
# Westinghouse



# **Protective Relays**

Type CO-2, 5, 6, 7, 8, 9, 11 In FT-11 Flexitest Case®



Type CO-2 Overcurrent Relay

#### **Ordering Information**

- · Name the part and give its style number.
- · Give the complete nameplate reading.
- · State method of shipment desired.
- Send all orders or correspondence to nearest sales office of the company.

# Style Numbers of Circuit Closing Relays (50 or 60 Hertz)

| Style Num   | bers of Circuit | Closing  |                                  |                                        |                                        |
|-------------|-----------------|----------|----------------------------------|----------------------------------------|----------------------------------------|
| Relays (50  | or 60 Hertz)    | Closing  | 1956 683<br>1956 716<br>1956 751 | 183A803A26<br>183A803A27<br>183A803A28 | 184A004A14<br>184A004A17<br>184A004A18 |
| Single Trip |                 |          | 1956 752<br>1956 779             | 183A804A05<br>183A804A06               | 184A004A19<br>184A004A20               |
| 1875 221    | 1875 251        | 1875 281 | 1956 782                         |                                        |                                        |
| 1875 222    | 1875 252        | 1875 282 | 1956 837                         | 183A804A07                             | 184A004A21                             |
| 1875 223    | 1875 253        | 1875 283 | 1956 869                         | 183A804A08<br>183A804A09               | 184A004A25                             |
| 1875 224    | 1875 254        | 1875 284 | 1956 871                         | 183A804A09                             | 184A004A26                             |
| 1875 225    | 1875 255        | 1875 285 | 1961 014                         | 183A804A10                             | 184A004A27<br>184A004A28               |
| 1875 226    | 1875 256        | 1875 286 | 1961 025                         | 183A804A18                             | 288B545A16                             |
| 1875 227    | 1875 257        | 1875 287 | 1961 061                         | 183A804A19                             | 288B545A26                             |
| 1875 228    | 1875 258        | 1875 288 | 1961 339                         | 183A804A20                             | 288B545A27                             |
| 1875 229    | 1875 259        | 1875 289 | 1961 351                         | 183A804A21                             | 288B545A29                             |
| 1875 230    | 1875 260        | 1875 290 | 1961 551                         | 183A804A22                             | 288 <b>B545A</b> 30                    |
| 1875 231    | 1875 261        | 1875 291 | 1961 557                         | 183A804A25                             | 288B545A31                             |
| 1875 232    | 1875 262        | 1875 292 | 1961 859                         | 183A804A26                             | 288B548A16                             |
| 1875 233    | 1875 263        | 1875 293 | 1961 911                         | 183A804A27                             | 288B548A27                             |
| 1875 234    | 1875 264        | 1875 294 | 1962 378                         | 183A804A28                             | 288B548A28                             |
| 1875 235    | 1875 265        | 1875 295 | 1962 880                         | 183A805A05                             | 288B548A29                             |
| 1875 236    | 1875 266        | 1875 296 | 1962 989                         | 183A805A06                             | 288B548A30                             |
| 1875 237    | 1875 267        | 1875 297 | 183A801A05                       | 183A805A07                             | 288B548A31                             |
| 1875 238    | 1875 268        | 1875 298 | 183A801A06                       | 183A805A08                             | 288B548A32                             |
| 1875 239    | 1875 269        | 1875 299 | 183A801A07                       | 183A805A09                             | 288B553A20                             |
| 1875 240    | 1875 270        | 1875 300 | 183A801A08                       | 183A805A10                             | 288B553A25                             |
| 1875 241    | 1875 271        | 1875 301 | 183A801A09                       | 183A805A11                             | 288B553A26                             |
| 1875 242    | 1875 272        | 1875 302 | 183A801A10                       | 183A805A12                             | 288B553A27                             |
| 1875 243    | 1875 273        | 1875 303 | 183A801A17                       | 183A805A13                             | 288B553A28                             |
| 1875 244    | 1875 274        | 1876 900 | 183A801A18                       | 183A805A15                             | 288B553A31                             |
| 1875 245    | 1875 275        | 1876 901 | 183A801A19                       | 183A805A17                             | 288B553A32                             |
| 1875 246    | 1875 276        | 1876 902 | 183A801A20                       | 183A805A18                             | 288B553A33                             |
| 1875 247    | 1875 277        | 1876 903 | 183A801A21                       | 183A805A19                             | 288B553A34                             |
| 1875 248    | 1875 278        | 1876 904 | 183A801A25                       | 183A805A20                             | 288B554A25                             |
| 1875 249    | 1875 279        | 1876 905 | 183A801A26                       | 183A805A21                             | 288B554A33                             |
| 1875 250    | 1875 280        | 1876 906 | 183A801A27                       | 183A805A22                             | 288B554A34                             |

Non-Torque Control Relays Single Trip, Continued

183A801A28 183A802A05

183A802A06

183A802A07

183A802A08

183A802A09 183A802A10

183A802A13

183A802A14

183A802A17

183A802A18

183A802A19

183A802A20

183A802A21

183A802A25

183A802A26 183A802A27

183A802A28

183A803A05

183A803A06

183A803A07

183A803A08

183A803A09

183A803A13

183A803A17

183A803A18

183A803A19 183A803A20

183A803A21

183A803A25

183A805A23 183A805A25 183A805A26

183A805A27

183A805A28

183A805A29

183A805A30 183A806A05

183A806A06

1876 907 1877 981

1878 040

1878 041 1878 042

1878 043

1878 044

1878 045

1878 046

1878 943

1955 358

1955 701

1956 000

1956 030

1956 116

1956 119

1956 125

1956 174

1956 345

1956 405

1956 406

1956 492

1956 516

1956 547

1956 548

1956 634

1956 635

1956 641 1956 642

1956 682

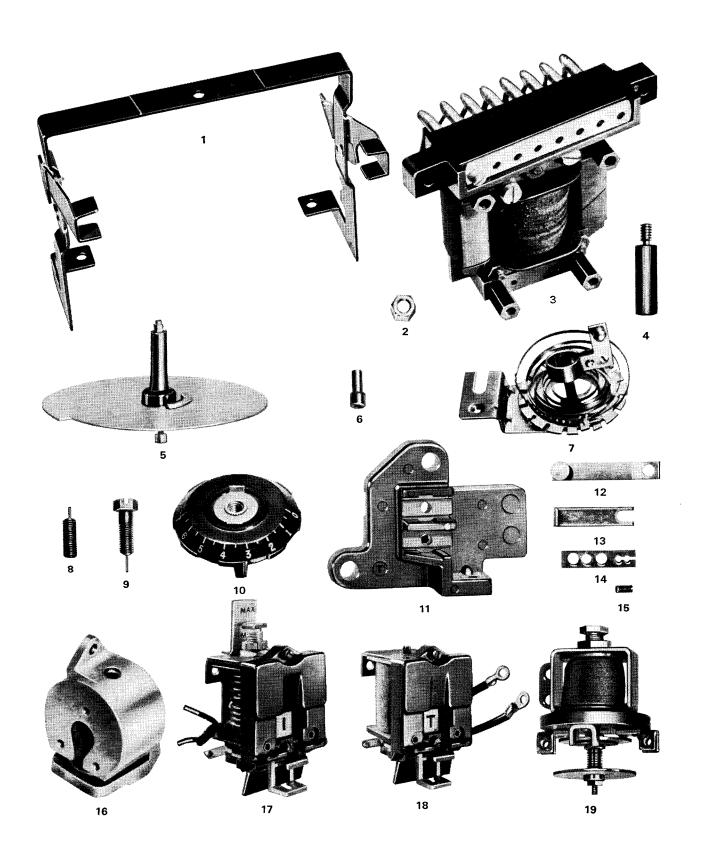
| Non-Torque   | Control   | Relays   |
|--------------|-----------|----------|
| Single Trip, | Continued | <i>i</i> |

| 288B560A16 | 288 <b>B561A3</b> 0 |
|------------|---------------------|
| 288B560A26 | 288B561A31          |
| 288B561A12 | 288B561A32          |
| 288B561A16 | 288B562A16          |
| 288B561A26 |                     |

