45		C98	CAPACITOR	33.000PF 200V	
R105	RESI STOR	10.0K .50W 1Z	8436820145		C98	CAPACITOR	.010UF 50V	
R106	RESISTOR	10.0K .50W 1%	\$48A820H45		C100	CAPACITOR	•010UF 50V	
R107	RESISTOR	10.0% .50% 1%	\$43A820H45		C100	CAPACITOR	33.000PF 200V	
R108	RESI STOR	100.04 .50% 1%	848A821H42		C102	CAPACITOR	.010UF 50V	
R109	RESI STOR	10.0K .50% 1%	8486820845		C102	CAPACITOR	33.000PF 200V	
R110	RESI STOR	1000.0 .50% 1%	8434819143		C104	CAPACITOR	+010UF 50V	
R112	RE SI STOR	4750.0 .258 1%	548A820H14		C105	CAPACITOR	.010UF 50V	
R 11 3	RESISTOR	4750.0 .25% 1%	8481820414		C106	CAPACITOR	.047UF 50V	
R114	RESISTOR	15.0K .50V 1%	848A820H62		C107	CAPACITOR	33.000PF 200V	
R115	RESISTOR	4990.0 .50% 1%	843A320H16		C108	CAPACITOR	.010UF 50V	
R116	RESISTOR	4990.0 ·50W 1%	848A820H16		C109	CAPACITOR	.010UF 50V	
R117	RESISTOR	4990.0 .508 1%	848A820H16		C110	CAPACITOR	.22 UF 100V	
R118	RESISTOR	4990.0 .501.12	848A820H16		101	INT CKT	SE531T	3512A10H01
R119	RESISTOR	10.0K .50W 1%	848A820H45					
R120	RESISTOR	1000.0 .50% 1%	843A319H45		102	INT CKT	SE531T SE531T	3512A10H01 3512A10H01
R121	RESI STOR	15.0% .50W 1%	848A320H62		103	INT CKT INT CKT	SE531T	3512A10401
R122	RESISTOR	15.0% .50% 1%	8484820862		104			
R123	RESI STOR	10.08 .508 1%	848A820H45		1 C 5 1 C 6	INT CKT INT CKT	SE531T	3512A10H01 1443C52H01
R124	RESISTOR	10.0K .50W 1%	848A820H45		IC8 IC7	INT CKT	747DH	3512A10H01
R125	RESISTOR	10.0K .50V 1%	B 48 A 82 0 H 45		107	INT CKT	SE531T SE531T	3512A10H01
R126	RESISTOR	10.0K .50W 12	845A820H45		108	INT CKT	SN56502	3512A09H01
R127	RESISTOR	2.0K .50W 1%	848A819H77		IC10	INT CKT	747DM	1443C52H01
R128	RESISTOR	9530.0 .508 1%	8484820843		I C 11	INT CKT	747DM	1443052801
R130	RESISTOR	9530.0 .508 1%	848A820H43					
R131	RESISTOR	10.04 .500 1%	848A320H45		1013	INT CKT	SN56502 747DM	3512A09H01
R132	RESI STOR	10.0K .50% 1%	843A320H45		1013	INT CKT		1443052801
R133	RESISTOR	10.0K .50W 1%	84848201145		D61	DIODE	1N4148	8364928106
R134	RESISTOR	10.0% .50% 1%	8488820845		D62	DICDE	1N4145	836A928H04
R135	RESI STOR	10.0K .50W 1%	843A320H45		D63	DICDE	1N4148	836A923H06
R136	RESISTOR	15.0K .50% 1%	848A820H62		D64	DIODE	1N 41 43	836A928H06
R137	RESISTOR	10.0K .50W 1%	848A320H45		D65	DICDE	1N4148	836A928H06
R138	RESISTOR	10.0K .50V 1%	646A820H45		211	ZENER	IN825A 6.2V	862A288H06
R139	RESISTOR	10.0K .50W 1Z	8484820145		Z12	ZENER	IN 825A 6.2 V	862A288H06
R140	RESISTOR	475.0K .25W 1%	848A822H03		Z1 13	ZENER	1N825A 6.21	862A288H06
R141	RESISTOR	200.0K .50W 1%	8 ABAS2 1471		J111	JUMPER	O OHM RESISTOR	8626478H01
R142	RESISTOR	150.0 .50% 1%	8484818865		J112	JUMPER	O OHM RESISTOR	
R144	RESISTOR	750.0 .50% 1%	8484819136		J113	JUMPER	O DIM RESISTOR	
R145 R146	RESISTOR	18.7K .50W 12	8488820171		J114	JUMPER	O OHM RESISTOR	
R146 R148	RESISTOR	4990.0 .50% 1%	8434320416		T 3 I	TRANSFORM	ER	714867760
	RESISTOR	1000.0 .508 13	8490919448		T 32	TRANSFORM	ER	7148677G01
R149	RESISTOR	15.0% .50% 1%	84645201162					
R150	RESISTOR	2.04 .500 17	843A319177					
R151	RESISTOR	2. OK . 50% 1%						
R152	RESISTOR	17.88 .258 1%	8 43 43 43 69					
R154	RESISTOR	1.0% .50% 1%	B48A819H4B					
R155	RESISTOR	1.0K . 25W 20						
R153 R157	RESISTOR	150.0 .50M 1% 20.0K .50M 1%	848A818H68					
R157 R158	RESISTOR	20.08 .508 12	8484320474					
1139	RESISTOR	20.08 .508 12	848AS20174					

18

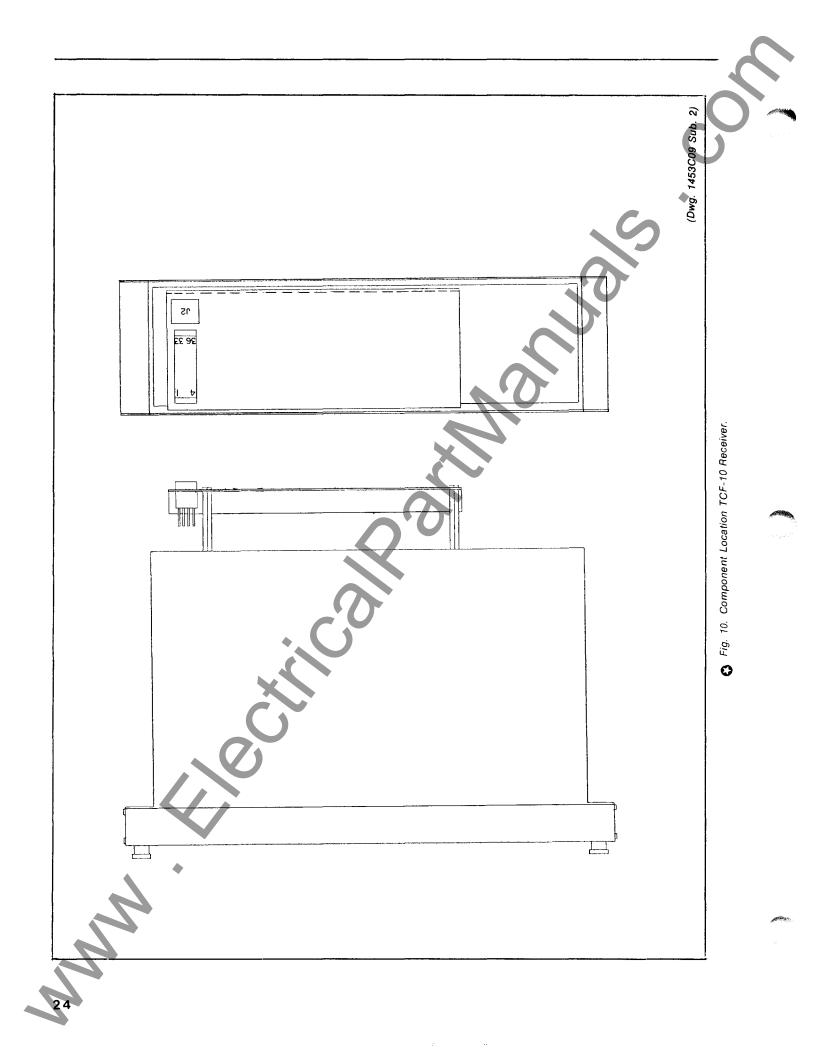
•

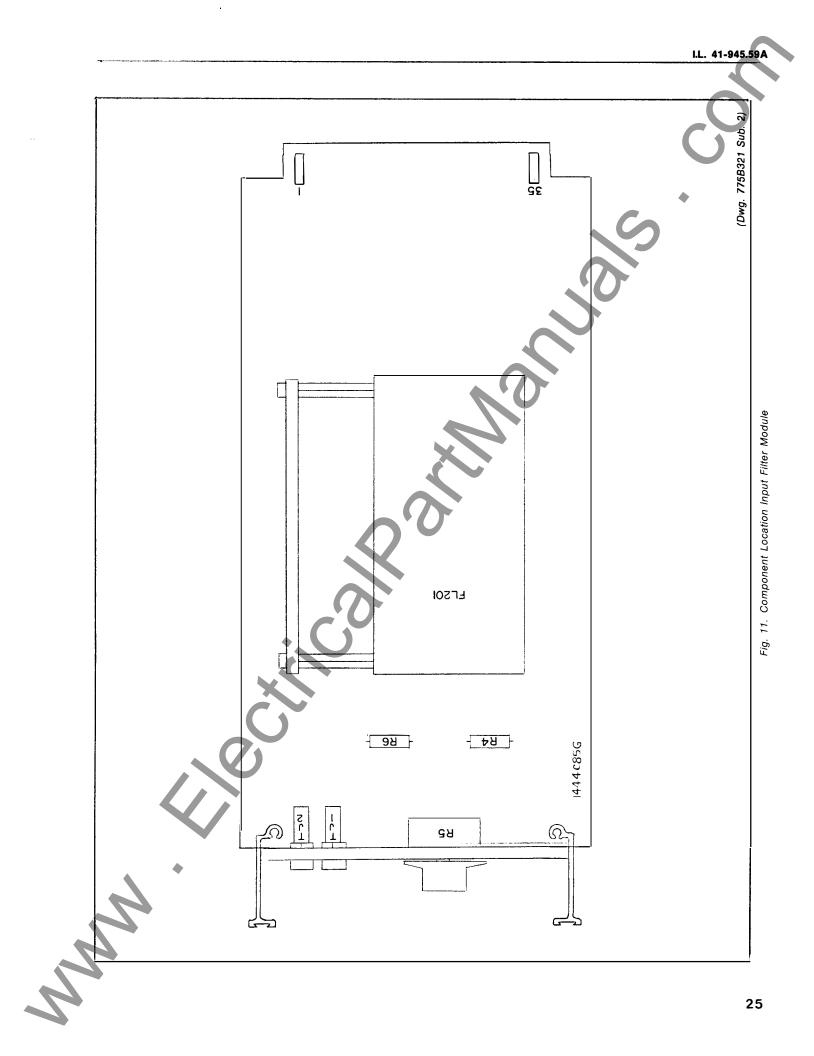
a constant


Fig. 7. Internal Schematic Output Module.

