Non-Reversing, Reversing
Up to 600 Volts,
3 Phase, 60 Hertz

May 17, 1977
Supersedes PL 9220, pages 1-16, dated
October 8, 1973 and February 26, 1974
Prices effective May 17, 1977 and
subject to change without notice.
Discount Symbol C10-G3
(Refer to Selling Policy 7000)
Mailed to E, D, C/1806/PL

Ac Magnetic Reduced Voltage Starters

Starter Selection

In general, the application will determine the type of starter required. In cases where more than one type starter will meet the application requirements, reference to the
table below will show which starter is best qualified for the application. For additional information, see page 2, "Comparison of Starting Methods."

Starter Type	Starting Characteristics Expressed in \% of Rated Values (Approx.)				Remarks	Pages
	Motor Voltage	Motor Current	Line Current	Torque		
Primary Resistor Class 11-400	80	80	80	64	Valuesshown are typical and depend on the motor. Starters provide closed transition and are ideally applicable where starting torque must be reduced.	6-7
Multi-Point Network Starters Class 11-440	Will depend on number of points.				Used primarily to limit inrush current increments rather than the maximum inrush current.	8
Autotransformer Class 11-600 80\% Tap 65\% Тар 50\% Tap	$\begin{aligned} & 80 \\ & 65 \\ & 50 \end{aligned}$	$\begin{aligned} & 80 \\ & 65 \\ & 50 \end{aligned}$	$\begin{aligned} & 67(2) \\ & 45(2) \\ & 28(2) \end{aligned}$		The adjustable voltage taps permit wide adjustment of characteristics in the field.	9-10
Part Winding Class 11-700	100	65	65		Requires standard 230/460 volt dual voltage motor on 230 volts or special part winding motor. Closed transition.	11-12
Part Winding Class 11-740	50			12		
Star-Delta Class 11-800 Class 11-890	100	3	33	33	Requires delta wound motor with star connections. Ideal for long accelerations. Closed transition is available.	13-14
All Classes Reduced Voltage Combination Starters Modifications Heater Tables						$\begin{aligned} & 4-14 \\ & 15-17 \\ & 18 \end{aligned}$

(2) Includes auietranstermer magnetizing current.

Ordering Information

Order starters by catalog number wherever possible. A complete catalog number consists of the starter class number (11400, 11600 , etc.) at the top of the catalog number column, and the six digit number (S1ANNB, S2ENNC, etc.) appearing in the catalog number column opposite horsepower rating of the desired starter Example: 11400 S1ANNB is the catalog number for a size 1, 5 hp non-reversing class 11400 starter rated 230 volts, in a standard NEMA 1 enclosure; 11604 S2DN1C is the catalog number for a size $2,15 \mathrm{hp}$ non-reversing class 11604 starter rated 460 volts, having a fusible disconnect in a standard NEMA 1 enclosure.

Some modifications to catalog numbers listed in price tables can be made by inserting the symbol for modification desired (from page 17) in the catalog number.
Select heaters from tables on page 18 and list as separate item.

When ordering starter by description, include: Class number or type.
Service, non-reversing or reversing. Type disconnect or short circuit protection. NEMA enclosure type.
NEMA size.
Horsepower and service factor.
System voltage.
Modifications.

If resistance type starters are required to limit the starting current to an exact value, either the actual locked rotor amperes and locked kilowatts (or power factor) of the motor, must be included; or if the starter is to be used with a Westinghouse motor, the style or order number must be included so that this data can be determined. This motor information is required with all class 11 -440 and class 11-740 orders.

Page 2

Catalog Numbers

All starters listed in this price list have been assigned an 11 digit catalog number, with each digit having a specific function. A breakdown of the complete number with an explanation of each digit is shown here.

11-600S5WN N C CATALOG NUMBER
$\begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \text { DIGITS }\end{array}$
DIGIT *1 = STARTER MANUFACTURE
1 = Buffalo/Asheville
$A=$ Beaver
DIGIT $\boldsymbol{w}_{2}=$ STARTER TYPE OR RATING
$0=$ Manual reduced voltage
$1=$ Magnetic-full or reduced voltage NEMA rated
7 = Magnetic-full or reduced voltage definite purpose rated
$3=$ Magnetic-wound rotor starter
BLANK = 2nd digit left blank for Beaver starter only - do not use this catalog number - Contact Beaver for correct catalog number.

DIGIT $3=$ FULL OR REDUCED VOLTAGE
STARTER - WESTINGHOUSE
STARTER CLASS
2 = Full voltage - single speed
$9=$ Full voltage - multi speed
4 = Reduced voltage - primary resistance type
$6=$ Reduced voltage - auto transformer type
7 = Reduced voltage - part winding type
$8=$ Reduced voltage - star delta type
DIGIT * $4=$ STARTER ADDITIONS
$0=$ Non-reversing
1 = Reversing adde
4 = Multi step starting (primary resistance and part winding)
$9=$ Closed transition (star delta only)
DIGIT $\$ 5=$ COMBINATION - TYPE SHORT
CIRCUIT PROTECTION
$0=$ Non combination starter - no short circuit protection
3 = Combination starter - non fused disconnect
$4=$ Combination starter - fused disconnect
$6=$ Combination starter - breaker
$7=$ Combination starter - motor cir cuit protector (MCP)
2 = Combination starter \ldots no load break switch

DIGIT \$6 = ENCLOSURE TYPE
S = NEMA 1 - standard (bolted)
V $=$ NEMA 1 A- (gasketed doot only)
$R=$ NEMA 3R - (bolted, gasketed) rain resistance
3 = NEMA 3 - (welded) water resistance
$4=$ NEMA 4 - (wolded) watertight
$U=$ NEMA $7-$ (cast) explosionproof
$Y=$ NEMA 9 - (cast) explosionproof
$\mathrm{J}=$ NEMA 12 - (bolted gasketed) dusttight
$M=$ Motor control center type 'W" -
C line up
$C=$ Motor control center type $5{ }^{*}$ line up
$K=$ Open frame - no enclosure
DIGIT ${ }^{7}=$ STARTER SIZE
$1=$ NEMA size 1
$2=$ NEMA size 2
$3=$ NEMA size 3
4 = NEMA size 4
$5=$ NEMA size 5
$6=$ NEMA size 6

Comparison of Starting Methods

The function of digits $\mathbf{1 - 5 , 7 , 8 - 1 1}$ is incorporated in the catalog numbers shown in the price tables and need not be changed, Digit 6 is variable to allow purchaser to specify NEMA enclosure. Modifications should be ordered by description.

Price List
9220
Page 3

General Application

The following factors should be considered when applying reduced voltage starters to a squirrel cage motor driven load.

1. The motor characteristics which wil, satisfy the starting requirements of the load.
2. The source of power and the effect the motor starting current will have on the line voltage.
3. The load characteristics and the effect the motor starting torque will have on the driven parts during acceleration.
4. The starter protection required to protect the load, motor, starter, cables and power source during overload, undervoltage, and fault conditions.

A typical NEMA B motor started with full voltage will develop as much as 150% full load torque when started with a starting current of around 600% full load current. These values may exceed the mechanical limitations of the load or electrical limitations of the source, or both.

A reduced voltage or reduced inrush starter will reduce both starting current and starting torque. Care must be taken when meeting power company limitations that the motor will produce sufficient torque to accelerate the load to near rated speed.

As an example, if a part winding starter is applied to a motor to reduce the current in rush to approximately 410% of full load current ($600 \% \times 65 \%=390 \%$), and the torque requirements to accelerate the load exceed 75% of full load torque ($150 \% \times 50 \%$ $=75 \%$), the motor and load will not accelerate. An autotransformer starter on the 80% voltage tap would satisfy these requirements. The current inrush would be 402% ($600 \% \times 67 \%$) and the torque produced would be 96% ($150 \% \times 64 \%$). If, however, the power company limited the "increments" of current drawn from line to allow voltage regulators to react to the added load, the part winding starter would meet the requirements.
Class 11-440 and class $11-740$ starters are primarily increment starters. Class 11-700 starters are also ideally suited to low starting torque loads such as fans, blowers and $\mathrm{m}-\mathrm{g}$ sets. Class 11-600 starters should be used with "hard to start" loads such as reciprocating compressors, grinding mills, and pumps. Class 11-400 starters provide a "cushioned" torque start and are applicable to conveyors and textile machines. Class 11-800 starters are applicable to high inertia loads with long acceleration such as centrifugal compressors and centrifuges.
All starters, in addition to overload protection, will provide either low voltage
fuses. The externally operated disconnect hande is interlocked with the door so that the door cannot be opened until the disconnect is opened. Current limiting fuses are included in size 8 and larger.
Disconnecting Type Fuses: (Fig. 3) Used as an alternate for a fusible disconnect. Hook stick-operated current limiting fuses are included. The starter is electrically interlocked with the door so that the disconnecting fuses will not be accidently opened under load.
Circuit Breaker: (Fig. 4) Used where short circuit protection is required in the starter. Operation of any trip opens all three lines, avoiding single-phasing. Unless otherwise specified, molded case air circuit breakers will have magnetic trip only, rated as follows:

Breaker Frame	Amperes
FB	$490-1550$
KB	$1050-2250$
LB	$2000-4000$
MA	$6000-8000$
NB	$6000-12000$
PB	$4000-12000$

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Application

Type JF autostarters are designed for application wherever across-the-line starting current of squirrel-cage induction motors is likely to exceed local power company restrictions or interfere with plant operations. These starters provide the least expensive method of keeping current inrush within limits and still give a maximum starting torque. Open transition reduced-voltage starting is provided by a dry-type auto transformer. Accessory equipment includes timedelay low-voltage protection, an electrical interlock, emergency pushbutton, an ammeter, or special NEMA 4 watertight enclosure. For mild dust conditions, a neoprene gasket can be added to the door of the standard NEMA 1 general-purpose enclosure. Duty cycle is one 15 second "on" period each 4 minutes for a total of 4 cycles, repeated after 2 hours.
(1) Autotransformer is conservatively rated, two-coil type. Simple construction with non-aging silicon steel laminations and copper coils impregnated with a moistureresistant insulating compound assures long life. The transformer is completely disconnected from the line and motor when the starter is in the "off" or "run" position. Taps for starting voltages of 65% and 80% of the line voltage are available on all sizes. Starters larger than 50 hp also provide a 50% tap. Starter is shipped connected to 65\% tap.
(2) A sequence and holding mechanism requires that the starter handle be placed in the "start" position prior to being placed in the "run" position and also that the transfer from "start" to "run" be made quickly to

Dimensions and Weights Approximate Only

Size	NEMA 1 Enclosure						
	A	B	C	AA	$\overline{B A}$	$\begin{aligned} & \hline \mathbf{X} \\ & \text { Diam. } \end{aligned}$	Approx. Wt., Lbs.
2	26	18	11	28	14	\%	115
3	26	18	11	28	14	\%	165
4	40	24	13	42	20	\%	325
5	40	24	13	42	20	8/6	375
5 M	40	24		42	20	\% 1	450
5MM	64 (1)	28	21		800

[^0]
avoid a serious second inrush. The acceleration period is dependent only on the judgment of the operator to account for possible changing motor and load conditions and is limited only by the duty cycle of the autotransformer. On long accelerations the operator must be cautioned not to relax his pressure on the handle. He must maintain sufficient contact pressure to avoid burning or pitting of the contacts. A notch position is provided to indicate the maximum hand relaxation allowed to maintain sufficient contact pressure on the start contacts. If the handle is released at any time in the starting sequence it will return to the "off" position. The heart of the mechanism is a ferrous casting gravity latch which will not become distorted. Low friction needle bearings are used to assure lasting protection and positive operation. The starter is
held in the "run" position by a solenoid operated latch which uses an encapsulated coil to eliminate the common causes of coil failure.
(3) Air-break contacts of double break silver-alloy construction provide high interrupting capacity in air, which eliminates the need for oil immersion even in the largest size. For additional interrupting capacity and longer contact life, the size 4,5,5M and 5 MM starters have De-ion arc quenchers on the start contacts. Moving and stationary contacts are easily removable from the front for servicing. Long contact life is assured by the use of a silver-alloy material whose oxide has the same conductivity as the original material. Overload protection is provided by automatic reset overload relays.

Typical Schematic Diagram

Ordering Information

1. Order by catalog number - catalog number consists of class number at top of column plus 6 digit suffix in column. Example:
10600 plus S2DNNB $=$ catalog number 10600S2DNNB.
2. List hp, volts, phase and frequency.
3. List heaters by style number, as separate item. (3 required)
4. Add modifications to catalog number as directed.
5. List field modification kits as separate item and give catalog number.
[^1]Westinghouse Electric Corporation
Price List
General Control Division
Asheville, NC/Buffalo, NY 14240

May 17, 1977
New Information
Prices effective May 17, 1977 and subject to change without notice. Discount Symbol C10-G3
(Refer to Selling Policy 7000) Mailed to: E, D, C/1806/PL

Non-Reversing, Reversing
Up to 600 Volts,
3 Phase, 60 Hertz

Ac Magnetic Reduced Voltage Starters

For 50 Hertz, 380 volts add 6% to the 460 volt prices.

Modifications

Modifications to the starters listed in the price table can be made from the follow ing listing by substituting the proper symbol for the " S " as digit 6 . Other modifications - order by description.
Factory Modifications

	Catalog No.		List Price Addition					
	Digit	Symbol	Starter Size					
			2	3	4	5	5M	5MM
Time delay undervoltage.			\$188	\$188	\$188	\$188	\$188	\$188
Electrical interlock(2)....			64	64	64	64	64	64
Ammeter.			396	396	396	396	396	396
Third overload relay.....			Std.	Std.	Std.	Std.	Std,	Std.
Control transformer			196	196	196	196	196	196
NEMA 4, watertight enclosure.		A	Refer to Westinghouse					
NEMA 1, neoprene								
gasketed door. .	6	v	80	80	80	80	80	200
Omission of enclosure Deduction.								
Deduction.	6	K	48	48	152	152	152	220

Field Modification Kits
Description \mid Catalog Lis

Electrical interlocks, all sizes..................... \mid JF-EL \$2288
(8) Stock Item.
(2) One maximum, either NO or NC.

Heater Elements

Prices do not include heater elements, starters require 3 overload relay heater elements at $\$ 3.00$ list each. Refer to selection tables page 18.

Reduced Voltage Magnetic Starters

Primary resistor type starters, sometimes known as "cushion type" starters, will reduce the motor torque and starting inrush current to produce a smooth, cushioned acceleration with closed transition. AIthough not as efficient as other methods of reduced voltage starting, primary resistortype starters are ideally suited to applications such as conveyors, textile machines, or other delicate machinery where reduction of starting torque is of prime consideration. Starters through size 5 will limit inrush to approximately 80% of locked rotor current and starting torque to approximately 64\% of locked torque. Larger sizes will be custom designed to the application.

Description

Class 11-400 Non-Reversing, Two-

Point Starters Contain:

1 - Three pole starting contactor with necessary relays and interlocks (see table below for type).
1 -Three pole running contactor with necessary relays and interlocks (see táble below for type).

Starter Size	Contactor Type	
	Starting	Running
$\mathbf{1}$	A-201-K1	A-201-K1
2	A-201-K2	A-201-K2
3	A-201-K3	A-201-K3
$\mathbf{4}$	A-201-K4	A-201-K4
5	GCA-530	GCA-530
6	GCA-530	GCA-630
7	GCA-630	GPD-730
8	GPD-730	GPD-830
8 8L	GPD-830	105-FD

1 - Pneumatic timing relay.
1-3 pole adjustable type AN overload relay on sizes 1 through 4. This same overload relay is used with associated current transformers on size 5 and larger.
1 - Silicon rectifier to provide dc control voltage for size 7 and larger.
1 - Resistor frame of stainless steel tube type resistors mounted and wired in the enclosure in all sizes. Resistor class A.S. 116 is intended for general starting duty where starting time is no more than 5 seconds out of 80 seconds. For applications that exceed this duty cycle, resistor class A.S. 156 resistors good for 15 seconds out of 60 seconds are recommended.

Classes 11-403, 11-404, 11-406: These combination starters are similar to class 11-400 starters except that they include a disconnect switch or circuit breaker.

Class 11-410: This is a reversing type, two point starter which contains two mechanically interlocked running contactors. Otherwise, it is the same as a class 11-400 starter.

Classes 11-413, 11-414, 11-416: These are reversing type combination starters similar to the class $11-410$ starter except that a disconnect switch or circuit breaker is included.

Typical Wiring Diagram

Price List
9220
Page 7

Reduced Voltage Magnetic Starters

List Prices - Heaters Not Included

Classes 11 -400, 11 -403, 11 -404, 11 - 406 Starters Non-Reversing in NEMA 1 Enclosure

For larger horsepower ratings use prices for equivalent rated class 11-600 starters on page 10.
(2) To substitute breakers. see page 16.
(3) "CL" indicates that current limiting type fuses are included to provide 100.000 asymmetrical amperes interrupting capacity. A load break disconnect is provided in all ratings. Fuses not included up to and including size 5 . Sizes $6-9$ includes current limiting fuses.
(4) Catalog numbers shown for $200-230$ volts are for 230 volt designs. For 200 volts, change last digit from B to Z. Catalog numbers shown for $460-575$ volts are for 460 volt designs. For 575 volts, change last digit from C to D.

Ordering Information

Order starters by catalog number and description, include:

Class number or type.
Service, non-reversing or reversing.
Type disconnect orshort circuit protection.
NEMA enclosure type
NEMA size.
Horsepower and service factor.
Application and Duty Cycle.
System voltage.
Specify external reset button, if required.
Modifications.

If resistance type starters are required to limit the starting current to an exact value, either the actual locked rotor amperes and locked kilowatts (or power factor) of the motor, must be included; or if the starter is to be used with a Westinghouse motor, the style or order number must be included so that this data can be determined. This motor information is required with all class 11-440 orders.

Modifications: Select modifications from pages 15, 16, 17 and order by description.

Heater Elements

Prices do not include heater elements Starters require 3 overload relay heater elements at $\$ 3.00$ list each. Refer to selection tables page 18

Reduced Voltage Magnetic Starters

Multi-Point Network Starter

Multi-point Acceleration: These starters are designed for use on network distribution systems where the starting current limitations of the power company are such that standard across-the-line or 2-point resistance type starters will not give small enough increments of starting current.
They are designed to provide approximately 3 seconds per point on a two-point starter and approximately 2 seconds per point on the others.
Power company requirements usually specify a certain value of current which may be drawn from the line in starting the motor, and which may be increased by the same
amount in successive steps at short time intervals, provided that the circuit is not interrupted during the switching.
Number of Points Required: It is usually considered that the resistor starter must complete its entire sequence with the motor at standstill. That is, the necessary number of points is determined by dividing the full voltage locked rotor current of the motor by the permissible increment value and allowing one point for each graduation or fraction thereof.
Low Starting Torque: In certain Instances it is possible to omit one or more starting contactors when the accelerating torque of

List Prices - Heaters Not Included
Class 11-440, Including Class 116 Resistors and NEMA 1 Enclosure
the load is very light, so that the motor is able to accelerate to practically full speed on reduced voltage. However, in order to do this complete specifications must be given, including the following:
(1) Variation of load torque with speed during acceleration.
(2) Inertia of driven machine and its full load speed.
(3) Complete information regarding starting current limitations to be met.
(4) Complete information on the motor which will be used, so that the motor inertia, the variation of the motor torque current and speed of acceleration can be determined.