#### Non-Torque Control Relays Double Trip

| 184A004A07       1875       331       1875       376       288B880A2:         184A004A09       1875       332       1875       377       288B880A2:         184A004A09       1875       333       1875       378       288B880A2:         184A004A10       1875       334       1875       379       288B880A3:         184A004A13       1875       335       1875       380       288B880A3:         184A004A14       1875       336       1875       381       288B887A2:         184A004A17       1875       337       1875       382       288B887A2:         184A004A17       1875       336       1875       381       288B887A2:         184A004A19       1875       339       1875       382       288B888A2:         184A004A20       1875       339       1875       384       288B888A2:         184A004A21       1875       341       1875       386       288B890A2:         184A004A25       1875       342       1875       387       288B890A2:         184A004A26       1875       344       1875       389       288B890A2:         184A004A27       1875       344       1875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 183A806A08         1875         315         1875         360           183A806A09         1875         317         1875         361           183A806A10         1875         317         1875         362           183A806A10         1875         318         1875         363           183A806A17         1875         318         1875         363           183A806A18         1875         319         1875         364           183A806A19         1875         320         1875         365           183A806A20         1875         321         1875         366           183A806A21         1875         322         1875         368           183A806A22         1875         323         1875         368           183A806A22         1875         324         1875         369           183A806A25         1875         324         1875         370           183A806A26         1875         322         1875         371           183A806A27         1875         322         1875         372           183A806A28         1875         322         1875         373           184A004A06                                                                                                                                                                                                                                                                        | 1878 892<br>1878 934<br>1878 941<br>1878 942<br>1878 942<br>1878 987<br>1955 309<br>1955 325<br>1956 303<br>1956 840<br>1961 36<br>1962 348<br>1962 569<br>1963 234<br>1963 496<br>1963 914<br>288B880A26<br>288B880A27<br>288B880A27 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1875 315 1875 360 1878 392 183A806A08 1875 316 1875 361 1878 934 183A806A09 1875 317 1875 362 1878 941 183A806A10 1875 318 1875 363 1878 942 183A806A17 183A806A18 1875 319 1875 365 1955 309 183A806A19 1875 320 1875 365 1955 309 183A806A20 1875 321 1875 366 1955 325 183A806A21 1875 322 1875 367 1956 303 183A806A21 1875 322 1875 367 1956 303 183A806A21 1875 324 1875 368 1956 840 183A806A22 1875 324 1875 370 1962 348 183A806A25 1875 324 1875 370 1962 348 183A806A26 1875 324 1875 370 1962 348 183A806A26 1875 324 1875 370 1962 348 183A806A26 1875 326 1875 371 1962 569 183A806A27 1875 327 1875 372 1963 234 183A806A28 1875 328 1875 373 1963 496 1875 330 1875 374 1963 294 184A004A06 1875 331 1875 376 2888880A2: 184A004A07 1875 331 1875 376 2888880A2: 184A004A09 1875 333 1875 376 2888880A2: 184A004A10 1875 331 1875 376 2888880A2: 184A004A10 1875 331 1875 379 2888880A2: 184A004A11 1875 336 1875 380 2888880A2: 184A004A12 1875 331 1875 380 2888880A2: 184A004A14 1875 336 1875 381 2888880A2: 184A004A15 1875 331 1875 380 2888880A2: 184A004A16 1875 331 1875 380 2888880A2: 184A004A17 1875 331 1875 380 2888880A2: 184A004A18 1875 339 1875 381 2888880A2: 184A004A20 1875 339 1875 381 2888880A2: 184A004A21 1875 339 1875 381 2888880A2: 184A004A21 1875 339 1875 382 2888880A2: 184A004A21 1875 341 1875 389 28888890A1: 184A004A21 1875 341 1875 389 28888890A2: 184B8545A21 1875 341 1875 390 28888891A2: 2888545A31 1875 361 1875 390 2888891A3: 2888545A31 1875 361 1875 390 2888891A3: 2888545A31 1875 361 1875 390 2888891A3: 2888548A29 1875 369 1876 911 2888548A29 1875 353 1876 912 2888548A29 1875 353 1876 912 2888548A29 1875 353 1876 914 2888548A29 1875 353 1876 914 2888553A20 2888553A27 2888553A26 2888553A27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1875         315         1875         360           183A806A08         1875         316         1875         361           183A806A09         1875         317         1875         362           183A806A10         1875         318         1875         363           183A806A17         1875         319         1875         364           183A806A18         1875         320         1875         365           183A806A19         1875         321         1875         366           183A806A20         1875         322         1875         367           183A806A21         1875         323         1875         368           183A806A22         1875         323         1875         368           183A806A22         1875         322         1875         370           183A806A25         1875         324         1875         370           183A806A26         1875         322         1875         371           183A806A27         1875         322         1875         373           184A004A05         1875         328         1875         373           184A004A06         1875         329 <td>1878 892<br/>1878 934<br/>1878 941<br/>1878 942<br/>1878 942<br/>1878 987<br/>1955 309<br/>1955 325<br/>1956 303<br/>1956 840<br/>1961 36<br/>1962 348<br/>1962 569<br/>1963 234<br/>1963 496<br/>1963 914<br/>288B880A26<br/>288B880A27<br/>288B880A27</td> | 1878 892<br>1878 934<br>1878 941<br>1878 942<br>1878 942<br>1878 987<br>1955 309<br>1955 325<br>1956 303<br>1956 840<br>1961 36<br>1962 348<br>1962 569<br>1963 234<br>1963 496<br>1963 914<br>288B880A26<br>288B880A27<br>288B880A27 |
| 183A806A08       1875       316       1875       361       1878       934         183A806A10       1875       317       1875       362       1878       941         183A806A10       1875       318       1875       362       1878       941         183A806A17       1875       319       1875       364       1878       942         183A806A18       1875       320       1875       365       1955       309         183A806A20       1875       321       1875       366       1955       325         183A806A21       1875       322       1875       367       1956       303         183A806A22       1875       324       1875       368       1956       840         183A806A25       1875       324       1875       369       1961       036       186       186       348       1956       840         183A806A27       1875       322       1875       370       1962       348       183       1963       394       1875       372       1963       234       1875       372       1863       394       1875       373       1963       394       1875       373 <td>183A806A08         1875         316         1875         361           183A806A09         1875         317         1875         362           183A806A10         1875         318         1875         363           183A806A17         183A806A18         1875         319         1875         364           183A806A19         1875         320         1875         366           183A806A20         1875         321         1875         367           183A806A21         1875         322         1875         367           183A806A22         1875         323         1875         368           183A806A22         1875         324         1875         369           183A806A25         1875         325         1875         370           183A806A26         1875         322         1875         371           183A806A27         1875         322         1875         372           183A806A28         1875         327         1875         372           183A806A28         1875         328         1875         373           184A004A06         1875         329         1875         374</td> <td>1878 934<br/>1878 941<br/>1878 942<br/>1878 987<br/>1955 309<br/>1955 325<br/>1956 303<br/>1956 840<br/>1961 036<br/>1962 348<br/>1962 569<br/>1963 234<br/>1963 496<br/>1963 914<br/>288B880A26<br/>288B880A26<br/>288B880A26</td> | 183A806A08         1875         316         1875         361           183A806A09         1875         317         1875         362           183A806A10         1875         318         1875         363           183A806A17         183A806A18         1875         319         1875         364           183A806A19         1875         320         1875         366           183A806A20         1875         321         1875         367           183A806A21         1875         322         1875         367           183A806A22         1875         323         1875         368           183A806A22         1875         324         1875         369           183A806A25         1875         325         1875         370           183A806A26         1875         322         1875         371           183A806A27         1875         322         1875         372           183A806A28         1875         327         1875         372           183A806A28         1875         328         1875         373           184A004A06         1875         329         1875         374                                                                                                                                                                                                                                                                          | 1878 934<br>1878 941<br>1878 942<br>1878 987<br>1955 309<br>1955 325<br>1956 303<br>1956 840<br>1961 036<br>1962 348<br>1962 569<br>1963 234<br>1963 496<br>1963 914<br>288B880A26<br>288B880A26<br>288B880A26                        |
| 183A806A09 1875 317 1875 362 1878 941 183A806A17 183A806A17 1875 318 1875 363 1878 942 183A806A17 183A806A18 1875 319 1875 364 1878 942 1875 320 1875 365 1955 309 183A806A20 1875 322 1875 367 1956 303 183A806A21 1875 322 1875 367 1956 303 183A806A22 1875 323 1875 368 1956 840 183A806A22 1875 324 1875 369 1961 036 1875 325 1875 370 1962 348 183A806A22 1875 326 1875 371 1962 569 183A806A26 1875 326 1875 371 1962 569 183A806A27 1875 327 1875 372 1963 234 183A806A28 1875 328 1875 372 1963 234 184A004A06 1875 329 1875 373 1963 496 184A004A06 1875 330 1875 375 288B880A2 184A004A01 1875 330 1875 376 288B880A2 184A004A01 1875 331 1875 376 288B880A2 184A004A01 1875 333 1875 378 288B880A2 184A004A01 1875 336 1875 380 288B880A2 184A004A11 1875 336 1875 380 288B880A2 184A004A11 1875 336 1875 381 288B880A2 184A004A12 1875 339 1875 381 288B880A2 188A004A11 1875 340 1875 381 288B880A2 188A004A1 1875 340 1875 380 288B880A2 188A004A1 1875 341 1875 360 288B880A2 1875 342 1875 381 288B880A2 188A004A1 1875 341 1875 380 288B880A2 188B80A2 188B80A                                                                                                                                                                                                                                                                                                                      | 183A806A09         1875         317         1875         362           183A806A10         1875         318         1875         363           183A806A17         1875         319         1875         364           183A806A19         1875         321         1875         365           183A806A20         1875         322         1875         367           183A806A21         1875         322         1875         368           183A806A22         1875         322         1875         368           183A806A22         1875         324         1875         369           183A806A25         1875         325         1875         370           183A806A26         1875         326         1875         371           183A806A27         1875         327         1875         372           183A806A28         1875         322         1875         373           184A004A05         1875         328         1875         373           184A004A06         1875         329         1875         375           184A004A07         1875         331         1875         376           184A004A08                                                                                                                                                                                                                                                                        | 1878 941<br>1878 942<br>1878 987<br>1955 309<br>1955 325<br>1956 303<br>1956 840<br>1961 036<br>1962 348<br>1962 569<br>1963 234<br>1963 496<br>1963 914<br>288B880A26<br>288B880A26<br>288B880A27                                    |
| 183A806A10       1875       318       1875       363       1878       342         183A806A18       1875       319       1875       364       1878       987         183A806A19       1875       320       1875       365       1955       309         183A806A20       1875       321       1875       366       1955       325         183A806A21       1875       322       1875       367       1966       303         183A806A22       1875       322       1875       368       1956       840         183A806A25       1875       322       1875       369       1961       036         183A806A26       1875       322       1875       370       1962       348         183A806A27       1875       322       1875       371       1962       2569         183A806A28       1875       322       1875       371       1962       2569         183A806A28       1875       322       1875       371       1962       234         184A004A05       1875       329       1875       373       1963       294         184A004A07       1875       331       1875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 183A806A10         1875         318         1875         363           183A806A17         1875         319         1875         364           183A806A18         1875         320         1875         365           183A806A19         1875         320         1875         365           183A806A20         1875         322         1875         367           183A806A21         1875         322         1875         368           183A806A22         1875         322         1875         369           183A806A25         1875         324         1875         370           183A806A26         1875         326         1875         370           183A806A27         1875         322         1875         371           183A806A28         1875         328         1875         373           184A004A05         1875         329         1875         374           184A004A06         1875         331         1875         376           184A004A07         1875         331         1875         377           184A004A09         1875         333         1875         378                                                                                                                                                                                                                                                                                             | 1878 942  1878 987 1955 309 1955 325 1956 303 1956 840  1961 036 1962 348 1962 569 1963 234 1963 496  1963 914 288B880A26 288B880A27 288B880A27                                                                                       |
| 183A806A17 183A806A18 1875 1875 1875 1875 1875 1875 1875 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 183A806A17         1875 319         1875 364           183A806A18         1875 320         1875 365           183A806A19         1875 321         1875 366           183A806A20         1875 322         1875 367           183A806A21         1875 322         1875 368           183A806A22         1875 324         1875 369           183A806A25         1875 325         1875 370           183A806A26         1875 326         1875 371           183A806A27         1875 327         1875 372           183A806A28         1875 328         1875 372           183A806A28         1875 328         1875 373           184A004A06         1875 329         1875 374           184A004A07         1875 330         1875 375           184A004A08         1875 332         1875 375           184A004A09         1875 332         1875 377           184A004A09         1875 333         1875 378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1878 987<br>1955 309<br>1955 325<br>1956 303<br>1956 840<br>1961 036<br>1962 348<br>1962 569<br>1963 234<br>1963 496<br>1963 914<br>288B880A26<br>288B880A27<br>288B880A27                                                            |
| 183A806A18         1875         319         1875         366         1875         320           183A806A19         1875         321         1875         366         1955         325           183A806A20         1875         322         1875         367         1956         303           183A806A22         1875         323         1875         368         1966         840           183A806A22         1875         324         1875         369         1961         036           183A806A25         1875         326         1875         370         1962         348           183A806A26         1875         322         1875         371         1962         569           183A806A28         1875         328         1875         372         1962         234           183A806A28         1875         328         1875         372         1962         234           183A806A28         1875         328         1875         372         1963         234           184A004A06         1875         329         1875         374         1963         248           184A004A08         1875         331         1875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 183A806A18         1875         319         1875         364           183A806A19         1875         320         1875         365           183A806A20         1875         322         1875         367           183A806A21         1875         323         1875         368           183A806A22         1875         324         1875         369           183A806A25         1875         324         1875         370           183A806A26         1875         326         1875         371           183A806A27         1875         327         1875         372           183A806A28         1875         328         1875         373           184A004A05         1875         329         1875         374           184A004A06         1875         330         1875         375           184A004A08         1875         331         1875         376           184A004A09         1875         333         1875         378                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1955 309<br>1955 325<br>1956 303<br>1956 840<br>1961 036<br>1962 348<br>1962 569<br>1963 234<br>1963 496<br>1963 914<br>288B880A26<br>288B880A27<br>288B880A27                                                                        |
