INTRODUCTION

These instructions cover high-voltage, a-c air-break contactors—outlined in Table I. The contactors are designed for equipment used in starting a-c motors with line voltage from 600 volts to a maximum of 5200 volts.

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>NORMALLY OPEN POLES</th>
<th>NORMALLY CLOSED POLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC2812-E100</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>IC2812-E101</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>IC2812-F100</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>IC2812-G100</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

STANDARD CONTACTORS—IC2812-E100 AND IC2812-E101

RATINGS

The standard contactors, IC2812-E100 and IC2812-E101 (see Fig. 1), are three-pole, normally open contactors, rated 200 or 400 amperes, continuous; with a maximum interrupting capacity of 50,000 kva, and a maximum "let-through" current of 58,000 amperes.

OPERATING MAGNETS

The IC2812-E100 and -E101 contactors are provided with a-c and d-c operating magnets, respectively, both have continuous-rated coils. Control voltage for energizing the coils should be within 85 to 110 percent of the control voltage.

ARC CHUTES

The arc chutes are shipped unmounted. They must be mounted before applying power to the contactor. When unpacking them, handle carefully to prevent damage. See that there is no packing material or other foreign matter inside the chutes; and make certain that they are dry. Mount the chutes by easing them onto the upper and lower arcing horn extensions as far as they will go. Observe the notice on the front of the chute, shown in Fig. 2. Figure 3 shows the difference between properly and improperly seated chutes.

The weight of the arc chute itself holds it in place when correctly seated. The chute may be mounted with either end at the top.

ELECTRICAL INTERLOCKS

The electrical interlock consists of three contact units, each with one normally open and one normally closed pole.

These instructions do not purport to cover all details or variations in equipment nor to provide for every possible contingency to be met in connection with installation, operation or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser’s purposes, the matter should be referred to the General Electric Company.
GEH-19378 High-voltage A-c Air-break Contactors

The electrical rating of the interlock is 15 amperes, continuous; 60 amperes, "make" current; with current interrupting values, as listed below in Table III.

TABLE III

A-C INDUCTIVE

<table>
<thead>
<tr>
<th>Volts</th>
<th>One Interlock-Amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>60</td>
</tr>
<tr>
<td>220</td>
<td>30</td>
</tr>
<tr>
<td>440</td>
<td>12</td>
</tr>
<tr>
<td>550</td>
<td>8</td>
</tr>
</tbody>
</table>

D-C INDUCTIVE

<table>
<thead>
<tr>
<th>Volts</th>
<th>One Interlock-Amp</th>
<th>Two Interlocks in Series-Amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>1.8</td>
<td>3.0</td>
</tr>
<tr>
<td>250</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>600</td>
<td>0.2</td>
<td>0.3</td>
</tr>
</tbody>
</table>

DOOR INTERLOCK

The door interlock can be furnished with all forms of the IC2812 contactor. When applied to Limitamp* controllers or to any other form of enclosure, the interlock prevents the opening of enclosure doors with the contactor in closed position.

Adjust the door interlocks according to the instructions on Fig. 5.

Since the operation of electrical interlocks is effected whenever the door interlock is adjusted, the electrical interlock should be readjusted according to Fig. 5.

IC2812-F100 CONTACTORS

The IC2812-F100 contactors are identical to the IC2812-E101 contactors except for the number of poles. Therefore, the instructions above for the -E101 contactors also apply for the -F100 contactors.

To operate the five-pole device a d-c magnet is used with intermittent rated coils with an economy resistor.

IC2812-G100 CONTACTORS

The IC2812-G100 contactors consist of three normally open poles which are identical to the IC2812-E101 contactors and are mechanically interlocked to three normally closed poles. The instructions given above for the -E101 contactors apply to the -G100 contactors, with the following exceptions:

The normally open poles and normally closed poles of the -G100 each have their own d-c magnet. The
The following procedure for replacing a-c coils supersedes the procedure described on Page 6 of GEH-1937B:

1. Remove the coil leads from the terminal board and let them hang free.

(Note: Do not handle coil by the leads as this may break the leads.)

2. Remove the bolt and bracket at “A” for the right-hand barrier.

3. Remove barrier “B.”

4. Remove the two screws at “C” in the armature which hold the fulcrum plate “D.”

5. Slide out fulcrum plate “D” to the left.
6. Remove armature "E" to the left.

7. Remove coil retaining springs "F" from their studs.

8. Unscrew and remove left stud "G" from the back support.

9. Remove the coil by pulling it forward and then to the left and up.

10. When replacing the coil, place it as low as possible in the stationary magnetic structure "H." The armature center leg should then have clearance with the coil in any part of its movement. Assemble the coil with the word "Front" as shown. (The front of the coil has the edges of the center hole rounded to prevent binding of the armature "E" during magnet operation. This may be used to determine which side is the front in case the wording has been obliterated.)