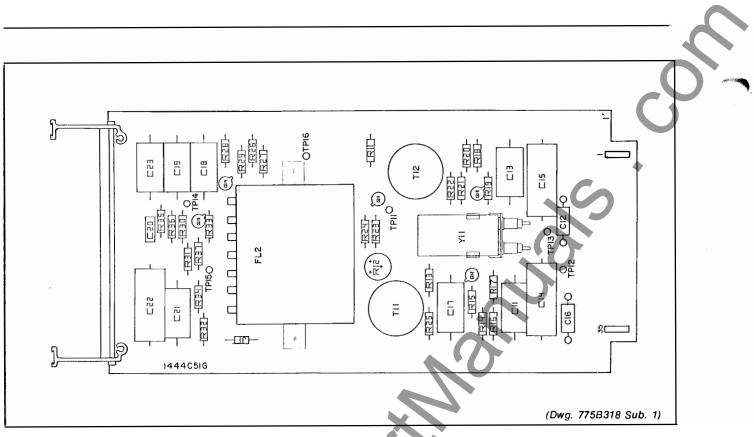
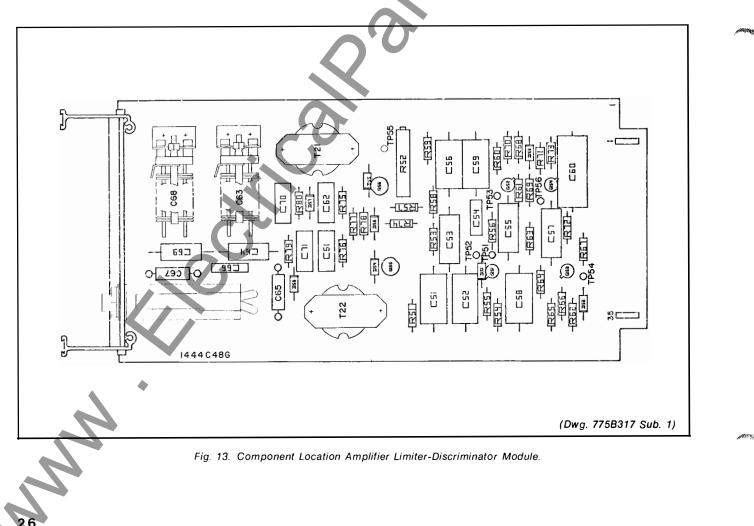
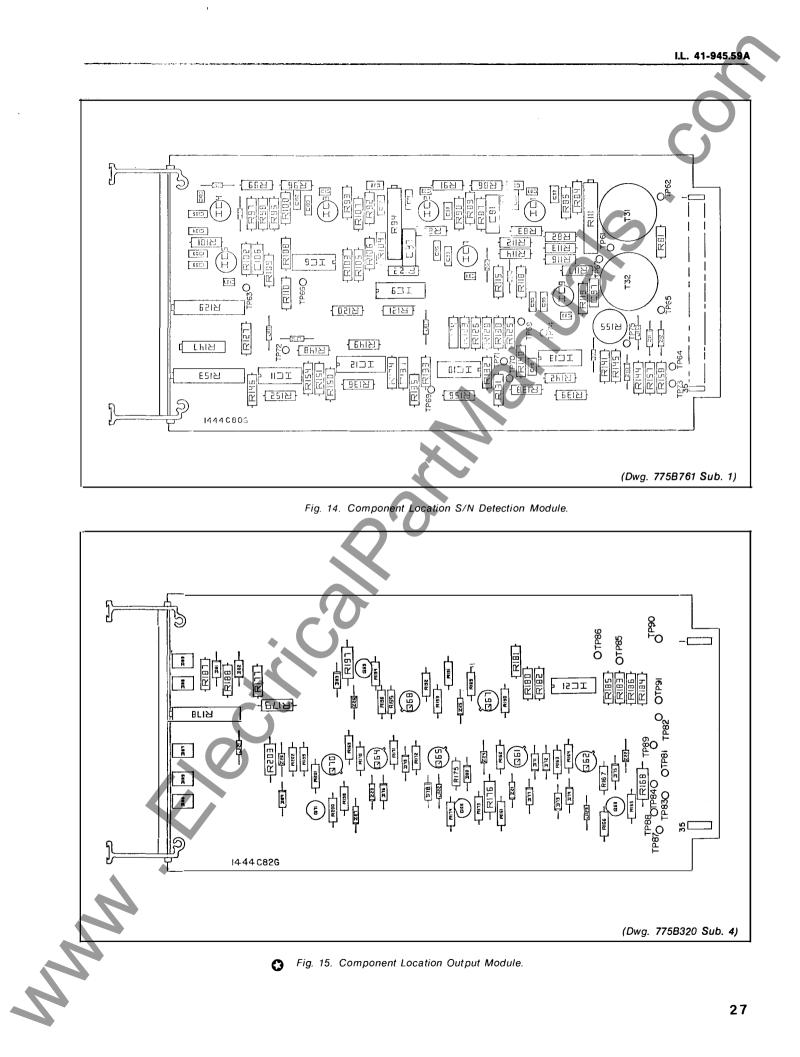
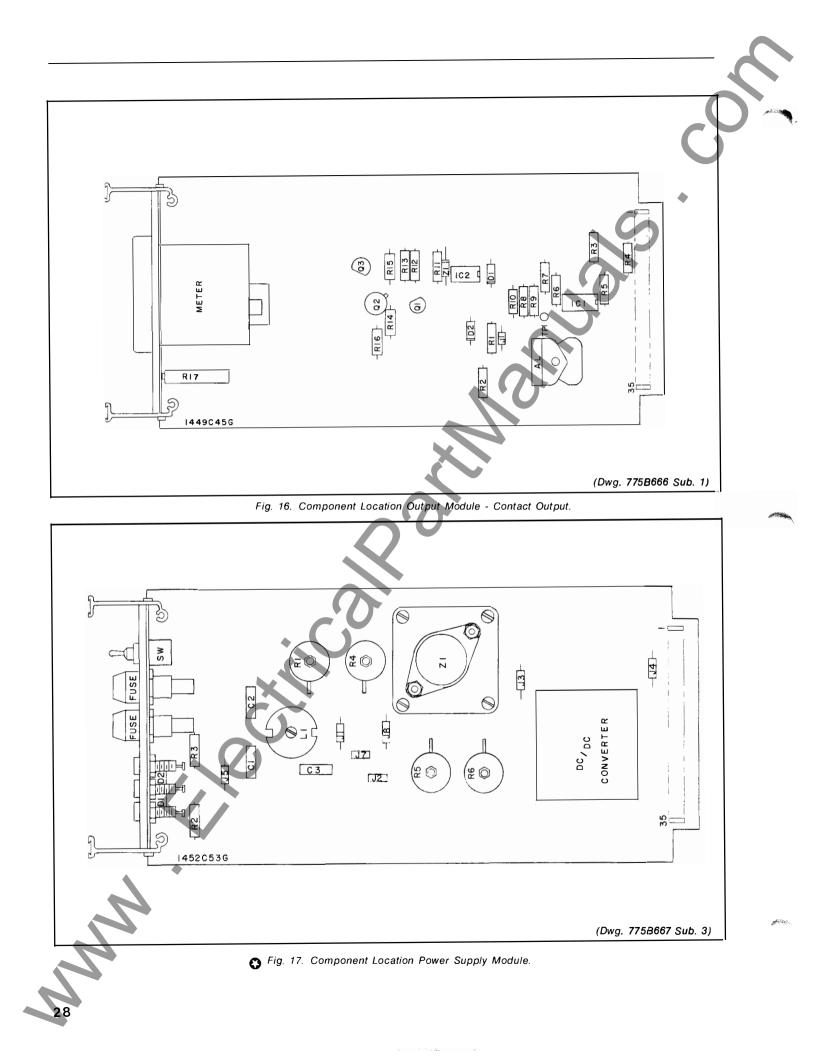
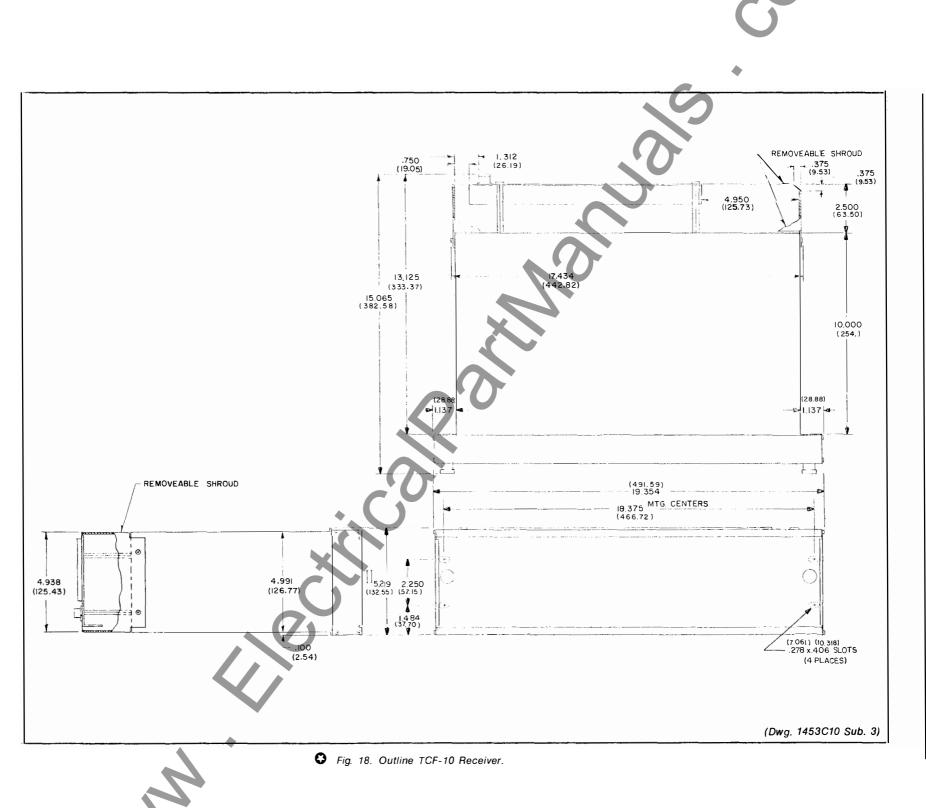
21