| 183A806A19 1875 320 1875 366 1955 309 183A806A20 1875 321 1875 366 1955 309 183A806A21 1875 322 1875 367 1956 303 183A806A22 1875 323 1875 368 1956 840 183A806A22 1875 325 1875 370 1962 348 1875 325 1875 370 1962 348 1875 325 1875 370 1962 348 183A806A26 1875 326 1875 371 1962 569 183A806A27 1875 328 1875 371 1962 569 183A806A27 1875 328 1875 371 1962 569 184A004A05 1875 328 1875 373 1963 496 184A004A06 1875 329 1875 373 1963 496 184A004A06 1875 330 1875 375 288B880A2 184A004A08 1875 331 1875 376 288B880A2 184A004A09 1875 331 1875 376 288B880A2 184A004A10 1875 333 1875 378 288B880A2 184A004A10 1875 336 1875 378 288B880A2 184A004A10 1875 336 1875 381 288B880A2 184A004A11 1875 336 1875 381 288B880A2 184A004A11 1875 336 1875 381 288B880A2 184A004A19 1875 331 1875 379 288B880A2 184A004A19 1875 331 1875 379 288B880A2 184A004A19 1875 336 1875 381 288B880A2 188A8004A1 1875 381 288B880A2 188A8004A2 1875 341 1875 382 288B880A2 188A8004A2 1875 343 1875 383 288B880A2 188A8004A2 1875 343 1875 383 288B880A2 188A8004A2 1875 343 1875 384 288B880A2 188A8004A2 1875 343 1875 384 288B880A2 188A8004A2 1875 343 1875 389 288B880A2 188A8004A2 1875 348 1875 391 288B880A2 188A8004A2 1875 349 1875 391 288B880A2 188A8004A2 1875 391 288B880A2 188A80A2 188A80A2 188A80A2 188A80A2 188A80A2 188A80A2 1                                                                                                                                                                                                                                                                                                                      | 1875         320         1875         365           183A806A19         1875         321         1875         366           183A806A20         1875         322         1875         367           183A806A21         1875         323         1875         368           183A806A22         1875         324         1875         369           183A806A25         1875         325         1875         370           183A806A26         1875         327         1875         372           183A806A27         1875         327         1875         373           184A004A05         1875         328         1875         373           184A004A06         1875         329         1875         375           184A004A07         1875         331         1875         376           184A004A08         1875         332         1875         377           184A004A09         1875         333         1875         378                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1955 309<br>1955 325<br>1956 303<br>1956 840<br>1961 036<br>1962 348<br>1962 569<br>1963 234<br>1963 496<br>1963 914<br>288B880A26<br>288B880A27<br>288B880A27                                                                        |
| 183A806A19       1875       321       1875       366       1955       325         183A806A20       1875       322       1875       368       1956       803         183A806A22       1875       323       1875       368       1956       840         183A806A22       1875       324       1875       369       1961       036         183A806A26       1875       326       1875       371       1962       569         183A806A27       1875       327       1875       372       1963       234         183A806A28       1875       328       1875       372       1963       234         183A806A28       1875       328       1875       373       1963       496         184A004A06       1875       329       1875       374       1963       496         184A004A07       1875       331       1875       376       288B880A2       184A004A09       1875       331       1875       377       288B880A2         184A004A10       184A004A11       1875       334       1875       380       288B880A3         184A004A14       1875       336       1875       381       28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 183A806A19         1875         321         1875         366           183A806A20         1875         322         1875         367           183A806A21         1875         323         1875         368           183A806A22         1875         324         1875         369           183A806A25         1875         325         1875         370           183A806A26         1875         326         1875         372           183A806A27         1875         327         1875         372           183A806A28         1875         328         1875         373           184A004A05         1875         329         1875         374           184A004A06         1875         330         1875         375           184A004A08         1875         331         1875         377           184A004A09         1875         332         1875         378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1955 325<br>1956 303<br>1956 840<br>1961 036<br>1962 348<br>1962 569<br>1963 234<br>1963 496<br>1963 914<br>288B880A26<br>288B880A27<br>288B880A27                                                                                    |
| 183A806A19       1875       321       1875       366       1956       303         183A806A20       1875       322       1875       368       1956       840         183A806A21       1875       323       1875       368       1956       840         183A806A22       1875       324       1875       369       1961       036         183A806A26       1875       326       1875       370       1962       248         183A806A27       1875       322       1875       371       1963       234         183A806A27       1875       322       1875       372       1963       234         183A806A28       1875       328       1875       373       1963       294         184A004A06       1875       329       1875       375       288B880A2       184A004A0       1875       331       1875       376       288B880A2         184A004A08       1875       332       1875       377       288B880A2       184A004A0       1875       333       1875       378       288B880A2       184A004A1       1875       334       1875       379       288B8880A2       1875       381       288B8880A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 183A806A20         1875         322         1875         367           183A806A21         1875         323         1875         368           183A806A22         1875         324         1875         369           183A806A25         1875         325         1875         370           183A806A26         1875         326         1875         371           183A806A27         1875         327         1875         372           183A806A28         1875         328         1875         373           184A004A05         1875         328         1875         373           184A004A06         1875         329         1875         375           184A004A07         1875         331         1875         376           184A004A08         1875         332         1875         377           184A004A09         1875         333         1875         378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1955 325<br>1956 303<br>1956 840<br>1961 036<br>1962 348<br>1962 569<br>1963 234<br>1963 496<br>1963 914<br>288B880A26<br>288B880A27<br>288B880A27                                                                                    |
| 183A806A20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 183A806A20         1875         322         1875         367           183A806A21         1875         323         1875         368           183A806A22         1875         324         1875         369           183A806A25         1875         325         1875         370           183A806A26         1875         326         1875         371           183A806A27         1875         327         1875         372           183A806A28         1875         328         1875         373           184A004A05         1875         328         1875         373           184A004A06         1875         329         1875         375           184A004A07         1875         331         1875         376           184A004A08         1875         332         1875         377           184A004A09         1875         333         1875         378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1956 303<br>1956 840<br>1961 036<br>1962 348<br>1962 569<br>1963 234<br>1963 496<br>1963 914<br>288B880A26<br>288B880A27<br>288B880A27                                                                                                |
| 183A806A21         1875         323         1875         368         1956         840           183A806A22         1875         324         1875         369         1961         036           183A806A26         1875         325         1875         370         1962         348           183A806A26         1875         327         1875         371         1962         569           183A806A28         1875         327         1875         371         1962         569           183A806A28         1875         322         1875         372         1963         234           184A004A05         1875         328         1875         373         1963         496           184A004A06         1875         329         1875         375         288B880A2         184A004A09         1875         331         1875         376         288B880A2         184A004A09         1875         332         1875         377         288B880A2         184A004A09         1875         333         1875         378         288B880A2         184A004A01         1875         334         1875         379         288B880A2         1884A004A1         1875         334         1875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 183A806A21         1875         323         1875         368           183A806A22         1875         324         1875         369           183A806A26         1875         325         1875         370           183A806A26         1875         327         1875         372           183A806A27         1875         327         1875         372           183A806A28         1875         328         1875         373           184A004A05         1875         329         1875         374           184A004A06         1875         330         1875         375           184A004A07         1875         331         1875         376           184A004A08         1875         332         1875         377           184A004A09         1875         333         1875         378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1956 840  1961 036 1962 348 1962 569 1963 234 1963 496  1963 914 288B880A27 288B880A27 288B880A28                                                                                                                                     |
| 183A806A22 183A806A25 1875 324 1875 325 1875 370 1962 348 183A806A26 1875 326 1875 371 1962 569 183A806A27 1875 327 1875 372 1963 234 183A806A28 1875 328 1875 373 1963 294 184A004A06 1875 329 1875 375 288B880A2 184A004A07 1875 331 1875 376 288B880A2 184A004A08 1875 332 1875 377 288B880A2 184A004A09 1875 333 1875 376 288B880A2 184A004A09 1875 333 1875 377 288B880A2 184A004A09 1875 333 1875 377 288B880A2 184A004A10 184A004A10 184A004A11 1875 336 1875 379 288B880A2 1875 379 288B880A3 1875 379 288B880A3 1875 380 288B880A3 1875 381 288B880A3 1875 381 288B88A3 1875 380 288B88A3 1875 381 288B88A3 1875 381 288B88A3 1875 383 288B88A3 1875 384 288B88A2 1875 387 288B88A2 1875 387 288B88A2 1875 389 288B89A2 1875 341 1875 386 288B89A2 1875 341 1875 389 288B89A2 1875 341 1875 389 288B89A2 288B854A26 1875 344 1875 390 288B89A2 288B85A27 1875 349 1875 391 288B89A2 288B85A27 288B5A32 288B5A32 288B5A32 288B5A32 288B5A32 288B5A32 288B5A32 288B5A32 288B5A32 288B5A3A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 183A806A22     1875     324     1875     369       183A806A25     1875     325     1875     370       183A806A26     1875     326     1875     371       183A806A27     1875     327     1875     372       183A806A28     1875     328     1875     373       184A004A05     1875     329     1875     374       184A004A06     1875     330     1875     375       184A004A07     1875     331     1875     376       184A004A08     1875     332     1875     377       184A004A09     1875     333     1875     378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1961 036<br>1962 348<br>1962 569<br>1963 234<br>1963 496<br>1963 914<br>288B880A26<br>288B880A27<br>288B880A28                                                                                                                        |
| 183A806A25       1875       324       1875       369       1961       036         183A806A26       1875       326       1875       371       1962       548         183A806A27       1875       327       1875       372       1963       234         183A806A28       1875       328       1875       372       1963       294         184A004A05       1875       329       1875       374       1963       914         184A004A06       1875       330       1875       375       288B880A2         184A004A07       1875       331       1875       376       288B880A2         184A004A09       1875       332       1875       377       288B880A2         184A004A10       1875       333       1875       378       288B880A2         184A004A10       1875       334       1875       380       288B880A2         184A004A11       1875       336       1875       380       288B880A3         184A004A17       1875       337       1875       382       288B880A3         184A004A20       1875       339       1875       382       288B8890A2         184A004A21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 183A806A25     1875     324     1875     369       183A806A26     1875     326     1875     370       183A806A27     1875     327     1875     372       183A806A28     1875     328     1875     373       184A004A05     1875     329     1875     374       184A004A06     1875     330     1875     375       184A004A07     1875     331     1875     376       184A004A08     1875     332     1875     377       184A004A09     1875     333     1875     378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1962 348<br>1962 569<br>1963 234<br>1963 496<br>1963 914<br>288B880A26<br>288B880A27<br>288B880A27                                                                                                                                    |
| 183A806A26         1875         325         1875         370         1962         348           183A806A27         1875         327         1875         371         1962         569           183A806A28         1875         328         1875         372         1963         234           183A806A28         1875         328         1875         373         1963         496           184A004A06         1875         329         1875         374         1963         914           184A004A07         1875         330         1875         376         288B880A2         184A004A09         1875         332         1875         376         288B880A2         184A004A09         1875         332         1875         377         288B880A2         184A004A10         1875         332         1875         378         288B880A2         188B80A2         184A004A10         1875         334         1875         378         288B880A2         188880A2         1884A004A1         1875         334         1875         380         288B880A2         1888887A2         184A004A17         1875         337         1875         381         288B888A2         1884A004A1         1875         337         1875 </td <td>183A806A26     1875     325     1875     370       183A806A27     1875     327     1875     371       183A806A28     1875     327     1875     373       183A806A28     1875     328     1875     373       184A004A05     1875     329     1875     374       1875     330     1875     375       184A004A07     1875     331     1875     376       184A004A08     1875     332     1875     377       184A004A09     1875     333     1875     378</td> <td>1962 348<br/>1962 569<br/>1963 234<br/>1963 496<br/>1963 914<br/>288B880A26<br/>288B880A27<br/>288B880A27</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 183A806A26     1875     325     1875     370       183A806A27     1875     327     1875     371       183A806A28     1875     327     1875     373       183A806A28     1875     328     1875     373       184A004A05     1875     329     1875     374       1875     330     1875     375       184A004A07     1875     331     1875     376       184A004A08     1875     332     1875     377       184A004A09     1875     333     1875     378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1962 348<br>1962 569<br>1963 234<br>1963 496<br>1963 914<br>288B880A26<br>288B880A27<br>288B880A27                                                                                                                                    |
| 183A806A26       1875       326       1875       371       1962       569         183A806A27       1875       327       1875       372       1963       234         183A806A28       1875       328       1875       372       1963       234         184A004A06       1875       329       1875       374       1963       914         184A004A07       1875       331       1875       375       288B880A2         184A004A08       1875       332       1875       377       288B880A2         184A004A09       1875       333       1875       377       288B880A2         184A004A10       184A004A10       1875       334       1875       379       288B880A2         184A004A11       1875       336       1875       381       288B880A3         184A004A14       1875       336       1875       381       288B880A3         184A004A17       1875       337       1875       382       288B88A2         184A004A19       1875       339       1875       382       288B88A2         184A004A20       1875       340       1875       384       288B889A2         184A004A26<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 183A806A26     1875     326     1875     371       183A806A27     1875     327     1875     372       183A806A28     1875     328     1875     373       184A004A05     1875     329     1875     374       184A004A06     1875     330     1875     375       184A004A07     1875     331     1875     377       184A004A08     1875     332     1875     377       184A004A09     1875     333     1875     378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1962 569<br>1963 234<br>1963 496<br>1963 914<br>288B880A26<br>288B880A27<br>288B880A28                                                                                                                                                |
| 183A806A27         1875         327         1875         372         1963         234           183A806A28         1875         328         1875         373         1963         496           184A004A05         1875         329         1875         374         1963         914           184A004A06         1875         330         1875         375         288B880A2         288B880A2           184A004A08         1875         331         1875         377         288B880A2         288B880A2         184A004A10         1875         333         1875         378         288B880A2         288B880A2         184A004A10         1875         333         1875         378         288B880A2         288B880A2         1875         380         288B880A2         288B880A2         1875         335         1875         380         288B880A3         1875         380         288B880A2         288B880A2         1875         336         1875         381         288B880A2         1884A004A17         1875         337         1875         382         288B880A2         288B880A2         1875         342         1875         383         288B880A2         1875         383         288B8890A2         1875         384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 183A806A27     1875     327     1875     372       183A806A28     1875     328     1875     373       184A004A05     1875     329     1875     374       184A004A06     1875     330     1875     375       184A004A07     1875     331     1875     376       184A004A08     1875     332     1875     377       184A004A09     1875     333     1875     378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1963 234<br>1963 496<br>1963 914<br>288B880A26<br>288B880A27<br>288B880A28                                                                                                                                                            |
| 183A806A28         1875         328         1875         373         1963         496           184A004A06         1875         329         1875         374         1963         914           184A004A07         1875         330         1875         375         288B880A2           184A004A08         1875         331         1875         376         288B880A2           184A004A09         1875         332         1875         377         288B880A2           184A004A10         1875         333         1875         378         288B880A3           184A004A13         1875         336         1875         380         288B880A3           184A004A14         1875         336         1875         381         288B880A3           184A004A17         1875         336         1875         381         288B887A2           184A004A19         1875         338         1875         382         288B888A2           184A004A19         1875         349         1875         384         288B888A2           184A004A29         1875         341         1875         384         288B888A2           184A004A25         1875         342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 183A806A28     1875     328     1875     373       184A004A05     1875     329     1875     374       184A004A07     1875     330     1875     375       184A004A07     1875     331     1875     376       184A004A08     1875     332     1875     377       184A004A09     1875     333     1875     378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1963 496<br>1963 914<br>288B880A26<br>288B880A27<br>288B880A28                                                                                                                                                                        |