11. The fulcrum plate "D" has a small dome on the front to permit self alignment of the armature "E." In assembling the armature, make sure this raised part of the fulcrum faces away from the magnet.
normally closed part has no blowouts or arc chutes; therefore, this contactor has no interruption rating. These contacts establish circuit only, and should not be opened with current flowing.

The operating magnets for the IC2812-G100 normally open contacts are the same as the d-c magnets (previously described) of the -E101 contactor. The

normally closed contacts are operated by an intermittent rated magnet. A resistor is added to the coil circuit after the contactor has closed, to reduce the current in the coils.

INSTALLATION

For convenience and safety in moving the contactor, use the lifting holes at the top of the steel side plates; and, likewise, use an equalizer bar or spreader for the cable sling.

Although the contactor has self-aligning bearings, it is advisable to mount it on a flat, horizontal surface. The contactor should be anchored by screws or studs at the mounting feet. If the contactor is not installed in a metal enclosure, at least eight to ten feet of arcing clearance in front of the unit is advised for protection of personnel.

Observe the following precautions before applying power to the contactor for the first time.

1. Remove shipping supports, blocks or ties used for protecting the contactor in transit.
2. Carefully inspect all parts of the contactor. Operate it by hand to see if all parts work freely. Be sure that contacts strike squarely with their sides in line within 1/16-inch.
3. Remove protective grease or oil which may be on the magnet face, as the grease could collect dust and dirt, thus promoting a sticking of the magnet.
4. See that all parts of the contactor are clean. High-voltage equipment fails if too much dirt accumulates.
5. It is of utmost importance to mount the arc chutes before applying power to the contactor, since
the arc chutes are essential to confine and extinguish the arcs. Without the chutes, the arcs may do serious damage. See the section on “Arc Chutes” and also refer to Fig. 2 and 3.

MAINTENANCE

Contact life depends on the severity of service required for the device. The contactor should be thoroughly inspected after every 50,000 operations.

CAUTION: All power should be disconnected from the contactor before any inspection is made.

In routine inspection, check for loosened screws, nuts, bolts, cable clamps, and electrical interlocks. It is important to check contact wear and contact force. Lubricate the bearings once a year with a good grade of ball-bearing lubricant.

WHEN TO REPLACE CONTACTS

Outlined below is the proper method for determining when it is necessary to replace contacts:

1. Use Fig. 6 as a guide. With the contacts in the completely open position, measure the distance, \(B_0 \), between the two spring supports. Take measurements at the indicator lines moulded into the support and bracket.
2. Next, with the contacts in the completely closed position, measure the distance, \(B_e \), between the two spring supports.
3. Subtract \(B_e \) from \(B_0 \). If the difference, \(A \), is less than 3/32-inch* (see Table IV), replace both the movable and stationary contacts. Contacts not replaced at this time may overheat or weld together.

In making measurements, any of the normally open contacts may be held in the closed position by blocking the armature with a wooden block or wedge. A-c armatures should be closed by applying pressure directly to the laminated armature. An incorrect indication of the contact wear and wipe will be obtained if pressure is applied to the support, due to the normal amount of play between the armature and the support.

The contact gap (“C” in Fig. 6) is set correctly at the factory, and it is not necessary to recheck this gap unless some major work is done on the contactor. The gap is measured as the shortest distance between the movable and stationary contacts. The force required to close the armature through the last part of its stroke will be high, because close to its sealed position it operates against a kick-out spring normally used to assure quick release of the magnet.

TABLE IV

(Refer to Fig. 6)

<table>
<thead>
<tr>
<th>CONTACTOR IC2812-</th>
<th>CONTACTS IN WIPED POSITION MEASUREMENT “A”</th>
<th>NEW CONTACTS IN OPEN POSITION MEASUREMENT “C”</th>
<th>CONTACT FORCE (POUNDS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>New Contacts</td>
<td>Replace When Measurement “A” Reaches</td>
<td>(Contacts Open)</td>
</tr>
<tr>
<td>-E100</td>
<td>3/16-in.</td>
<td>3/32-in.</td>
<td>Initial</td>
</tr>
<tr>
<td>-E101</td>
<td></td>
<td></td>
<td>8 1/4 to 10 1/4</td>
</tr>
<tr>
<td>-F100</td>
<td></td>
<td></td>
<td>8 1/4 to 10 1/4</td>
</tr>
<tr>
<td>-G100 (N.O. contacts only)</td>
<td></td>
<td></td>
<td>8 1/4 to 10 1/4</td>
</tr>
<tr>
<td>-G100 (N.C. contacts)</td>
<td>9/64-in.</td>
<td>1/16-in.</td>
<td>27/64-in.</td>
</tr>
</tbody>
</table>

*Measured when gaps between movable and two stationary contacts are equal. **Total force for one bridge contact.
In taking measurements on the normally closed contacts of the IC2812-G100 contactors, the armature must be forced to the closed position in order to fully open the contacts.