Ordering Information

See page 7 for ordering information, modification and heater selection. - See pages 15 to 18.

Hp	200-230 Volts, 3 Phase, 60 Hertz					380-460-575 Volts, 3 Phase, 60 Hertz				
	3-Point	4-Point	5-Point	6-Point	7-Point	3-Point	4-Point	5-Point	6-Point	7-Point
10	\$ 1437	\$ 1793	\$ 2151	\$ 2503	\$ 2859	\$ 1437	\$ 1793	\$ 2151	\$ 2503	\$ 2859
15	1469	1827	2179	2537	2893	1469	1827	2179	2537	2893
20	1743	2095	2453	2809	3167	1565	1921	2279	2631	2987
25	1781	2133	2491	2847	3201	1577	1935	2287	2645	3001
30	1827	2183	2541	2897	3251	1827	2183	2541	2897	3251
40	3293	3989	4689	5389	6085	1929	2281	2639	2995	3349
50	3293	3989	4689	5389	6085	1929	2281	2639	2995	3349
60	4793	5489	6187	6893	7588	3341	4037	4737	5437	6133
75	4793	5489	6187	6893	7588	3341	4037	4737	5437	6133
100	5149	- 5847	6545	7245	7943	3341	4037	4737	5437	6133
125	8733	10611	12485	14363	16239	4937	5633	6331	7037	7733
150	9149	11027	12899	14777	16655	4937	5633	6331	7037	7733
200	10295	12081	13955	15829	17705	5537	6235	6933	7633	8331
250	19175	21847	24517	27185	29855	9121	10999	12873	14749	16627
300	20233	22905	25579	28247	30919	9677	11555	13427	15305	17183
400	20477	23153	25823	28495	31161	10783	12569	14443	16317	18193

[^2]Westinghouse Electric Corporation
General Control Division
Asheville, NC/Buffalo, NY 14240

Non-Reversing, Reversing
Up to 600 Volts,
3 Phase, 60 Hertz

Price List

July 28, 1977
Supersedes PL 9220, pages 9-12,
dated May 17, 1977
Prices effective May 17, 1977 and subject to change without notice. Discount Symbol C10-G3 (Refer to Selling Policy 7000) Mailed to: E, D, C/1806/PL

Reduced Voltage Magnetic Starters

Application

Class 11-600. Size 6
Autotransformer type starters are the most widely used reduced voltage starter because of their efficiency and flexibility. All power taken from the line, except transformer losses, is transmitted to the motor to accelerate the load. Taps on the transformer allow adjustment of the starting torque and inrush to meet the requirements of most applications. The following characteristics are produced by the three voltage taps:

Tap	Starting Torque \% Locked Torque	Line Inrush \% Locked Ampere
(2) 50\%	25%	(3)28\% 65%
42%	(3) 45% 80%	64%

(2) Not included 50 hp and below
(3) Includes transformer magnetizing current

Closed transition is standard on all sizes assuring a smooth transition from reduced to full voltage. Since the motor is never disconnected from the line there is no interruption of line current which can cause a second inrush during transition.
Duty cycle of these starters is as follows: up to $200 \mathrm{hp}, 15$ seconds on each 4 minutes for 1 hour, repeated after 2 hours. Over 200 hp , three periods of 30 seconds on, 30 seconds off repeated after 1 hour.

Description

Class 11-600 Non-Reversing Starters Contain:
2 - Three pole starting contactors with auxiliary relays and interlocks, except size 7-8, one two pole and one three pole starting contactors (see table below for type).
1 - Three pole running contactor with auxiliary relays and interlocks (see table below for type).

Starter Size	Contactor Type	
	Starting	Running
2	A-201-K2	A-201-K2
3	A-201-K3	A-201-K3
4	A-201-K4	A-201-K4
5	GCA-530	GCA-530
6	GCA-530 \& GCA-530	GCA-630
7	GCA-620 \& GCA-630	GPD-730
8	GPD-720 \& GPD-730	GPD-830
8L	GPD-820 \& GPD-830	105-FD

1 -Pneumatic timing relay.
1-3 pole adjustable type AN overload relay

Typical Wiring Diagram

on size-1 through 4. This same overload relay is used with associated current transformers on size 5 and larger.
1 -Silicon rectifier to provide dc control voltage for size 7.
1 - Type A dry type two winding open delta connected auto-transformer mounted and wired in the enclosure in all sizes. All ratings have 65% and 80% voltage taps. Above 50 horsepower a 50% tap is also provided.
Classes 11-603, 11-604, 11-606: These non-reversing combination starters are similar to class 11-600 except that a disconnect switch or circuit breaker is added. Class 11-610: This is a reversing type starter similar to the class 11-600 with two additional 2 -pole contactors to furnish the reversing service.
Classes 11-613, 11-614, 11-616: These are reversing type combination starters similar to class 11-610. In addition, they include either a disconnect switch or a circuit breaker.

Reduced Voltage Magnetic Starters

List Prices - Heaters Not Included
Classes 11-600, 11-603, 11-604, 11-606 Non-Reversing in NEMA 1 Enclosure

		Size	Starter Ty									
p.	3-Phase 60 Hertz (2)		Without Short Circ Protection		With Non-Fusib Disconnec		With Fus or Curre Fused D	e Disconnec Limiting onnect			er(3)	
			Catalog Number 11600 0	List Price	Catalog Number 11603	List Price	Fuse Clip Amps(4)	Catalog Number 11604	List Price		Catalog Number 11606	List Price
10	200	2	S2CNNZ	\$ 1139	S2CNNZ	\$ 1379	100	S2CN1Z	\$ 1437		S2CNFZ	\$ 1483
15	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	S2DNNB S2DNNC	$\begin{aligned} & 1139 \\ & 1139 \end{aligned}$	S2DNNB S2DNNC	$\begin{aligned} & 1379 \\ & 1379 \end{aligned}$	100	$\begin{aligned} & \text { S2DN1B } \\ & \text { S2DN1C } \end{aligned}$	$\begin{aligned} & 1437 \\ & 1437 \end{aligned}$	FB	S2DNFB S2DNFC	$\begin{aligned} & 1483 \\ & 1483 \end{aligned}$
20	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	S3ENNB S2ENNC	$\begin{aligned} & 1339 \\ & 1139 \end{aligned}$	S3ENNB S2ENNC	$\begin{aligned} & 1643 \\ & 1379 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & \text { S3EN2B } \\ & \text { S2EN1C } \end{aligned}$	$\begin{aligned} & 1747 \\ & 1437 \end{aligned}$	$\begin{aligned} & \text { FB } \\ & \text { FB } \end{aligned}$	$\begin{aligned} & \text { S3ENFB } \\ & \text { S2ENFC } \end{aligned}$	$\begin{aligned} & 1713 \\ & 1483 \end{aligned}$
25	$\begin{aligned} & 200-230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	S3FNNB S2FNNC	$\begin{aligned} & 1339 ⑧ \\ & 1139 \end{aligned}$	S3FNNB S2FNNC	$\begin{aligned} & 1643 \\ & 1379 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & \text { S3FN2B } \\ & \text { S2FN1C } \end{aligned}$	$\begin{aligned} & 1747 \\ & 1437 \end{aligned}$	$\begin{aligned} & \text { FB } \\ & \text { FB } \end{aligned}$	S3FNFB S2FNFC	$\begin{aligned} & 1713 \\ & 1483 \end{aligned}$
30	$\begin{aligned} & 200 \\ & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \\ & 3 \end{aligned}$	S4GNNZ S3GNNB S3GNNC	$\begin{aligned} & 2591 \\ & 1395{ }_{8} \\ & 1395 ® 8 \end{aligned}$	S4GNNZ S3GNNB S3GNNC	$\begin{aligned} & 3011 \\ & 1699 \\ & 1699 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & \text { S4GN2Z } \\ & \text { S3GN2B } \\ & \text { S3GN2C } \end{aligned}$	$\begin{aligned} & 3315 \\ & 1803 \\ & 1803 \end{aligned}$	$\begin{aligned} & \text { KB } \\ & \text { FB } \\ & \text { FB } \end{aligned}$	S4GNKZ S3GNFB S3GNFC	$\begin{aligned} & 3275 \\ & 1769 \\ & 1769 \end{aligned}$
40	200	4	S4HNNZ	2591	S4HNNZ	3011	200	S4HN2Z	3315	KB	S4HNKZ	3275
50	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	S4JNNB S3JNNC	$\begin{aligned} & 2591 \text { (8) } \\ & \text { 1443(8) } \end{aligned}$	S4JNNB S3JNNC	$\begin{aligned} & 3011 \\ & 1748 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	S4JN2B S3JN1C	$\begin{aligned} & 3315 \\ & 1851 \end{aligned}$	$\begin{aligned} & \mathrm{KB} \\ & \mathrm{FB} \end{aligned}$	S4JNKB S3JNFC	$\begin{aligned} & 3275 \\ & 1817 \end{aligned}$
75	$\begin{aligned} & 200 \\ & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 4 \end{aligned}$	S5LNNZ S5LNNB S4LNNC	4115 4115(3) 2639(8)	S5LNNZ S5LNNB S4LNNC	$\begin{aligned} & 4867 \\ & 4867 \\ & 3059 \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \\ & 200 \end{aligned}$	$\begin{aligned} & \text { S5LN4Z } \\ & \text { S5LN4B } \\ & \text { S4LN2C } \end{aligned}$	$\begin{aligned} & 5221 \\ & 5221 \\ & 3363 \end{aligned}$	$\begin{aligned} & K B \\ & K B \\ & K B \end{aligned}$	$\begin{aligned} & \text { S5LNKZ } \\ & \text { S5LNKB } \\ & \text { S4LNKC } \end{aligned}$	$\begin{aligned} & 5445 \\ & 5445 \\ & 3323 \end{aligned}$
100	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \end{aligned}$	S5MNNB S4MNNC	$\begin{aligned} & 4427 ® 8 \\ & 2639(8) \end{aligned}$	S5MNNB S4MNNC	$\begin{aligned} & 5179 \\ & 3059 \end{aligned}$	$\begin{aligned} & 400 \\ & 200 \end{aligned}$	S5MN4B S4MN2C	$\begin{aligned} & 5533 \\ & 3363 \end{aligned}$	$\begin{aligned} & \text { LB } \\ & \text { KB } \end{aligned}$	S5MNLB S4MNKC	$\begin{aligned} & 5757 \\ & 3323 \end{aligned}$
125	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	S6NNNB S5NNNC	$\begin{aligned} & 7611 \text { (8) } \\ & \text { 4259(8) } \end{aligned}$	S6NNNB S5NNNC	$\begin{array}{r} 9337 \\ 5011 \end{array}$	$\begin{aligned} & \mathrm{CL} \\ & 200 \end{aligned}$	S6NNCB S5NN2C	$\begin{array}{r} 10441 \\ 5365 \end{array}$	$\begin{aligned} & \text { LB } \\ & \text { KB } \end{aligned}$	S6NNLB S5NNKC	$\begin{aligned} & 9569 \\ & 5589 \end{aligned}$
150	$\begin{array}{r} 200-230 \\ 460-575 \end{array}$	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	S6PNNB S5PNNC	$\begin{aligned} & 7935 \text { (8) } \\ & \text { 4259(8) } \end{aligned}$	S6PNNB S5PNNC	$\begin{aligned} & 9661 \\ & 5011 \end{aligned}$	$\begin{aligned} & C L \\ & 400 \end{aligned}$	S6PNCB S5PN4C	$\begin{array}{r} 10765 \\ 5365 \end{array}$	$\begin{aligned} & \text { MA } \\ & K B \end{aligned}$	S6PNMB S5PNKC	$\begin{aligned} & 9893 \\ & 5589 \end{aligned}$
200	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	S6WNNB S5WNNC	$\begin{aligned} & 8219 ⑧ \\ & 4815(3) \end{aligned}$	S6WNNB S5WNNC	$\begin{aligned} & 9945 \\ & 5567 \end{aligned}$	$\begin{aligned} & C L \\ & 400 \end{aligned}$	S6WNCB S5WN4C	$\begin{array}{r} 11049 \\ 5921 \end{array}$	$\begin{aligned} & \text { MA } \\ & \text { LB } \end{aligned}$	S6WNMB S5WNLC	$\begin{array}{r} 10177 \\ 5145 \end{array}$
250	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 7 \\ & 6 \end{aligned}$	STYNNB S6YNNC	$\begin{aligned} & 12845 \\ & 7999 \text { (5) } \end{aligned}$	STYNNB S6YNNC	$\begin{array}{r} 14671 \\ 9725 \end{array}$	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	STYNCB S6YNCC	$\begin{aligned} & 16603 \\ & 10555 \end{aligned}$	$\begin{aligned} & \text { MA } \\ & \text { LB } \end{aligned}$	STYNMB S6YNLC	$\begin{array}{r} 15559 \\ 9957 \end{array}$
300	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 7 \\ & 6 \end{aligned}$	STONNB S60NNC	$\begin{gathered} 13271 \\ 8463(5) \end{gathered}$	STONNB S60NNC	$\begin{aligned} & 15097 \\ & 10189 \end{aligned}$	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & \text { S70NCB } \\ & \text { S60NCC } \end{aligned}$	$\begin{aligned} & 17029 \\ & 11293 \end{aligned}$	$\begin{aligned} & \text { NB } \\ & \text { MA } \end{aligned}$	S70NBB S60NMC	$\begin{aligned} & 15985 \\ & 10421 \end{aligned}$
400	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 8 \\ & 6 \end{aligned}$	S82NNB S62NNC	$\begin{aligned} & 17463 \\ & 8707 \text { (3) } \end{aligned}$	S82NNC S62NNC	$\begin{aligned} & 19679 \\ & 10433 \end{aligned}$	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & \text { S82NCB } \\ & \text { S62NCC } \end{aligned}$	$\begin{aligned} & 22751 \\ & 11537 \end{aligned}$	$\begin{aligned} & \text { NB } \\ & \text { MA } \end{aligned}$	S82NBB S62NMC	$\begin{aligned} & 22063 \\ & 10665 \end{aligned}$
450	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 8 \\ & 7 \end{aligned}$	S83NNB S73NNC	$\begin{aligned} & 18583 \\ & 13881 \end{aligned}$	S83NNB S73NNC	$\begin{aligned} & 20799 \\ & 15707 \end{aligned}$	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & \text { S83NCB } \\ & \text { S73NCC } \end{aligned}$	$\begin{aligned} & 24765 \\ & 17639 \end{aligned}$	$\begin{aligned} & \text { PB } \\ & \text { MA } \end{aligned}$	S83NPB S73NMC	$\begin{aligned} & 23183 \\ & 16595 \end{aligned}$
500	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 8 \mathrm{~L} \\ & 7 \end{aligned}$	S94NNB S74NNC	$\begin{aligned} & 24407 \\ & 13881 \end{aligned}$	S94NNB S74NNC	$\begin{aligned} & 28647 \\ & 15707 \end{aligned}$	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & \text { S94NCB } \\ & \text { S74NCC } \end{aligned}$	$\begin{aligned} & 37949 \\ & 17639 \end{aligned}$	$\begin{aligned} & \text { PB } \\ & \mathrm{MA} \end{aligned}$	$\begin{aligned} & \text { S94NPB } \\ & \text { S74NMC } \end{aligned}$	$\begin{aligned} & 29007 \\ & 16595 \end{aligned}$
600	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 8 \mathrm{~L} \\ & 7 \end{aligned}$	S95NNB S75NNC	$\begin{aligned} & 25197 \\ & 14205 \end{aligned}$	S95NNB S75NNC	$\begin{aligned} & 41303 \\ & 16031 \end{aligned}$	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & \text { S95NCB } \\ & \text { S75NCC } \end{aligned}$	$\begin{aligned} & 43615 \\ & 17963 \end{aligned}$	$\cdots \mathrm{NB}$		16919
700	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 8 \mathrm{~L} \\ & 8 \end{aligned}$	S96NNB S86NNC	$\begin{aligned} & 27011 \\ & 19135 \end{aligned}$	S96NNB S86NNC	$\begin{aligned} & 43119 \\ & 21351 \end{aligned}$	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & \text { S96NCB } \\ & \text { S86NCC } \end{aligned}$	$\begin{aligned} & 45429 \\ & 24423 \end{aligned}$	$\ddot{\sim} \dot{B}$		23735
800	460-575	8	S87NNC	19803	S87NNC	22019	CL	S87NCC	25091	NB	S87NBC	24403
900	460-575	8	S88NNC	20505	S88NNC	24745	CL	S88NCC	26687	PB	S88NPC	25105
1000	460-575	8L	S99NNC	27447	S99NNC	29487	CL	S99NCC	33629	PB	S99NPC	32047
1250	460-575	8L		28399	44507	CL		46823	...		
1500	460-575	8L		30093		46201	CL		48517			

(S) Stock item. (See SS -7015 for style number.) Stock at 230 volts and 460 volts only.

Note: Catalog numbers shown for 200-230 volts are for 230 volt designs. For 200 volts change last digit from B to Z . Catalog numbers for $460-575$ volts are for 460 volts. For 575 volts, change last digit from C to D.
(2) For other voltages, refer to Westinghouse. For 3-phase, 50-Hertz, 380 volts, add 5% to $460-575$ volt prices and order by description.
(3) To substitute breakers. see page 16.
(4) "CL" indicates that current limiting type fuses are included to provide 100.000 asymmetrical amperes interrupting capacity. A load break disconnect is provided in (4) "CL" indicates that current limiting type fuses are included to provide 100.000 asymmetrical
all ratings. Fuses not included up to and including size 5 , sizes 6 to 9 include current limiting fuses.

Ordering Information
 Order starters by catalog number and description, include:
 Class number or type
 Service, non-reversing or reversing.
 Typedisconnect orshort circuit protection.
 NEMA enclosure type.
 NEMA size.
 Horsepower and service factor.
 Application and Duty Cycle.
 System voltage.
 Specify external reset button, if required.
 Modifications.

Modifications: Select modifications from pages 15, 16, 17 and order by description.

Heater Elements

Prices do not include heater elements. Starters require 3 overload relay heater elements at $\mathbf{\$ 3 . 0 0}$ list each. Refer to selection tables page 18.

Price List 9220

Page 11

Reduced Voltage Magnetic Starters

Application

Class 11-700, Size 4PW
Part winding starting provides convenient economical one-step acceleration at reduced current where the power company specifies a maximum, or limits the increments of current drawn from the line. These starters can be used with standard dualvoltage motors on the lower voltage and with special part-winding motors designed for any voltage. When used with standard dual-voltage motors, it should be established that the torque produced by the first half-winding will accelerate the load sufficiently so as not to produce a second undesirable inrush when the second halfwinding is connected to the line. Most motors will produce a starting torque equal to between $1 / 2$ to $2 / 3$ of NEMA standard values with half of the winding energized and draw about $2 / 3$ of normal line current inrush.
Dimensions, Inches; Approxi-

(1) 64,76 and 90 inch high enclosures are floor mounted.

Description
 Class 11-700 Non-Reversing TwoPoint Starters Contain:

2 - Three-pole starting contactors with auxiliary relays and interlocks (see table below).