| 183A806A28         1875         328         1875         373         1963         496           184A004A06         1875         329         1875         374         1963         914           184A004A07         1875         330         1875         375         288B880A2           184A004A08         1875         331         1875         376         288B880A2           184A004A09         1875         332         1875         377         288B880A2           184A004A10         1875         333         1875         378         288B880A3           184A004A13         1875         336         1875         380         288B880A3           184A004A14         1875         336         1875         381         288B880A3           184A004A17         1875         336         1875         381         288B887A2           184A004A19         1875         338         1875         382         288B888A2           184A004A19         1875         349         1875         384         288B888A2           184A004A29         1875         341         1875         384         288B888A2           184A004A25         1875         342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 183A806A28     1875     328     1875     373       184A004A05     1875     329     1875     374       184A004A07     1875     330     1875     375       184A004A07     1875     331     1875     376       184A004A08     1875     332     1875     377       184A004A09     1875     333     1875     378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1963 496<br>1963 914<br>288B880A26<br>288B880A27<br>288B880A28                                                                                                                                                                        |
| 184A004A05         1875 329         1875 374         1963 914           184A004A06         1875 330         1875 375         288B880A2           184A004A07         1875 331         1875 376         288B880A2           184A004A08         1875 332         1875 377         288B880A2           184A004A10         1875 333         1875 379         288B880A2           184A004A13         1875 334         1875 379         288B880A3           184A004A13         1875 335         1875 380         288B880A3           184A004A14         1875 336         1875 381         288B880A3           184A004A17         1875 337         1875 382         288B88A23           184A004A18         1875 338         1875 381         288B88A23           184A004A19         1875 339         1875 384         288B88A23           184A004A20         1875 340         1875 386         288B88A23           184A004A21         1875 342         1875 387         288B890A21           184A004A25         1875 342         1875 388         288B890A21           184A004A26         1875 343         1875 389         288B890A21           184A004A27         184A004A26         1875 344         1875 390         288B891A21 <td>184A004A05       184A004A06     1875 329     1875 374       1875 330     1875 375       184A004A07     1875 331     1875 376       184A004A08     1875 332     1875 377       184A004A09     1875 333     1875 378</td> <td>1963 914<br/>288B880A26<br/>288B880A27<br/>288B880A28</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 184A004A05       184A004A06     1875 329     1875 374       1875 330     1875 375       184A004A07     1875 331     1875 376       184A004A08     1875 332     1875 377       184A004A09     1875 333     1875 378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1963 914<br>288B880A26<br>288B880A27<br>288B880A28                                                                                                                                                                                    |
| 184A004A06         1875         329         1875         374         1963         914           184A004A07         1875         330         1875         375         288B880A2           184A004A08         1875         331         1875         376         288B880A2           184A004A09         1875         332         1875         377         288B880A2           184A004A10         1875         333         1875         378         288B880A2           184A004A13         1875         334         1875         380         288B880A3           184A004A14         1875         336         1875         381         288B880A3           184A004A17         1875         337         1875         382         288B880A2           184A004A19         1875         338         1875         382         288B880A2           184A004A20         1875         339         1875         384         288B889A2           184A004A21         1875         341         1875         386         288B890A1           184A004A26         1875         342         1875         384         288B890A2           184A004A26         1875         343         1875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 184A004A06     1875     329     1875     374       1875     330     1875     375       184A004A07     1875     331     1875     376       184A004A08     1875     332     1875     377       184A004A09     1875     333     1875     378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 288B880A26<br>288B880A27<br>288B880A28                                                                                                                                                                                                |
| 184A004A07         1875         330         1875         375         288B880A2           184A004A08         1875         331         1875         377         288B880A2           184A004A09         1875         332         1875         377         288B880A2           184A004A10         1875         333         1875         378         288B880A3           184A004A13         1875         334         1875         379         288B880A3           184A004A14         1875         336         1875         381         288B887A2           184A004A17         1875         337         1875         381         288B887A2           184A004A19         1875         338         1875         382         288B887A2           184A004A19         1875         340         1875         384         288B889A2           184A004A29         1875         340         1875         384         288B889A2           184A004A21         1875         341         1875         386         288B890A1           184A004A25         1875         342         1875         387         288B890A1           184A004A27         184A004A26         1875         344         1875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1875 330 1875 375<br>184A004A07 1875 331 1875 376<br>184A004A08 1875 332 1875 377<br>184A004A09 1875 333 1875 378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 288B880A26<br>288B880A27<br>288B880A28                                                                                                                                                                                                |
| 184A004A07         1875         331         1875         376         288B880A2           184A004A08         1875         332         1875         377         288B880A2           184A004A10         1875         333         1875         378         288B880A2           184A004A13         1875         334         1875         379         288B880A3           184A004A14         1875         335         1875         380         288B880A3           184A004A17         1875         337         1875         381         288B887A2           184A004A18         1875         338         1875         382         288B88A2           184A004A19         1875         339         1875         382         288B88A2           184A004A20         1875         339         1875         384         288B88A2           184A004A21         1875         340         1875         386         288B890A2           184A004A25         1875         342         1875         387         288B890A2           184A004A26         1875         342         1875         387         288B890A2           184A004A27         184A004A26         1875         344         1875 <td>184A004A07     1875     331     1875     376       184A004A08     1875     332     1875     377       184A004A09     1875     333     1875     378</td> <td>288B880A27<br/>288B880A28</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 184A004A07     1875     331     1875     376       184A004A08     1875     332     1875     377       184A004A09     1875     333     1875     378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 288B880A27<br>288B880A28                                                                                                                                                                                                              |
| 184A004A08         1875         332         1875         377         288B880A2:           184A004A10         1875         333         1875         378         288B880A2:           184A004A13         1875         334         1875         379         288B880A3:           184A004A14         1875         336         1875         381         288B880A3:           184A004A17         1875         337         1875         382         288B887A2:           184A004A18         1875         338         1875         382         288B888A2:           184A004A19         1875         340         1875         383         288B888A2:           184A004A20         1875         340         1875         385         288A889A2:           184A004A21         1875         341         1875         386         288B890A1:           184A004A25         1875         342         1875         387         288B890A2:           184A004A26         1875         343         1875         388         288B890A2:           184A004A26         1875         343         1875         389         288B890A2:           184A004A27         1875         346         1875 <t< td=""><td>184A004A08 1875 332 1875 377<br/>184A004A09 1875 333 1875 378</td><td>288B880A28</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 184A004A08 1875 332 1875 377<br>184A004A09 1875 333 1875 378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 288B880A28                                                                                                                                                                                                                            |
| 184A004A09         1875         333         1875         378         288B880A2:           184A004A10         1875         334         1875         379         288B880A2:           184A004A13         1875         335         1875         380         288B880A3:           184A004A14         1875         336         1875         381         288B887A2:           184A004A17         1875         337         1875         382         288B887A2:           184A004A19         1875         338         1875         382         288B88A2:           184A004A20         1875         339         1875         384         288B88A2:           184A004A21         1875         340         1875         385         288B890A1:           184A004A25         1875         342         1875         387         288B890A1:           184A004A25         1875         342         1875         387         288B890A1:           184A004A26         1875         343         1875         388         288B890A2:           184A004A27         184A004A26         1875         344         1875         389         288B890A2:           288B545A216         1875         344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 184A004A09 1875 333 1875 378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                       |
| 184A004A09       1875       333       1875       378       288B880A2:         184A004A10       184A004A13       1875       334       1875       379       288B880A3:         184A004A14       1875       335       1875       380       288B887A2:         184A004A17       1875       336       1875       381       288B887A2:         184A004A18       1875       338       1875       382       288B887A2:         184A004A19       1875       339       1875       382       288B889A2:         184A004A20       1875       340       1875       384       288B889A2:         184A004A21       1875       341       1875       386       288B890A1:         184A004A25       1875       342       1875       387       288B890A2:         184A004A26       1875       342       1875       388       288B890A2:         184A004A27       1875       344       1875       389       288B890A2:         184A004A28       1875       344       1875       399       288B890A2:         184A004A29       1875       344       1875       399       288B890A2:         1855       344       1875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |
| 184A004A10 184A004A13 1875 334 1875 335 1875 380 288B880A31 184A004A14 1875 336 1875 381 288B887A21 184A004A17 1875 337 1875 382 288B887A21 184A004A18 1875 338 1875 383 288B88A23 184A004A19 184A004A20 1875 339 1875 340 1875 340 1875 340 1875 340 1875 385 288B889A21 184A004A21 1875 340 1875 340 1875 386 288B89A21 184A004A25 1875 341 1875 386 288B89A21 184A004A26 1875 342 1875 387 288B890A11 184A004A27 184A004A26 1875 344 1875 388 288B890A21 184A004A27 184A004A28 1875 344 1875 389 288B89A21 288B8545A16 1875 344 1875 390 288B89A21 288B8545A26 1875 344 1875 391 288B891A21 288B8545A27 288B545A27 1875 348 1875 393 288B891A31 288B891A32 288B894A21 1875 350 1875 394 288B894A21 288B84A29 288B54A21 1875 350 1875 394 288B894A21 1875 351 1875 396 288B894A21 288B854A21 1875 351 1876 390 288B891A32 288B894A31 1875 351 1876 390 288B894A31 1875 351 1876 391 288B894A31 288B894A31 1875 351 1876 390 288B894A31 288B894A31 1875 351 1876 391 288B894A31 2                                                                                                                                                                                                                                                                                                                      | 4044004440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 288B880 <b>A</b> 29                                                                                                                                                                                                                   |
| 184A004A13         1875         334         1875         379         288B880A3           184A004A14         1875         335         1875         380         288B880A3           184A004A17         1875         337         1875         381         288B887A2           184A004A18         1875         337         1875         382         288B888A2           184A004A19         1875         338         1875         383         288B888A2           184A004A20         1875         340         1875         386         288B889A2           184A004A21         1875         341         1875         386         288B890A1           184A004A25         1875         342         1875         387         288B890A2           184A004A26         1875         343         1875         388         288B890A2           184A004A26         1875         343         1875         388         288B890A2           184A004A27         1875         344         1875         399         288B891A2           288B545A16         1875         346         1875         390         288B891A2           288B545A27         1875         346         1875         391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 184A004A10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2002000720                                                                                                                                                                                                                            |
| 184A004A14         1875         335         1875         380         288B880A3           184A004A17         1875         336         1875         381         288B887A21           184A004A17         1875         337         1875         382         288B887A21           184A004A19         1875         338         1875         383         288B88A23           184A004A20         1875         340         1875         384         288B889A21           184A004A21         1875         341         1875         386         288B890A11           184A004A25         1875         342         1875         387         288B890A21           184A004A26         1875         343         1875         389         288B890A21           184A004A26         1875         343         1875         389         288B890A21           184A004A27         184A004A26         1875         344         1875         389         288B890A21           184A004A27         184A         1875         349         288B890A21         288B890A22           288B545A26         1875         344         1875         390         288B891A22           288B545A27         1875         348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000000420                                                                                                                                                                                                                            |
| 184A004A14         1875         336         1875         381         288B887A2!           184A004A17         1875         337         1875         382         288B887A2!           184A004A19         1875         338         1875         383         288B888A2!           184A004A20         1875         339         1875         384         288B889A2!           184A004A21         1875         341         1875         386         288B890A1!           184A004A25         1875         342         1875         387         288B890A2!           184A004A26         1875         343         1875         388         288B890A2!           184A004A27         1875         344         1875         389         288B890A2!           184A004A27         1875         344         1875         389         288B891A2!           288B545A26         1875         344         1875         399         288B891A2!           288B545A26         1875         344         1875         390         288B891A2!           288B545A27         1875         348         1875         391         288B891A3!           288B545A29         1875         349         1875 <t< td=""><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |
| 184A004A17         1875         337         1875         382         288B887A21           184A004A18         1875         338         1875         383         288B888A21           184A004A19         1875         339         1875         384         288B888A21           184A004A20         1875         340         1875         386         288B890A21           184A004A21         1875         341         1875         386         288B890A11           184A004A26         1875         342         1875         387         288B890A21           184A004A26         1875         343         1875         388         288B890A21           184A004A26         1875         343         1875         388         288B890A21           184A004A27         1875         344         1875         389         288B890A22           288B545A16         1875         345         1875         390         288B891A22           288B545A26         1875         347         1875         392         288B891A22           288B545A27         1875         348         1875         393         288B891A32           288B548A31         1875         348         1875 <t< td=""><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |
| 184A004A18         1875         338         1875         383         288B888A2:           184A004A19         1875         339         1875         384         288B889A2:           184A004A20         1875         340         1875         385         288A889A2:           184A004A21         1875         341         1875         386         288B890A1:         288B890A1:           184A004A25         1875         342         1875         387         288B890A2:         288B890A2:           184A004A26         1875         342         1875         389         288B890A2:           184A004A27         1875         344         1875         389         288B890A2:           184A004A28         1875         344         1875         390         288B890A2:           288B545A16         1875         344         1875         391         288B891A2:           288B545A29         1875         348         1875         392         288B891A3:           288B545A29         1875         348         1875         394         288B891A3:           288B548A29         1875         350         1875         394         288B891A3:           288B548A21         1875 <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |
| 184A004A19       1875 339       1875 384       288B889A2*         184A004A20       1875 340       1875 385       288A889A2*         184A004A21       1875 341       1875 386       288B890A1*         184A004A25       1875 342       1875 387       288B890A1*         184A004A26       1875 343       1875 388       288B890A2*         184A004A27       1875 344       1875 389       288B890A2*         288B545A16       1875 345       1875 390       288B891A2*         288B545A26       1875 346       1875 391       288B891A2*         288B545A27       1875 348       1875 392       288B891A3*         288B545A29       1875 349       1875 393       288B891A3*         288B545A31       1875 349       1875 394       288B891A3*         288B548A29       1875 351       1875 396       288B891A3*         288B548A28       1875 352       1876 908       288B548A2*         288B548A29       1875 354       1876 910       1875 355         288B548A29       1875 356       1876 912       188B548A2*         288B548A29       1875 356       1876 912       188B548A2*         288B548A31       1875 356       1876 912       188B548A2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 288B887A28                                                                                                                                                                                                                            |
| 184A004A20         1875         339         1875         384         288B889A2:         288A889A21         184A004A21         1875         340         1875         386         288A889A21         288A889A21         184A004A25         1875         341         1875         386         288B890A1:         288B890A21         184A004A26         1875         342         1875         387         288B890A22         288B890A22 <td< td=""><td>184A004A18</td><td>288B888A29</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 184A004A18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 288B888A29                                                                                                                                                                                                                            |
| 184A004A21         1875         340         1875         385         288A889A21           184A004A25         1875         341         1875         386         288B890A1           184A004A25         1875         342         1875         387         288B890A21           184A004A26         1875         343         1875         388         288B890A21           184A004A27         1875         343         1875         389         288B890A21           184A004A28         1875         344         1875         390         288B890A22           288B545A21         1875         346         1875         391         288B891A21           288B545A26         1875         347         1875         392         288B891A22           288B545A27         1875         348         1875         392         288B891A31           288B545A31         1875         349         1875         394         288B891A31           288B548A31         1875         350         1875         394         288B891A32           288B548A28         1875         353         1876         908           288B548A28         1875         354         1876         910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |
| 1875         340         1875         385         288A889A28           184A004A21         1875         341         1875         386         288B890A12           184A004A25         1875         342         1875         387         288B890A12           184A004A26         1875         343         1875         388         288B890A29           184A004A27         1875         344         1875         389         288B890A29           288B545A16         1875         344         1875         390         288B891A29           288B545A26         1875         346         1875         391         288B891A29           288B545A27         1875         348         1875         392         288B891A31           288B545A29         1875         348         1875         392         288B891A31           288B545A31         1875         349         1875         394         288B891A32           288B548A31         1875         350         1875         394         288B891A32           288B548A29         1875         353         1876         909           288B548A31         1875         354         1876         909           288B548A32 <td>184A004A20 1875 339 1875 384</td> <td>2888889427</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 184A004A20 1875 339 1875 384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2888889427                                                                                                                                                                                                                            |
| 184A004A21         1875         341         1875         386         288B890A12           184A004A25         1875         342         1875         387         288B890A12           184A004A26         1875         343         1875         388         288B890A22           184A004A27         1875         344         1875         389         288B890A22           184A004A28         1875         344         1875         390         288B891A22           288B545A16         1875         346         1875         391         288B891A22           288B545A26         1875         347         1875         392         288B891A32           288B545A27         1875         348         1875         392         288B891A32           288B545A29         1875         348         1875         393         288B891A32           288B545A31         1875         349         1875         394         288B891A32           288B548A29         1875         350         1875         396         288B891A32           288B548A28         1875         353         1876         908         288B548A28           288B548A29         1875         354         1876 <t< td=""><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |
| 184A004A25         1875         342         1875         387         288B890A12           184A004A26         1875         343         1875         388         288B890A22           184A004A27         1875         344         1875         389         288B890A22           184A004A28         1875         344         1875         390         288B891A2           288B545A16         1875         346         1875         391         288B891A2           288B545A26         1875         347         1875         392         288B891A2           288B545A27         1875         348         1875         392         288B891A2           288B545A29         1875         348         1875         393         288B891A3           288B545A31         1875         350         1875         394         288B891A3           288B548A31         1875         351         1875         396         288B548A2           288B548A29         1875         352         1876         908         288B548A2           288B548A29         1875         354         1876         910         1875         355         1876         911           288B548A31         1875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |
| 184A004A26         1875         343         1875         388         288B890A20           184A004A27         184A004A28         1875         344         1875         389         288B890A20           288B545A16         1875         345         1875         390         288B891A20           288B545A26         1875         346         1875         391         288B891A20           288B545A27         1875         348         1875         392         288B891A31           288B545A29         1875         348         1875         392         288B891A31           288B545A31         1875         348         1875         393         288B891A31           288B548A31         1875         350         1875         394         288B891A32           288B548A29         1875         351         1875         396         288B891A32           288B548A29         1875         352         1876         908         288B548A29           288B548A29         1875         353         1876         909         288B548A31         1875         356         1876         91           288B548A31         1875         356         1876         912         288B548A32         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                       |
| 184A004A27       1875 344       1875 389       288B890A21         1875 345       1875 390       288B891A27         288B545A16       1875 346       1875 391       288B891A27         288B545A26       1875 347       1875 392       288B891A32         288B545A27       1875 348       1875 393       288B891A33         288B545A30       1875 349       1875 394       288B891A33         288B545A31       1875 351       1875 396       288B548A26         288B548A27       1875 352       1876 908       288B548A28         288B548A28       1875 354       1876 909       288B548A28         288B548A31       1875 356       1876 910         288B548A31       1875 356       1876 911         288B548A31       1875 357       1876 912         288B548A32       1875 358       1876 913         288B553A20       288B553A25          288B553A26       288B553A27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |
| 184A004A28     1875     344     1875     389     288B890A22       288B545A16     1875     346     1875     390     288B891A2       288B545A26     1875     346     1875     391     288B891A2       288B545A26     1875     347     1875     392     288B891A2       288B545A29     1875     393     288B891A3       288B545A30     1875     350     1875     394     288B891A3       288B548A11     1875     351     1875     396     288B848A3       288B548A27     1875     352     1876     908     288B548A3       288B548A28     1875     353     1876     909       288B548A29     1875     354     1876     910       288B548A31     1875     356     1876     911       288B548A31     1875     357     1876     913       288B553A20     288B553A20     288B553A26       288B553A26     288B553A27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 288B890A28                                                                                                                                                                                                                            |
| 288B545A16 1875 345 1875 390 288B891A22 288B545A26 1875 347 1875 391 288B891A22 288B545A27 1875 348 1875 393 288B891A32 288B545A29 288B545A30 1875 349 1875 395 288B891A32 288B545A31 1875 350 1875 395 288B545A31 1875 351 1875 396 288B548A31 1875 351 1875 396 288B548A32 1875 353 1876 908 288B548A32 1875 353 1876 909 288B548A30 1875 354 1876 910 288B548A30 1875 356 1876 911 288B548A31 1875 356 1876 911 288B548A32 1875 358 1876 912 288B548A32 1875 358 1876 912 288B553A25 288B553A26 288B553A26 288B553A26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |
| 288B545A16       1875       346       1875       391       288B891A2         288B545A26       1875       347       1875       392       288B891A3         288B545A27       1875       348       1875       392       288B891A3         288B545A29       1875       348       1875       394       288B891A3         288B545A31       1875       350       1875       396       288B548A1       288B548A2       1875       352       1876       908       288B548A28       288B548A28       1875       353       1876       909       288B548A28       1875       354       1876       909       288B548A31       1875       355       1876       910       1875       356       1876       911       288B548A31       1875       357       1876       912       288B548A31       1875       358       1876       914       288B553A20       288B553A20       288B553A25       288B553A27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 288B890A29                                                                                                                                                                                                                            |
| 288B545A16       1875       346       1875       391       288B891A26         288B545A26       1875       347       1875       392       288B891A32         288B545A27       1875       348       1875       393       288B891A32         288B545A29       288B545A30       1875       349       1875       394       288B891A32         288B545A31       1875       350       1875       395       288B84A8A6       288B54A8A7       1875       352       1876       908         288B548A28       1875       353       1876       909       288B548A28       288B548A29       1875       355       1876       910         288B548A30       1875       356       1876       911       288B548A31       1875       356       1876       912         288B548A31       1875       358       1876       914       288B553A20         288B553A25       288B553A27       288B553A27       288B553A27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 288B891A27                                                                                                                                                                                                                            |
| 288B545A26 1875 347 1875 392 288B891A30 288B545A29 1875 348 1875 393 288B891A30 288B545A30 1875 349 1875 394 288B545A31 1875 350 1875 395 288B545A31 1875 351 1875 396 288B548A27 1875 352 1876 908 288B548A28 288B548A28 288B548A29 1875 354 1876 909 288B548A28 288B548A31 1875 356 1876 910 1875 356 1876 911 288B548A31 1875 356 1876 911 288B548A31 1875 357 1876 911 288B548A31 1875 357 1876 913 288B548A32 1875 358 1876 914 288B553A20 288B553A25 288B553A26 288B553A27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 288B545A16 1875 346 1875 391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                       |
| 288B545A27 1875 348 1875 393 288B891A32 288B545A29 288B545A30 1875 349 1875 394 288B891A32 288B545A31 1875 350 1875 395 288B548A16 1875 352 1876 908 288B548A27 1875 353 1876 909 288B548A28 1875 355 1876 910 288B548A29 1875 355 1876 911 288B548A30 1875 356 1876 911 288B548A31 1875 357 1876 912 288B548A32 1875 358 1876 914 288B553A26 288B553A26 288B553A26 288B553A26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 288B545A26 1875 347 1875 392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                       |
| 288B545A29 288B545A30 1875 349 1875 350 1875 394 288B545A31 1875 351 288B548A31 1875 352 1876 908 288B548A27 288B548A27 1875 353 1876 909 288B548A28 288B548A29 1875 355 1876 910 288B548A30 1875 356 1876 911 288B548A31 1875 356 1876 912 288B548A31 1875 357 1876 913 288B548A32 1875 358 1876 914 288B553A26 288B553A26 288B553A27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |
| 288B545A30 1875 349 1875 394 288B891A32 288B545A31 1875 350 1875 396 288B548A16 1875 351 1875 396 288B548A27 1875 352 1876 908 288B548A28 288B548A29 1875 354 1876 910 288B548A30 1875 356 1876 911 288B548A31 1875 356 1876 912 288B548A31 1875 357 1876 913 288B548A31 1875 357 1876 913 288B548A32 1875 358 1876 914 288B553A20 288B553A26 288B553A27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200B03TA3T                                                                                                                                                                                                                            |
| 1875 350 1875 395 288B545A31 1875 351 1875 396 288B548A16 1875 352 1876 908 288B548A27 1875 353 1876 909 288B548A28 1875 354 1876 910 1875 355 1876 911 288B548A30 1875 356 1876 912 288B548A31 1875 357 1876 913 288B548A32 1875 358 1876 914 288B553A26 288B553A26 288B553A26 288B553A26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000004400                                                                                                                                                                                                                            |
| 288B548A31 1875 351 1876 908 288B548A27 1875 352 1876 909 288B548A28 1875 353 1876 909 288B548A29 1875 354 1876 910 1875 355 1876 911 288B548A30 1875 356 1876 912 288B548A31 1875 357 1876 913 288B548A32 1875 358 1876 914 288B553A20 288B553A25 288B553A26 288B553A26 288B553A27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 288B891A32                                                                                                                                                                                                                            |
| 288B548A16 1875 352 1876 908<br>288B548A27 1875 353 1876 909<br>288B548A28 288B548A29 1875 355 1876 911<br>288B548A31 1875 356 1876 911<br>288B548A31 1875 357 1876 912<br>288B548A31 1875 357 1876 913<br>288B548A32 1875 358 1876 914<br>288B553A20 288B553A20 288B553A27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |
| 288B548A27 1875 353 1876 909 288B548A28 1875 354 1876 910 1875 355 1876 911 288B548A30 1875 356 1876 912 288B548A31 1875 357 1876 913 288B548A32 1875 358 1876 914 288B553A20 288B553A25 288B553A26 288B553A26 288B553A26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |
| 288B548A28<br>288B548A29<br>1875 355<br>1876 910<br>1875 355<br>1876 911<br>288B548A30<br>288B548A31<br>288B548A31<br>288B548A32<br>288B553A20<br>288B553A25<br>288B553A26<br>288B553A26<br>288B553A27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |
| 288B548A29 1875 354 1876 910 1875 355 1876 911 288B548A30 1875 356 1876 912 288B548A31 1875 357 1876 913 288B548A32 1875 358 1876 914 288B553A20 288B553A25 288B553A26 288B553A27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2000010,12,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                       |
| 1875 355 1876 911<br>288B548A30 1875 356 1876 912<br>288B548A31 1875 357 1876 913<br>288B548A32 1875 358 1876 914<br>288B553A20<br>288B553A25<br>288B553A26<br>288B553A26<br>288B553A27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |
| 288B548A30 1875 356 1876 912<br>288B548A31 1875 357 1876 913<br>288B548A32 1875 358 1876 914<br>288B553A20<br>288B553A25 288B553A26<br>288B553A26<br>288B553A27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |
| 288B548A31 1876 357 1876 913<br>288B548A32 1875 358 1876 914<br>288B553A20<br>288B553A25<br>288B553A26<br>288B553A27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1875 355 1876 9 <b>1</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                       |
| 288B548A31 1875 357 1876 913<br>288B548A32 1875 358 1876 914<br>288B553A20<br>288B553A25<br>288B553A26<br>288B553A27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 288B548A30 1875 356 1876 912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                       |
| 288B548A32 1875 358 1876 914<br>288B553A20<br>288B553A25<br>288B553A26<br>288B553A27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |
| 288B553A20<br>288B553A25<br>288B553A26<br>288B553A27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |
| 288B553A25<br>288B553A26<br>288B553A27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |
| 288B553A26<br>288B553A27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |
| 288B553A27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 288B553A25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 288B553A26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 288B553A27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                       |
| 288B553A28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 288B553A28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                       |
| 288B553A31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 288B553A32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                       |