REPLACING CONTACTS

Replacing Normally Open Contacts

In replacing normally open contacts, work from the front of the contactor, following the steps described below.

1. Remove the arc chute by lifting gently from the upper and lower arcing horn extensions. Exercise care in handling the chutes so that they will not be damaged by tipping or accidental blows.

2. See Fig. 7. Using a long (14-inch) screwdriver or 9/16-inch socket wrench, remove the front bolt holding the upper arcing horn. Using an open-end 1/2-inch wrench, remove the bolt at the back, and remove the upper arcing horn.

3. Reaching in between the pole pieces, remove the loose compound arc deflector resting on the stationary contact.

4. See Fig. 8. Remove the stationary contact by removing the bolt immediately above the contact. Use either a standard 14-inch screwdriver or 1/2-inch socket wrench.

5. Before removing the movable contact, the stationary contact should be replaced first to retain the proper contact alignment of 1/16-inch. When replacing the bolt and lockwasher, the bolt is threaded into the nut which has been held in place by a nut retainer.

6. See Fig. 9. To remove the movable contact, block the magnet armature closed, thus exposing the movable contact bolt. Using a 1/2-inch socket wrench or screwdriver, remove the bolt and contact. Replace the contact, being certain that the shunt is between the flat washer and the movable contact. The movable contact support is tapped to receive the bolt.

7. Check the alignment of the edges of the contacts to make certain that the movable and stationary contacts are within 1/16-inch.

8. Make certain that all contacts in all phases open and close at the same time or within 1/32-inch. After adjustment, tighten all bolted connections.

9. Replace the compound arc deflector over the stationary contact before replacing the upper arcing horn.

10. Replace the arc chute.

Replacing Normally Closed Contacts for IC2812-G100 Contactors Only

Both the stationary and movable contacts in the normally closed part of the -G100 contactor are ac-
CONTACT FORCE

Insufficient contact force can cause overheating or welding of the contacts. Excessive contact force can cause the magnet, if it is of the a-c type, to be noisy. In addition, it may prevent proper closing of the contacts. It is not necessary to check the contact force under normal operating conditions unless the contact springs have been damaged or there is some reason to suspect incorrect contact force.

When contact force is checked, a spring balance may be used in the manner indicated in Fig. 6. Note the positioning of the loop of string (or fine wire). Also note the line of pull in relation to the contact pivot. The spring balance reading should be corrected for zero reading when held in the same position. If the shunt is removed, an equivalent spacer should be used to locate the wire from the balance in the correct position. If the line of pull is slightly off, the reading will be increased. Move the balance to find the lowest reading. Use Table IV for reference figures.

Final contact force is the force required to cause the contact assembly to start to turn around its pivot when the contacts are fully wiped.

Initial contact force is the force required to cause the contactor assembly to start to turn around its pivot when the contacts are open.

To determine when the assembly starts to turn around its pivot, use a thin piece of paper between the contacts in checking final contact force—and between the die cast and moulded supports to check for this motion when the contacts are open.

REPLACING A-C COILS

By the use of two 9/16-inch box wrenches, remove the two bolts holding the movable fulcrum. Loosen the coil spring holder bolts and rotate the coil spring holders to clear the coil. Then the coil can be removed.

When reassembling it, make sure that the projection on the armature fulcrum faces away from the stationary magnet and coil. The purpose of this projection is to provide self-alignment of the movable armature.

REPLACING THE CONTACT SPRINGS

To replace the contact springs, first remove the barriers by removing the bolts in front of the contactor and sliding the barrier forward. Reach under the lower arcing horn assembly with a screwdriver and pry the spring forward, out of its lower seat.

Thread a length of heavy cord around the top of the spring and drop the cord down to the bottom. Pull the spring out with the cord (refer to Fig. 11). To replace the spring, slide one end of the spring into the recess formed by the shaft insulator and the contact holder. Compress the spring with the thumbs
and insert the spring in the top seat. The bottom can then be seated by prying with a screwdriver. Replace the barriers.

REPLACING D-C COILS

Coils for Normally Open Section of IC2812-E101, -F100, -G100 Contactors

For replacing d-c coils in normally open contactors, loosen the core bolt on the front coil (these are the bolts which project upward through the coil bracket). Detach the harness from the coil and remove the coil. It is helpful to tag all leads. Repeat with back coil. When replacing the coils, the washer must be centered around the core before the core bolts are tightened.