Starter Size
Contactor Type

1PW	A-201-K1
2PW	A-201-K2
3PW	A-201-K3
4PW	A-201-K4
5PW	GCA-530
6PW	GCA-630
7PW	GPD-730
1-Pneumatic timing relay.	
3 pole adjustable type AN overload relay	
on sizes 1 through 4. This same overload	
relay is used with associated current trans-	
formers on size 5 and larger.	
1 - Set of line terminals.	
1 - Silicon rectifier to provide dc control	
voltage for size 7.	

Class 11-706: This is a non-reversing combination starter similar to the class

11-700 starter except that it includes a molded case circuit breaker.

Class 11-740: This is a non-reversing, Three-point starter. In addition to devices listed for the class 11-700 two-point starter, it contains:

1 -Accelerating contactor (see table below) and additional timing relay.

Starter Size	Contactor Type
1PW	A-201-K1
2PW	A-201-K2
3PW	A-201-K3
4PW	A-201-K4
5PW	GCA-530

1 - Resistor frame of stainless steel tube type resistors mounted and wired in the enclosure in all sizes.

Class 11-746: This is a non-reversing combination starter similar to the class 11-740 and includes a molded case circuit breaker.

Typical Wiring Diagram

Reduced Voltage Magnetic Starters

List Prices - Heaters Not Included
Classes 11-700, 11-703, 11-706, 11-740 Non-Reversing, in NEMA 1 Enclosure

Max. Hp.	Volts 3-Phase 60 Hz (1)	NEMA Size	Starter Type										
			Without Short Circuit Protection		With Non-Fusible Disconnect		With Fusible Disconnect or Current Limiting Fused Disconnect			 $\begin{array}{l}\text { With Molded Case } \\ \text { Circuit } \\ \text { Breaker(3) }\end{array}$ Frame Catalog Number $11-706$ $) ~$List			Class 11-740 3 Point Starter List Price
			Catalog Number 11-700	List Price	Catalog Number 11-703	List Price	Fuse Clip Amps(2)	Catalog Number 11-704	List Price				
10	200-230	1 PW	S1CNNB	\$ 448	S1CNNB	\$ 688	100	S1CN1B	\$ 746		S1CNFB	\$ 792	\$1056
15	460-575	1 PW	S1DNNC	448	S1DNNC	688	100	S1DN1C	746		10 N	792	1056
20	200	2 PW	S2ENNZ	634(5)4	S2ENNZ	938	200	S2EN2Z	1042		S2ENFZ	1008	1392
25	230	2PW	S2FNNB	634(5)4	S2FNNB	938	200	S2FN2B	1042		S2FNFB	1008	1392
40	$\begin{aligned} & 200 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 3 P W \\ & 2 P W \end{aligned}$	$\begin{aligned} & \text { S3HNNZ } \\ & \text { S2HNNC } \end{aligned}$	$\begin{aligned} & \text { 890ⓢ } \\ & \text { 634(S)(4) } \end{aligned}$	$\begin{aligned} & \text { S3HNNZ } \\ & \text { S2HNN } \end{aligned}$	$\begin{array}{r} 1310 \\ 938 \end{array}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & \text { S3HN2Z } \\ & \text { S2HN2C } \end{aligned}$	$\begin{aligned} & 1641 \\ & 1042 \end{aligned}$		S3HNKZ S2HNFC	$\begin{aligned} & 1574 \\ & 1008 \end{aligned}$	$\begin{aligned} & 2002 \\ & 1452 \end{aligned}$
50	230	3PW	S3JNNB	890⑤	S3JNNB	1642	200	S3JN2B	1996	KB	S3JNKB	2220	2058
75	$\begin{aligned} & 200-230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & \text { 4PW } \\ & 3 P W \end{aligned}$	S4LNNB S3LNNC	$\begin{array}{r} 1892 \text { Ⓢ } \\ 890 \text { Ⓢ } \end{array}$	S4LNNB S3LNNC	$\begin{aligned} & 2644 \\ & 1310 \end{aligned}$	$\begin{aligned} & 400 \\ & 100 \end{aligned}$	S4LN4B S3LN1C	$\begin{aligned} & 2998 \\ & 1614 \end{aligned}$	$\begin{aligned} & \text { KB } \\ & \text { FB } \end{aligned}$	S4LNKB S3LNFC	$\begin{aligned} & 3222 \\ & 1574 \end{aligned}$	$\begin{aligned} & 4152 \\ & 2058 \end{aligned}$
150	$\begin{aligned} & 200-230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & \text { 5PW } \\ & 4 \mathrm{PW} \end{aligned}$	$\begin{aligned} & \text { S5PNNB } \\ & \text { S4PNNC } \end{aligned}$	$\begin{aligned} & \text { 3942ⓢ } \\ & \text { 1892Ⓢ } \end{aligned}$	S5PNNB S4PNNC	$\begin{aligned} & 5668 \\ & 2644 \end{aligned}$	$\begin{aligned} & C L \\ & 400 \end{aligned}$	S5PNCB S4PN4C	$\begin{aligned} & 6772 \\ & 2998 \end{aligned}$	$\begin{aligned} & \text { MA } \\ & K B \end{aligned}$	S5PNMB S4PNKC	$\begin{aligned} & 5900 \\ & 3222 \end{aligned}$	$\begin{aligned} & 7216 \\ & 4200 \end{aligned}$
300	230	6PW	S6ONNB	8348	S6ONNB	10564		S6ONCB	13636	NB	S60NBB	12948	
350	460-575	5PW	S51NNC	3942	S51NNC	5668	CL	S51NCC	6772	MA	S51NMC	5900	7604
600	460-575	6PW	S65NNC	8348	S65NNC	10174	CL	S65NCC	12106	NB	S65NBC	11062	

For larger ratings, refer to Westinghouse
(5) Stock item. (See SS-7015 for style number.) Stock at 230 volts and 460 volts only.
(1) Catalog numbers shown for 200-230 volts are for 230 volt designs, for 200 volts change last digit from B to Z. Catatog numbers for $460-575$ volts are for 460 volts.

For 575 volts change the last digit from C to D.
For other voitages refer to Westinghouse. For 3 -phase. 50 -Hertz 380 or 460 volts, use 3 -phase, 60 -Hertz 460 volt prices and order by description.
(2) "CL" indicates that current limiting type fuses are included to provide 100.000 asymmetrical amperes interrupting capacity. A load break disconnect is provided
in all ratings. Fuses not included up to and including size 4 . Sizes 5 and 6 include current limiting fuses.
(3) To substitute breakers, see page 84.
(4) Stocked with separate control 115 volt.

Ordering Information

Order starters by catalog number and description, include:

Heater Elements

Prices do not include heater elements.
Starters require 6 overload relay heater
Class number or type. \quad elements at $\$ 3.00$ list each. Refer to page
Service, non-reversing or reversing. 18 for selection tables.
Typedisconnect or short circuit protection.
NEMA enclosure type.
NEMA size.
Horsepower and service factor.
Application and Duty cycle.
System voltage.
Specify external reset button, if required.
Modifications.
For a class 11-740 starter, either the actual locked rotor amperes and locked kilowatts (or power factor) must be included; if starter is to be used with a Westinghouse motor, the style or order number must be included so that this data can be obtained.
Modifications: Select modifications from pages 15, 16, 17 and order by description.

Westinghouse Electric Corporation
General Control Division
Asheville, NC/Buffalo, NY 14240

Non-Reversing, Reversing
Up to 600 Volts,
3 Phase, 60 Hertz

May 17, 1977
New Information
Prices effective May 17, 1977 and subject to change without notice. Discount Symbol C10-G3 (Refer to Selling Policy 7000) Mailed to: E, D, C/1806/PL

Reduced Voltage Magnetic

 Starters

Star-Delta type starters have been applied extensively to industrial air conditioning installations because they are particularly applicable to starting motors driving high inertia loads with resulting long acceleration times. They are not, however, limited to this application. When six or twelve lead delta-connected motors are started starconnected, approximately 58% of full line voltage is applied to each winding and the motor develops 33% of full voltage starting torque and draws 33\% of normal locked rotor current from the line. When the motor has accelerated, it is re-connected for normal delta operation.
Class 11-800 and 11-890 starters are suitable for air conditioning application, provided the motors used are open type and horsepower rated. For current rated motor starters for use with hermetic centrifugal air conditioning and refrigeration compressors, refer to Westinghouse.

Description

Class 11-800 Non-Reversing, Open

Transition Starters Contain:

2 - Three pole delta contactors with auxiliary relays and interlocks (see table below). 1 - Three pole star contactor with auxiliary relays and interlocks (see table below) 1 - Mechanical interlock to interlock one delta contactor and the star contactor.

Starter Size	Contactor Type	
	Delta	Star
1YD	A-201-K1	A-201-K1
2YD	A-201-K2	A-201-K2
3YD	A-201-K3	A-201-K3
4YD	A-201-K4	A-201-K4
5YD	GCA-530	GCA-530
6YD	GCA-630	GCA-530
7YD	GPD-730	GCA-620
8YD	GPD-830	GPD-720

1 - Pneumatic timing relay.
1 - Three pole adjustable type AN overload relay on sizes 1 through 4. The same over-

\rightarrow ren

load relay is used with associated current transformers on size 5 and larger.
1-Silicon rectifier to provide dc control voltage for size 7 and larger.
Classes 11-803, 11-804, 11-806: These open transition type combination starters are similar to the class 11-800, except that they include either a disconnect switch or a circuit breaker for short circuit protection.
Class 11-890: This is a closed transition starter which contains, in addition to the devices listed for class 11-800 starters: 1 - Three pole transition contactor.
1 - Transition resistor frame of edgewound resistors mounted and wired in the enclosure in all sizes.
1 -TRP synchronous timer to assure proper transition.
Classes 11-893, 11-894, 11-896: These closed transition combination starters are similar to the class 11-890 except that they include either a disconnect switch or a circuit breaker.

Typical Wiring Diagram, Class 11-800

Dimensions, Inches; Approximate Only

Starter Class	Size	Dimensions Max. Shipping Wt., Lbs.			
		A(1) B	C		
$11-800$	1-2-3-4 YD	35	24	12	210
	5 YD	64	28	14	600
	6 YD	64	28	21	850
$11-890$	1-2-3-4 YD	35	24	12	400
	5 YD	76	28	14	900
	6 YD	90	28	21	1100

(1) 64. 76 and 90 inch high enclosures are floor mounted.

Reduced Voltage Magnetic Starters

List Prices - Heaters Not Included
Classes 11-800, 11-806, 11-890, 11-896 Non-Reversing in NEMA 1 Enclosure

Max. Hp. (2)	Volts 3-Phase 60 Hertz (3)	Size	Without Short Circuit Protection					With Molded Case Circuit Breaker				
			$\begin{aligned} & \hline \text { Class } 11-800 \\ & \text { Open Transition } \\ & \hline \end{aligned}$			$\begin{aligned} & \hline \text { Class 11-890 } \\ & \text { Closed Transition } \end{aligned}$		$\begin{aligned} & \hline \text { Class } 11-806 \\ & \text { Open Transition } \\ & \hline \end{aligned}$		Class 11-896 Closed Transition		Breaker Frame Size
			Catalog Number 11800		$\begin{aligned} & \hline \text { ist } \\ & \text { inice } \end{aligned}$	Catalog Number 11890	$\begin{aligned} & \hline \text { List } \\ & \text { Price } \end{aligned}$	Catalog Number 11806	$\begin{aligned} & \hline \text { List } \\ & \text { Price } \end{aligned}$	Catalog Number 11896	List	
10	$\begin{aligned} & 200-230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & \text { 1YD } \\ & \text { 1YD } \end{aligned}$	S1CNNB S1CNNC	\$	$\begin{aligned} & 695 \\ & 695 \end{aligned}$	S1CNNB S1CNNC	$\begin{array}{r} \$ 1057 \\ 1057 \end{array}$	S1CNFB S1CNFC	$\begin{array}{r} \hline \$ 1039 \\ 1039 \end{array}$	$\begin{aligned} & \text { S1CNFB } \\ & \text { S1CNFC } \end{aligned}$	$\begin{array}{r} \hline 1401 \\ \hline 1401 \end{array}$	$\begin{aligned} & \mathrm{FB} \\ & \mathrm{FB} \end{aligned}$
15	460-575	1YD	S1DNNC		695	S1DNNC	1057	S1DNFC	1039	S1 DNFC	1401	FB
20	200	2YD	S2ENNZ		821	S2ENNZ	1183	S2ENFZ	1195	S2ENFZ	1557	FB
25	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 2 \mathrm{YD} \\ & 2 \mathrm{YD} \end{aligned}$	S2FNNB S2FNNC		$\begin{aligned} & 821 \\ & 821 \end{aligned}$	S2FNNB S2FNNC	$\begin{aligned} & 1195 \\ & 1195 \end{aligned}$	S2FNFB S2FNFC	$\begin{aligned} & 1195 \\ & 1195 \end{aligned}$	S2FNFB S2FNFC	$\begin{aligned} & 1569 \\ & 1569 \end{aligned}$	$\begin{aligned} & \text { FB } \\ & \text { FB } \end{aligned}$
30	$\begin{aligned} & 200-230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 3 Y \mathrm{YO} \\ & 2 \mathrm{YD} \end{aligned}$	S3GNNB S2GNNC		$\begin{array}{r} 1191 \\ 821 \end{array}$	$\begin{aligned} & \text { S3GNNB } \\ & \text { S2GNN } \end{aligned}$	$\begin{aligned} & 1603 \\ & 1195 \end{aligned}$	S3GNKB S2GNFC	$\begin{aligned} & 1875 \\ & 1195 \end{aligned}$	S3GNKB S2GNFC	$\begin{aligned} & 2287 \\ & 1569 \end{aligned}$	$\begin{aligned} & \mathrm{KB} \\ & \mathrm{FB} \end{aligned}$
40	$\begin{aligned} & 200 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 3 Y D \\ & 2 Y D \end{aligned}$	S3HNNZ S2HNNC		$\begin{array}{r} 1191 \\ 821 \end{array}$	S3HNNZ S2HNNC	$\begin{aligned} & 1647 \\ & 1239 \end{aligned}$	S3HNKZ S2HNFC	$\begin{aligned} & 1875 \\ & 1195 \end{aligned}$	S3HNKZ S2HNFC	$\begin{aligned} & 2331 \\ & 1613 \end{aligned}$	$\begin{aligned} & \text { KB } \\ & \text { FB } \end{aligned}$
50	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 3 Y D \\ & 3 Y D \end{aligned}$	S3JNNB S3JNNC		$\begin{aligned} & 1191 \\ & 1191 \end{aligned}$	S3JNNB S3JNNC	$\begin{aligned} & 1647 \\ & 1647 \end{aligned}$	S3JNKB S3JNFC	$\begin{aligned} & 1875 \\ & 1875 \end{aligned}$	S3JNKB S3JNFC	$\begin{aligned} & 2331 \\ & 2331 \end{aligned}$	$\begin{aligned} & \text { KB } \\ & \text { FB } \end{aligned}$
60	$\begin{aligned} & 200 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 4 \mathrm{YD} \\ & 3 Y \mathrm{D} \end{aligned}$	$\begin{aligned} & \text { S4KNNZ } \\ & \text { S3KNNC } \end{aligned}$		$\begin{aligned} & 2475 \\ & 1191 \end{aligned}$	$\begin{aligned} & \text { S4KNNZ } \\ & \text { S3KNN } \end{aligned}$	$\begin{aligned} & 3141 \\ & 1695 \end{aligned}$	S4KNKZ S3KNFC	$\begin{aligned} & 3805 \\ & 1875 \end{aligned}$	S4KNKZ S3KNFC	$\begin{aligned} & 4471 \\ & 2379 \end{aligned}$	$\begin{aligned} & \text { KB } \\ & \text { FB } \end{aligned}$
75	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & \text { 4YD } \\ & 3 Y D \end{aligned}$	S4LNNB S3LNNC		$\begin{aligned} & 2475 \\ & 1191 \end{aligned}$	S4LNNB S3LNNC	$\begin{aligned} & 3238 \\ & 1861 \end{aligned}$	S4LNKB S3LNKC	$\begin{aligned} & 3805 \\ & 1875 \end{aligned}$	S4LNKB S3LNKC	$\begin{aligned} & 4567 \\ & 2545 \end{aligned}$	$\begin{aligned} & \text { KB } \\ & \text { KB } \end{aligned}$
100	$\begin{aligned} & 200-230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 5 Y D \\ & 4 Y D \end{aligned}$	S5MNNB S4MNNC		$\begin{aligned} & 4515 \\ & 2475 \end{aligned}$	S5MNNB S4MNNC	5467 3365	S5MNLB S4MNKC	$\begin{aligned} & 6173 \\ & 3805 \end{aligned}$	S5MNLB S4MNKC	$\begin{aligned} & 7125 \\ & 4695 \end{aligned}$	$\begin{aligned} & \text { LB } \\ & \text { KB } \end{aligned}$
150	$\begin{aligned} & 200-230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 5 Y D \\ & 4 Y D \end{aligned}$	S5PNNB S4PNNC		$\begin{aligned} & 4515 \\ & 2475 \end{aligned}$	S5PNNB S4PNNC	$\begin{array}{r} 5515 \\ 3413 \end{array}$	S5PNMB S4PNKC	$\begin{aligned} & 6173 \\ & 3805 \end{aligned}$	S5PNMB S4PNKC	$\begin{aligned} & 7173 \\ & 4743 \end{aligned}$	$\begin{aligned} & \text { MA } \\ & \text { KB } \end{aligned}$
250	$\begin{aligned} & 200-230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 6 Y D \\ & 5 Y D \end{aligned}$	S6YNNB S5YNNC		$\begin{aligned} & 9631 \\ & 4515 \end{aligned}$	S6YNNB S5YNNC	$\begin{array}{r} 12079 \\ 5647 \end{array}$	S6YNMB S5YNLC	$\begin{array}{r} 11589 \\ 6173 \end{array}$	S6YNMB S5YNLC	$\begin{array}{r} 14037 \\ 7305 \end{array}$	$\begin{aligned} & \text { MA } \\ & \text { LB } \end{aligned}$
300	$\begin{aligned} & 200-230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & \text { 6YD } \\ & 5 Y D \end{aligned}$	S60NNB S50NNC		$\begin{aligned} & 9631 \\ & 4515 \end{aligned}$	S60NNB S50NNC	$\begin{array}{r} 12079 \\ 5949 \end{array}$	S60NBB S50NMC	$\begin{array}{r} 12345 \\ 6173 \end{array}$	S60NBB S5ONMC	$\begin{array}{r} 14793 \\ 7607 \end{array}$	$\begin{aligned} & \mathrm{NB} \\ & \mathrm{MA} \end{aligned}$
350	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & \text { 6YD } \\ & \text { 6YD } \end{aligned}$	S61NNB S61NNC		$\begin{aligned} & 9631 \\ & 9631 \end{aligned}$	S61 NNB S61 NNC	$\begin{aligned} & 12079 \\ & 12079 \end{aligned}$	S61 NMB S61 NMC	$\begin{aligned} & 12345 \\ & 11589 \end{aligned}$	S61 NMB S61 NMC	$\begin{aligned} & 14793 \\ & 14037 \end{aligned}$	$\begin{aligned} & \text { MA } \\ & \text { MA } \end{aligned}$
500	$\begin{aligned} & 200-230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & \text { 7YD } \\ & \text { 6YD } \end{aligned}$	S64NNC S66NNC			SGOMNOC	$\begin{aligned} & 17209 \\ & 12079 \end{aligned}$	S64NMC	11589		14037	MA
700	460-575	6YD				S66NNC	12079	S66NBC	12345	S66NBB	14793	NB
750	200	8YD			145	22281	\ldots \cdot...	\ldots
800	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & \text { 8YD } \\ & 7 Y D \end{aligned}$			$\begin{aligned} & 18145 \\ & 13231 \end{aligned}$		$\begin{aligned} & 22857 \\ & 17209 \end{aligned}$		\ldots	\ldots	\cdots
1000	460-575	7YD			13231 ${ }^{\text {a }}$	17209	\ldots		\ldots	- .
1250	460-575	8YD			18145		23159		\ldots	\cdots
1500	460-575	8YD		18145	23159					

(2) For current rated starters for air conditioning application, refer to Westinghouse.
(3) Catalog numbers shown for 200-230 volts are 230 volt designs. For 200 volts change last digit from B to Z. Catalog numbers for $460-575$ volts are for 460 volts. For 575 volts change the last digit from C to D. For 3 -phase, 50 -Hertz 380 or 460 volts, use 3 -phase. 60 Hertz 460 volt prices and order by description. For other voltages refer to Westinghouse.