① Refer to RPD 41-076A1 for parts information on type FT-11 Flexitest cases.


# Westinghouse



| Style Numbe<br>Relavs (50 o            | ers of Circuit (<br>r 60 Hertz) | Closing     | Reference<br>Number | Description of        | Part                |                                         | Style Number<br>of Part |
|----------------------------------------|---------------------------------|-------------|---------------------|-----------------------|---------------------|-----------------------------------------|-------------------------|
| • •                                    | •                               |             | 1                   | Handle With Do        | uble Latch Assemb   | oly                                     | 289B882G01              |
| Forque Control                         | i Relays                        |             | 2                   | Nut for Frame at      | nd Handle Screws    |                                         | 1155 351                |
| Single Trip                            |                                 |             |                     | Flectromagnet w       | ith Tan Block and   | Tap Plate                               | See Table Pg. 4         |
|                                        |                                 |             | <b>★</b> 3          | Inculated Tap Sc      | TELL TOP DIOCK and  |                                         | 1545 282                |
| 1955 860                               | 288B717A17                      | 289B094A16  | 4                   | Illisulated Tap oc    |                     |                                         |                         |
| 1956 685                               | 288B717A18                      | 289B094A17  | -                   | Dice and Shaft        | Accomply with Las   | wer Bearing                             | 880A772G12              |
| 956 768                                | 288B717A19                      | 289B094A18  | 5                   | Disc and Strait A     | 455embly With Lov   |                                         | 184A440G01              |
| 1962 747                               | 288B717A20                      | 289B094A19  | . 6                 | Lower Bearing         | C-i and Adim        | ster Assembly                           | Soo Table Belov         |
| 1963 114                               | 288B717A21                      | 289B094A20  | <b>★</b> 7          | Ivioving Contact      | , Spring and Adju   |                                         | 2/00/37600              |
|                                        |                                 |             | 8                   | Lower Bearing         | crew and Pin        | • • • • • • • • • • • • • • • • • • • • | E2D6201G02              |
| 1963 215                               | 288B717A22                      | 289B094A21  | 9                   | Upper Bearing S       | crew and Pin        |                                         | 52D6251G03              |
| 1963 216                               | 288B717A23                      | 289B094A22  |                     | 1                     |                     |                                         | 1070 001                |
| 288B715A09                             | 288B717A24                      | 289B094A23  | 10                  | Dial Assembly.        |                     |                                         | 220211000               |
| 288B715A10                             | 288B717A25                      | 289B094A24  | 11                  | Insulation for St     | ationary Contact.   |                                         | 1722 778                |
| 288B715A12                             | 288B717A29                      | 289B094A25  | <b>★</b> 12         | Stationary Conta      | act (2 Required to  | Double Trip)                            | 1/32 //0                |
| 100D/10/12                             | 2005/1//20                      | 20000047120 |                     |                       |                     |                                         | 4700 750                |
| 288B715A13                             | 288B717A30                      | 289B094A26  | 13                  | Contact Plate, S      | ingle Trip Relay    |                                         | , 1/32 /59              |
|                                        |                                 |             | 14                  | Contact Plate, D      | ouble Trip Relay.   |                                         | . 818 /94               |
| 288B715A14                             | 288B717A31                      | 289B094A27  | 15                  | Adjusting Screv       | v                   |                                         | . 718 931               |
| 288B715A15                             | 288B717A32                      | 289B094A28  |                     |                       |                     |                                         |                         |
| 288B715A16                             | 288B718A09                      | 289B094A29  | 16                  | Permanent Mag         | net                 |                                         | See Table Pg.           |
| 288B715A17                             | 288B718A10                      | 289B432A09  | <b>★</b> 17         | 1.1.T. Unit (wher     | n used)             |                                         | See Table Pg.           |
|                                        |                                 | 0000400440  | <del>1</del> 18     | LCS Unit              |                     |                                         | See Table Pg. 4         |
| 288B715A18                             | 288B718A11                      | 289B432A10  | <del>★</del> 19     | I.T.H. Unit (whe      | en used)            |                                         | See Table Pg.           |
| 288B715A19                             | 288B718A13                      | 289B432A12  |                     |                       |                     |                                         |                         |
| 288B715A21                             | 288B718A14                      | 289B432A13  | Parts indented a    | re included in the pa | art under which the | ey are indented.                        |                         |
| 288B715A22                             | 288B718A15                      | 289B432A14  |                     |                       |                     |                                         |                         |
| 288B715A23                             | 288B718A16                      | 289B432A15  | ★ Recommende        | ed for stock.         |                     |                                         |                         |
|                                        |                                 | 0000400446  |                     |                       |                     |                                         |                         |
| 288B715A24                             | 288B718A17                      | 289B432A16  | Moving Conta        | ict,                  |                     |                                         |                         |
| 288B715A25                             | 288B718A18                      | 289B432A17  | Spring, and A       | djuster Assembly      |                     |                                         |                         |
| 288B715A26                             | 288B718A19                      | 289B432A18  | Relay               | Style Numbers         |                     |                                         |                         |
| 288B715A27                             | 288B718A20                      | 289B432A19  |                     |                       | I Dauble Trin       |                                         |                         |
| 288B715A28                             | 288B718A21                      | 289B432A21  | Type                | Single Trip           | Double Trip         |                                         |                         |
| 0000745400                             | 0000740400                      | 2000422422  |                     | 0004704040            | 000 4721 015        |                                         |                         |
| 288B715A30                             | 288B718A22                      | 289B432A22  | CO-2                | 880A721G10            | 880A721G15          |                                         |                         |
| 288B715A31                             | 288B718A23                      | 289B432A23  | CO-5                | 880A721G09            | 880A721G14          |                                         |                         |
| 288B715A32                             | 288B718A24                      | 289B432A24  | CO-6                | 880A721G09            | 880A721G14          |                                         |                         |
| 288B716A09                             | 288B718A27                      | 289B432A25  |                     |                       |                     |                                         |                         |
| 288B716A10                             | 288B718A28                      | 289B432A28  | CO-7                | 880A721G09            | 880A721G14          |                                         |                         |
|                                        |                                 | 0000700400  | CO-8                | 880A721G09            | 880A721G14          |                                         |                         |
| 288B716A11                             | 288B718A29                      | 292B728A09  |                     |                       | 000 4 704 04 5      |                                         |                         |
| 288B716A13                             | 288B718A30                      | 292B728A10  | CO-9                | 880A721G09            | 880A721G14          |                                         |                         |
| 288B716A14                             | 288B718A31                      | 292B728A11  | CO-11               | 880A721G11            | 880A721G16          |                                         |                         |
| 288B716A15                             | 288B718A32                      | 292B728A13  |                     |                       |                     |                                         |                         |
| 288B716A16                             | 288B718A33                      | 292B728A14  |                     |                       |                     |                                         |                         |
| 2000710417                             | 2000002402                      | 2020720415  |                     |                       |                     |                                         |                         |
| 288B716A17                             | 289B093A09                      | 292B728A15  |                     |                       |                     |                                         |                         |
| 288B716A18                             | 289B093A10                      | 292B728A16  |                     |                       |                     |                                         |                         |
| 288B716A19                             | 289B093A11                      | 292B728A17  |                     |                       |                     |                                         |                         |
| 288B716A20                             | 289B093A13                      | 292B728A18  |                     |                       |                     |                                         |                         |
| 288B716A21                             | 289B093A14                      | 292B728A19  |                     |                       |                     |                                         |                         |
| 2000716822                             | 2000002445                      | 292B728A20  |                     |                       |                     |                                         |                         |
| 288B716A22                             | 289B093A15                      |             |                     |                       |                     |                                         |                         |
| 288B716A23                             | 289B093A17                      | 292B728A21  |                     |                       |                     |                                         |                         |
| 288B716A24                             | 289B093A18                      | 292B728A22  |                     |                       |                     |                                         |                         |
| 288B716A26                             | 289B093A19                      | 292B728A23  |                     |                       |                     |                                         |                         |
| 288B716A27                             | 289B093A20                      | 292B728A24  |                     |                       |                     |                                         |                         |
| 2000716420                             | 2000002421                      |             |                     |                       |                     |                                         |                         |
| 288B716A28                             | 289B093A21                      |             |                     |                       |                     |                                         |                         |
| 288B716A29                             | 289B093A22                      |             |                     |                       |                     |                                         |                         |
| 288B716A30                             | 289B093A23                      |             |                     |                       |                     |                                         |                         |
| 288B717A09                             | 289B093A24                      |             |                     |                       |                     |                                         |                         |
| 288B717A10                             | 289B094A09                      |             |                     |                       |                     |                                         |                         |
| 2000717411                             | 2000004410                      |             |                     |                       |                     |                                         |                         |
| 288B717A11                             | 289B094A10                      |             |                     |                       |                     |                                         |                         |
| 288B717A13                             | 289B094A11                      |             |                     |                       |                     |                                         |                         |
| 0000004044                             |                                 |             |                     |                       |                     |                                         |                         |
| 288B717A14                             | 289B094A13                      |             |                     |                       |                     |                                         |                         |
| 288B717A14<br>288B717A15<br>288B717A16 | 289B094A14<br>289B094A15        |             |                     |                       |                     |                                         |                         |