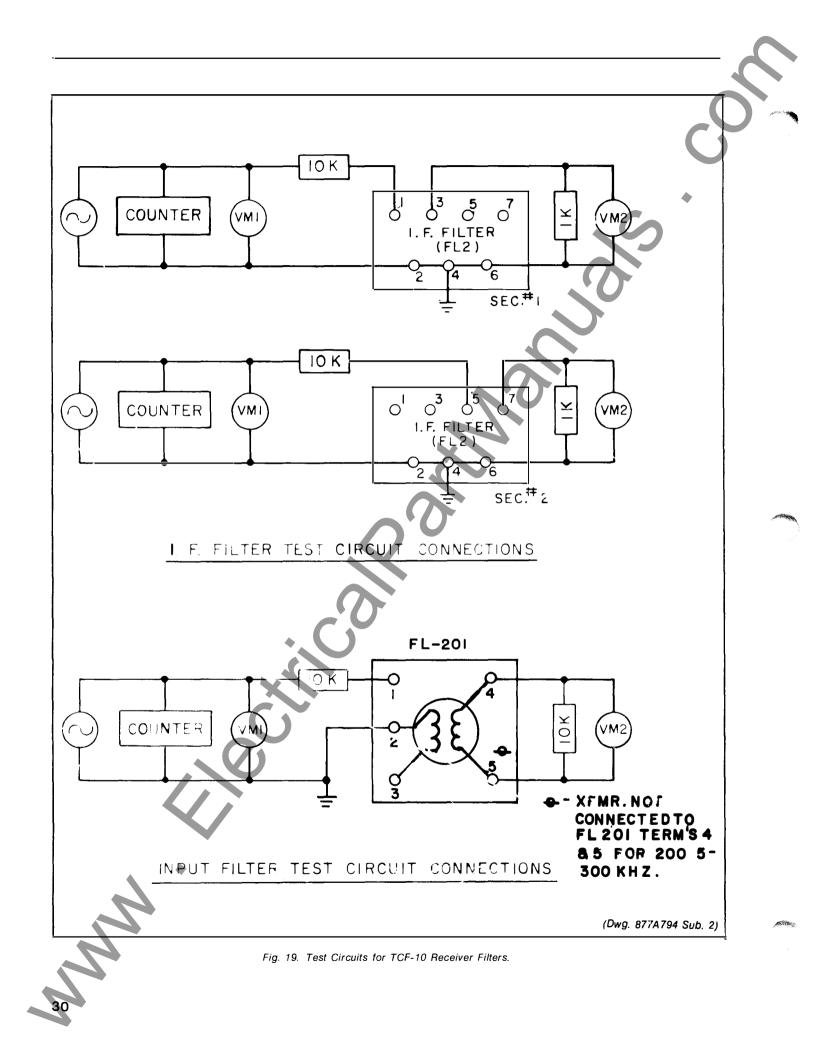


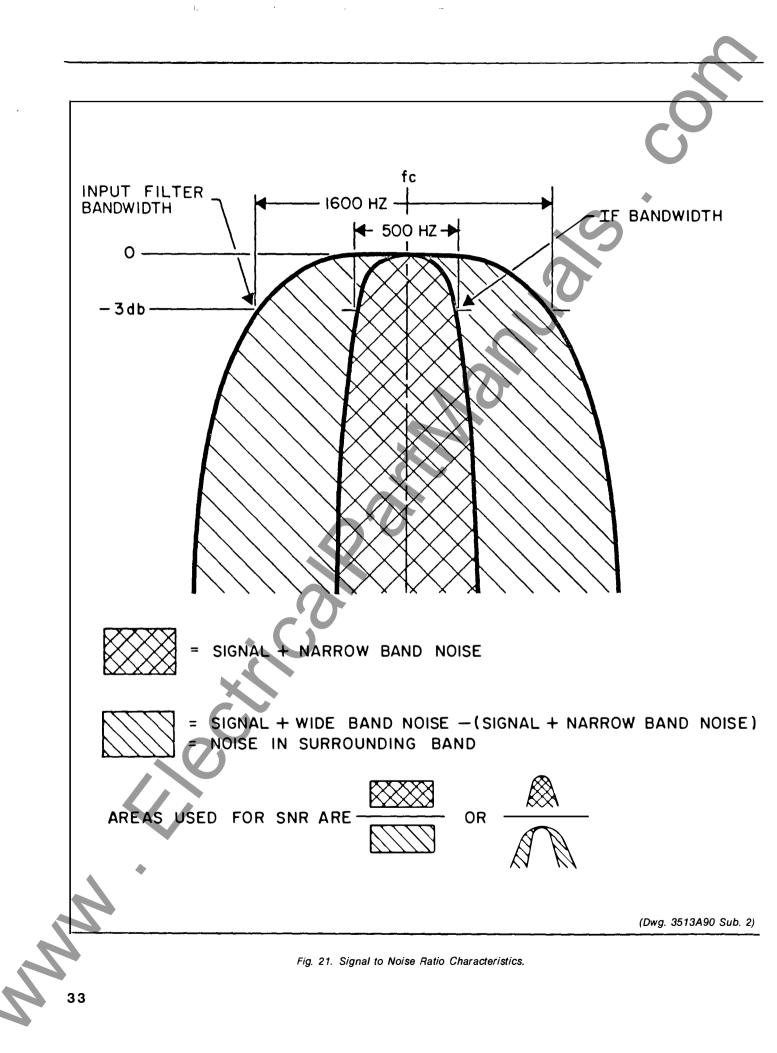

7

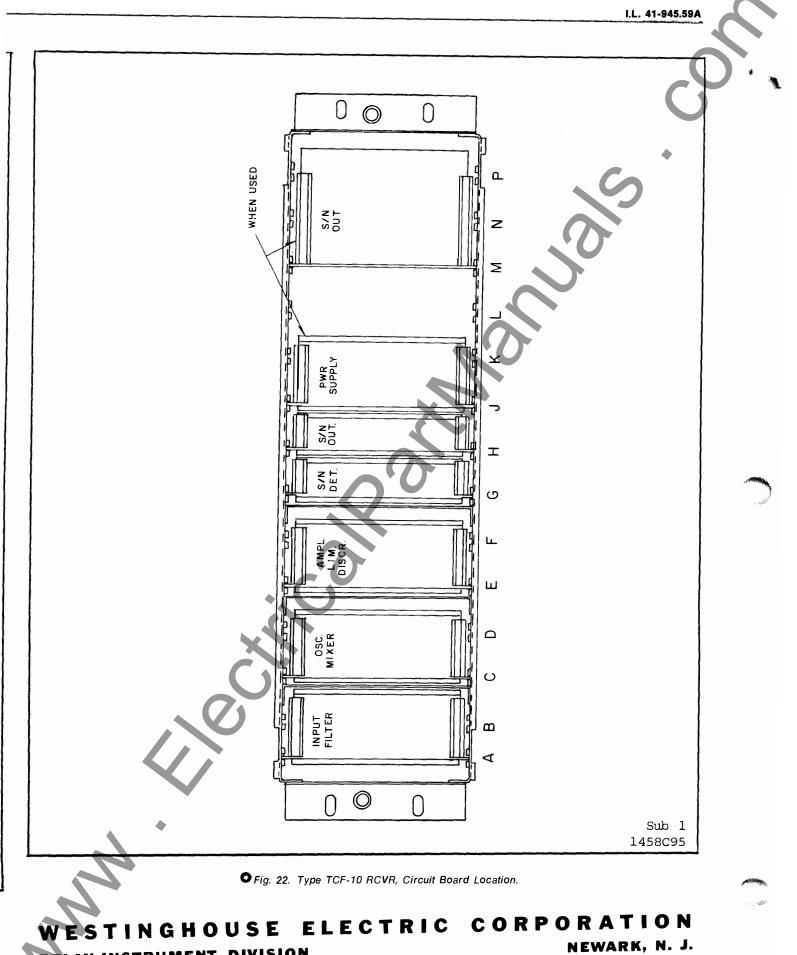
1.L. 41-945.59A

23


Fig. 12. Component Location Oscillator-Mixer-IF Amplifier Module.





AY-INSTRUMENT DIVISION RE

Printed in U.S.A.

Westinghouse I.L. 41-945.58 INSTALLATION • OPERATION • MAINTENANCE INSTALLATION • OPERATION • OPERATION • MAINTENANCE INSTALLATION • OPERATION • OPERATION • MAINTENANCE INSTALLATION • OPERATION •

CAUTION

It is recommended that the user of this equipment become acquainted with the information in this instruction leaflet, and in the system instruction leaflet before energizing the system.

Printed circuit modules should not be removed or inserted when the equipment is energized. Failure to observe this precaution may result in an undesired tripping output or cause component damage. Care should also be exercised when replacing modules to assure that they are replaced in the same chassis position from which they either were removed or the module they are replacing was removed.

If the carrier set is mounted in a cabinet, it must be bolted down to the floor or otherwise secured before swinging out the equipment rack to prevent its tipping over.

APPLICATION

The TCF-10 frequency-shift receiver equipment as adapted for supervisory control and certain telemetering applications responds to carrier-frequency signals transmitted from the distant end of a power line and carried on the power line conductors. The Mark frequency is 100 hertz above the center frequency of the channel (which can be selected within the range of 30kHz to 300kHz), and it is transmitted continuously when conditions are normal and no information is to be conveyed over the channel. Its reception indicates that the channel is operative. The Space frequency is 100 hertz below the channel center frequency. When supervisory control or telemetering information is to be conveyed over the channel, the transmitter at one end of the channel is switched alternately between Mark and Space so as to produce at the receiving end a desired number of operations of a relay activated

by the Space frequency. Control of the durations of the intervals that the relay contacts are open and closed also can be utilized to convey information over the channel.

CONSTRUCTION

The TCF-10 receiver is mounted on a standard 19-inch wide chassis 5¹/₄ inches high (3 rack units) with edge slots for mounting on a standard relay rack.

All of the circuitry that is suitable for mounting on printed circuit boards is contained on printed circuit modules that plug into the chassis from the front and are readily accessible by removing the transparent cover on the front of the chassis. The external connectors are located at the rear of the chassis as shown in Figure 10. Reference to the internal schematic connections of Figure 1 will show the location of these components in the circuit.

The printed circuit modules slide into position in slotted guides at the top and bottom of the chassis, and the module terminals engage a terminal block at the rear of the chassis. A handle on the front of each module is labeled to identify its function, and also identify adjustments and indicating lights if any are available at the front of the module. Of particular significance is the input attenuator contained on the front of the filter module which is used in adjusting the input receiver signal during initial field installation.

All possible contingencies which may arise during installation, operation, or maintenance, and all details and variations of this equipment do not purport to be covered by these instructions. If further information is desired by purchaser regarding his particular installation, operation or maintenance of his equipment, the local Westinghouse Electric Corporation representative should be contacted. A module extender (Style No. 1447C86G01) is available for facilitating circuit measurements or major adjustments. After withdrawing any one of the circuit modules, the extender is inserted in that position. The module is then inserted into the terminal block on the front of the extender. This restores all circuit connections and renders all components and test points on the module readily accessible.

The receiver operates from a regulated +12Vand -12V supply derived from a self-contained DC to DC converter. The power supply module containing the DC to DC converter has links which enable it to operate from either 48 volts or 125 volts dc.

External connections to the receiver are made through a 36-terminal receptacle, J3. The r-f input connection to the receiver is made through a coaxial cable jack J2.

OPERATION

INPUT MODULE

The input module contains the input control and the input filter. The signals to which the TCF-10 receiver responds are fed through a coaxial cable connected to jack J2 at the rear of the chassis to the input module. The input control R5, accessible at the front of the input module, attenuates the signal to a level suitable for the best operating range of the receiver.

A scale on the panel is graduated in dB. While this scale is typical rather than individually calibrated, it is accurate within several dB and is useful is setting approximate levels. Settings should be made more accurately utilizing a suitable ac voltmeter with a dB scale when possible.

From the attenuator, the signal passes through a crystal filter, FL1. This filter has a narrow pass band, and frequencies several hundred hertz above or below the center frequency (fc) of the channel are greatly attenuated. Figure 2 shows a typical curve for the crystal filter, as well as a characteristic curve for the intermediate frequency filter, FL2, and for the discriminator output. The narrow pass band of FL1 permits close spacing of channel frequencies and reduces the possibility of false opera-

tion caused by spurious signals such as may result from arcing disconnects or corona discharge.

OSCILLATOR, MIXER, AND IF AMPLIFIER MODULE

From the input filter, the signal enters the oscillator and mixer stage of the receiver. Crystal Y11, transistors Q12 and Q13, and their associated resistors and capacitors, comprise a crystal-controlled oscillator that operates at a frequency 20kHz above the channel center frequency, f_c . The output from this local oscillator is fed through transformer T11 to potentiometer R12, and the latter is adjusted to feed a suitable input to the base of mixer transistor Q11. The output of filter FL1 is impressed on the emittercollector circuit of Q11. As a result of mixing these two frequencies, the primary of transformer will contain frequencies of 20kHz, $2f_c + 20kHz$, $f_c + 20kHz$, and f_c .

The output from the secondary of T12 is amplified by Q31 in the intermediate frequency (IF) stage, and is impressed on FL2. This is a two-section filter, with both filters contained in a common case. Its pass band is centered at 20kHz. It eliminates the frequencies present at its input that are substantially higher than 20kHz. The output of this filter is the IF output which is fed to both the amplifier-limiter and the S/N Detection module.

AMPLIFIER LIMITER AND DISCRIMINATOR MODULE

The IF output signal from the IF amplifier is fed into the amplifier limiter through potentiometer R52 at the input of the amplifier limiter stage. Sufficient input is taken from R52 so that with minimum input signal (5 mv.) at J2 and with input control R5 set for zero attenuation, satisfactory amplitude limiting will be obtained at the output of the limiter stage.

The output of the limiter stage is fed to the discriminator. The discriminator is adjusted at the factory to have zero output (as measured by a milliammeter inserted in the circuit at jack J1) at the channel center frequency, f_c . The adjustment for zero output at f_c is made by capacitor C68. In addition, C63 is adjusted for maximum voltage reading across R80 when the output current is zero. Maximum current output, of opposite polarities, will be obtained when the frequency is 100 hertz above or below the zero current output frequency. This separation of 200 hertz between the current peaks is affected by the value of C66 (the actual value of which may be changed slightly from its typical value in factory calibration if required).

It should be observed that although the mark frequency is $f_c + 100$ hertz, after leaving the mixer stage, and as seen by the discriminator, the mark frequency is 20kHz-100 hertz. Similarly the space frequency as seen by the discriminator is 20kHz +100 hertz. The intermediate frequency at which the discriminator has zero output then is 20kHz. The discriminator is adjusted so that the mark and space outputs are of equal lengths for equal periods of mark and space signal frequencies.