Ordering Information

Order starters by catalog number and description, include:

Class number or type.
Service, non-reversing or reversing.
Type disconnect or short circuit protection. NEMA enclosure type.

NEMA size.
Horsepower and service factor.
Application and duty cycle.
System voltage.
Specify external reset button, if required.
Modifications.

Modifications: Select modifications from pages $15,16,17$ and order by description.

Heater Elements

Prices do not include heater elements. Starters require 3 overload relay heater elements at $\$ 3.00$ list each. Refer to page 18 for selection tables.

Price List

Modifications and Accessories

Factory Modifications

Modifications	List 1	ce Ad Size 2	tions 3	4	5			8	8L
Reversing Starters									
Reduced Voltage Wound Rotor	$\begin{array}{r} \$ 288 \\ 288 \end{array}$	$\begin{array}{r} \$ 788 \\ 420 \end{array}$	$\begin{aligned} & 832 \\ & 668 \end{aligned}$	$\$ 1808$ 1024	$\$ 2156$ 1734	3690	$\begin{array}{r} \$ 4950 \\ \mathbf{4 2 1 2} \end{array}$	$\begin{array}{r} \$ 7372 \\ 6168 \end{array}$	$\begin{array}{r} \$ 10840 \\ 9590 \end{array}$
Control Circuit Devices									
Auxiliary Control Relay	152	152	152	152	152	152	152	152	152
Auxiliary Pneumatic Timer or Compelling Relay	168	168	168	168	168	168	168	168	168
Auxiliary Motor Operated Timer	352	352	352	352	352	352	352	352	352
Extra Electrical Interlock(1)	22	22	22	22	22	66	66	66	66
Incomplete Sequencing	238	238	238	238	238	238	238	238	238
Reverse Phase and Phase Failure Relay	612	612	612	612	612	760	760	760	760
Third Overload(2)	Std.								
Ambient Compensated Overload Relay	8			8	8	8	64	64	64
Guardistor, Mount and Wire(3)	44		44	44	44	44	44	44	44
Undervoltage protection(4)	182	182	182	182	182	182	182	182	182
Time Delay Undervoltage	352	352	352	352	352	352	352	352	352
Solid State Overload Protection (MOR)(8)	654	732	804	824	869	869	869	869	869
Control Circuit Supply									
Control Fuses		44	44	44	44	44	44	44	44
Control Breaker(5)	74	174	174	174	174	174	174	174	174
Control Transformer(6)	96	124	156	176	196	196	196	196	196
Control Transformer with 300 Va extra capacity ${ }^{(6)}$	164	200	232	252	272	272	272	272	272
Separate Control Circuit ${ }^{(3)}$ No Charge									
Operator's and Pilot Devices									
Start-Stop Pushbutton or H-O-A Selector Switch	100	100	100	100	100	100	100	100	100
Extra pushbutton	30	30	30	30	30	66	66	66	66
Indicating lights	60	60	60	60	60	60	60	60	60
(2) Standard on all sizes of magnetically operated starters.									
(3) Guardistor Relay must be ordered with the motor.									
(4) Required on other than start-stop momentary circuits.									
(5) Internally operated.									
(6) Includes secondary fuse.									
(2) For a low voltage control circuit, we recommend the addition of a control circuit transformer to the starter. If a separate source of low voltage is used for the control ciscuit, there is a possibility of having a full voltage start after a line voltage failure that does not open thelow voltage control circuit. If the low voltage control circuit source is wired so that it will be de-energized by any motor voltage failure, linestartirig cannot occur.									
(8) Includes "HTM" heater and "LAM" long acceleration module.									

Modifications and Accessories

Factory Modifications

Substitution Air Circuit Breakers

Standard Breaker	Price Addition Substitute Breaker Frame					
Frame	Mark 7		TriPac		v	
FB	HFB	\$ 180	FB	\$ 2800		
KB	HKB	590	LA	1440		
LB	HLB	340	LA	$540{ }^{2}$	MA	\$ 440
MA	HMA	340	NB	1400	NB	1300
NB	HNB	340	P'B	2670	PB	1820 (3)
PB(3)			PB	850 (4)	PB	2940

(1) 100 amperes maximum.
(2) 400 amperes maximum.
(3) 2000 amperes maximum
(4) 1600 amperes maximum.

Note: Add modifications to basic starter prices
and apply appropriate starter discount symbol.

Westinghouse Electric Corporation
General Control Division
Asheville, NC/Buffalo, NY 14240
Westinghouse Electric Corporation

Price List
General Control Division
Asheville, NC/Buffalo, NY 14240

May 17, 1977
New Information
Prices effective May 17, 1977 and subject to change without notice. Discount Symbol C10-G3
(Refer to Selling Policy 7000)
Mailed to: E, D, C/1806/PL

Non-Reversing, Reversing
Up to 600 Volts,
3 Phase, 60 Hertz

Ac Magnetic Reduced Voltage Starters

Modifications and Accessories

(1) To meet J.I.C. specifications, starter must also have control circuit transformer and disconnect switch or breaker, refer to Westinghouse.
(2) Stainless Steel Construction, refer to Westinghouse.

Standard Heater Tables - Non-Ambient Compensated Overload Relay

Magnetic Full Voltage Starters-Size 5 and Larger, Class 11-200 Enclosed Starters With Type AN Non-Ambient Compensated 3-Pole Block Overload Relay		
Adjusted Full Load Current	Heater Catalog Number	Heater Style Number
Size 5 (with 300/5 current transformers)		
100 to 109	FH23	177 C 524 G 23
110 to 119	FH24	177 C 524 G 24
120 to 131	FH25	177C524G25
132 to 143	FH26	177C524G26
144 to 157	FH27	177 C 524 G 27
158 to 173	FH28	177 C524
174 to 190	FH29	177C524G29
191 to 208	FH30	$177 \mathrm{C} 524 \mathrm{G30}$
209 to 227	FH31	177C524G31
228 to 246	FH32	177 C524G32
247 to 270	FH33	177C524G33

Size 6 (with 600/5 current transformers)
199 to 217
218
to 239
240
to 263
264
to 287
288
to 316
317

to 346

Size 7 and Larger: Advise Full Load Current

Full Load Current of Motor (Amps) 125\% Overload Protection	Heater Catalog Number	Heater Style Number
Size 3 and 4 Starter		
17.5 to 19.1	H72	179C319G02
19.2 to 21.1	FH73	179C319G03
21.2 to 23.2	FH74	179C319G04
23.3 to 25.6	FH75	179C319G05
25.7 to 28.1	FH76	179C319G06
28.2 to 30.8	FH77	179C319G07
30.9 to 34.5	FH78	179C319G08
34.6 to 38.2	FH79	179C319G09
38.3 to 42.6	FH80	179C319G10
42.7 to 46	FH81	179C319G11
47 to 51	FH82	179 C 319 G 12
52 to 56	FH83	179C319G 13
57 to 61	FH84	179C319G14
62 to 67	FH85	179C319G15
68 to 73	FH86	179C319G16
74 to 80	FH87	179C319G17
81 to 87	FH88	179C319G18
88 to 95	FH89	179C319G19
96 to 105	FH90	179C319G20
106 to 116	FH91	179C319G21
117 to 127	FH92	179C319G22
128 to 135	FH93	179C319G23

69	to 74	FH16	177C524G 16
75	to 82	FH17	177C524G17
83	to 90	FH18	177 C524G18
91	to 100	FH19	177C524G19
101	to 110	FH2O	177 C 24 G 20
111	to 121	FH21	177C524G21
122	to 132	FH22	177C524G22
133	to 145	FH23	177C524G23
146	to 159	FH24	177C524G24
160	to 175	FH25	177C524G25
176	to 191	FH26	177C524G26
192	to 210	FH27	177C524G27
211	to 231	FH28	177C524G28
232	to 253	FH29	177C524G29
254	to 277	FH30	177C524G30
278	to 301	FH31	177C524G31
302	to 329	FH32	177C524G32
330	to 364	FH33	177C524G33

Size 5MM Starter with 600/5 Current Transformer

199	to 217	FH 23	177 C 524 G 23
218	to 239	FH 24	177 C 524 G 24
240	to 263	FH 25	177 C 524 G 25
264	to 287	FH 26	177 C 524 G 26
288	to 316	FH 27	177 C 524 G 27
317	to 347	FH 28	177 C 524 G 28
348	to 380	FH 29	177 C 524 G 29

Price List
9220
Page 19

Price List
9220
Page 20

Westinghouse Electric Corporation
General Control Division
Asheville, NC/Buffalo, NY 14240

Ac Magnetic Reduced Voltage Starters

Class 11-700 Part-Winding
Non-Reversing, Reversing
Up to 600 Volts, 3-Phase, 60 Hertz

List Prices - Heaters Not Included
Classes 11-700, 11-703, 11-706, 11-740 Non-Reversing, in NEMA 1 Enclosure

Max. Hp.	Volts 3-Phase 60 Hz (1)	NEMA Size	Starter Type										
			Without Short Circuit Protection		With Non-Fusible Disconnect		With Fusible Disconnect or Current Limiting Fused Disconnect			With Molded Case Circuit Breaker(3)			$\begin{aligned} & \text { Class 11.740 } \\ & 3 \text { Point } \\ & \text { Starter } \\ & \hline \text { List } \\ & \text { Price } \end{aligned}$
			Catalog Number 11-700	List Price	Catalog Number 11-703	List Price	Fuse Clip Amps(2)	Catalog Number 11-704	List Price	Frame	Catalog Number $11-706$	List Price	
10	200-230	1 PW	S1CNNB	\$ 448	S1 CNNB	\$ 688	100	S1CN1B	\$ 746		S1 CNFB	\$ 792	\$1056
15	460-575	1 PW	S1DNNC	448	S1DNNC	688	100	S1DN1C	746		DNF	792	1056
20	200	2 PW	S2ENNZ	634(5)(4)	S2ENNZ	938	200	S2EN2Z	1042		S2ENFZ	1008	1392
25	230	2PW	S2FNNB	634 (5) (4)	S2FNNB	938	200	S2FN2B	1042	,	S2FNFB	1008	1392
40	$\begin{aligned} & 200 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 3 \mathrm{PW} \\ & 2 \mathrm{PW} \end{aligned}$	$\begin{aligned} & \text { S3HNNZ } \\ & \text { S2HNNC } \end{aligned}$	$\begin{aligned} & 890(\mathrm{~S}) \\ & 634(\mathrm{~S})(4) \end{aligned}$	$\begin{aligned} & \text { S3HNNZ } \\ & \text { S2HNNC } \end{aligned}$	$\begin{array}{r} 1310 \\ 938 \end{array}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & \text { S3HN4Z } \\ & \text { S2HN2C } \end{aligned}$	$\begin{aligned} & 1647 \\ & 1042 \end{aligned}$	$\begin{aligned} & K A \\ & F B \end{aligned}$	$\begin{aligned} & \text { S3HNJZ } \\ & \text { S2HNFC } \end{aligned}$	$\begin{aligned} & 1574 \\ & 1008 \end{aligned}$	$\begin{aligned} & 2002 \\ & 1452 \end{aligned}$
50	230	3PW	S3JNNB	890(s)	S3JNNB	1642	200	S3JN6B	1996		S3JNJB	2220	2058
75	$\begin{aligned} & 200-230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & \text { 4PW } \\ & 3 \mathrm{PW} \end{aligned}$	S4LNNB S3LNNC	$\begin{gathered} 1892 \text { (S) } \\ 890(\mathrm{~S} \end{gathered}$	S4LNNB S3LNNC	$\begin{aligned} & 2644 \\ & 1310 \end{aligned}$	$\begin{aligned} & 400 \\ & 100 \end{aligned}$	S4LN6B S3LN4C	$\begin{aligned} & 2998 \\ & 1614 \end{aligned}$	$\begin{aligned} & \text { LA } \\ & \text { FB } \end{aligned}$	$\begin{aligned} & \text { S4LNLB } \\ & \text { S3LNFC } \end{aligned}$	$\begin{aligned} & 3222 \\ & 1574 \end{aligned}$	$\begin{aligned} & 4152 \\ & 2058 \end{aligned}$
150	$\begin{aligned} & 200-230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 5 \mathrm{PW} \\ & 4 \mathrm{PW} \end{aligned}$	S5PNNB S4PNNC	$\begin{aligned} & \text { 3942§S } \\ & 1892 \text { S } \end{aligned}$	S5PNNB S4PNNC	$\begin{aligned} & 5668 \\ & 2644 \end{aligned}$	$\begin{aligned} & C L \\ & 400 \end{aligned}$	S5PNCB S4PN6C	$\begin{aligned} & 6772 \\ & 2998 \end{aligned}$	$\begin{gathered} \text { MA } \\ \text { LA } \end{gathered}$	S5PNMB S4PNLC	$\begin{aligned} & 5900 \\ & 3222 \end{aligned}$	$\begin{aligned} & 7216 \\ & 4200 \end{aligned}$
300	230	6PW	S6ONNB	8348	S6ONNB	10564	CL	S60NCB	13636	PB	S6ONPB	12948	
350	460-575	5PW	S51NNC	3942(S)	S51NNC	5668	CL	551 NCC	6772	MA	S51 NMC	5900	7604
600	460-575	6PW	S65NNC	8348	S65NNC	10174	CL	S65NCC	12106	MA	S65NMC	11062	

For larger ratings, refer to Westinghouse
(S) Stock item. (See SS-7015 for style number.) Stock at 230 volts and 460 volts only.
(1) Catalog numbers shown for $200-230$ volts are for 230 volt designs, for 200 volts change last digit from B to Z : Cataiog numbers for $460-575$ volts are for 460 volts, For 575 volts change the last digit from C to .
For other voltages refer to Westinghouse. For 3 -phase, 50 -Hertz 380 or 460 voits, use 3 -phase. 60 -Hertz 460 volt prices and order by description.
(2) "CL" indicates that current limiting type fuses are included to provide 100.000 asymmetrical amperes interrupting capacity. A load break disconnect is provided in all ratings.
(3) To substitute breakers, see page 14.
(4) Stocked with separate control 115 volt.

Ordering Information

Order starters by catalog number and description, include:

Class number or type.
Service, non-reversing or reversing.
Type disconnect or short circuit protection
NEMA enclosure type.
NEMA size.
Horsepower and service factor.
Application and Duty cycle.
System voltage.
Specify external reset button, if required.
Modifications.
For a class 11-740 starter, either the actual locked rotor amperes and locked kilowatts (or power factor) must be included; if starter is to be used with a Westinghouse motor, the style or order number must be included so that this data can be obtained.

Modifications: Select modifications from pages 13-15, and order by description.

Westinghouse

Ac Magnetic Reduced Voltage Starters

Class 11-700 Part-Winding Non-Reversing, Reversing Up to 600 Volts, 3-Phase, 60 Hertz

Application

Part winding starting provides convenient. economical one-step acceleration at reduced current where the power company specifies a maximum, or limits the increments of current drawn from the line. These starters can be used with standard dualvoltage motors on the lower voltage and with special part-winding motors designed for any voltage. When used with standard dual-voltage motors, it should be established that the torque produced by the first half-winding will accelerate the load sufficiently so as not to produce a second undesirable inrush when the second halfwinding is connected to the line. Most motors will produce a starting torque equal to between $1 / 2$ to $3 / 3$ of NEMA standard values with half of the winding energized and draw about $2 / 3$ of normal line current inrush.
Dimensions, Inches; Approximate Only

(1) 64.76 and 90 inch high enclosures are floor mounted.

Description of Starters
Class 11-700 Non-Reversing TwoPoint Starters Contain:
2 - Three-pole starting contactors with auxiliary relays and interlocks (see table below).