# **Protective Relays**

Type CO-2, 5, 6, 7, 8, 9, 11 In FT-11 Flexitest Case®



# **Protective Relays**

Type CO-2, 5, 6, 7, 8, 9, 11 In FT-11 Flexitest Case®

# Magnet Style Numbers

Relay Type

| Style Numbers

|                                                       |                                            | Electromagnet (Reference 3) Ampere Rating            |                                                                                                              |                                                                                                              |                                                                                                              |                                                                                              |  |  |  |
|-------------------------------------------------------|--------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|
| Non Torque Control                                    |                                            | .1 to 5                                              | .5 to 2.5                                                                                                    | 2 to 6                                                                                                       | 4 to 12                                                                                                      | Permanent Magnet<br>(Reference 16)                                                           |  |  |  |
| CO-2<br>CO-5<br>CO-6<br>CO-7<br>CO-8<br>CO-9<br>CO-11 | 50<br>And<br>60<br>Hertz                   | 876A616G08<br>876A616G09<br>878A616G09<br>183A475G20 | 183A475G05<br>183A475G06<br>183A475G06<br>183A475G07<br>183A475G08<br>183A475G08<br>183A475G09               | 183A475G10<br>774B310G12<br>774B310G12<br>183A475G12<br>774B310G18<br>774B310G18<br>183A475G14               | 183A475G15<br>774B310G13<br>774B310G13<br>774B310G15<br>774B310G19<br>774B310G19<br>183A475G19               | 1732 780<br>1732 777<br>1732 779<br>1732 780<br>1732 777<br>1732 777<br>1732 777             |  |  |  |
| With Torqu                                            | ue Control                                 |                                                      |                                                                                                              |                                                                                                              |                                                                                                              |                                                                                              |  |  |  |
| CO-2<br>CO-5<br>CO-6<br>CO-7<br>CO-8<br>CO-9<br>CO-11 | 50<br>And<br>60<br>Hertz<br>60 Hz<br>60 Hz |                                                      | 183A476G05<br>183A476G06<br>183A476G06<br>183A476G07<br>183A476G08<br>183A476G08<br>183A476G09<br>878A616G05 | 183A476G10<br>774B310G12<br>774B310G12<br>183A476G12<br>774B310G18<br>774B310G18<br>183A476G14<br>878A616G06 | 183A476G15<br>774B310G13<br>774B310G15<br>774B310G15<br>774B310G19<br>774B310G19<br>183A476G19<br>878A616G07 | 1732 780<br>1732 777<br>1732 779<br>1732 780<br>1732 777<br>1732 777<br>1732 777<br>1732 777 |  |  |  |

# IIT Unit (Reference 17) when used Less Stationary Contacts

| Amperes | Style Numbers |             |  |  |  |  |
|---------|---------------|-------------|--|--|--|--|
| A-c     | Single Trip   | Double Trip |  |  |  |  |
| 1.5-6   | 3491A24G14    | 3491A24G22  |  |  |  |  |
| 2-8     | 3491A24G13    | 3491A24G21  |  |  |  |  |
| 4-16    | 3491A24G09    | 3491A24G17  |  |  |  |  |
| 10-40   | 3491 A24G10   | 3491 A24G18 |  |  |  |  |
| 20-80   | 3491 A24G11   | 3491 A24G19 |  |  |  |  |
| 40-160  | 3491 A24G12   | 3491 A24G20 |  |  |  |  |

Refer to RPD 41-852A1 for complete breakdown of parts and stationary contacts.

# ICS Unit (Reference 18) Less Stationary Contacts Target | Style Num

| larget    | Style Numbers  Ampere Rating 0.2 to 2.0 D-c |                          |  |  |  |
|-----------|---------------------------------------------|--------------------------|--|--|--|
| Marking   |                                             |                          |  |  |  |
|           | Single Trip                                 | Double Trip              |  |  |  |
| None<br>T | 3491A37G17<br>3491A37G09                    | 3491A37G18<br>3491A37G10 |  |  |  |

Refer to RPD 41-852A1 for complete breakdown of parts and stationary contacts.

#### ITH Unit (Reference 19) When Used **Less Stationary Contacts**

| Ampere<br>Rating | Style<br>Number |
|------------------|-----------------|
| .255             | 3491A23G15      |
| .5-1.0           | 3491A23G15      |
| 1-2              |                 |
| • =              | 3491A23G05      |
| 2-4              | 3491A23G06      |
| 4-8              | 3491A23G07      |
| 6-12             | 3491 A23 G21    |
| 8-16             | 3491A23G08      |
| 16-32            | 3491A23G19      |

Refer to RPD 41-852A1 for complete breakdown of parts.



# INSTALLATION • OPERATION • MAINTENANCE INSTALLATION • OPERATION • MAINTENANCE

# TYPE CO OVERCURRENT RELAY

#### CAUTION

Before putting relays into service, remove all blocking which may have been inserted for the purpose of securing the parts during shipment, make sure that all moving parts operate freely, inspect the contacts to see that they are clean and close properly, and operate the relay to check the settings and electrical connections.

# **APPLICATION**

These induction overcurrent relays are used to disconnect circuits or apparatus when the current in them exceeds a given value. Where a station battery (48 volts or over) is available, the circuit closing type relays are normally used to trip the circuit breaker.

#### **CONTENTS**

This instruction leaflet applies to the following types of relays:

Type CO-2 Short Time Relay

CO-5 Long Time Relay

CO-6 Definite Minimum Time Relay

CO-7 Moderately Inverse Time Relay

CO-8 Inverse Time Relay

CO-9 Very Inverse Time Relay

CO-11 Extremely Inverse Time Relay

# CONSTRUCTION AND OPERATION

The type CO relays consist of an overcurrent unit (CO), an indicating contactor switch (ICS), and an indicating instantaneous trip unit (IIT) when required. The principal component parts of the relay and their location are shown in Figs. 1-5.

#### Electromagnet

The electromagnets for the types CO-5, CO-6, CO-7, CO-8 and CO-9 relays have a main tapped coil located on the center leg of an "E" type laminated structure that produces a flux which divides and returns through the outer legs. A shading coil causes the flux through the left leg to lag the main pole flux. The out-of-phase fluxes thus produced in the air gap

cause a contact closing torque.

The electromagnets for the types CO-2 and CO-11 relays have a main coil consisting of a tapped primary winding and a secondary winding. Two identical coils on the outer legs of the lamination structure are connected to the main coil secondary in a manner so that the combination of all the fluxes produced by the electromagnet result in out-of-phase fluxes in the air gap. The out-of-phase air gap fluxes produced cause a contact closing torque.

# Indicating Contactor Switch Unit (ICS)

The d-c indicating contactor switch is a small clapper type device. A magnetic armature, to which leaf-spring mounted contacts are attached, is attracted to the magnetic core upon energization of the switch. When the switch closes the moving contacts bridge two stationary contacts, completing the trip circuit. Also during this operation two fingers on the armature deflect a spring located on the front of the switch, which allows the operation indicator target to drop.

The front spring, in addition to holding the target, provides restraint for the armature and thus controls the pickup value of the switch.

#### Indicating Instantaneous Trip Unit (IIT)

The instantaneous trip unit is a small a-c operated clapper type device. A magnetic armature, to which leaf-spring mounted contacts are attached, is attracted to the magnetic core upon energization of the switch. When the switch closes, the moving contacts bridge two stationary contacts completing the trip circuit. Also, during the operation, two fingers on the armature deflect a spring located on the front of the switch which allows the operation indicator target to drop.

A core screw accessible from the top of the switch provides the adjustable pickup range. The minimum and maximum pick-up points are indicated on the scale which is located to the rear of the core screw.

# **CHARACTERISTICS**

The relays are generally available in the following current ranges:

SUPERSEDES I.L. 41-101

\* Denotes changed from superseded issue.

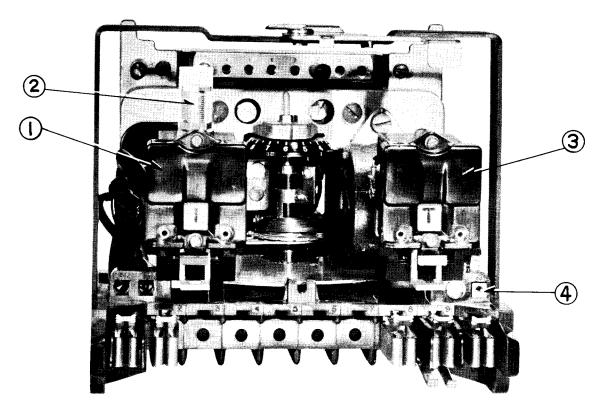



Fig. 1. Type CO Relay Without Case. 1-Indicating Instantaneous trip (IIT). 2-IIT Adjusting Screw. 3-Indicating Contactor Switch (ICS). 4-Indicating Contactor Switch Tap Block.

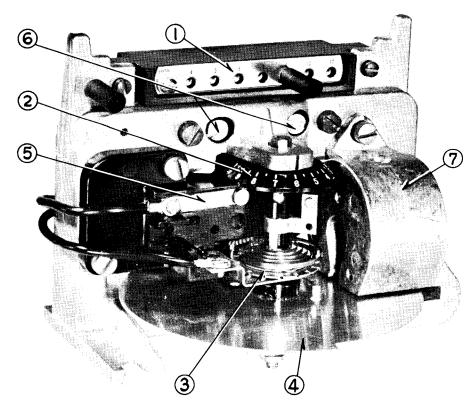
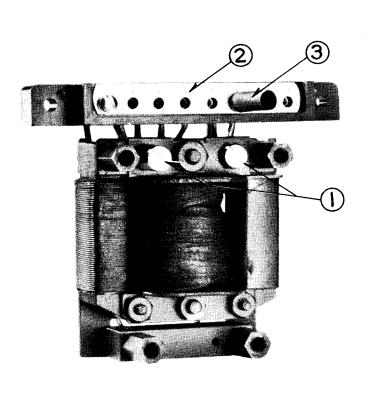
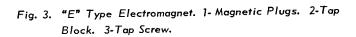





Fig. 2. Time Overcurrent Unit (Front View). 1-Tap Block. 2-Time Dial. 3-Control Spring Assembly. 4-Disc. 5-Stationary Contact Assembly. 6-Magnetic Plugs. 7-Permanent Magnet.





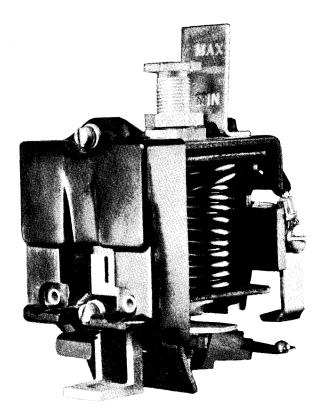



Fig. 4. Indicating Instantaneous Trip Unit (IIT).

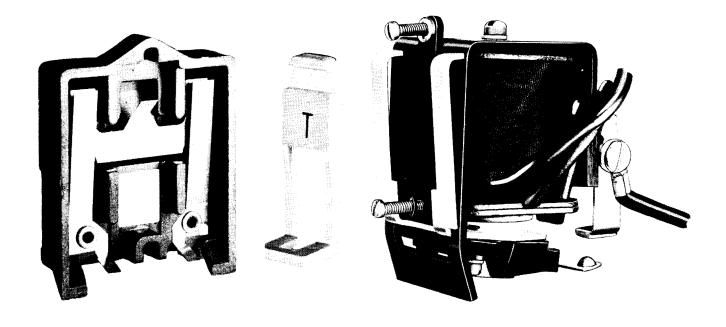



Fig. 5. Indicating Contactor Switch (ICS).

| Range    |     |     |     | Taps |     |     |     |
|----------|-----|-----|-----|------|-----|-----|-----|
| .5 - 2.5 | 0.5 | 0.6 | 8.0 | 1.0  | 1.5 | 2.0 | 2.5 |
| 2 - 6    | 2   | 2.5 | 3   | 3.5  | 4   | 5   | 6   |
| 4 - 12   | 4   | 5   | 6   | 7    | 8   | 10  | 12  |

The tap value is the minimum current required to just close the relay contacts.

These relays may have either single or double circuit closing contacts for tripping either one or two circuit breakers.

The time vs. current characteristics are shown in Figs. 7 to 13. These characteristics give the contact closing time for the various time dial settings when the indicated multiples of tap value current are applied to the relay.

# Trip Circuit

The main contacts will safely close 30 amperes at 250 volts d-c and the seal-in contacts of the indi-

cating contactor switch will safely carry this current long enough to trip a circuit breaker.

The indicating instantaneous trip contacts will safely close 30 amperes at 250 volts d-c, and will carry this current long enough to trip a breaker.