The discriminator output is connected to the bases of transistors Q55 and Q56 in such a manner that transistor Q56 is made conductive when current flows, from the discriminator output, in the forward direction of diode D54, (which occurs with space output) and Q55 is made conductive when current flows in the forward direction of diode D55 (which occurs with mark output.) Consequently, terminal 35 is at a potential of approximately + 20 volts at mark frequency and terminal 1 is at +20 volts at space frequency.

S/N DETECTION MODULE

The S/N detection module has one basic function: to measure incoming in-band signal level and provide both an output to a carrier level indicating instrument and to an alarm circuit in the output module for alarming at the desired low level of signal.

The narrow-band signal of 220 hertz bandwidth called the I.F. is fed into the S/N detection board through isolation transformer T32. The amount of signal fed into the board is adjustable by means of potentiometer R111. The circuit composed of operational amplifiers IC7 and IC8 and associated components is an RMS circuit which converts the signals into a dc voltage proportional to the r.m.s. value of the ac signals present in the IF bandwidth.

The output of the IF rms circuit is then fed to the logarithmic circuit composed of IC11A, IC12A, and IC11B which puts out a dc signal level linearly proportional to signal level in dB for feeding a microammeter calibrated with a linear dB scale with 10dB equal to 33-1/3 microamperes, is contained on the output module (contact output).

This same output is also fed to an alarm circuit on the output module (contact output) for alarming at low signal levels.

OUTPUT MODULE

The output module provides three buffered outputs to the telemetering system. They are mark, space and not low signal with red indicating light emitting diodes for these outputs and a yellow indicating light emitting diode for normal level (satisfactory signal level).

The lower frequency of plus 12 volts (when present) from the discriminator is fed into the output module through terminal 15 into the gate consisting of diodes D78 and D79, transistors Q65 and Q66, and associated components R171, R172, R173, R174, R175, R176, D80, and Z24. Transistor Q65 then becomes conducting, causing Q66 to become conducting and a plus 12 volts to appear at terminal 27 as well as causing LED D89 to glow. This output labeled "Mark" is then fed into the output module – contact output – where it is used to energize the mercury wetted relay for contact outputs. Note that this "Mark" output is plus 12 volts on lower frequency and minus 12 volts on either higher frequency or no signal.

In a similar manner, the higher frequency output of +12 volts when present from the discriminator is fed into the output module through terminal 25 into the gate built about transistors Q62 and Q63. Just as in the case of the "mark" output, the "space" output of plus 12 volts will appear out of terminal 29. This output is wired out to the output connector J3 for external use if desired. Note also that this "space" output is plus 12 volts on higher frequency and minus 12 volts on either lower frequency or no signal.

The low-signal-level clamp operates off the carrier level signal of the S/N detection module which is basically the same signal fed to the CLI instrument.

It is fed through terminal 7 into the voltage comparator circuit built around operational amplifier IC21B. This comparator compares this signal level with the voltage reference from IC21A, and if the signal level is greater than the low level at which clamping is desired, the output of IC21B will be negative causing the yellow LED to glow indicating OK level and there will consequently be no low signal clamping. If the signal level is below the level at which clamping is desired, then the output of IC21B will be positive causing the red LED to glow indicating low level. In addition, transistor Q67 will become conducting. Transistor Q67 conducting causes Q68 to become non-conducting and thus removes the not-low-signal output from terminal 1. Under good or OK signal level, this notlow-signal output at terminal 1 of this module is plus 12 volts.

OUTPUT MODULE - CONTACT OUTPUT

The output module-contact output performs three functions; contact output of mark and spaces using a mercury wetted relay with two form C contacts, alarming on low signal level using a telephone relay with two form C contacts, and indicating signal level with its self-contained CLI instrument.

The mercury wetted relay is energized by the mark output of the output module and picks up on the lower frequency and drops out at the higher frequency.

The alarm circuit consists of all components associated with IC1, IC2, Q1, Q2, Q3, and relay AL. The signal level from the S/N detection module is fed into a level detector consisting of IC1B and resistors R6, R7, R8, and R9. An adjustable reference for the level detector consisting of IC1A and R1, R2, R17, R3, R4, and R5 is also fed into the level detector. As long as the signal level exceeds the value set by the reference, there will be approximately plus 12 volts out of the level detector into the photo-optical isolator. This causes Q1 to become non-conducting and thus transistors O2 followed by transistor Q3 to become conducting. As a consequence, the alarm relay AL is picked up on signal levels above the alarm level. When the signal level drops below the alarm level set by the reference, the output of the level detector will be minus 12 volts causing O1 to become conducting and O2 and Q3 to become non-conducting and drop out the alarm relay AL. The alarm relay has a delay of approximately 40 milliseconds on dropout to prevent undesirable alarming on short temporary loss of signal. Note that the level of alarm is set by adjusting alarm level R 17, accessible from front of module, independent of the low signal level output from the output module (which is set by L.L. ADJ. R178). Also both of these outputs operate on total signal level within the passband of the receiver.

The CLI instrument operates directly on signal level received from the S/N detection module. It measures signal level in the entire bandwidth of the receiver and thus closely correlates with the low level clamp (L.L. ADJ.) and the low signal alarm AL (alarm level). It thus can be used in setting both of these adjustments.

POWER SUPPLY

The +12 volt dc, -12 volt dc, and the +45 volt dc supply voltages for the receiver are derived from the power supply module.

The +12 volt dc supply and the -12 volt dc supply are both derived from the DC to DC converter and are regulated for input voltages to the regulator of from 42 volts to 56 volts. For nominal 48 volt input units, the DC to DC converter has sufficient range so that the preregulator consisting of R1, R4, and Z1 is not necessary and is not connected by omitting jumpers J1 and J3 and supplying J7 and J2. In this case, then, the +45 volt supply is derived directly from the input supply voltage and is not regulated.

For nominal 125 volt input units, the pre-regulator consisting of R1, R4, and Z1 is necessary and is connected by supplying jumpers J1 and J3 and omitting J7 and J2. In this case then, the +45 volt supply is derived from this pre-regulator and is regulated.

The LED's D1 and D2 indicate when the power supply is energized with either 48V or 125V by the proper one glowing. Since all components are supplied in each power supply, a 48V supply can be converted to a 125V supply simply by removing jumpers J7 and J2 and inserting J1 and J3. Similarly, a 125V supply can be converted to a 48V supply by removing jumpers J1 and J3 and inserting J7 and J2. Capacitor C1 and C2 bypass rf or transient

I.L. 41-945.58

voltages to ground. Choke L1 with capacitor C3 form a trap to isolate the receiver from transient voltages in the 20kHz range that may appear on the dc supply and which could affect the receiver.

CHARACTERISTICS

Frequency range	30-300kHz
Sensitivity (noise- free channel)	0.005 volt
Input Impedance	5000 ohms minimum
Bandwidth (crystal filter)	down < 3 dB at 220 Hz. down > 60 dB at 1000 Hz.
Discriminator	Set for zero output at chan- nel center frequency and for max. outputs at 100 hertz above and below center fre- quency.
Operating Time	9 ms. channel (transm. and recvr.)
	2 ms. HG relay operate and release times
Frequency spacing A. For two or	500 hertz minimum
A. For two or more signals	Joo nei tz minimum
over one-way channel	0
B. For two-way channel	1000 hertz minimum be- tween transmitter and ad- jacent receiver frequencies with proper hybrids.
Ambient tempera- ture range	-20°C to +55°C temper- ature around chassis.
Battery voltage variations	0
Rated Voltage 48 V dc 125 V dc	Allowable Variation 42-56 V dc 105-140 V dc
Battery drain	.25 a. at 48 V dc or 125 V dc
Dimensions	Panel height – 5¼" or 3 r.u. Panel width – 19"
Weight	13 lb.

INSTALLATION

The TCF-10 receiver is generally supplied in a cabinet or a relay rack as part of a complete carrier assembly. The location must be free from dust, excessive humidity, vibration, corrosive fumes, or heat. In particular equipment which generates excessive heat such as power supplies should not be mounted directly beneath the TCF-10. Heat rising will tend to raise the ambient temperature immediately around the chassis above acceptable levels. The maximum ambient temperature around the chassis must not exceed 55°C. In addition, sudden fluctuations in ambient temperature caused by these power supplies due to variations in load can cause variations in performance due to uneven heating of the receiver introducing abnormal temperature variations in the receiver.

ADJUSTMENTS

All factory adjustments of the TCF-10 receiver have been carefully made and should not be altered unless there is evidence of damage or malfunctioning. Such adjustments are: frequency and output level of the oscillator and mixer; input to the amplifier and limiter; frequency spacing and magnitude of discriminator output peaks; pickup of alarm relay; and pickup of low signal level clamp. The adjustment that must be made at time of installation is the setting of input attenuator R5. The input attenuator adjustment is made by a knob on the front of the panel of the input module.

The receiver should not be set with a greater margin of sensitivity than is needed to assure correct operation with the maximum expected variation to attenuation of the transmitter signal. In the absence of data on this, the receiver may be set to operate on a signal that is 15dB below the maximum expected signal. After installation of the receiver and the corresponding transmitter, and with a normal space signal level being received, input attenuator R5 should be adjusted to the position at which the low level clamp operates, causing a red LED low level light. The attenuator R5 should then be readjusted to increase the voltage supplied to the receiver by 15dB. The scale markings for R5 permit approximate settings to be made, but it is preferable to make this setting by means of the dB scales of an ac VTVM connected across the terminals indicated

at the front panel of the input module. The red terminal is connected to the wiper arm of R5 and the black terminal is connected to ground. With this setting, a 15dB drop in signal will cause a low signal level clamp output which will produce a -12Voutput at the low level output, cause the red LED low level light to come on, and cause the yellow LED O.K. level light to go out.

The only other adjustment which may be necessary at the time of initial installation is the adjustment of the CL1 instrument to correspond to proper variation of signal level from normal. This may be necessary if the instrument was not supplied with the receiver and was not adjusted by the factory. If this instrument was supplied and adjusted by the factory, then it could be used in adjusting R5. In this case, it would be necessary only to adjust R5 with a normal signal being received so that the instrument indicates 0dB.

If the instrument was not previously adjusted by the factory, then the following procedure should be used in adjusting the instrument. (Note: When CL1 instrument is supplied within the chassis, this is factory adjusted.)

- 1. Set incoming level into receiver at +10dB above normal level.
- 2. Adjust span adjustment, R147, so that the voltage at TP72 with respect to TP62 (common) is +3.000 volts.
- 3. Reduce incoming signal into receiver by 30dB.
- 4. Adjust full scale adjustment, R153, so that instrument now reads -20dB. (This is approximately 0 microamperes).
- 5. Increase signal to +10dB level. (This is 100 microamperes).
- 6. Adjust slope adjustment R155 to read + 10dB on instrument. ◆
- Reduce signal to normal level. Instrument should read 0dB. If desired, instrument could be adjusted to read 0dB with R155 with sacrifice in reading accuracy for +10dB.

FACTORY ADJUSTMENTS

In case the factory adjustments have been altered or there is suspicion of improper adjustments or malfunctioning, then the following procedures can be used. In addition, alterations to the settings used by the factory for low signal level clamping and low signal-to-noise ratio clamping can be made using these procedures if desired.

Potentiometer R12 in the oscillator and mixer should be set for 0.3 volts, measured with a VTVM connected between TP11 and terminal 33 on the circuit board (ground terminal of voltmeter). A frequency counter can be connected to the same points for a check on the frequency which should be 20k Hz above the channel center frequency. The frequency is fixed by the crystal used, except that it may be changed a few cycles by the value of capacitor C12. Reducing C12 increases the frequency, but the capacity should never be less than a value that assures reliable starting of oscillation. The frequency at room temperature is usually several cycles above the crystal nominal frequency as this reduces the frequency deviation at the temperature extremes.

The adjustment of the amplifier and limiter is made by potentiometer R52. An oscilloscope should be connected from TP56 at the base of Q54 to terminal 33 of the limiter. With 5 millivolts of higher frequency on the receiver input (R5 set at zero), R52 should be adjusted to the point where the peaks of the oscilloscope trace begin to flatten. This should appear on the upper and lower peaks at approximately the same setting. (Note: Input attenuator R5 could be used to produce 5mv of signal across input test jacks J1 and J2 if desired.)