Starter Size	Contactor Type
1PW	A-201-K1
2PW	A-201-K2
3PW	A-201-K3
4PW	A-201-K4
5PW	GCA-530
6PW	GCA-630
7PW	GPD-730

1 - Pneumatic timing relay.
3 pole adjustable type AN overload relay on sizes 1 through 4. This same overload relay is used with associated current transformers on size 5 and larger.
1 - Set of line terminals.
1 - Silicon rectifier to provide dc control voltage for size 7.
Class 11-706: This is a non-reversing combination starter similar to the class

Typical Wiring Diagram

Prices effective July 6, 1971; subject to change without notice.
Discount Symbol C10-G3
Selling Policy 7000

February 26, 1974
Supersedes PL 9220, pages 9-10, dated
October 8, 1973
E. D. C/1806/PL

Ac Magnetic

Reduced Voltage Starters

Class 11-600 Autotransformer
Non-Reversing, Reversing
Up to 600 Volts, 3-Phase, 60 Hertz

List Prices - Heaters Not Included

Clas Max. Hp.	Volts 3-Phase 60 Hertz (2)		Starter Type									
		Size	Without Short Circuit Protection		With Non-Fusimle Disconnect		With Fusible Disconnect or Current Limiting Fused Disconnect			With Molded Case Circuit Breaker (3)		
			Catalog Number 11600	List Price	Catalog Number 11603	List Price	Fuse Clip Amps(4)	Catalog Number 11604	List Price		Catalog Number 11606	List Price
10	200	2	S2CNNZ	\$ 1139	S2CNNZ	\$ 1379	100	S2CN12	\$ 1437		S2CNFZ	\$ 1483
15	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	S2DNNB S2DNNC	$\begin{aligned} & 1139 \\ & 1139 \end{aligned}$	$\begin{aligned} & \text { S2DNNB } \\ & \text { S2DNNC } \end{aligned}$	$\begin{aligned} & 1379 \\ & 1379 \end{aligned}$	100	S2DN1B S2DN1C	$\begin{aligned} & 1437 \\ & 1437 \end{aligned}$		S2DNFB S2DNFC	$\begin{aligned} & 1483 \\ & 1483 \end{aligned}$
20	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	S3ENNB S2ENNC	$\begin{aligned} & 1339 \\ & 1139 \end{aligned}$	S3ENNB S2ENNC	$\begin{aligned} & 1643 \\ & 1379 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & \text { S3EN2B } \\ & \text { S2EN1C } \end{aligned}$	$\begin{aligned} & 1747 \\ & 1437 \end{aligned}$	FB	$\begin{aligned} & \text { S3ENFB } \\ & \text { S2ENFC } \end{aligned}$	$\begin{aligned} & 1713 \\ & 1483 \end{aligned}$
25	$\begin{aligned} & 200-230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	S3FNNB S2FNNC	$\begin{aligned} & 1339 \text { (8) } \\ & 1139 \end{aligned}$	S3FNNB S2FNNC	$\begin{aligned} & 1643 \\ & 1379 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & \text { S3FN2B } \\ & \text { S2FN1 } \end{aligned}$	$\begin{aligned} & 1747 \\ & 1437 \end{aligned}$	$\begin{aligned} & \text { FB } \\ & \text { FB } \end{aligned}$	S3FNFB S2FNFC	$\begin{aligned} & 1713 \\ & 1483 \end{aligned}$
30	$\begin{aligned} & 200 \\ & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \\ & 3 \end{aligned}$	S4GNNZ S3GNNB S3GNNC	$\begin{aligned} & 2591 \\ & 1395(®) \\ & 1395 ®(®) \end{aligned}$	$\begin{aligned} & \text { S4GNNZ } \\ & \text { S3GNNB } \\ & \text { S3GNNC } \end{aligned}$	$\begin{aligned} & 3011 \\ & 1699 \\ & 1699 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & \text { S4GN4Z } \\ & \text { S3GN2B } \\ & \text { S3GN2C } \end{aligned}$	$\begin{aligned} & 3315 \\ & 1803 \\ & 1803 \end{aligned}$	$\begin{aligned} & \text { KA } \\ & \text { FB } \\ & \text { FB } \end{aligned}$	$\begin{aligned} & \text { S4GNJZ } \\ & \text { S3GNFB } \\ & \text { S3GNFC } \end{aligned}$	$\begin{aligned} & 3275 \\ & 1769 \\ & 1769 \end{aligned}$
40	200	4	S4HNNZ	2591	S4HNNZ	3011	200	S4HNNZ	3315	KA	S4HNNZ	3275
50	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	S4JNNB S3JNNC	$\begin{aligned} & 2591(\stackrel{\text { ® }}{8} \\ & 14433(\end{aligned}$	$\begin{aligned} & \text { SUJNNB } \\ & \text { S3JNN } \end{aligned}$	$\begin{aligned} & 3011 \\ & 1748 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & \text { S4JN4B } \\ & \text { S3JN2C } \end{aligned}$	$\begin{aligned} & 3315 \\ & 1851 \end{aligned}$	$\begin{aligned} & \text { KA } \\ & \text { FB } \end{aligned}$	S4JNJB S3JNFC	$\begin{aligned} & 3275 \\ & 1817 \end{aligned}$
75	$\begin{aligned} & 200 \\ & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 4 \end{aligned}$	S5LNNZ S5LNNB S4LNNC	$\begin{aligned} & 4115 \\ & 4115(\&) \\ & 2639 ®(8) \end{aligned}$	S5LNNZ S5LNNB S4LNNC	$\begin{aligned} & 4867 \\ & 4867 \\ & 3059 \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \\ & 200 \end{aligned}$	S5LN6Z S5LN6B S4LN4C	$\begin{aligned} & 5221 \\ & 5221 \\ & 3363 \end{aligned}$	$\begin{aligned} & \text { LA } \\ & \text { LA } \\ & \text { KA } \end{aligned}$	$\begin{aligned} & \text { S5LNLZ } \\ & \text { S5LNLB } \\ & \text { S4LNJC } \end{aligned}$	$\begin{aligned} & 5445 \\ & 5445 \\ & 3323 \end{aligned}$
100	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \end{aligned}$	S5MNNB S4MNNC	$\begin{aligned} & \text { 4427 (S) } \\ & 2639(\mathbb{S}) \end{aligned}$	S5MNNB S4MNNC	$\begin{aligned} & 5179 \\ & 3059 \end{aligned}$	$\begin{aligned} & 400 \\ & 200 \end{aligned}$	S5MN6B S4MN4C	$\begin{aligned} & 5533 \\ & 3363 \end{aligned}$	$\begin{aligned} & \text { LA } \\ & \text { KA } \end{aligned}$	S5MNLB S4MNJC	$\begin{aligned} & 5757 \\ & 3323 \end{aligned}$
125	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	S6NNNB S5NNNC	$\begin{aligned} & \mathbf{7 6 1 1}(\mathrm{S}) \\ & \mathbf{4 2 5 9} 9 \end{aligned}$	S6NNNB S5NNNC	$\begin{aligned} & 9337 \\ & 5011 \end{aligned}$	$C L$ 200	S6NNCB S5NN6C	$\begin{array}{r} 10441 \\ 5365 \end{array}$	$\begin{gathered} \text { LA } \\ \text { KA } \end{gathered}$	S6NNLB S5NNJC	$\begin{aligned} & 9569 \\ & 5589 \end{aligned}$
150	$\begin{array}{r} 200-230 \\ 460-575 \end{array}$	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	S6PNNB S5PNNC	$\begin{aligned} & 7935(\curvearrowright) \\ & \mathbf{4 2 5 9 ®} \end{aligned}$	S6PNNB S5PNNC	$\begin{aligned} & 9661 \\ & 5011 \end{aligned}$	$\begin{aligned} & \text { CL } \\ & 400 \end{aligned}$	S6PNCB S5PN6C	$\begin{array}{r} 10765 \\ 5365 \end{array}$	$\begin{aligned} & \text { MA } \\ & \text { LA } \end{aligned}$	S6PNMB S5PNLC	$\begin{aligned} & 9893 \\ & 5589 \end{aligned}$
200	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	S6WNNB S5WNNC	$\begin{aligned} & 82199 \\ & 4815(0) \end{aligned}$	S6WNNB S5WNNC	$\begin{array}{r} 9945 \\ 5567 \end{array}$	$\begin{aligned} & C L \\ & 400 \end{aligned}$	S6WNCB S5WN6C	$\begin{array}{r} 11049 \\ 5921 \end{array}$	$\begin{aligned} & \text { MA } \\ & \text { LA } \end{aligned}$	S6WNMB S5WNLC	$\begin{array}{r} 10177 \\ 6145 \end{array}$
250	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 7 \\ & 6 \end{aligned}$	STYNNB S6YNNC	$\begin{gathered} 12845 \\ 7999(8) \end{gathered}$	STYNNB S6YNNC	$\begin{array}{r} 14671 \\ 9725 \end{array}$	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	S7YNCB S6YNCC	$\begin{aligned} & 16603 \\ & 10555 \end{aligned}$	$\begin{aligned} & \text { MA } \\ & \text { LA } \end{aligned}$	S7YNMB S6YNLC	$\begin{array}{r} 15559 \\ 9957 \end{array}$
300	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 7 \\ & 6 \end{aligned}$	S70NNB S60NNC	$\begin{gathered} 13271 \\ 8463 \end{gathered}$	S70NNB S60NNC	$\begin{aligned} & 15097 \\ & 10189 \end{aligned}$	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	S7ONCB S60NCC	$\begin{aligned} & 17029 \\ & 11293 \end{aligned}$	$\begin{aligned} & \text { MB } \\ & \text { MA } \end{aligned}$	S70NBB S60NMC	$\begin{aligned} & 15985 \\ & 10421 \end{aligned}$
400	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 8 \\ & 6 \end{aligned}$	$\begin{aligned} & \text { S82NNB } \\ & \text { S62NNC } \end{aligned}$	$\begin{aligned} & 17463 \\ & 8707 \text { (®) } \end{aligned}$	S82NNC S62NNC	$\begin{aligned} & 19679 \\ & 10433 \end{aligned}$	$\begin{array}{cl} \mathrm{CL} \\ \mathrm{Cl} \end{array}$	S82NCB S62NCC	$\begin{aligned} & 22751 \\ & 11537 \end{aligned}$	$\begin{aligned} & \text { MB } \\ & \text { MA } \end{aligned}$	$\begin{aligned} & \text { S82NBB } \\ & \text { S62NMC } \end{aligned}$	$\begin{aligned} & 22063 \\ & 10665 \end{aligned}$
450	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 8 \\ & 7 \end{aligned}$	$\begin{aligned} & \text { S83NNB } \\ & \text { S73NNC } \end{aligned}$	$\begin{aligned} & 18583 \\ & 13881 \end{aligned}$	S83NNB S73NNC	$\begin{aligned} & 20799 \\ & 15707 \end{aligned}$	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	S83NCB S73NCC	$\begin{aligned} & 24765 \\ & 17639 \end{aligned}$	PB MA	S83NPB S73NMC	$\begin{aligned} & 23183 \\ & 16595 \end{aligned}$
500	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{gathered} \text { BL } \\ 7 \end{gathered}$	$\begin{aligned} & \text { S94NNB } \\ & \text { S74NNC } \end{aligned}$	$\begin{aligned} & 24407 \\ & 13881 \end{aligned}$	S94NNB S74NNC	$\begin{aligned} & 28647 \\ & 15707 \end{aligned}$	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & \text { S94NCB } \\ & \text { S74NCC } \end{aligned}$	$\begin{aligned} & 37949 \\ & 17639 \end{aligned}$	$\begin{aligned} & \mathrm{PB} \\ & \mathrm{MA} \end{aligned}$	S94NPB S74NMC	$\begin{aligned} & 29007 \\ & 16595 \end{aligned}$
600	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & \mathrm{BL} \\ & 7 \end{aligned}$	$\begin{aligned} & \text { S95NNB } \\ & \text { S75NNC } \end{aligned}$	$\begin{aligned} & 25197 \\ & 14205 \end{aligned}$	S95NNB S75NNC	$\begin{aligned} & 41303 \\ & 16031 \end{aligned}$	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	S95NCB S75NCC	$\begin{aligned} & 43615 \\ & 17963 \end{aligned}$	NB	STFOMBC	16919
700	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & \text { BL } \\ & 8 \end{aligned}$	$\begin{aligned} & \text { S96NNB } \\ & \text { S86NNC } \end{aligned}$	$\begin{aligned} & 27011 \\ & 19135 \end{aligned}$	S96NNB S86NNC	$\begin{aligned} & 43119 \\ & 21351 \end{aligned}$	$\begin{aligned} & \mathrm{CL} \\ & \mathrm{CL} \end{aligned}$	S96NCB S86NCC	$\begin{aligned} & 45429 \\ & 24423 \end{aligned}$	NB	S 86 NBC	23735
800	460-575	8	S87NNC	19803	S87NNC	22019	CL	S87NCC	25091	NB	S87NBC	24403
900	460-575	8	S88	20505	S88NNC	24745	CL	SBBNCC	26687	PB	S88NPC	25105
1000	460-575	8L	S99NN	27447	S99NNC	29487	CL	S99NCC	33629	PB	S99NPC	32047
1250	460.575	8L		28399		44507	CL		46823			
1500	460-575	8L		30093		46201	CL		48517			

(S) Stock item. (See SS-7015 tor stye number.) Stock at 230 velts and 450 volts only.

Note: Cationg numbers shown for $200-230$ volts are for 230 volt destgns. Fer 200 volts change last digit from E to Z . Catalog numbers for $460-575$ volts are for 460 volts. For 575 volts, change last digit from C to D.
(2) For other voltages, refor to Westagheuse. For 3 -phasc. 50-Hertz, 38 volts, add 5% to $460-575$ valt prices and order by descriptien.
(3) To substitute broakers. see page 14
(4) "CL" indicates that current limiting type fuses are included to provido 100,000 asymnetrical amperes interrupting capacity. A load break iscorinect is provided in all ratins.

Ordering Information

Order starters by catalog number and description, include:

Class number or type
Service, non-reversing or reversing.
Typedisconnect orshort circuit protection.

NEMA enclosure type.
NEMA size.
Horsepower and service factor.
Application and Duty Cycle
System voltage.
Specify external reset button, if required.
Modifications.

Modifications: Select modifications from pages 13-15, and order by description.

[^3]
Westinghouse

Ac Magnetic Reduced Voltage Starters

Class 11-600 Autotransformer
Non-Reversing, Reversing
Up to 600 Volts, 3-Phase, 60 Hertz

Application

Autotransformer type starters are the most widely used reduced voltage starter because of their efficiency and flexibility. All power taken from the line, except transformer losses, is transmitted to the motor to accelerate the load. Taps on the transformer allow adjustment of the starting torque and inrush to meet the requirements of most applications. The following characteristics are produced by the three voltage taps:

Tap	Starting Torque \% Locked Torque	Line Inrush \%Locked Ampere
(2)5\%	25%	(328\%
65%	42%	(3)
80%	64%	(367\%

(2) Not included 50 hp and below.
(3) Includes transformer magnetizing current.

Closed transition is standard on all sizes assuring a smooth transition from reduced to full voltage. Since the motor is never disconnected from the line there is no interruption of line current which can cause a second inrush during transition.
Duty cycle of these starters is as follows: up to 200 hp , 15 seconds on each 4 minutes for 1 hour, repeated after 2 hours. Over 200 hp , three periods of 30 seconds on, 30 seconds off repeated after 1 hour.

Description of Starters
 Class 11-600 Non-Reversing Starters

 Contain:1 - Three pole and one two pole starting contactors with auxiliary relays and interlocks (see table below for type).
1 - Three pole running contactor with auxiliary relays and interlocks (see table below for type).

Starter	Contactor Type
Size	Starting Running
2	A-201-K2 A-201-K2
3	A-201-K3 A-201-K3
4	A-201-K4 A-201-K4
5	GCA-530 GCA-530
6	GCA-530 \& GCA-530 GCA-630
7	GCA-620 \& GCA-630 GPD-730
8	GPD-720 \& GPD-730 GPD-830
8L	GPD-820 \& GPD-830 105-FD
1 - Pneumatic timing relay. 1-3 pole adjustable type AN overload relay on size 1 through 4. This same overload	

relay is used with associated current transformers on size 5 and larger.
1 -Silicon rectifier to provide dc control voltage for size 7 .
1 - Type A dry type two winding open delta connected auto-transformer mounted and wired in the enclosure in all sizes. All ratings have 65% and 80% voltage taps. Above 50 horsepower a 50% tap is also provided.
Classes 11-603, 11-604, 11-606: These non-reversing combination starters are similar to class 11-600 except that a disconnect switch or circuit breaker is added.
Class 11-610: This is a reversing type starter similar to the class 11-600 with two additional 2 -pole contactors to furnish the reversing service.
Classes 11-613, 11-614, 11-616: These are reversing type combination starters similar to class 11-610. In addition, they include either a disconnect switch or a circuit breaker.

Typical Wiring Diagram

Dimensions, Inches; Approximate Only

Starter Class	Size	Dimensions			Max. Shipping Wi., Lbs.
		A(1)	B	C	
$11-600$	$2-3-4$	35	24	12	450
	5	64	28	14	750
	6	90	36	21	1250
	$7-8$	90	56	28	1400
$11-603$	$2-3-4$	35	24	12	500
$11-606\}$	5	64	28	14	800
	6	90	36	21	1300
	$7-8$	90	56	28	1500
$11-604$	$2-3-4$	64	28	14	600
	5	64	36	14	850
	6	90	36	21	1450
	$7-8$	90	84	28	1750

(1) 64 and 90 inch high enclosures are floor mounted.

February 26, 1974
Supersedes PL 9220, pages 7-8, dated
October 8, 1973
E. D. C/1806/PL

Ac Magnetic Reduced Voltage Starters

Class 11-440 Network Starters
Non-Reversing, Reversing
Up to 600 Volts, 3-Phase, 60 Hertz

Multi-Point Network Starter

Multi-point Acceleration: These starters are designed for use on network distribution systems where the starting current limitations of the power company are such that standard across-the-line or 2 -point resistance type starters will not give small enough increments of starting current.
They are designed to provide approximately 3 seconds per point on a two-point starter and approximately 2 seconds per point on the others.
Power company requirements usually specify a certain value of current which may be drawn from the line in starting the motor, and which may be increased by the same
amount in successive steps at short time intervals, provided that the circuit is not interrupted during the switching.
Number of Points Required: it is usually considered that the resistor starter must complete its entire sequence with the motor at standstill. That is, the necessary number of points is determined by dividing the full voltage locked rotor current of the motor by the permissible increment value and allowing one point for each graduation or fraction thereof.
Low Starting Torque: In certain instances it is possible to omit one or more starting contactors when the accelerating torque of
the load is very light, so that the motor is able to accelerate to practically full speed on reduced voltage. However, in order to do this complete specifications must be given, including the following:
(1) Variation of load torque with speed during acceleration.
(2) Inertia of driven machine and its full load speed.
(3) Complete information regarding starting current limitations to be met.
(4) Complete information on the motor which will be used, so that the motor inertia, the variation of the motor torque current and speed of acceleration can be determined.

Ordering Information

See page 5 for ordering information, modification and heater selection.