Coils for Normally Closed Section of IC2812-G100 Contactors

Before attempting to remove the lower coils of the IC2812-G100 contactor, block the armature of the normally open contactor and remove the top of this contactor to provide clearance for removal of the normally closed core bolts. To replace the coils, proceed as outlined above under the preceding paragraph.
WHEN YOU NEED SERVICE

IF YOU NEED TO REPAIR, recondition, or rebuild any electric apparatus, a G-E service shop near you is available day and night, seven days a week, for work in the shops or on your premises. Latest factory methods and genuine G-E renewal parts are used to maintain the original performance of your G-E equipment. For all information about these services, contact the nearest service shop or sales office listed below:

APPARATUS SERVICE SHOPS

Allentown, Pa. 668 E. Highland St. Appleton, Wis. - Midway Industrial Area, County Trunk "P" -P. O. Box 83 Atlanta-Chamblee, Ga. 4639 Peachtree Indus. Blvd.
Charlotte, N. C. 2328 Thrift Road Chicago 32, Ill. 4360 W. 7th St.
Cincinnati, Ohio 444 W. Third St. Cleveland 4, Ohio 4966 Woodland Ave.
Columbus 23, Ohio. 2128 Eakin Rd. Corpus Christi, Texas 115 Busse Davenport-Bettendorf, lowa 1039 State St.
Dallas 19, Texas 1202 Manor Way Decatur, Ill. 2223 E. Logan St.
Denver 5, Colo. 3353 Larimer St. Detroit 2, Mich. 5920 Third Ave.
Houston 20, Texas 5534 Harvey Wilson Drive Indianapolis 22, Ind. 1740 W. Vermont St.
Johnstown, Pa. 841 Oak St. Kansas City 20, Mo. 3525 Gardner Ave.
Los Angeles 1, Calif. 6900 Stanford Ave. Louisville, Ky. 2014 New Main St.
Midland, Texas 3404 Bonhead Hwy. Milwaukee 3, Wis. 940 W. St. Paul Ave.
Minneapolis 12, Minn. 2025 49th Ave., N. New Orleans, La. 2815 N. Robertson St.
Oakland 5, Calif. 1525 S. E. 10th St.
Portsmouth, Va. 2727 N. W. 29th Ave. Richmond, Va. 2403 E. Main St.
Richmond 5, Va. 1403 Ingram Ave. Roanoke, Va. 115 Albermarle St.
Sacramento, Calif. 99 N. 17th St. Saint Louis 10, Mo. 1115 East Road
Salt Lake City 4, Utah 301 S. Seventh West San Francisco 3, Calif. 1098 Harrison St.
Seattle 4, Wash. 3422 First Ave., S. Southington, Conn. 53 Railroad Ave.
Spokane 3, Wash. S. 155 Sherman St. Tampa 1, Fla. P.O. Box 1245,
Toledo 4, Ohio 1 So. Clair St. Wheeling, W. Va. 2050 National Rd.
York, Pa. 54 N. Harrison St. Youngstown 7, Ohio 272 E. Indiana Ave.

APPARATUS SALES OFFICES

Abilene, Texas 442 Cedar St. Akron 8, Ohio 335 S. Main St.
Albany 7, N. Y. 90 State St. Albuquerque, N. Mex. 323 Third Bldg.
Alexandria, La. 720 Murray St. Abilene, Texas 442 Cedar St.
Amherst, Mass. 132 Hamilton St. Annapolis, Md. 334 West St.
Appleton, Wis. 917 Industrial Ave. Atlantic City, N. J. 1860 Peachtree Rd., N.W.
Augusta, Ga. 937 Mansfield Rd. Augusta, Me. 252 State St.
Baltimore 1, Md. 111 Park Ave. Bangor, Maine. P. O. Box 77, Central St.
Beaumont, Texas P. O. Box 2870 Billings, Mont. P. O. Box 335, 360 Main St.
Binghamton, N. Y. P. O. Box 931 Binghamton, N. Y. P. O. Box 931
Brownsville, Tex. 2138 Sunset Ave. Brownsville, Tex. P. O. Box 2602
Butte, Mont. 310 Main St. Baltimore 1, Md. 111 Park Ave.
Baltimore 1, Md. 111 Park Ave. Bangor, Maine. P. O. Box 377, Central St.
Bottrop, Germany 410 F. Krauss St. Box 1969
Bismarck, N. Dak. 418 Roser Ave. Blufffield, W. Va. P. O. Box 447, 704 Blvd St.
Bluefield, W. Va. P. O. Box 447, 704 Blvd St. Appalachia Bldg.
Boise, Idaho 1524 Idaho St.

INDUSTRY CONTROL DEPARTMENT, GENERAL ELECTRIC COMPANY, ROANOKE, VA.

Hawaii American Factors, Ltd., P. O. Box 3230, Honolulu 1 Canada: Canadian General Electric Company, Ltd., Toronto

3-56 (3M)