The low signal level clamp is set to operate at the signal level where the receiver just drops out of limiting. This is accomplished as follows:

With a normal higher frequency signal being received and with an RF voltmeter connected across test jacks J1 and J2 of the input module, adjust input attenuator R5 to the point where 5mv of signal appear across these test jacks. (An alternate adjustment would be to set incoming signal level into receiver at 5mv with R5 set at zero which is the point at which limiting should begin).

AN ANY

- 2. Adjust the L.L. adjustment R178 on the output module so that the low level clamp just picks up. This will be indicated by the red low level light on the output module coming on. There also will be +12 volts at TP86 on the output module. And the yellow O.K. level light will go out.
- 3. Adjust input attenuator R5 to increase signal into receiver by desired margin of operation. This normally should be 15dB. This is done by reducing the R5 attenuator setting. (Note: The low signal clamp as used in this receiver is just used to put out a signal to external equipment for use by the external equipment. It does not clamp any signals within this receiver.)

The alarm level is set to alarm at a signal level 5dB above the signal where the receiver just drops out of limiting. This will result in an alarm be given at a point where the signal level has dropped 10dB from the initial nominal setting but the receiver signal level is still 5dB above limiting.

1. With a normal higher frequency signal being received and with an RF voltmeter connected across the input module input test jacks TJ1 and TJ2 (available at front on module), adjust input attenuator R5 to where signal level is 9mv across these test jacks.

2. Adjust the alarm level R17 on the output module - contact output to the point where the alarm relay AL just drops out.

3. Adjust input attenuator R5 to increase signal level into receiver by 10dB. (This is for operation with 15dB margin. For other than 15dB margin, this value should be changed accordingly.) This is done by reducing the R5 attenuator setting by 10dB.

MAINTENANCE

Periodic checks of the received carrier signal level and the receiver sensitivity will detect gradual deterioration and permit its correction before failure can result. The carrier level indicator, when provided, permits ready observation of the received signal level. With or without a carrier level indicator, an overall check can be made with the attenuation control, R5. A change in operating margin from the original setting can be detected by observing the change in the dial setting required to cause a low signal level clamp to operate as indicated by the red low level LED becoming lit. If there is a substantial reduction in margin, the signal voltage at the receiver input should be checked to see whether the reduction is due to loss of signal level or loss in receiver sensitivity.

All adjustable components for normal field adjustments on the printed circuit modules are accessible when the front cover on the chassis is removed. All other adjustable components on the printed circuit modules may be made entirely accessible while permitting electrical operation by using module extender style number 1447C86G01. This permits attaching instrument leads to the various test points of terminals when making voltage, oscilloscope or frequency checks.

RELAY MAINTENANCE AND ADJUSTMENT

The AL relay contacts should be cleaned periodically. A contact burnisher S#182A836H01 is recommended for this purpose. The use of abrasive material for cleaning contacts is not recommended, because of the danger of embedding small particles in the face of the soft silver and thus impairing the contact. Care must be taken to avoid distorting the contact springs during burnishing.

These relays have been properly adjusted at the factory to insure correct operation, and under normal field conditions they should not require readjustment. If, however, the adjustments are disturbed in error, or if it becomes necessary to replace some part, the following adjustment procedure should be used.

In the AL relay the armature gap should be approximately 0.004 inch with the armature closed. This adjustment is made with the armature stop screw and locknut. The contact leaf springs should be adjusted to obtain at least 0.015 inch gap on all contacts when fully open. There should be at least 0.010 inch follow on all normally-open contacts and 0.005 inch follow on all normally-closed contacts. The relay should pick up at approximately 35 volts.

TABLE I RECEIVER D-C MEASUREMENTS

NOTE: All voltage readings taken with the negative of dc VTVM on terminal 17 (-12V dc). Receiver adjusted for 15dB operating margin with Space and Mark signals down 50dB from 1 watt or 60dB down from 10 watts. Unless indicated otherwise, voltage will not vary appreciably whether signal is lower frequency, higher frequency, or zero.

Collector of Transist or Test Point	tor Voltage (Positive)
Q11	<15
Q12 (TP12)	17 (High or Low Freq.)
Q13 (TP13)	17 (High or Low Freq.)
Q14 (TP14)	3
Q15 (TP15)	3
TP11	22
TP52	19
Q51 (TP51)	14
Q52 (TP53)	14.5
Q53 (TP54)	18
Q54 (TP55)	3
TP56	19
Q55	< 1 (Lower Freq. or No Signal)
Q55	23 (Higher Freq.)
Q56	23 (Lower Freq.)
Q56	< 1 (Higher Freq. or No Signal)

NOTE: The following readings are taken with the negative of dc VTVM on terminal 3 (common of dc power supply) of either the S/N detection module or the output module.

Collector of Transisto	or Voltage
or Test Point	(Positive)
TP62	0
TP64	+10
TP65	-12V
TP67	.5
TP68	+ .5
T P70	- 6
TP71	+ 6
TP72	+ 1.5
TP74	+ .5
TP81	+12 (Higher Frequency)
~	

TP81	-12	(Lower Freq. or No
		Signal)
TP82	+12	(Lower Frequency)
TP82	-12	(Higher Freq. or No
		Signal)
TP83	+12	(Higher Frequency)
TP83	-12	(Lower Freq. or No
		Signal)
TP84	+12	(Lower Frequency)
TP84	-12	(Higher Freq or No
		Signal)
TP85	+ 0.	3
TP86	+12	(Low level clamp)
TP86	-12	(No clamp)
TP88	+12	
TP89	-12	
TP90	+12	(Good Signal Level)
TP90	-12	(Low Signal Level
		clamp)

TABLE II RECEIVER RF MEASUREMENTS

NOTE: Voltmeter readings taken at any point from receiver input to stage involving transistor Q15 are neither meaningful or feasible because of either waveform variations or the effect of instrument loading on the readings. Receiver adjusted as in Table I.

Collector of Transistor or Test Point	Volts with Signal At +10dB Above Normal Level	
Q15 (TP15)	0.8	
Q51 (TP51)	0.9	
Q52 (TP53)	0.65	
Q53 (TP54)	2.2	
Q54 (TP55)	4.5	
TP67	.275	

FILTER RESPONSE MEASUREMENTS

The crystal input filter (FL1) and the IF filter (FL2) are in sealed containers and repairs can be made only by the factory. The stability of the original response characteristics is such that in normal usage no appreciable change in response will occur. However the test circuits of Fig. 19 can be used in case there is reason to suspect that either of the filters has been damaged.

Fig. 2 shows the -3dB and -60dB check points for the crystal filters. The response curve of the IF filter shows the combined effect of the two sections, and was obtained by adding the attenuation of each section for identical frequencies. The scale of Fig. 2 was chosen to show the crystal filter response, which permitted only a portion of the IF filter curve to be shown. The check points for the pass band of each section of the latter are "down 3dB maximum at 19.75 and 20.25 kHz", and for the stop band are "down 18dB minimum at 19.00 and 21.00 kHz." The signal generator voltage (Fig. 19) must be held constant throughout the entire check. A value of 20dB (7.8 volts) is suitable. The reading of VM2 at the frequency of minimum attenuation should not be more than 22dB below the reading of VM1. It should be noted that a limit measured in this manner is for convenience only and does not indicate actual insertion loss of the filter. The insertion loss would be approximately 16dB less that the measured difference because of the input resistor and the difference in input and output impedances of the filter.

Because of the extreme frequency sensitivity of the crystal filter, the oscillator used in its test circuit should have very good frequency stability and a close vernier control. The oscillators used for factory testing have special modifications for this use. A value of approximately 10dB (2.45 volts) is suitable for the constant voltage at which to hold VMI throughout the check. The reading of VM2 at the frequency of minimum attenuation will vary somewhat with the channel frequency but should not be more than 11dB below the reading of VM1. (The filter insertion loss is approximately 6dB less than the difference in readings.)

CONVERSION OF RECEIVER FOR CHANGED CHANNEL FREQUENCY

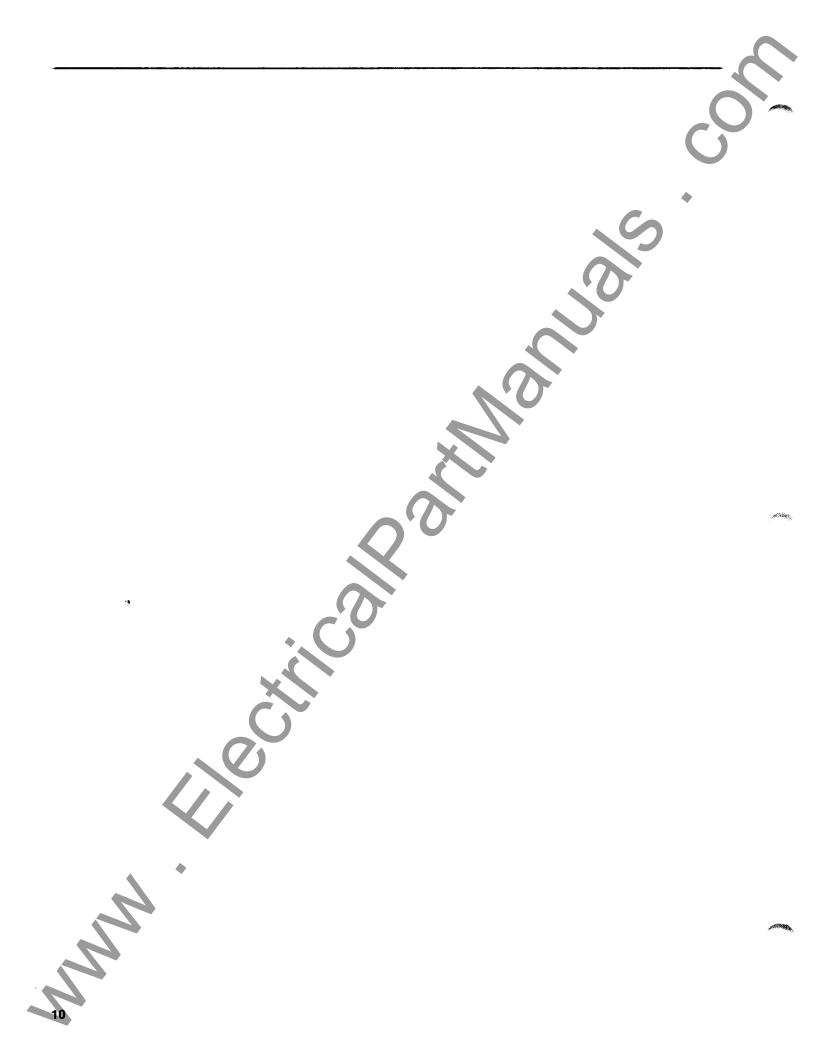
The parts required for converting a TCF-10 receiver for operating at a different channel frequency consist of a new crystal input filter FL1, a new local oscillator crystal (Y11) and probably a different feedback capacitor (C12). There are two ways of effecting this change. The easiest and preferred method is to order a new input filter module and a new oscillator mixer module for the new frequencies from the factory. The new modules would then just have to be plugged in as replacements for the original modules. The second method would involve ordering just replacement filter, FL1, and new local oscillator crystal for the new frequencies and making the substitution on the modules. These substitutions on the modules are not difficult as the crystal plugs in and the filter has four leads to be soldered. However, testing of the local oscillator for easy starting will have to be made, and the value of C12 chosen to assure this easy starting of oscillation. The whole receiver should then be checked out for correct performance.