List Prices - Heaters Not Included
Class 11-440, Including Class 116 Resistors and NEMA 1 Enclosure

Hp	200-230 Volts, 3 Phase, 60 Hertz					380-460-575 Volts, 3 Phase, 60 Hertz				
	3-Point	4-Point	5. Point	6-Point	7-Point	3-Point	4-Point	5-Point	6.Point	7-Point
10	\$ 1437	\$ 1793	\$ 2151	\$ 2503	\$ 2859	\$ 1437	\$ 1793	\$ 2151	\$ 2503	\$ 2859
15	1469	1827	2179	2537	2893	1469	1827	2179	2537	2893
20	1743	2095	2453	2809	3167	1565	1921	2279	2631	2987
25	1781	2133	2491	2847	3201	1577	1935	2287	2645	3001
30	1827	2183	2541	2897	3251	1827	2183	2541	2897	3251
40	3293	3989	4689	5389	6085	1929	2281	2639	2995	3349
50	3293	3989	4689	5389	6085	1929	2281	2639	2995	3349
60	4793	5489	6187	6893	7588	3341	4037	4737	5437	6133
75	4793	5489	6187	6893	7588	3341	4037	4737	5437	6133
100	5149	- 5847	6545	7245	7943	3341	4037	4737	5437	6133
125	8733	10611	12485	14363	16239	4937	5633	6331	7037	7733
150	9149	11027	12899	14777	16655	4937	5633	6331	7037	7733
200	10295	12081	13955	15829	17705	5537	6235	6933	7633	8331
250	19175	21847	24517	27185	29855	9121	10999	12873	14749	16627
300	20233	22905	25579	28247	30919	9677	11555	13427	15305	17183
400	20477	23153	25823	28495	31161	10783	12569	14443	16317	18193

Westinghouse Electric Corporation
General Control Division, Buffalo, N. Y. 14240
Printed in USA

Ac Magnetic
Reduced Voltage Starters
Class 11-400 Primary Resistor Non-Reversing, Reversing Up to 600 Volts. 3-Phase, 60 Hertz

List Prices - Heaters Not Included

Clas Max. Hp.	Volts 3-Phase 60 Hertz (4)	NEMA Size	Starter Type with Class A.S. 116 Resistor										Add for Class A.S. 156 Resistor for High Inertia Starting Duty
			Without Short Circuit Protection		With Non-Fusible Disconnect		With Fusible Disconnect or Current-Limiting Fused Disconnect			With Molded Case Circuit Breaker(2)		List Price	
			$\begin{aligned} & \text { Catalog } \\ & \text { Number } \\ & 11400 \end{aligned}$	List Price	Catalog Number 11403	List Price	Fuse Clip(3) Amps	Catalog Number 11404	List Price				
5	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	1	S1ANNB S1ANNC	$\begin{array}{r} \$ 571 \\ 571 \end{array}$	S1ANNB S1ANNC	$\begin{array}{r} \$ 759 \\ 759 \end{array}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	S1ANOB S1ANOC	$\begin{array}{r} \$ 791 \\ 791 \end{array}$	FB	$\begin{aligned} & \text { S1ANFB } \\ & \text { S1ANFC } \end{aligned}$	$\begin{array}{r} \$ 853 \\ 853 \end{array}$	$\begin{array}{r} \$ 248 \\ 248 \end{array}$
71/2	$\begin{aligned} & 200-230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { S1BNNB } \\ & \text { S1BNNC } \end{aligned}$	$\begin{aligned} & 591 \\ & 591 \end{aligned}$	S1BNNB S1BNNC	$\begin{aligned} & 779 \\ & 779 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & \text { S1BNOB } \\ & \text { S1BNOC } \end{aligned}$	$\begin{aligned} & 811 \\ & 811 \end{aligned}$	FB	S1BNFB S1BNFC	$\begin{aligned} & 873 \\ & 873 \end{aligned}$	$\begin{array}{r} 372 \\ 372 \end{array}$
10	$\begin{array}{r} 200-230 \\ 460-575 \end{array}$	2	S2CNNB S1CNNC	$\begin{array}{r} 839 \\ \mathbf{6 3 1} \end{array}$	S2CNNB S1CNNC	$\begin{array}{r} 1079 \\ 815 \end{array}$	100 60	$\begin{aligned} & \text { S2CN1B } \\ & \text { S1CNOC } \end{aligned}$	1137 851	FB	S2CNFB S1CNFC	$\begin{array}{r} 1183 \\ 913 \end{array}$	$\begin{aligned} & 496 \\ & 496 \end{aligned}$
15	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	S2DNNB S2DNNC	$\begin{aligned} & 899 \\ & 899 \end{aligned}$	S2DNNB S2DNNC	$\begin{aligned} & 1139 \\ & 1139 \end{aligned}$	100	S2DN1B S2DN1C	$\begin{aligned} & 1197 \\ & 1197 \end{aligned}$	$\begin{aligned} & \text { FB } \\ & \text { FB } \end{aligned}$	S2DNFB S2DNFC	$\begin{aligned} & 1243 \\ & 1243 \end{aligned}$	$\begin{array}{r} 492 \\ 492 \end{array}$
20	$\begin{aligned} & 230 \\ & 460.575 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { S3ENNB } \\ & \text { S2ENNC } \end{aligned}$	$\begin{array}{r} 1199 \\ 967 \end{array}$	S2ENNB S2ENNC	$\begin{aligned} & 1503 \\ & 1207 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	S3EN2B S2EN1C	$\begin{aligned} & 1607 \\ & 1265 \end{aligned}$	$\begin{aligned} & \text { FB } \\ & \text { FB } \end{aligned}$	S3ENFB S2ENFC	$\begin{aligned} & 1573 \\ & 1311 \end{aligned}$	$\begin{aligned} & 424 \\ & 424 \end{aligned}$
25	$\begin{aligned} & 200-230 \\ & 460-575 \end{aligned}$	3 2	$\begin{aligned} & \text { S3FNNB } \\ & \text { S2FNNC } \end{aligned}$	$\begin{aligned} & 1219 \\ & 1007 \end{aligned}$	S3FNNB S2FNNC	$\begin{aligned} & 1523 \\ & 1247 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	S3FN2B S2FN1C	$\begin{aligned} & 1627 \\ & 1305 \end{aligned}$	FB	S3FNFB S2FNFC	$\begin{aligned} & 1593 \\ & 1351 \end{aligned}$	$\begin{array}{r} 444 \\ 444 \end{array}$
30	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	S3GNNB S3GNNC	$\begin{aligned} & 1275 \\ & 1275 \end{aligned}$	S3GNNB S3GNNC	$\begin{aligned} & 1579 \\ & 1579 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & \text { S3GN2B } \\ & \text { S3GN2C } \end{aligned}$	$\begin{aligned} & 1683 \\ & 1683 \end{aligned}$	$\begin{aligned} & \text { FB } \\ & \text { FB } \end{aligned}$	$\begin{aligned} & \text { S3GNFB } \\ & \text { S3GNF } \end{aligned}$	$\begin{aligned} & 1649 \\ & 1649 \end{aligned}$	$\begin{aligned} & 510 \\ & 510 \end{aligned}$
40	$\begin{aligned} & 200 \\ & 230 \\ & 460-575 \end{aligned}$	4 3	S4HNNZ S4HNNB S3HNNC	$\begin{aligned} & 2591 \\ & 2591 \\ & 1323 \end{aligned}$	S4HNNZ S4HNNB S3HNNC	3011 3011 1627	200 200 100	S4HN4Z S4HN4B S3HN2C	$\begin{aligned} & 3315 \\ & 3315 \\ & 1731 \end{aligned}$	$\begin{aligned} & \text { KA } \\ & \text { KA } \\ & \text { FB } \end{aligned}$	S4HNJZ S4HNJB S3HNFC	$\begin{aligned} & 3275 \\ & 3275 \\ & 1697 \end{aligned}$	510 510 510
50	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	S4JNNB S3JNNC	$\begin{aligned} & 2591 \\ & 1367 \end{aligned}$	SUJNNB S3JNNC	$\begin{aligned} & 3011 \\ & 1671 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	S4JN4B S3JN2C	$\begin{aligned} & 3315 \\ & 1775 \end{aligned}$	$\begin{aligned} & \text { KA } \\ & \text { FB } \end{aligned}$	S4JNJB S3JNFC	$\begin{aligned} & 3275 \\ & 1741 \end{aligned}$	$\begin{aligned} & 736 \\ & 736 \end{aligned}$
75	$\begin{aligned} & 200 \\ & 230 \\ & 460-575 \end{aligned}$	5 5 4	$\begin{aligned} & \text { S5LNNZ } \\ & \text { S5LNNB } \\ & \text { S4LNNC } \end{aligned}$	4115 4115 2639	S5LNNZ S5LNNB S4LNNC	$\begin{aligned} & 4867 \\ & 4867 \\ & 3059 \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \\ & 200 \end{aligned}$	S5LN6Z S5LN6B S4LN4C	$\begin{aligned} & 5221 \\ & 5221 \\ & 3363 \end{aligned}$	$\begin{aligned} & \text { LA } \\ & \text { LA } \\ & \text { KA } \end{aligned}$	S5LNLZ S5LNLB S4LNJC	$\begin{aligned} & 5445 \\ & 5445 \\ & 3323 \end{aligned}$	$\begin{aligned} & 888 \\ & 888 \\ & \mathbf{8 8 8} \end{aligned}$
100	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	5 4	S5MNNB S4MNNC	4427	S5MNNB S4MNNC	5178 3059	400	S5MN6B S4MN4C	$\begin{aligned} & 5533 \\ & 3363 \end{aligned}$	LA	S5MNLB S4MNJC	$\begin{aligned} & 5757 \\ & 3323 \end{aligned}$	972 972
125	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	S6NNNB S5NNNC	$\begin{array}{r} 7613 \\ 4259 \end{array}$	S6NNNB S5NNNC	$\begin{aligned} & 9339 \\ & 5011 \end{aligned}$	$\begin{aligned} & C L \\ & 200 \end{aligned}$	S6NNCB S5NN6C	$\begin{array}{r} 10441 \\ 5365 \end{array}$	$\begin{aligned} & \text { LA } \\ & \text { KA } \end{aligned}$	S6NNLB S5NNJC	$\begin{aligned} & 9571 \\ & 5589 \end{aligned}$	$\begin{aligned} & 1060 \\ & 1060 \end{aligned}$
150	$\begin{array}{r} 200-230 \\ 460-575 \end{array}$	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	S6PNNB 7937 S5PNNC $\mathbf{4 2 5 9}$		S6PNNB S5PNNC	$\begin{aligned} & 9663 \\ & 5011 \end{aligned}$	$\begin{aligned} & C L \\ & 400 \end{aligned}$	S6PNCB S5PN6C	$\begin{array}{r} 10767 \\ 5365 \end{array}$	$\begin{aligned} & \text { MA } \\ & \text { LA } \end{aligned}$	S6PNNB S5PNNC	$\begin{aligned} & 9895 \\ & 5589 \end{aligned}$	$\begin{aligned} & 1060 \\ & 1060 \end{aligned}$
200	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	6 5	S6WNNB S5WNNC	$\begin{aligned} & 8221 \\ & 4815 \end{aligned}$	S6WNNB S5WNNC	$\begin{aligned} & 9947 \\ & 5567 \end{aligned}$	$\begin{aligned} & C L \\ & 400 \end{aligned}$	S6WNCB S5WN6C	$\begin{array}{r} 11051 \\ 5921 \end{array}$	MA	S6WNMB S5WNLC	$\begin{array}{r} 10179 \\ 6145 \end{array}$	$\begin{aligned} & 1360 \\ & 1360 \end{aligned}$

For larger horsepower ratings use prices for equivalent rated class 11-600 starters on page 7 .
(2) To substitute breakers. see page 14 .
(3) "CL" indicates that current limiting type fuses are included to provide 100,000 asymmetrical amperes interrupting capacity. A load break disconnect is provided in all ratings. Fuses not included up to and including saze 5. Sizes 6-9 includes current limiting fuses.
(4) Catalog numbers shown for 200-230 volts are for 230 volt designs. For 200 volts, change losi digit from B to Z. Catalog numbers shown for $460-575$ volts are for 460 volt designs. For 575 volts, change last digit from C te

Ordering Information

Order starters by catalog number and description, include:

Class number or type.
Service, non-reversing or reversing.
Type disconnect orshort circuit protection.
NEMA enclosure type.
NEMA size.
Horsepower and service factor.
Application and Duty Cycle.
System voltage.
Specify external reset button, if required.
Modifications.

If resistance type starters are required to limit the starting current to an exact value, either the actual locked rotor amperes and locked kilowatts (or power factor) of the motor, must be included; or if the starter is to be used with a Westinghouse motor, the style or order number must be included so that this data can be determined. This motor information is required with all class 11-440 orders.

Modifications: Select modifications from pages 13-15 and order by description.

Heater Elements

Prices do not include heater elements. Starters require 3 overload relay heater elements at $\mathbf{\$ 3 . 0 0}$ list each. Refer to selection tables page 16.

Ac Magnetic Reduced Voltage Starters

Application

Primary resistor type starters, sometimes known as "cushion type" starters, will reduce the motor torque and starting inrush current to produce a smooth, cushioned acceleration with closed transition. AIthough not as efficient as other methods of reduced voltage starting, primary resistortype starters are ideally suited to applications such as conveyors, textile machines, or other delicate machinery where reduction of starting torque is of prime consideration. Starters through size 5 will limit inrush to approximately 80% of locked rotor current and starting torque to approximately 64% of locked torque. Larger sizes will be custom designed to the application.

Description of Starters

Class 11-400 Non-Reversing, TwoPoint Starters Contain:
1 - Three pole starting contactor with necessary relays and interlocks (see table below for type).
1 -Three pole running contactor with necessary relays and interlocks (see table below for type).

Starter Size	Contactor Type	
	Starting	Running
1	A-201-K1	A-201-K1
2	A-201-K2	A-201-K2
3	A-201-K3	A-201-K3
4	A-201-K4	A-201-K4
5	GCA-530	GCA-530
6	GCA-530	GCA-630
7	GCA-630	GPD-730
8	GPD-730	GPD-830
8 8	GPD-830	105-FD

1 - Pneumatic timing relay.
$1-3$ pole adjustable type AN overload relay on sizes 1 through 4. This same overload relay is used with associated current transformers on size 5 and larger.
1 -Silicon rectifier to provide dc control voltage for size 7 and larger.
1 -Resistor frame of stainless steel tube type resistors mounted and wired in the enclosure in all sizes. Resistor class A.S. 116 is intended for general starting duty where starting time is no more than 5 seconds out of 80 seconds. For applications that exceed this duty cycle, resistor class A.S. 156 resistors good for 15 seconds out of 60 seconds are recommended.

Classes 11-403, 11-404, 11-406: These combination starters are similar to class 11-400 starters except that they include a disconnect switch or circuit breaker.

Class 11-410: This is a reyersing type, two point starter which contains two mechanically interlocked running contactors. Otherwise, it is the same as a class 11-400 starter.

Classes 11-413, 11-414, 11-416: These are reversing type combination starters similar to the class $11-410$ starter except that a disconnect switch or circuit breaker is included.

Typical Wiring Diagram

Dimensions, Inches; Approximate Only

(Class 116 Resistors)

Starter Class	Size	Dimensions			Max, Shipping Wi.. Lbs.
		A(D)	B	C	
$11-400$	$1-2$	29	18	10	120
	3.4	35	24	12	400
	5	64	28	14	750
	$6-7-8$	90	28	28	1300
$11-403$	1	64	28	14	300
$11-406\}$	2	64	28	14	350
	$3-4$	64	28	14	800
	5	64	36	14	900
$11-404$	1	64	28	14	375
	$2-3.4$	64	28	14	475
	5	76	36	14	950

(1) 64 and 90 inch high enclosures are floor mounted.

Westinghouse Electric Corporation
General Control Division, Buffalo, N. Y. 14240
Printed in USA

Ac Magnetic Reduced Voltage Starters

Non-Reversing, Reversing
Up to 600 Volts, 3-Phase, 60 Hertz

Combination Starters

All starter installations require a means of disconnecting the starter from the incoming power supply. The disconnecting device, which can also provide short circuit protection, can either be separate from the starter or included with the starter in a common enclosure. If it is included with the starter, the assembly is known as a combination starter.
Combination starters offer several features, such as:
a. Ease of installation: A single piece of equipment simplifies wiring and conduit requirements.
b. Safety: Disconnect device is interlocked with the enclosure door.
c. Coordination: Correct size disconnect is included with the starter.

Types of Combination Starters

Non-Fused Disconnect: Used where external short circuit protection is available and a disconnect is desired in starter. This type disconnect can be opened under load and padlocked in the open position. The disconnect has an external operating handle interlocked with the door so that the door cannot be opened until the disconnect is opened.

Fusible or Fused Disconnect: Used where short circuit protection is required in the starter. Fuse clips will accommodate both NEC and current limiting fuses. The externally operated disconnect handle is interlocked with the door so that the door cannot be opened until the disconnect is opened. Current limiting fuses are included in size 6 and larger.

Prices effective July 6, 1971; subject to change
without notice.
Discount Symbol C10-G3
Selling Policy 7000

Disconnecting Type Fuses: Used as an alternate for a fusible disconnect. Hook stick-operated current limiting fuses are included. The starter is electrically interlocked with the door so that the disconnecting fuses will not be accidently opened under load.

Circuit Breaker: Used where short circuit protection is required in the starter. Operation of any trip opens all three lines. avoiding single-phasing. Unless otherwise specified, molded case air circuit breakers will have magnetic trip only, rated as follows:

Breaker Frame	Amperes
FB	$490-1550$
JA	
LA	
MA	
NB	
PB	

Mark 75 or TRI-PAC breakers can be substituted for the standard molded case breaker where higher interrupting capacities are required. Where price additions are not specifically shown, contact Westinghouse.

All molded case breaker external operating handles are interlocked with the door so that the door cannot be opened until the breaker is opened. The breaker can be padlocked in the open position. Switchboard type circuit breakers have thermal-magnetic trips and will be selected based on 125% full load current.

Circuit Breaker and Fuses: Used to obtain circuit breaker interruption of low magnitude faults, and current limiting fuse interruption of high magnitude faults. The circuit breaker opens on all faults and prevents single-phasing caused by one blown fuse. The circuit breaker saves the cost of fuse replacement on low magnitude faults. Contact Westinghouse for prices.

Ac Magnetic Reduced Voltage Starters

Non-Reversing. Reversing
Up to 600 Volts, 3-Phase. 60 Hertz

General Application

The following factors should be considered when applying reduced voltage starters to a squirrel cage motor driven load.

1. The motor characteristics which will satisfy the starting requirements of the load.
2. The source of power and the effect the motor starting current will have on the line voltage.
3. The load characteristics and the effect the motor starting torque will have on the driven parts during acceleration.
4. The starter protection required to protect the load, motor, starter, cables and power source during overload, undervoltage, and fault conditions.

A typical NEMA B motor started with full voltage will develop as much as 150% full load torque when started with a starting current of around 600% full load current. These values may exceed the mechanical limitations of the load or electrical limitations of the source, or both.
A reduced voltage or reduced inrush starter will reduce both starting current and starting torque. Care must be taken when meeting power company limitations that the motor will produce sufficient torque to accelerate the load to near rated speed.

As an example, if a part winding starter is applied to a motor to reduce the current inrush to approximately 410% of full load current ($600 \% \times 65 \%=390 \%$), and the torque requirements to accelerate the load exceed 75% of full load torque (150\% x 50\% $=75 \%$), the motor and load will not accelerate. An autotransformer starter on the 80% voltage tap would satisfy these requirements. The current inrush would be 402% ($600 \% \times 67 \%$) and the torque produced would be 96% ($150 \% \times 64 \%$). If, however, the power company limited the "increments" of current drawn from line to allow voltage regulators to react to the added load, the part winding starter would meet the requirements.

Class 11-440 and class 11-740 starters are primarily increment starters. Class 11-700 starters are also ideally suited to low starting torque loads such as fans, blowers and $\mathrm{m}-\mathrm{g}$ sets. Class 11-600 starters should be used with "hard to start" loads such as reciprocating compressors, grinding mills, and pumps. Class $11-400$ starters provide a "cushioned" torque start and are applicable to conveyors and textile machines. Class 11-800 starters are applicable to high inertia loads with long acceleration such as centrifugal compressors and centrifuges.
All starters, in addition to overload protection, will provide either low voltage

Westinghouse Electric Corporation
General Control Division, Buffalo, N. Y. 14240 Printed in USA
release or low voltage protection depending upon the pilot device used with the starter. Low voltage release, where power is applied to the motor after a power failure, can be obtained by using a 2 -wire pilot device. Low voltage protection where power is not applied to the motor after a power failure until restarted by an operator can be obtained by using a 3 -wire pilot device.
See page 3 for discussion of short circuit protection and combination starters.
Primary resistor and closed transition Star Delta types require adequate ventilation to remove resistor heat.

Catalog Numbers

All starters listed in this price list have been assigned an 11 digit catalog number, with each digit having a specific function. A breakdown of the complete number with an explanation of each digit is shown here.

Digit Function
1-5 Starter class number
6 NEMA enclosure type (" $S^{\prime \prime}$ will appear in all catalog numbers in price tables and indicates enclosure is NEMA I general purpose)
7 Starter size
8 Horsepower rating of starter
9-10 Modifications
11 System voltage
The function of digits $1-5,7,8-11$ is incorporated in the catalog numbers shown in the price tables and need not be changed. Digit 6 is variable to allow purchaser to specify NEMA enclosure. Modifications should be ordered by description.
Horsepower rating, while incorporated in catalog numbers in the price tables, is sometimes a maximum hp rating and the symbol in the catalog number will be for a rating different than that shown in the hp column of each price table. Hp ratings and the symbol for each are shown here, but there should be no change in the catalog number:

Hp	Symbol	Hp	Symbol
5			
$71 / 2$	A	175	V
10	C	200	W
15	D	225	X
20	E	250	Y
25	F	300	0
30	G	350	1
		400	2
40	H		450
50	K	300	4
60	K	600	5
75	L	700	6
100	M	800	7
125	N	900	8
150	P	1000	9

System voltage (digit 11) will be indicated in the catalog number. Symbols and voltages are as follows:
B - 230 volts, 60 Hertz
C -460 volts, 60 Hertz
D - 575 volts, 60 Hertz
H -380 volts, 50 Hertz
W - 240 volts, 60 Hertz
X -480 volts, 60 Hertz
Z - 200 volts, 60 Hertz

Heaters

Heaters for starters listed in this price list should be selected from tables on page 16. Heaters should be ordered by style number on the basis of adjusted full load current and starter size. They should be listed as a separate item on the order.

Modifications

Modifications listed on pages 13-15 can be added to all classes of starters unless indicated otherwise. Changes in type of enclosure can be made by inserting the symbol for the desired enclosure in column 6 in the catalog number replacing the " S ".
Other modifications should be ordered by description.

Starter Selection

In general, the application will determine the type of starter required. In cases where more than one type starter will meet the application requirements, reference to the
table below will show which starter is best qualified for the application. For additional information, see page 2.

Starter Type	Starting Characteristics Expressed in \% of Rated Values (Approx.)				Remarks	Pages
	Motor Voltage	Motor Current	Line Current	Torque		
Primary Resistor Class 11-400	80	80	80	64	Values shown are typical and depend on the motor. Starters provide closed transition and are ideally applicable where starting torque must be reduced.	4-5
Multi-Point Network Starters Class 11-440	Will depend on number of points.				Used primarily to limit inrush current increments rather than the maximum inrush current.	6
Autotransformer Class 11-600 80\% Tap 65\% Tap 50\% Tap	$\begin{aligned} & 80 \\ & 65 \\ & 50 \end{aligned}$	$\begin{aligned} & 80 \\ & 65 \\ & 50 \end{aligned}$	$\begin{aligned} & 67(2) \\ & 45(2) \\ & 28(2) \end{aligned}$	$\begin{aligned} & 64 \\ & 42 \\ & 25 \end{aligned}$	The adjustable voltage taps permit wide adjustment of characteristics in the field.	7-8
Part Winding Class 11-700	100	65	65	50	Requires standard 230/460 volt dual voltage motor on 230 volts or special part winding motor. Closed transition.	9-10
Part Winding Class 11-740	50	33	33			
Star-Delta Class 11-800 Class 11-890	100	33	33		Requires delta wound motor with star connections. Ideal for long accelerations. Closed transition is available.	11-12
All Classes Reduced Voltage Combination Starters Modifications Heater Tables						$\begin{aligned} & 3 \\ & 13-15 \\ & 16 \end{aligned}$

(2) Includes autotransformer magnetizing current.

Ordering Information

Order starters by catalog number wherever possible. A complete catalog number consists of the starter class number (11400, 11600, etc.) at the top of the catalog number column, and the six digit number (S1ANNB, S2ENNC, etc.) appearing in the catalog number column opposite horsepower rating of the desired starter. Example: 11400 S 1 ANNB is the catalog number for a size $1,5 \mathrm{hp}$ non-reversing class 11400 starter rated 230 volts, in a standard NEMA 1 enclosure; 11604 S2DNNC is the catalog number for a size $2,15 \mathrm{hp}$ non-reversing class 11604 starter rated 460 volts, having a fusible disconnect in a standard NEMA 1 enclosure.

Some modifications to catalog numbers listed in price tables can be made by inserting the symbol for modification desired (from page 13) in the catalog number.

Select heaters from tables on page 16 and list as separate item.
When ordering starter by description, include:
Class number or type.
Service, non-reversing or reversing.
Type disconnect or short circuit protection.
NEMA enclosure type.
NEMA size.
Horsepower and service factor.
System voltage.
Modifications.

If resistance type starters are required to limit the starting current to an exact value, either the actual locked rotor amperes and locked kilowatts (or power factor) of the motor, must be included; or if the starter is to be used with a Westinghouse motor, the style or order number must be included so that this data can be determined. This motor information is required with all class 11-440 and class 11-740 orders.
Select heaters from tables on page 16 and list as separate item.

Westinghouse

Ac Magnetic Reduced Voltage Starters

Class 11-800 Star Delta Open Transition Class 11-890 Star Delta Closed Transition Non-Reversing, Reversing
Up to 600 Volts, 3-Phase, 60 Hertz

Star-Delta type starters have been applied extensively to industrial air conditioning installations because they are particularly applicable to starting motors driving high inertia loads with resulting long acceleration times. They are not, however, limited to this application. When six or twelve lead delta-connected motors are started starconnected, approximately 58% of full line voltage is applied to each winding and the motor develops 33% of full voltage starting torque and draws 33% of normal locked rotor current from the line. When the motor has accelerated, it is re-connected for normal delta operation.
Class 11-800 and 11-890 starters are suitable for air conditioning application, provided the motors used are open type and horsepower rated. For current rated motor starters for use with hermetic centrifugal air conditioning and refrigeration compressors, refer to Westinghouse.

Description of Starters

Class 11-800 Non-Reversing, Open

Transition Starters Contain:

2 - Three pole delta contactors with auxiliary relays and interlocks (see table below). 1 - Three pole star contactor with auxiliary relays and interlocks (see table below).
1 - Mechanical interlock to interlock one delta contactor and the star contactor.

Starter Size	Contactor Type	
	Delta	Star
1YD	A-201-K1	A-201-K1
2YD	A-201-K2	A-201-K2
3YD	A-201-K3	A-201-K3
4YD	A-201-K4	A-201-K4
5YD	GCA-530	GCA-530
6YD	GCA-630	GCA-530
7YD	GPD-730	GCA-620
8YD	GPD-830	GPD-720

1 - Pneumatic timing relay.
1 - Three pole adjustable type AN overload relay on sizes 1 through 4 . The same over-
load relay is used with associated current transformers on size 6 and larger.
1 - Siliconn rectifier to provide de control voltage for size 7 and larger.
Classes 11-803, 11-804, 11-806: These open transition type combination starters are similar to the class 11-800, except that they include either a disconnect switch or a circuit breaker for short circuit protection.
Class 11-890: This is a closed transition starter which contains, in addition to the devices listed for class 11-800 starters: 1 - Three pole transition contactor. 1 - Transition resistor frame of edgewound resistors mounted and wired in the enclosure in all sizes.
1 -TRP synchronous timer to assure proper transition.
Classes 11-893, 11-894, 11-896: These closed transition combination starters are similar to the class 11-890 except that they include either a disconnect switch or a circuit breaker.

Typical Wiring Diagram, Class 11-800

Dimensions, Inches; Approximate Only

Starter Class	Size	Dimensions		Max. Shipping Wt., Lbs.
		AD	B	C

(1) 64. 76 and 90 inch high enclosures are floot mounted.

February 26, 1974
Supersedes PL 9220, mages 11-12. dated
October 8. 1973
E. D. C/1806/PL

Ac Magnetic
 Reduced Voltage Starters

Class 11-800 Star Delta Open Transition
Class 11-890 Star Delta Closed Transition
Non-Reversing
Up to 600 Volts, 3-Phase, 60 Hertz

List Prices - Heaters Not Included
Classes 11-800, 11-806, 11-890, 11-896 Non-Reversing in NEMA 1 Enclosure

Max. Hp. (2)	Volts 3-Phase 60 Hertz (3)	Size	Without Shor Circuit Protection				With Molded Case Circuit Breaker				
			Class 11-800 Open Transition		$\begin{aligned} & \text { Class } 11.890 \\ & \text { Closed Transition } \end{aligned}$		Class 11-806 Open Transition		Class 11-896 Closed Transition		Breaker Frame Size
			Catalog Number 11800	List Price	Catalog Number 11890	List Price	Catalog Number 11806	List Price	Catalog Number 11896	List Price	
10	$\begin{aligned} & 200-230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & \text { 1YD } \\ & \text { 1YD } \end{aligned}$	S1CNNB S1CNNC	$\begin{array}{ll} & 695 \\ \\ 695 \end{array}$	S1CNNB S1CNNC	$\begin{array}{r} \hline 1057 \\ \hline 1057 \end{array}$	$\begin{aligned} & \text { S1CNFB } \\ & \text { S1CNFC } \end{aligned}$	$\begin{array}{r} \$ 1039 \\ 1039 \end{array}$	S1CNFB S1CNFC	$\begin{array}{r} \hline 1401 \\ 1401 \end{array}$	$\begin{aligned} & \hline \text { FB } \\ & \text { FB } \end{aligned}$
15	460-575	1 YD	S1 DNNC	695	S1DNNC	1057	S1DNFC	1039	S1DNFC	1401	FB
20	200	2 YD	S2ENNZ	821	S2ENNZ	1183	S2ENFZ	1195	S2ENFZ	1557	FB
25	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 2 \mathrm{YD} \\ & 2 \mathrm{YD} \end{aligned}$	S2FNNB S2FNNC	$\begin{aligned} & 821 \\ & 821 \end{aligned}$	S2FNNB S2FNNC	$\begin{aligned} & 1195 \\ & 1195 \end{aligned}$	S2FNFB S2FNFC	$\begin{aligned} & 1195 \\ & 1195 \end{aligned}$	S2FNFB S2FNFC	$\begin{aligned} & 1569 \\ & 1569 \end{aligned}$	$\begin{aligned} & \text { FB } \\ & \text { FB } \end{aligned}$
30	$\begin{aligned} & 200-230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 3 Y D \\ & 2 Y D \end{aligned}$	$\begin{aligned} & \text { S3GNNB } \\ & \text { S2GNNC } \end{aligned}$	$\begin{array}{r} 1191 \\ 821 \end{array}$	$\begin{aligned} & \text { S3GNNB } \\ & \text { S2GNN } \end{aligned}$	$\begin{aligned} & 1603 \\ & 1195 \end{aligned}$	$\begin{aligned} & \text { S3GNJB } \\ & \text { S2GNFC } \end{aligned}$	1875 1195	S3GNJB S2GNFC	$\begin{aligned} & 2287 \\ & 1569 \end{aligned}$	$\begin{aligned} & \text { KA } \\ & \text { FB } \end{aligned}$
40	$\begin{aligned} & 200 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 3 Y D \\ & 2 Y D \end{aligned}$	S3HNNZ S2HNNC	$\begin{array}{r} 1191 \\ 821 \end{array}$	S3HNNZ S2HNNC	1647 1239	$\begin{aligned} & \text { S3HNJZ } \\ & \text { S2HNFC } \end{aligned}$	$\begin{aligned} & 1875 \\ & 1195 \end{aligned}$	$\begin{aligned} & \text { S3HNJZ } \\ & \text { S2HNFC } \end{aligned}$	2331 1613	$\begin{aligned} & \text { KA } \\ & \text { FB } \end{aligned}$
50	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 3 Y D \\ & 3 Y D \end{aligned}$	S3JNNB S3JNNC	$\begin{aligned} & 1191 \\ & 1191 \end{aligned}$	S3JNNB S3JNNC	$\begin{aligned} & 1647 \\ & 1647 \end{aligned}$	S3JNJB S3JNFC	$\begin{aligned} & 1875 \\ & 1875 \end{aligned}$	$\begin{aligned} & \text { S3JNJB } \\ & \text { S3JNFC } \end{aligned}$	$\begin{aligned} & 2331 \\ & 2331 \end{aligned}$	$\begin{aligned} & \text { KA } \\ & \text { FB } \end{aligned}$
60	$\begin{aligned} & 200 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 4 \mathrm{YD} \\ & 3 \mathrm{YD} \end{aligned}$	S4KNNZ S3KNNC	$\begin{aligned} & 2475 \\ & 1191 \end{aligned}$	S4KNNZ S3KNNC	$\begin{aligned} & 3141 \\ & 1695 \end{aligned}$	S4KNJZ S3KNFC	$\begin{aligned} & 3805 \\ & 1875 \end{aligned}$	S4KNJZ S3KNFC	4471	$\begin{gathered} \text { KA } \\ \text { FB } \end{gathered}$
75	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & \text { 4YD } \\ & 3 \mathrm{YD} \end{aligned}$	S4LNNB S3LNNC	$\begin{aligned} & 2475 \\ & 1191 \end{aligned}$	S4LNNB S3LNNC	3238 1861	S4LNLB S3LNJC	$\begin{aligned} & 3805 \\ & 1875 \end{aligned}$	$\begin{aligned} & \text { S4LNLB } \\ & \text { S3LNJC } \end{aligned}$	$\begin{aligned} & 4567 \\ & 2545 \end{aligned}$	$\begin{aligned} & \text { LA } \\ & \text { KA } \end{aligned}$
100	$\begin{aligned} & 200-230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 5 \mathrm{YD} \\ & 4 \mathrm{YD} \end{aligned}$	S5MNNB S4MNNC	$\begin{aligned} & 4515 \\ & 2475 \end{aligned}$	S5MNNB S4MNNC	5467 3365	S5MNLB S4MNJC	$\begin{aligned} & 6173 \\ & 3805 \end{aligned}$	$\begin{aligned} & \text { S5MNLB } \\ & \text { S4MNJC } \end{aligned}$	$\begin{aligned} & 7125 \\ & 4695 \end{aligned}$	$\begin{aligned} & \text { LA } \\ & \text { KA } \end{aligned}$
150	$\begin{aligned} & 200-230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 5 \mathrm{YD} \\ & 4 \mathrm{YD} \end{aligned}$	S5PNNB S4PNNC	$\begin{aligned} & 4515 \\ & 2475 \end{aligned}$	S5PNNB S4PNNC	$\begin{aligned} & 5515 \\ & 3413 \end{aligned}$	S5PNMB S4PNLC	$\begin{aligned} & 6173 \\ & 3805 \end{aligned}$	S5PNMB S4PNLC	$\begin{aligned} & 7173 \\ & 4743 \end{aligned}$	$\begin{aligned} & \text { MA } \\ & \text { LA } \end{aligned}$
250	$\begin{aligned} & 200-230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & \text { 6YD } \\ & 5 \mathrm{YD} \end{aligned}$	S6YNNB S5YNNC	$\begin{aligned} & 9631 \\ & 4515 \end{aligned}$	SGYNNB S5YNNC	$\begin{array}{r} 12079 \\ 5647 \end{array}$	S6YNMB S5YNLC	$\begin{array}{r} 11589 \\ 6173 \end{array}$	S6YNMB S5YNLC	$\begin{array}{r} 14037 \\ 7305 \end{array}$	$\begin{aligned} & \text { MA } \\ & \text { LA } \end{aligned}$
300	$\begin{aligned} & 200-230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 6 \mathrm{YD} \\ & 5 \mathrm{YD} \end{aligned}$	S60NNB S50NNC	$\begin{aligned} & 9631 \\ & 4515 \end{aligned}$	S60NNB S50NNC	$\begin{array}{r} 12079 \\ 5949 \end{array}$	S60NBB S50NMC	$\begin{array}{r} 12345 \\ 6173 \end{array}$	S60NBB S50NMC	$\begin{array}{r} 14793 \\ 7607 \end{array}$	$\begin{aligned} & \text { NB } \\ & \text { MA } \end{aligned}$
350	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 6 \mathrm{YD} \\ & 6 \mathrm{YD} \end{aligned}$	S6INNB S61NNC	$\begin{aligned} & 9631 \\ & 9631 \end{aligned}$	S6INNB S61NNC	$\begin{aligned} & 12079 \\ & 12079 \end{aligned}$	S6INMB S61 NMC	$\begin{aligned} & 12345 \\ & 11589 \end{aligned}$	S6INMB S61 NMC	$\begin{aligned} & 14793 \\ & 14037 \end{aligned}$	$\begin{aligned} & \text { MA } \\ & \text { MA } \end{aligned}$
500	$\begin{aligned} & 200-230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & \text { 7YD } \\ & \text { 6YD } \end{aligned}$	SOOUNNC	13231 9631	S64NNC	$\begin{aligned} & 17209 \\ & 12079 \end{aligned}$	S64NMC	11589	S64NMC	14037	MA
700	460-575	6 YD	S66NNC	9631	S66NNC	12079	S66NBC	12345	S66NBB	14793	NB
750	200	8YD		18145		22281					\cdots
800	$\begin{aligned} & 230 \\ & 460-575 \end{aligned}$	$\begin{aligned} & \text { 8YD } \\ & \text { 7YD } \end{aligned}$		$\begin{aligned} & 18145 \\ & 13231 \end{aligned}$		$\begin{aligned} & 22857 \\ & 17209 \end{aligned}$					\cdots
1000	460-575	7YD		13231		17209		\cdots		.	. \cdot
1250	460-575	8 VD		18145		23159				\ldots	\cdots
1500	460.575	8 YD		18145		23159					

(2) For current ratec starters for air conditroning application. refer to Westinghouse.
(3) Catalog numbers shown for 200-230 velts are 230 volt designs. For 200 volts chenge last cigit from B to Z. Catalog numbers for $460-575$ velts are for 460 volts. For 575 volts change the last digit from C to D. For 3 -phase, 60 - Hertz 380 or 460 volts, use 3 -phase. 60 Hertz 460 volt prices and order by description. For other voitages refer to Westinghouse.

Ordering Information

Order starters by catalog number and description, include:

Class number or type.
Service, non-reversing or reversing.
Type disconnector short circuit protection.
NEMA enclosure type.

NEMA size.
Horsepower and service factor. Application and duty cycle.
System voltage.
Specify external reset button, if required. Modifications.

Modifications: Select modifications from pages 13-15, and order by description.

Heater Elements

Prices do not include heater elements. Starters require 3 overload relay heater elements at $\$ 3.00$ list each. Refer to page 16 for selection tables.

Ac Magnetic

Reduced Voltage and
Wound Rotor Starter Mondifications

Factory Modifications
Modifications

List Price Additions NEMA Size
List Price Additions

NEMA Size
1

5
7

Reversing Starters

Wound Rotor Reduced Voltage	$\begin{array}{r} \$ 288 \\ 288 \end{array}$	$\begin{array}{r} \$ 420 \\ 788 \end{array}$	$\begin{array}{r} \$ 668 \\ 832 \end{array}$	$\$ 1024$ 1808	1734	3012 3690	$\begin{array}{r} \$ 4212 \\ 4950 \end{array}$	$\begin{array}{r} \$ 6168 \\ 7372 \end{array}$	$\begin{array}{r} \$ 9590 \\ 10840 \end{array}$
Control Circuit Devices									
Auxiliary Control Relay	152	152	152	152	152	152	152	152	152
Auxiliary Pneumatic Timer or Compelling Relay	168	168	168	168	168	168	168	168	168
Auxiliary Motor Operated Timer	352	352	352	352	352	352	352	352	352
Extra Electrical Interlock(1)	22	22	22	22	22	66	66	66	66
Incomplete Sequencing	238	238	238	238	238	238	238	238	238
Reverse Phase and Phase Failure Relay	612	612	612	612	612	760	760	760	760
Third Overload(2)	Std.								
Ambient Compensated Overload Relay	8		8	8	8	8	64	64	64
Guardistor, Mount and Wire(3)	44	44	44	44	44	44	44	44	44
Undervoltage protection(4)	182	182	182	182	182	182	182	182	182
Time Delay Undervoltage	352	352	352	352	352	352	352	352	352
Control Circuit Supply									
Control Fuses	44	44	44	44	44	44	44	44	44
Control Breaker(5)	174	174	174	174	174	174	174	174	174
Control Transformer(6)		124	156	176	196	196	196	196	196
Control Transformer with 300 Va extra capacity(6)	164	200	232	252	272	272	272	272	272
Separate Control Circuit(7)	To C	ge							
Operator's and Pilot Devices									
Start-Stop Pushbutton or H-O-A Selector Switch	100	100	100	100	100	100	100	100	100
Extra pushbutton	30	30	30	30	30	66	66	66	66
Indicating lights	60	60	60	60	60	60	60	60	60

(1) Specify normally open or normally closed.
(2) Standard on all sizes of magnetically operated starters.
(3) Guardistor Relay must be ordered with the motor.
(4) Required on other than start-stop momentary circuits.
(5) Internally operated.
(6) Includes secondary fuse.
(7) For a low voltage control circuit, we recommend the addition of a control circuit transformerto the starter. If a separate source of low voltage is used for the control circuit. there is a possibility of having a full voltage start after a line voltage failure that does not open the low voltage control circuit. If the low voltage control circuit source is wired so that it will be de-energized by any motor voltage failure, linestarting cannot occur.