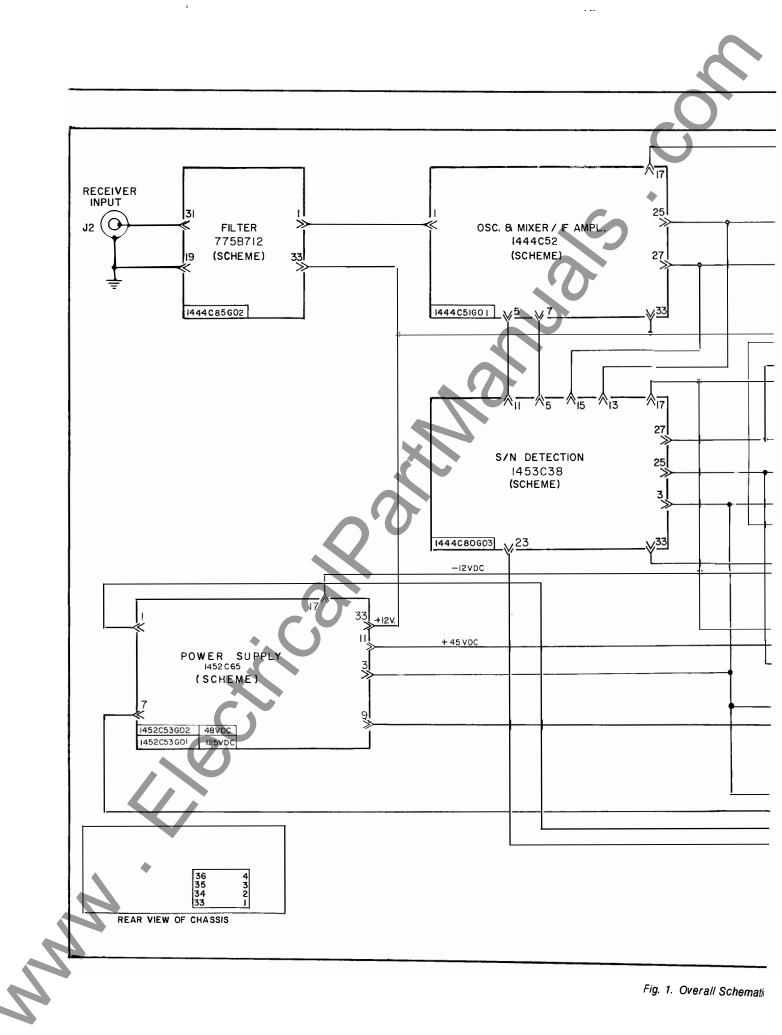
RECOMMENDED TEST EQUIPMENT

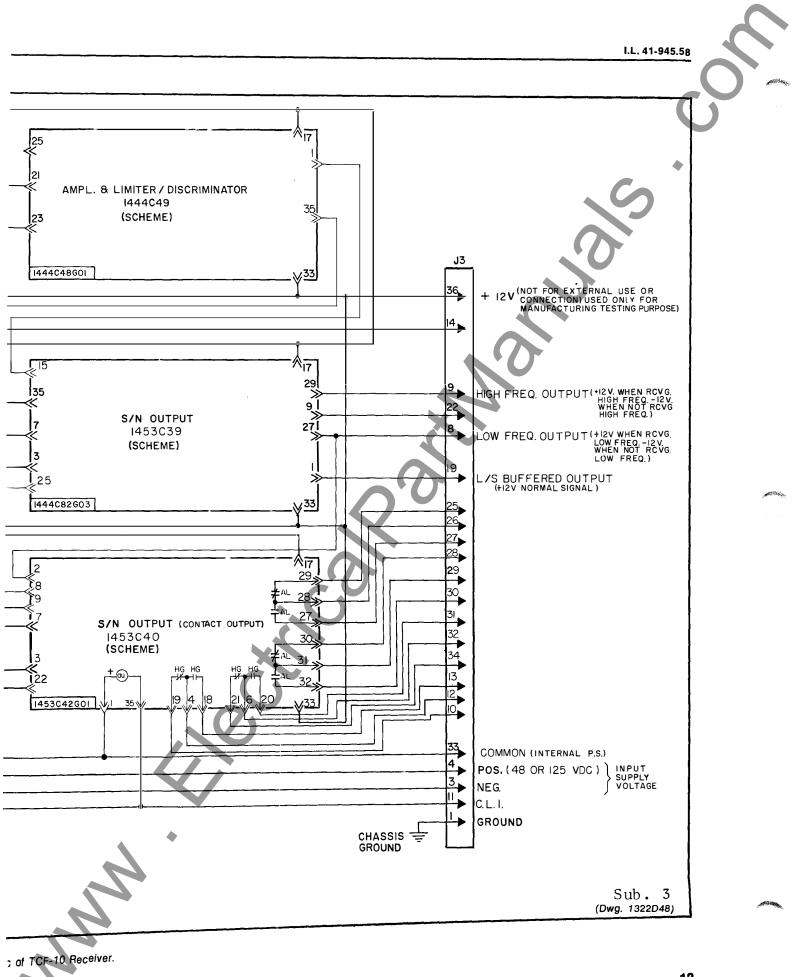
I. Minimum Test Equipment for Installation

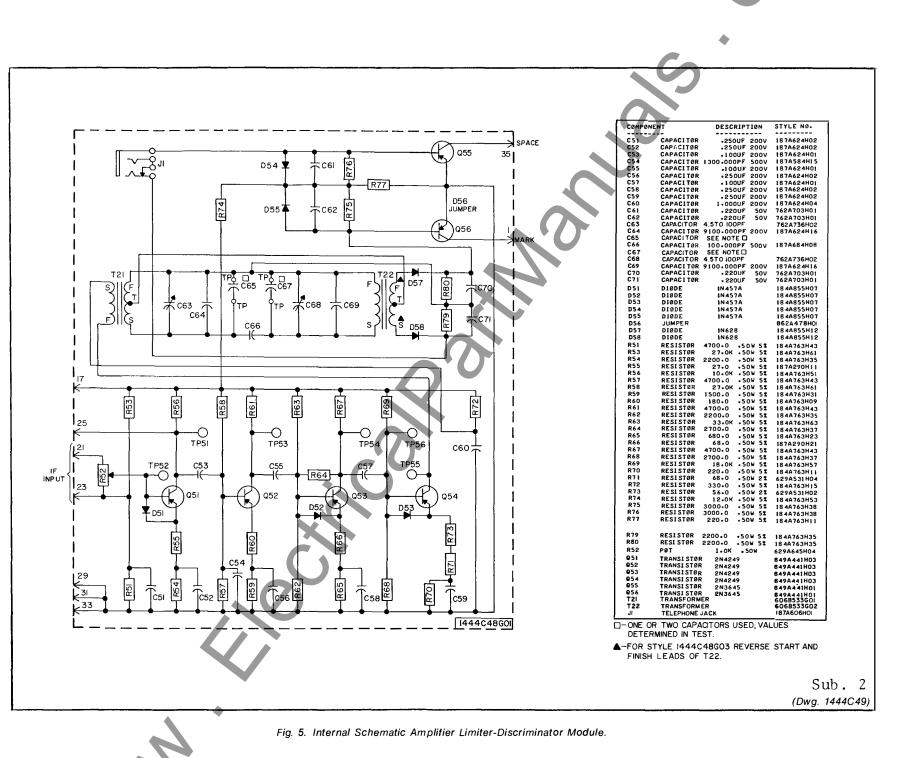
- a. A-C Vacuum Tube Voltmeter (VTVM). Voltage range 0.003 to 30 volts, frequency range 60 hertz to 330 kHz, input impedance 7.5 megohms.
- b. D-C Vacuum Tube Voltmeter (VTVM). Voltage range: 1.5 to 300 volts Input impedance: 7.5 megohms

II. Desirable Test Equipment for Apparatus Maintenance


a. All items listed in I.


- b. Signal Generator Output Voltage: up to 8 volts Frequency Range: 20kHz to 330kHz
- c. Oscilloscope
- d. Frequency counter
- e. Ohmmeter
- f. Capacitor checker
- g. Milliammeter, 0-1.5 or preferably 1.5-0-1.5 range, for checking discriminator.


Some of the functions of the recommended test equipment are combined in the type TCT carrier test meter unit, which is designed to mount on a standard 19" rack but also can be removed and used as a portable unit.


RENEWAL PARTS

Repair work can be done most satisfactorily at the factory. However, replacement parts can be furnished, in most cases, to customers who are equipped for doing repair work. When ordering parts, always give the complete nameplate data, the electrical value, style number, and identify the part by its designation on the Internal Schematic drawing.

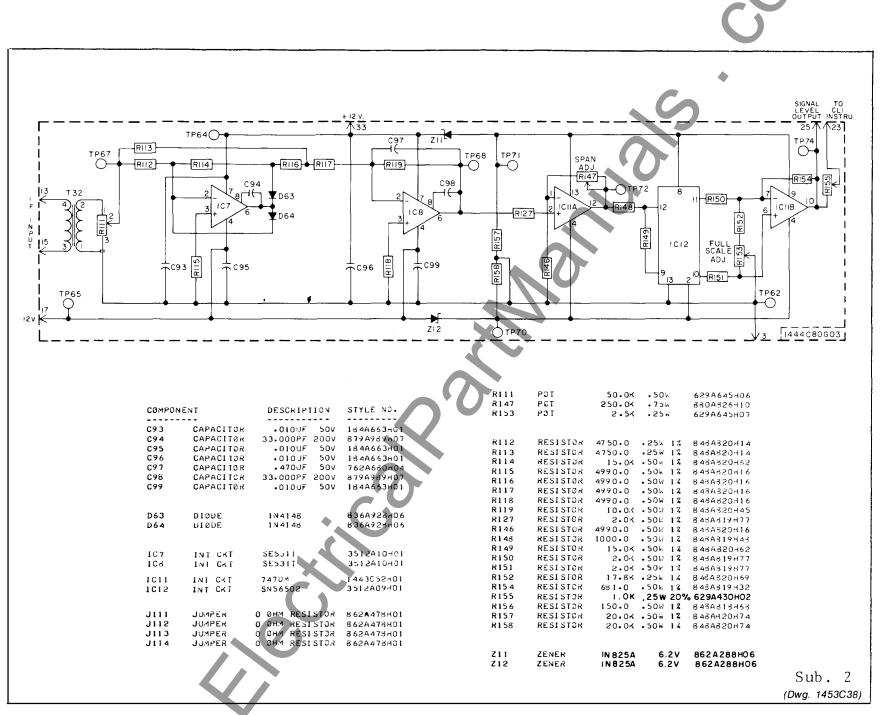


Fig. 6. Internal Schematic S/N Detection Module.

6

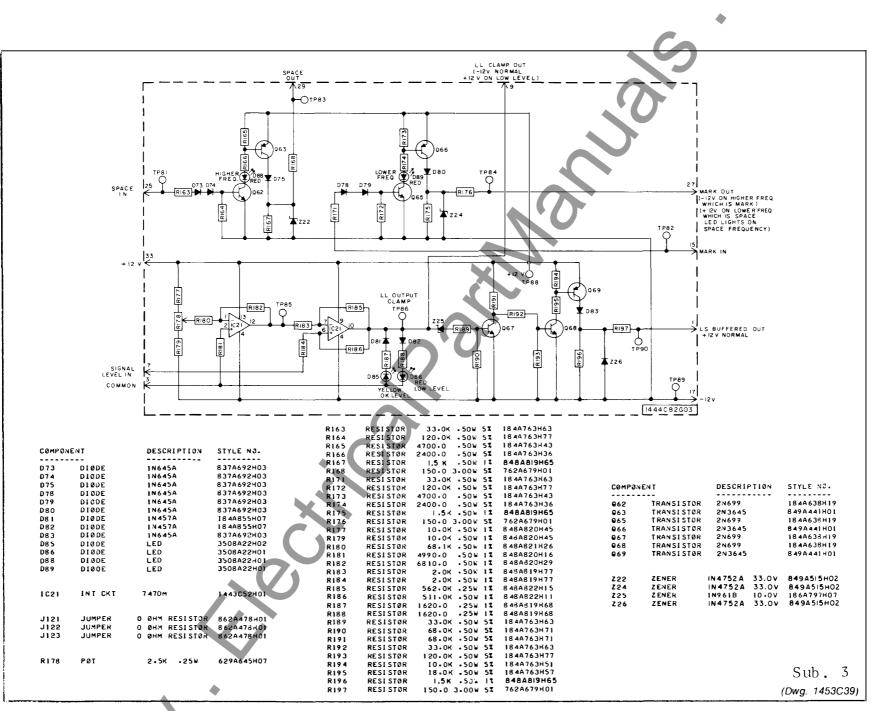
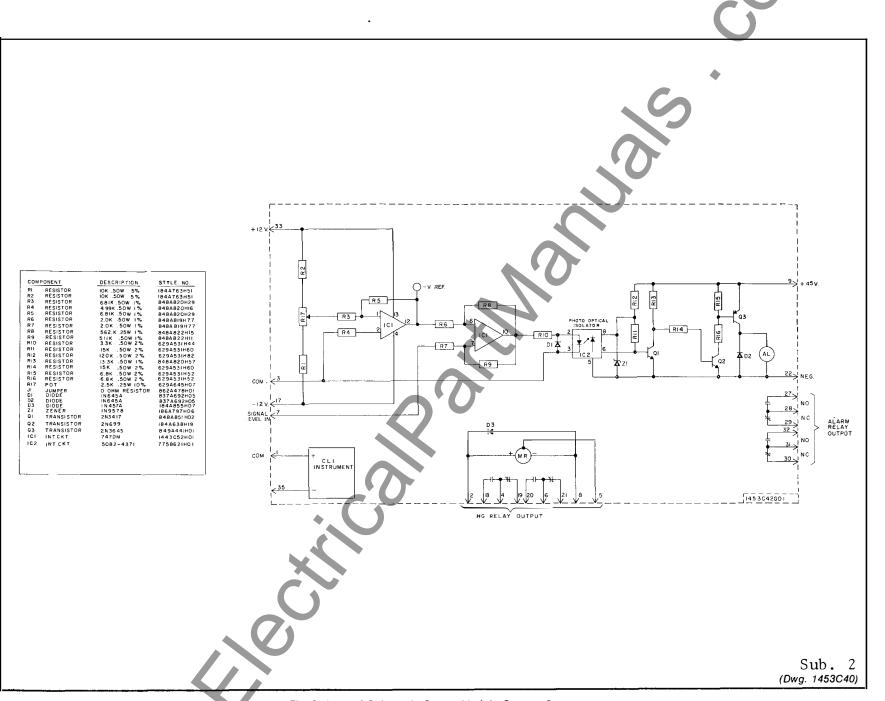
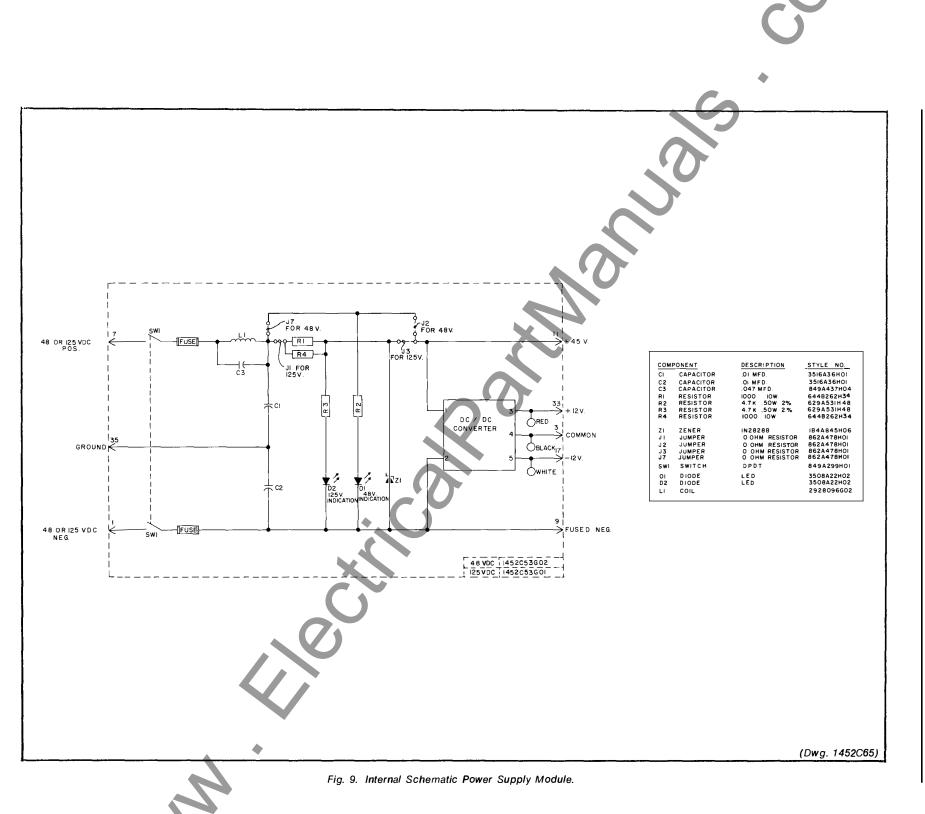
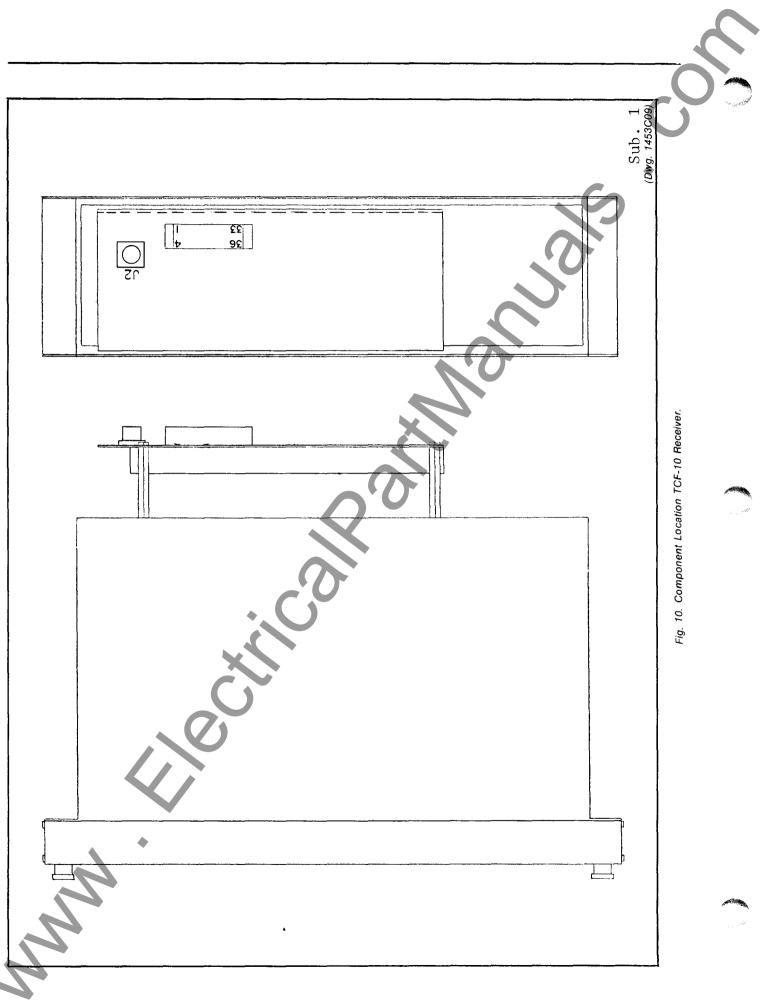
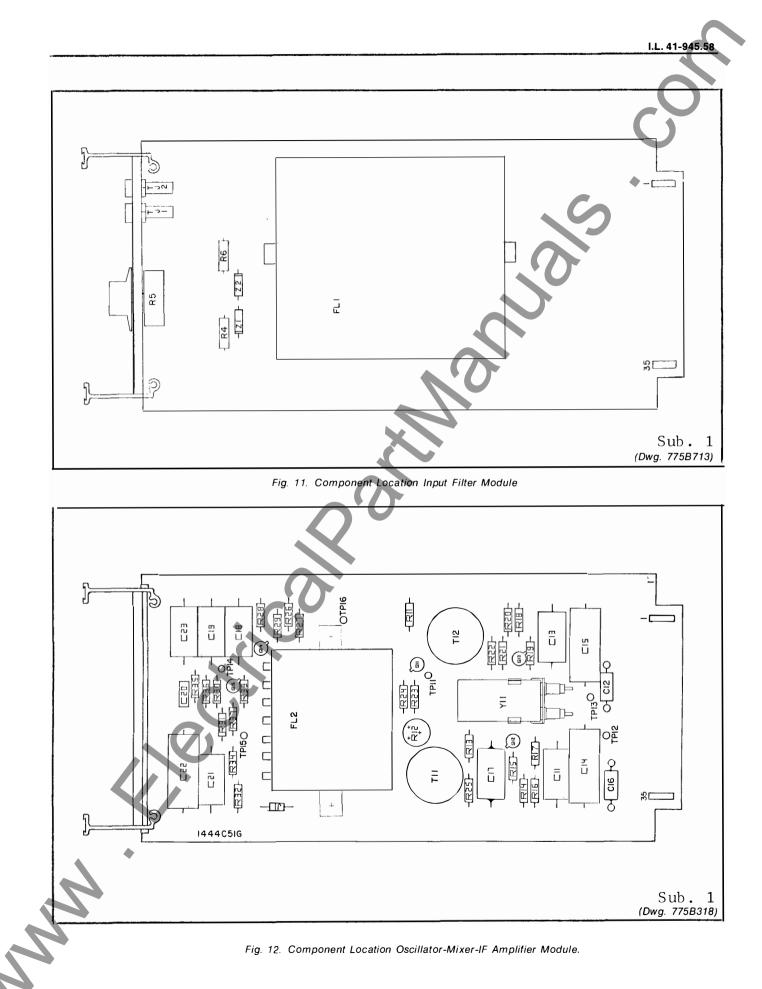
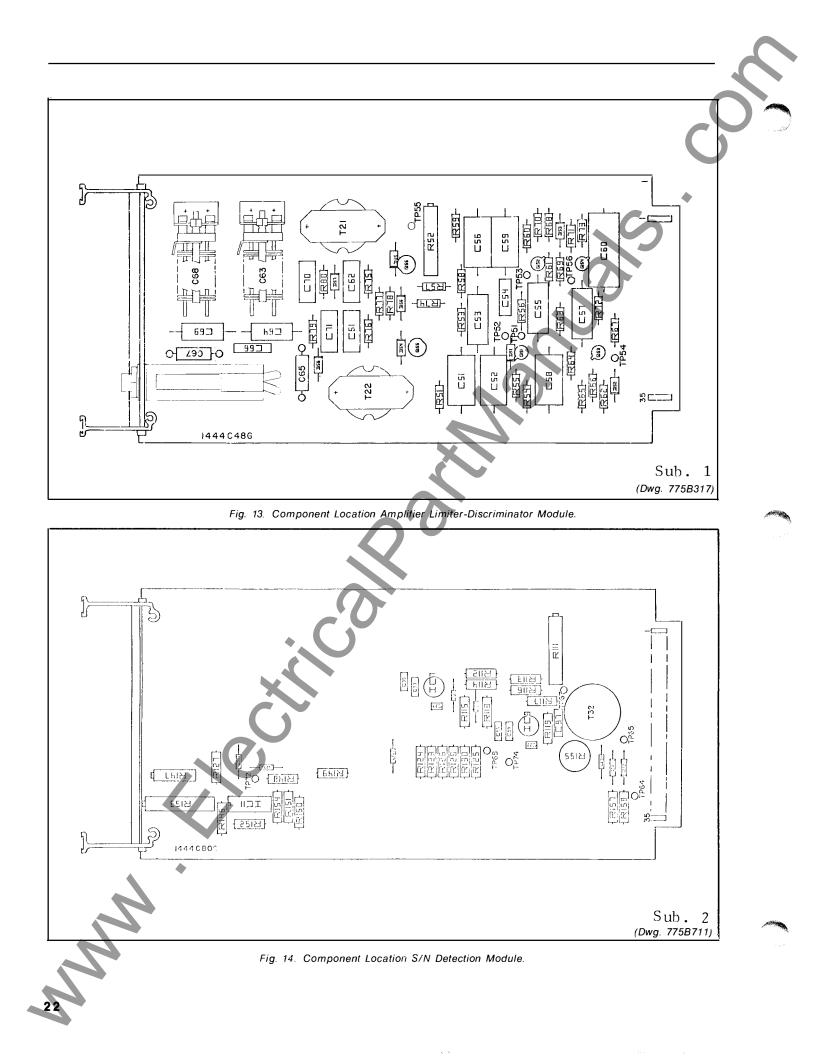


Fig. 7. Internal Schematic Output Module.