Note: Add modifications to basic starter prices and apply appropriate starter discount symbol.

October 8, 1973
Supersedes PL 9220, pages 13-14. dated
November 1, 1971
E. D, C/1806/PL

Ac Magnetic

Reduced Voltage and
 Wound Rotor Starter Modifications

Factory Modifications

Modification
ist Price Additions
NEMA Size

	${ }_{1}^{\text {NEMA }}$	2	3	4	5	6			8L
Meters (include instrument transformer)									
Ammeter	\$ 460	\$ 460	\$ 460	\$ 460	\$ 460	\$ 460	460	\$ 460	460
Voltmeter	460	460	460	460	460	460	460	460	460
Ammeter switch or voltmeter switch	204	204	204	204	204	204	204	204	204
Wattmeter	918	918	918	918	918	918	918	918	918
Watthour meter (2 element)	840	840	840	840	840	840	840	840	840
Demand attachment - Add	180	180	180	180		180	180	180	180
Elapsed time meter	116	116	116	116	116	116	116	116	116
Extra current transformer	. . .	332	332	332	332	488	488	488	488

Bus

Ac main bus 1000 Amperes Max.	$\mathbf{8 0 0}$							
Ac main bus 2000 Amperes Max.								
Ground bus								

Enclosure

Special Paint - all sizes
Space Heater - all sizes
Space Heater Protective Switch for Separate Power
Source - all sizes
Space Heater Thermostat - all sizes
Cylinder Lock - all sizes
Kirk Key Lock - all sizes

Substitution Air Circuit Breakers

Standard Breaker Frame	Price Addition Substitute Breaker Frame				
	Mark 75		TriPac 0		-
FB	HFB	\$ 180	FB	\$ $280{ }^{(1)}$	
JA	HKA	590	LA	1440	
LA	HLA	340	LA	540 ${ }^{3}$ MA	\$ 440
MA	HMA	340	NB	1400 NB	1300
NB	HNB	340	PB	2670 PB	1820 ${ }^{(3)}$
PB(3)			PB	850 (4) PB	2940

[^4][^5]Westinghouse Electric Corporation
General Control Division, Buffalo, N. Y. 14240
Printed in USA

Westinghouse

Ac Magnetic
Reduced Voltage and Wound Rotor Starter Modifications

Note: Add modifications to basic starter prices and apply appropriate starter discount symbol.

Ac Magnetic Reduced Voltage Starters

Heater Tables
Non-Reversing, Reversing
Up to 600 Volts. 3-Phase, 60 Hertz

Heater Selection Tables, Select Heaters as Follows:

Each heater is identified by a code marking stamped on one terminal. The heater application table indicates the range of full load motor current to which a given heater may be applied. Heaters should be applied based on motor nameplate rating. This range is so selected that the current to produce ultimate tripping of the relay will be approximately 105% to 125% of rated motor current. The rating of a heater is 125% of the minimum full load current.

The data listed in this table is for starters a an ambient temperature of $40^{\circ} \mathrm{C}$. Standard motor ratings are also based on an ambient temperature of $40^{\circ} \mathrm{C}$. For protection of the motor when it and the starter are operated in a common ambient temperature, heaters should be applied according to Heater Table for average applications. When the room temperature surrounding the motor exceeds that at the starter, assume a decreased motor current of 1% for each degree C. difference in temperature and select heaters accordingly. When the room temperature at the starter exceeds that at the motor, assume an increased motor current of 1% for each degree \mathbf{C}. difference in temperature and select heaters accordingly.
The following heater selection information is for motors with 1.15 service factor. For heater selection information on all other motors refer to General Catalog Section 2900.

Class	Multiply actual motor full load current by factor below and refer to adjusted full load current column in tables	No. heaters required per starter
$11-400$	1	
$11-600$	1	3
$11-700$	$.5(3)$	3
$11-800$.575	6

(2) For Wye wound dual voltage and special part winding motors only. For Delta wound dual voltage motors, refer to motor manufacturer.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{For Classes 11-400, 11-600, 11-700 and 11-800}

\hline \multirow[t]{3}{*}{Starter Size} \& Type AN Non-Compensated Enclosed Starters \& \multirow[t]{3}{*}{Heater Catalog Number} \& \multirow[t]{3}{*}{Heater Style Number}

\hline \& 3 Pole Block Type \& \&

\hline \& Adjusted Full Load Current \& \&

\hline \multirow[t]{11}{*}{Sizes 1 and 2} \& 15.2 to 16.7 \& H47 \& 503C553G47

\hline \& 16.8 to 18.3 \& H48 \& 503C553G48

\hline \& 18.4 to 20.2 \& H49 \& $503 \mathrm{C} 553 \mathrm{G49}$

\hline \& 20.3 to 22.2 \& \& 503C553G50

\hline \& 22.3 to 24.3 \& H51 \& 503C553G51

\hline \& 24.4 to 26.6 \& H52 \& 503C553G52

\hline \& 26.7 to 29.1 \& \& 503C553G53

\hline \& 29.2 to 32.0 \& H54 \& 503C553G54

\hline \& $\begin{array}{ll}32.1 \\ 35.1 & 35.2 \\ 35.3 \text { to } & 38.5\end{array}$ \& H55

$H 56$ \& 503C553G55

\hline \& 35.3 to 38.5

38.6 to 42.3 \& $$
\begin{aligned}
& H 56 \\
& \text { H57 }
\end{aligned}
$$ \& 503C553G56

503C553G57

\hline \& $$
\begin{aligned}
& 38.6 \text { to } 42.3 \\
& 42.4 \text { to } 45.0
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathrm{H} 57 \\
& \mathrm{H} 58
\end{aligned}
$$

\] \& | 503C553G57 |
| :--- |
| 503C553G58 |

\hline \multirow[t]{18}{*}{Sizes 3 and 4} \& 17.5 to 19.1 \& \&

\hline \& 19.2 to 21.1 \& H73 \& $504 \mathrm{C972G03}$

\hline \& 21.2 to 23.2 \& H74 \& 504C972G04

\hline \& 23.3 to 25.6 \& H75 \& 504C972G05

\hline \& 25.7 to 28.1 \& H76 \& $504 \mathrm{C972G06}$

\hline \& 28.2 to 30.8
30.9 to 34.5 \& $\begin{array}{r}\text { H77 } \\ \\ \\ \\ \hline\end{array}$ \& $5046972 \mathrm{GO7}$

\hline \& 34.6 to 38.2 \& +779 \& 504C972G09

\hline \& 38.3 to 42.6 \& H80 \& 504C972G10

\hline \& 42.7 to 46 \& H81 \& 504C972G11

\hline \& 47 to 51 \& H82 \& 504C972G12

\hline \& 52
57
57
to
to \& H83

$H 84$ \& 504C972G13

\hline \& 62 to 67 \& $\begin{array}{r}\text { H84 } \\ + \\ \hline\end{array}$ \& 504C972G14
504C972G15

\hline \& 68 to 73 \& H86 \& 504C972G16

\hline \& $\begin{array}{ll}74 & \text { to } 80 \\ 81\end{array}$ \& H87 \& 504C972G17

\hline \& 81
88
88
to
to
95 \& H88 \& 504C972G18

\hline \& ${ }^{96}$ to 105 \& H90 \& $504 \mathrm{C972G20}$

\hline \& 106 to 116 \& H91 \& 504C972G21

\hline \& $$
\begin{array}{ll}
117 & \text { to } 127 \\
128 & \text { to } 135
\end{array}
$$ \& \[

$$
\begin{aligned}
& \mathrm{H} 92 \\
& \mathrm{H} 93
\end{aligned}
$$
\] \& 504C972G22

\hline \multirow[t]{7}{*}{Size 5 (with 300/5 current} \& \multirow[t]{2}{*}{Type AN Non-Compensated Enclosed Starters} \& \multirow[t]{3}{*}{Heater Catalog Number} \& \multirow[t]{3}{*}{Heater Style Number}

\hline \& \& \&

\hline \& - Adjusted Full Load Current \& \&

\hline \& 100 to 109 \& H23 \& 503C553G23

\hline \& 110 to 119 \& ${ }_{+}{ }^{2} 24$ \& 503C553G24

\hline \& $\begin{array}{ll}120 \\ 132 & \text { to } 131 \\ \text { to } \\ 143\end{array}$ \& H25
+
$H 26$ \& 503C553G25

\hline \& 147 to 157 \& H27 \& 503C553G27

\hline \& 158 to 173 \& H28 \& 503C553G28

\hline \& 174 to 190 \& H29 \& 503C553G29

\hline \& | 191 |
| :--- |
| 209 |
| to |
| to 2208 |
| 228 | \& ${ }^{\text {H3O}}$ \& 503C553G30

\hline \& 228 to 246 \& H32 \& 503C553G32

\hline \& 247 to 270 \& н33 \& 503C553G33

\hline \multirow[t]{9}{*}{Size 6 (with 600/5 current transformers)} \& 199 to 217 \& H23 \& 503C553G23

\hline \& 218 to 239 \& ${ }_{+}{ }_{2} 24$ \& 503C553G24

\hline \& 240 to 263 \& ${ }_{+} \mathbf{H 2 5}$ \& 503C553G25

\hline \& 264 to 287 \& H26 \& 503C553G26

\hline \& $\begin{array}{ll}288 \\ 317 & \text { to } 346\end{array}$ \& H27
H 28 \& 503C553G27
503C553G28

\hline \& 347 to 380 \& H29 \& 503C553G29

\hline \& 381 to 416 \& H30 \& 503C553G30

\hline \& 417 to 455 \& H31 \& 503C553G31

\hline \& 494 to 540 \& H33 \& 503C553G32
503C533G3

\hline
\end{tabular}

Price of heaters, each...... . 3.00 fist

Reduced Voltage Magnetic Starters

List Prices - Heaters Not Included

Clas Max. Hp.	Volts 3-Phase 60 Hz (1)	1-703	11-706,	40 Non	eversin	in NE	A 1 En	closure					
		NEMASize	Starter Type										
			Without Short Circuit Protection		With Non-Fusible Disconnect		With Fusible Disconnect or Current Limiting Fused Disconnect						Class 11-740 3 Point Starter List Price
			Catalog Number 11-700	List Price	Catalog Number 11-703	List Price	Fuse Clip Amps(2)	Catalog Number $11-704$	List Price				
10	200-230	1 PW	S1CNNB	\$ 448	S1CNNB	\$ 688	100	S1CN1B	\$ 746		1 CNF	\$ 792	\$1056
15	460-575	1 PW	S1DNNC	448	S1 DNNC	688	100	S1 DN1C	746	B	S1 DNFC	792	1056
20	200	2 PW	S2ENNZ	634(5)4	S2ENNZ	938	200	S2EN2Z	1042		S2ENFZ	1008	1392
25	230	2PW	S2FNNB	634(5)4	S2FNNB	938	200	S2FN2B	1042		S2FNFB	1008	1392
40	$\begin{aligned} & 200 \\ & 460-575 \end{aligned}$	$\begin{aligned} & 3 \mathrm{3PW} \\ & \text { 2PW } \end{aligned}$	$\begin{aligned} & \text { S3HNNZ } \\ & \text { S2HNNC } \end{aligned}$	$\begin{aligned} & \text { 890ⓢ } \\ & \text { 634(S)(4) } \end{aligned}$	$\begin{aligned} & \text { S3HNNZ } \\ & \text { S2HNNC } \end{aligned}$	$\begin{array}{r} 1310 \\ 938 \end{array}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & \text { S3HN2Z } \\ & \text { S2HN2C } \end{aligned}$	$\begin{aligned} & 1641 \\ & 1042 \end{aligned}$	KB FB	$\begin{aligned} & \text { S3HNKZ } \\ & \text { S2HNFC } \end{aligned}$	$\begin{aligned} & 1574 \\ & 1008 \end{aligned}$	$\begin{aligned} & 2002 \\ & 1452 \end{aligned}$
50	230	3PW	S3JNNB	890 (5)	S3JNNB	1642	200	S3JN2B	199	KB	S3JNKB	2220	2058
75	200-230	4PW	S4LNNB	1892(s)	S4LNNB	2644	400	S4LN4B	2998	KB	S4LNKB	3222	4152
	460-575	3 PW	S3LNNC	890⑤	S3LNNC	1310	100	S3LN1C	1614	FB	S3LNFC	1574	2058
150	$200-230$ $460-575$	5PW 4 PW	S5PNNB S4PNNC	3942⑧	S5PNNB S4PNNC	$\begin{aligned} & 5668 \\ & 2644 \end{aligned}$	$\begin{aligned} & C L \\ & 400 \end{aligned}$	S5PNCB S4PN4C	6772 2998	MA	S5PNMB S4PNKC	5900 3222	$\begin{aligned} & 7216 \\ & 4200 \end{aligned}$
300	230	6PW	S60NNB	8348	S6ONNB	10564	CL	S60 CB	13636	NB	S6ONBB	12948	
350	460-575	5PW	S51NNC	3942(S)	S51NNC	5668		S51 NCC	6772	MA	S51 NMC	5900	7604
600	460-575	6PW	S65NNC	8348	S65NNC	10174	CL	S65NCC	12106	NB	S65NBC	11062	

For larger ratings, refer to Westinghouse
(5) Stock item. (See SS-7015 for style number.) Stock at 230 volts and 460 volts only.
(1) Catalog numbers shown for $200-230$ volts are for 230 volt designs, for 200 volts change last digit from B to Z. Catalog numbers for $460-575$ volts are for 460 volts. For 575 volts change the last digit from C to D .
For other veltages refer to Westinghouse. For 3-phase, 50 -Hertz 380 or 460 volts. use 3 -phase. 00 -Hertz 460 volt prices and order by description.
(2) "CL" indicates that current limiting type fuses are included to provide 100,000 asymmetrical amperes interrupting capacity. A load break disconnect is provided in all ratings. Fuses not included up to and including size 4 . Sizes 5 and 6 include current limiting fuses.
(3) To substitute breakers, see page 84 .
(4) Stocked with separate control 115 volt.

Ordering Information

Order starters by catalog number and description, include:

Class number or type.
Service, non-reversing or reversing.
Typedisconnect or shortcircuit protection
NEMA enclosure type.

NEMA size.

Horsepower and service factor.
Application and Duty cycle.
System voltage.
Specify external reset button, if required. Modifications.
For a class $11-740$ starter, either the actual locked rotor amperes and locked kilowatts (or power factor) must be included; if starter is to be used with a Westinghouse motor, the style or order number must be included so that this data can be obtained.
Modifications: Select modifications from pages $15,16,17$ and order by description.

[^6]Westinghouse Electric Corporation
General Control Division
Asheville, NC/Buffalo, NY 14240

Non-Reversing, Reversing
Up to 600 Volts,
3 Phase, 60 Hertz

May 17, 1977
New Information
Prices effective May 17, 1977 and subject to change without notice. Discount Symbol C10-G3 (Refer to Selling Policy 7000) Mailed to: E, D, C/1806/PL

Ac Magnetic Reduced Voltage Starters

Reduced Voltage Magnetic Starters

Application

Class 11-600, Size 6

Autotransformer type starters are the most widely used reduced voltage starter because of their efficiency and flexibility. All power taken from the line, except transformer losses, is transmitted to the motor to accelerate the load. Taps on the transformer allow adjustment of the starting torque and inrush to meet the requirements of most applications. The following characteristics are produced by the three voltage taps:

Tap	Starting Torque \% Locked Torque	Line Inrush \% Locked Ampere
(2) 50\%	25%	(32 28% 65%
42%	345% 80%	64%

(2) Not included 50 hp and below. (3) Includes transformer magnetizing current.

Closed transition is standard on all sizes assuring a smooth transition from reduced to full voltage. Since the motor is never disconnected from the line there is no interruption of line current which can cause a second inrush during transition.
Duty cycle of these starters is as follows: up to $200 \mathrm{hp}, 15$ seconds on each 4 minutes for 1 hour, repeated after 2 hours. Over 200 hp , three periods of 30 seconds on, 30 seconds off repeated after 1 hour.

Description
Class $11-600$ Non-Reversing Starters
Contain:
2-Three pole starting contactors withaux-
iliary relays and interlocks, except size $7-8$,
one two pole and one three pole starting
contactors (seetable below fortype).
1-Three pole running contactor with aux-
iliary relays and interlocks (see table below
for type).
Starter Contactor Type Size Starting 2 A-201-K2
3
A-201-K3

on size 1 through 4. This same overload relay is used with associated current transformers on size 5 and larger.
1 - Silicon rectifier to provide dc control Voltage for size 7.
1 - Type A dry type two winding open delta connected auto-transformer mounted and wired in the enclosure in all sizes. All ratings have 65% and 80% voltage taps. Above 50 horsepower a 50% tap is also provided.
Classes 11-603, 11-604, 11-606: These non-reversing combination starters are similar to class $11-600$ except that a disconnect switch or circuit breaker is added. Class 11-610: This is a reversing type starter similar to the class 11-600 with two additional 2 -pole contactors to furnish the reversing service.
Classes 11-613, 11-614, 11-616: These are reversing type combination starters similar to class 11-610. In addition, they include either a disconnect switch or a circuit breaker.

Typical Wiring Diagram

(1) On sizes 2 through 6 only

[^0]: (1) 64 inch enclosure is floor mounted.

[^1]: Westinghouse Electric Corporation
 General Control Division
 Asheville, N.C./Buffalo, N.Y. 14240

[^2]: Westinghouse Electric Corporation
 General Control Division
 Asheville, NC/Buffalo, NY 14240

[^3]: Heater Elements
 Prices do not include heater elements. Starters require 3 overload relay heater elements at $\mathbf{\$ 3 . 0 0}$ list each. Refer to selection tables page 16 .

[^4]: (1) 100 amperes maximum.
 (2) 400 amperes maximum.
 (3) 2000 amperes maximum.
 (4) 1600 amperes maximum.

[^5]: Note: Add modifications to basic starter prices and apply appropriate starter discount symbol.

[^6]: Westinghouse Electric Corporation
 General Control Division
 Asheville, NC/Buffalo, NY 14240