I.L. 41-945.58


Fig. 8. Internal Schematic Output Module-Contact Output.

I.L. 41-945.58

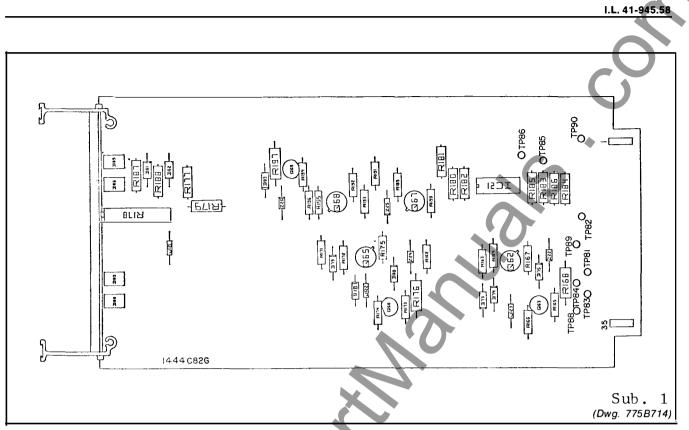
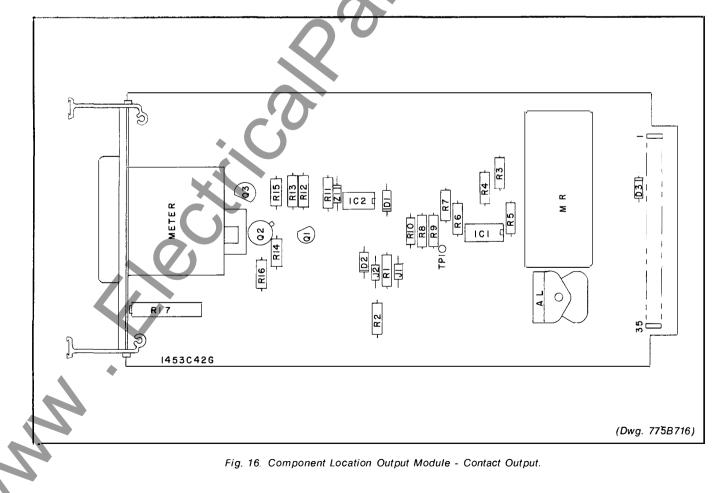
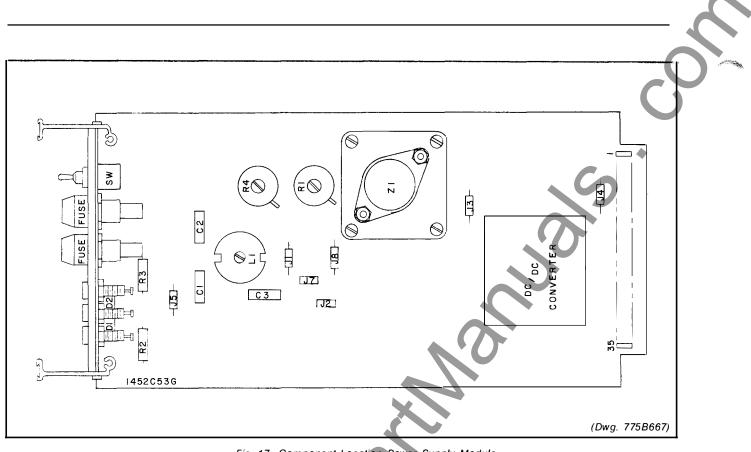
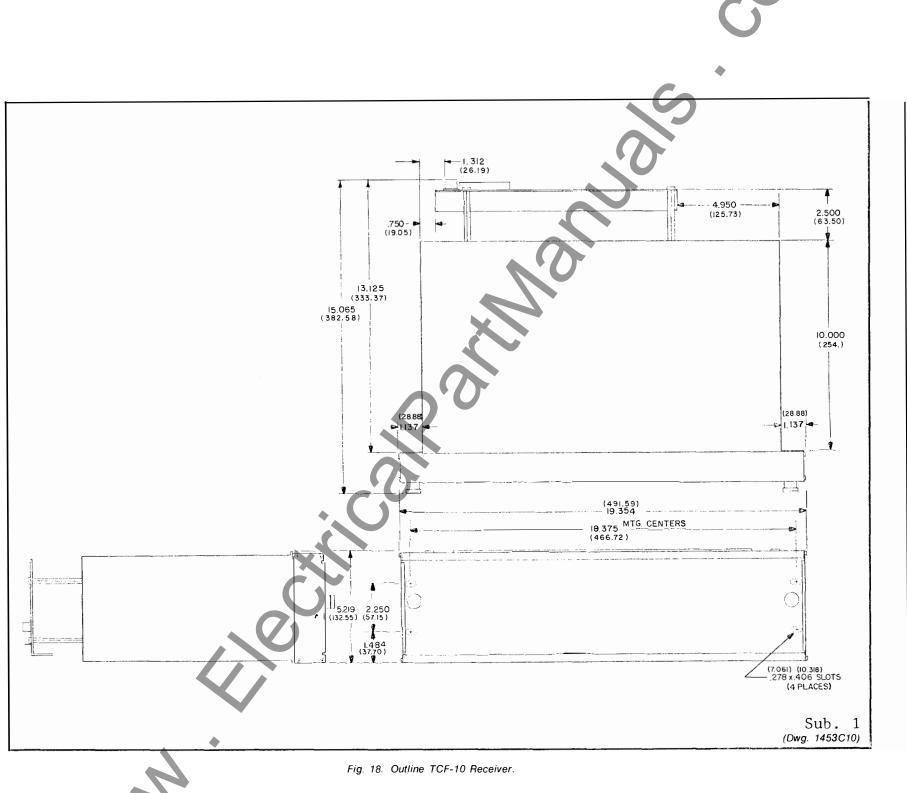
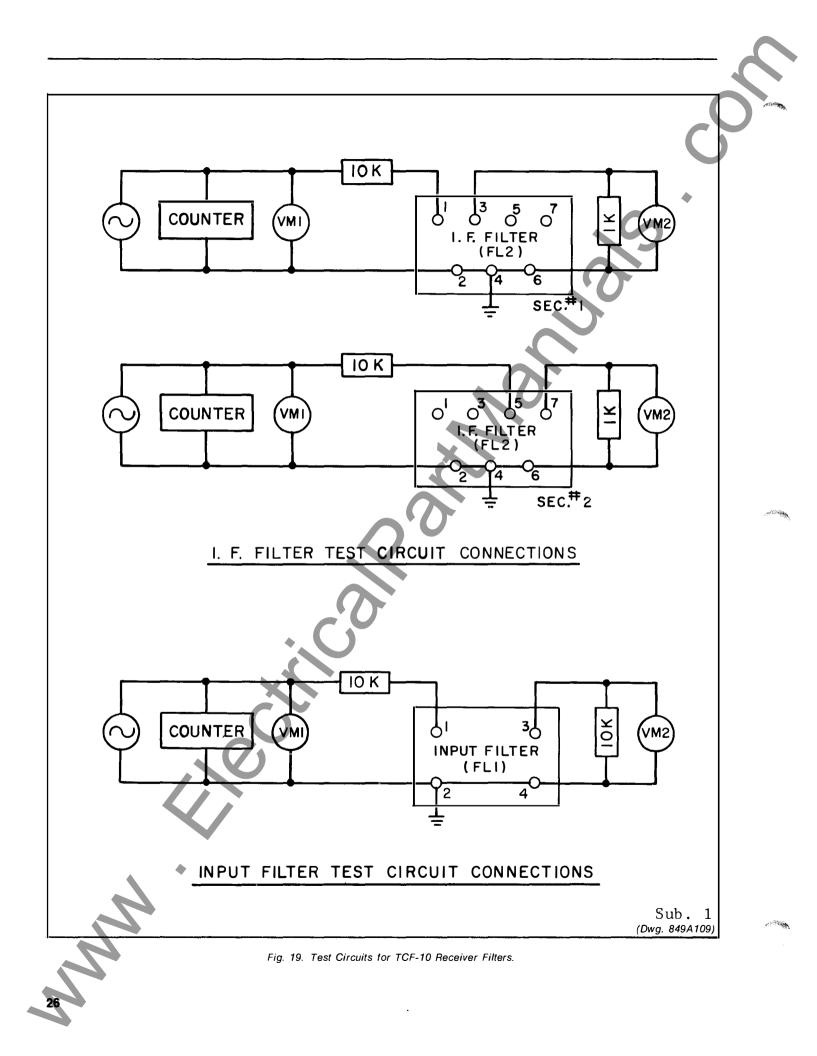



Fig. 15. Component Location Output Module.

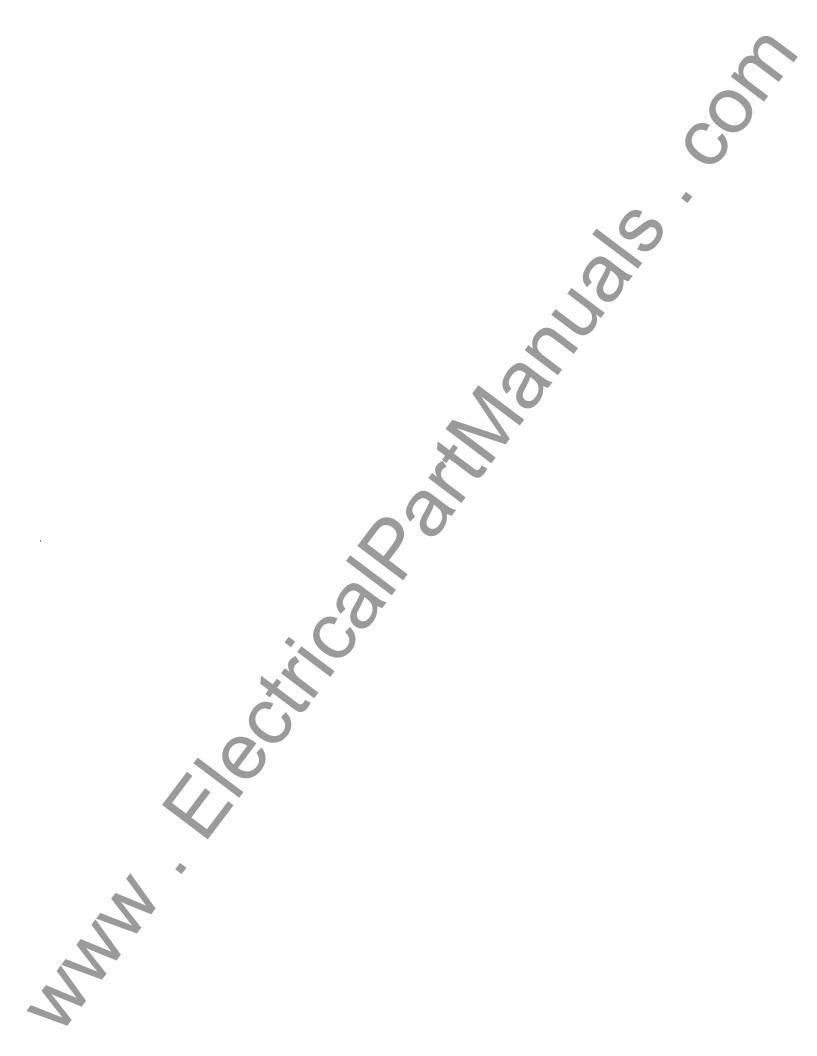



Fig. 17. Component Location Power Supply Module.


o'i''

1999 B

.....



WESTINGHOUSE ELECTRIC CORPORATION RELAY-INSTRUMENT DIVISION NEWARK, N. J.

Printed in U.S.A.