The indicating contactor switch has two taps that provide a pickup setting of 0.2 or 2 amperes. To change taps requires connecting the lead located in front of the tap block to the desired setting by means of a screw connection.

#### Trip Circuit Constants

Contactor Switch -

- 0.2 ampere tap 6.5 ohms d-c resistance
- 2.0 ampere tap 0.15 ohms d-c resistance



Fig. 6. External Schematic of the Circuit-Closing Type CO Relay for Phase and Ground Overcurrent Protection on a Three-Phase System.

TYPE CO-2 RELAY

|                 |      |                                   |                                    |                           | VOLT AMPERES**       |                              |                                     |                                     |
|-----------------|------|-----------------------------------|------------------------------------|---------------------------|----------------------|------------------------------|-------------------------------------|-------------------------------------|
| AMPERE<br>RANGE | TAP  | CONTINUOUS<br>RATING<br>(AMPERES) | ONE SECOND<br>RATING*<br>(AMPERES) | POWER FACTOR ANGLE $\phi$ | AT TAP VALUE CURRENT | AT 3 TIMES TAP VALUE CURRENT | AT 10 TIMES<br>TAP VALUE<br>CURRENT | AT 20 TIMES<br>TAP VALUE<br>CURRENT |
|                 | 0.5  | 0.91                              | 28                                 | 58                        | 4.8                  | 39.6                         | 256                                 | 790                                 |
|                 | 0.6  | 0.96                              | 28                                 | 57                        | 4.9                  | 39.8                         | 270                                 | 851                                 |
|                 | 0.8  | 1.18                              | 28                                 | 53                        | 5.0                  | 42.7                         | 308                                 | 1024                                |
| 0.5/2.5         | 1.0  | 1.37                              | 28                                 | 50                        | 5.3                  | 45.4                         | 348                                 | 1220                                |
| 0.0, 2.0        | 1.5  | 1.95                              | 28                                 | 40                        | 6.2                  | 54.4                         | 435                                 | 1740                                |
|                 | 2.0  | 2.24                              | 28                                 | 36                        | 7.2                  | 65.4                         | 580                                 | 2280                                |
|                 | 2.5  | 2.50                              | 28                                 | 29                        | 7.9                  | 73.6                         | 700                                 | 2850                                |
|                 | 2.0  | 3.1                               | 110                                | 59                        | 5.04                 | 38.7                         | 262                                 | 800                                 |
|                 | 2.5  | 4.0                               | 110                                | 55                        | 5.13                 | 39.8                         | 280                                 | 920                                 |
|                 | 3.0  | 4.4                               | 110                                | 51                        | 5.37                 | 42.8                         | 312                                 | 1008                                |
| 2/6             | 3,5  | 4.8                               | 110                                | 47                        | 5.53                 | 42.8                         | 329                                 | 1120                                |
| _, ,            | 4.0  | 5.2                               | 110                                | 45                        | 5.72                 | 46.0                         | 360                                 | 1216                                |
|                 | 5.0  | 5.6                               | 110                                | 41                        | 5.90                 | 50.3                         | 420                                 | 1500                                |
|                 | 6.0  | 6.0                               | 110                                | 37                        | 6.54                 | 54.9                         | 474                                 | 1800                                |
|                 | 4.0  | 7.3                               | 230                                | 65                        | 4.92                 | 39.1                         | 268                                 | 848                                 |
|                 | 5.0  | 8.0                               | 230                                | 50                        | 5.20                 | 42.0                         | 305                                 | 1020                                |
|                 | 6.0  | 8.8                               | 230                                | 47                        | 5.34                 | 44.1                         | 330                                 | 1128                                |
| 4/12            | 7.0  | 9.6                               | 230                                | 46                        | 5.35                 | 45.8                         | 364                                 | 1260                                |
| 1/ 12           | 8.0  | 10.4                              | 230                                | 43                        | 5.86                 | 49.9                         | 400                                 | 1408                                |
|                 | 10.0 | 11.2                              | 230                                | 37                        | 6.6                  | 55.5                         | 470                                 | 1720                                |
|                 | 12.0 | 12.0                              | 230                                | 34                        | 7.00                 | 62.3                         | 528                                 | 2064                                |

<sup>\*</sup> Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

φ Degrees current lags voltage at tap value current.

<sup>\*\*</sup> Voltages taken with Rectox type voltmeter.

CO-5 LONG TIME AND CO-6 DEFINITE MINIMUM TIME RELAYS

|                 |                                                             |                                                 |                                               |                                        | VOLT AMPERES**                                       |                                                      |                                               |                                                |  |
|-----------------|-------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------|--|
| AMPERE<br>RANGE | TAP                                                         | CONTINUOUS<br>RATING<br>(AMPERES)               | ONE SECOND<br>RATING*<br>(AMPERES)            | POWER FACTOR ANGLE $\phi$              | AT<br>TAP VALUE<br>CURRENT                           | AT 3 TIMES<br>TAP VALUE<br>CURRENT                   | AT 10 TIMES<br>TAP VALUE<br>CURRENT           | AT 20 TIMES<br>TAP VALUE<br>CURRENT            |  |
| 0.5/2.5         | (0.5)<br>(0.6)<br>(0.8)<br>(1.0)<br>(1.5)<br>(2.0)<br>(2.5) | 2<br>2.2<br>2.5<br>2.8<br>3.4<br>4.0<br>4.4     | 56<br>56<br>56<br>56<br>56<br>56<br>56        | 69<br>68<br>67<br>66<br>62<br>60<br>58 | 3.92<br>3.96<br>3.96<br>4.07<br>4.19<br>4.30         | 20.6<br>20.7<br>21<br>21.4<br>23.2<br>24.9<br>26.2   | 103<br>106<br>114<br>122<br>147<br>168<br>180 | 270<br>288<br>325<br>360<br>462<br>548<br>630  |  |
| 2/6             | (2<br>(2.5<br>(3<br>(3.5<br>(4<br>(5<br>(6                  | 8<br>8.8<br>9.7<br>10.4<br>11.2<br>12.5<br>13.7 | 230<br>230<br>230<br>230<br>230<br>230<br>230 | 67<br>66<br>64<br>63<br>62<br>59       | 3.88<br>3.87<br>3.93<br>4.09<br>4.08<br>4.20<br>4.38 | 21<br>21.6<br>22.1<br>23.1<br>23.5<br>24.8<br>26.5   | 110<br>118<br>126<br>136<br>144<br>162<br>183 | 308<br>342<br>381<br>417<br>448<br>540<br>624  |  |
| 4/12            | (4<br>(5<br>(6<br>(7<br>(8<br>(10<br>(12                    | 16<br>18.8<br>19.3<br>20.8<br>22.5<br>25        | 460<br>460<br>460<br>460<br>460<br>460        | 65<br>63<br>61<br>59<br>56<br>53<br>47 | 4.00<br>4.15<br>4.32<br>4.27<br>4.40<br>4.60<br>4.92 | 22.4<br>23.7<br>25.3<br>26.4<br>27.8<br>30.1<br>35.6 | 126<br>143<br>162<br>183<br>204<br>247<br>288 | 376<br>450<br>531<br>611<br>699<br>880<br>1056 |  |

#### CO-7 MODERATELY INVERSE TIME RELAY

|                 |                                                             |                                                 |                                               |                                        | VOLT AMPERES**                                       |                                                      |                                               |                                               |
|-----------------|-------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| AMPERE<br>RANGE | TAP                                                         | CONTINUOUS RATING (AMPERES)                     | ONE SECOND<br>RATING*<br>(AMPERES)            | POWER FACTOR ANGLE $\phi$              | AT<br>TAP VALUE<br>CURRENT                           | AT 3 TIMES<br>TAP VALUE<br>CURRENT                   | AT 10 TIMES<br>TAP VALUE<br>CURRENT           | AT 20 TIMES<br>TAP VALUE<br>CURRENT           |
| 0.5/2.5         | (0.5)<br>(0.6)<br>(0.8)<br>(1.0)<br>(1.5)<br>(2.0)<br>(2.5) | 2<br>2.2<br>2.5<br>2.8<br>3.4<br>4.0<br>4.4     | 56<br>56<br>56<br>56<br>56<br>56              | 68<br>67<br>66<br>64<br>61<br>58<br>56 | 3.88<br>3.93<br>3.93<br>4.00<br>4.08<br>4.24<br>4.38 | 20.7<br>20.9<br>21.1<br>21.6<br>22.9<br>24.8<br>25.9 | 103<br>107<br>114<br>122<br>148<br>174        | 278<br>288<br>320<br>356<br>459<br>552<br>640 |
| 2/6             | (2<br>(2.5<br>(3<br>(3.5<br>(4<br>(5<br>(6                  | 8<br>8.8<br>9.7<br>10.4<br>11.2<br>12.5<br>13.7 | 230<br>230<br>230<br>230<br>230<br>230<br>230 | 66<br>63<br>63<br>62<br>61<br>59       | 4.06<br>4.07<br>4.14<br>4.34<br>4.34<br>4.40<br>4.62 | 21.3<br>21.8<br>22.5<br>23.4<br>23.8<br>25.2<br>27   | 111<br>120<br>129<br>141<br>149<br>163<br>183 | 306<br>342<br>366<br>413<br>448<br>530<br>624 |
| 4/12            | (4<br>(5<br>(6<br>(7<br>(8<br>(10<br>(12                    | 16<br>18.8<br>19.3<br>20.8<br>22.5<br>25        | 460<br>460<br>460<br>460<br>460<br>460        | 64<br>61<br>60<br>58<br>55<br>51       | 4.24<br>4.30<br>4.62<br>4.69<br>4.80<br>5.20<br>5.40 | 22.8<br>24.2<br>25.9<br>27.3<br>29.8<br>33<br>37.5   | 129<br>149<br>168<br>187<br>211<br>260<br>308 | 392<br>460<br>540<br>626<br>688<br>860        |

<sup>\*</sup> Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

 $<sup>\</sup>phi$  Degrees current lags voltage at tap value current.

<sup>\*\*</sup> Voltages taken with Rectox type voltmeter.

# CO-8 INVERSE TIME AND CO-9 VERY INVERSE TIME RELAYS

|                 |                                                             |                                                 |                                                      |                                        | VOLT AMPERES**                                       |                                                      |                                               |                                                |  |
|-----------------|-------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------|--|
| AMPERE<br>RANGE | TAP                                                         | CONTINUOUS<br>RATING<br>(AMPERES)               | ONE SECOND RATING* (AMPERES)                         | POWER FACTOR ANGLE $\phi$              | AT<br>TAP VALUE<br>CURRENT                           | AT 3 TIMES<br>TAP VALUE<br>CURRENT                   | AT 10 TIMES<br>TAP VALUE<br>CURRENT           | AT 20 TIMES<br>TAP VALUE<br>CURRENT            |  |
| 0.5/2.5         | (0.5)<br>(0.6)<br>(0.8)<br>(1.0)<br>(1.5)<br>(2.0)<br>(2.5) | 2<br>2.2<br>2.5<br>2.8<br>3.4<br>4.0<br>4.4     | 56<br>56<br>56<br>56<br>56<br>56                     | 72<br>71<br>69<br>67<br>62<br>57<br>53 | 2.38<br>2.38<br>2.40<br>2.42<br>2.51<br>2.65<br>2.74 | 21<br>21<br>21.1<br>21.2<br>22<br>23.5<br>24.8       | 132<br>134<br>142<br>150<br>170<br>200<br>228 | 350<br>365<br>400<br>440<br>530<br>675<br>800  |  |
| 2/6             | (2<br>(2.5<br>(3<br>(3.5<br>(4<br>(5<br>(6                  | 8<br>8.8<br>9.7<br>10.4<br>11.2<br>12.5<br>13.7 | 230<br>230<br>230<br>230<br>230<br>230<br>230<br>230 | 70<br>66<br>64<br>62<br>60<br>58<br>56 | 2.38<br>2.40<br>2.42<br>2.48<br>2.53<br>2.64<br>2.75 | 21<br>21.1<br>21.5<br>22<br>22.7<br>24<br>25.2       | 136<br>142<br>149<br>157<br>164<br>180<br>198 | 360<br>395<br>430<br>470<br>500<br>580<br>660  |  |
| 4/12            | (4<br>(5<br>(6<br>(7<br>(8<br>(10<br>(12                    | 16<br>18.8<br>19.3<br>20.8<br>22.5<br>25        | 460<br>460<br>460<br>460<br>460<br>460               | 68<br>63<br>60<br>57<br>54<br>48       | 2.38<br>2.46<br>2.54<br>2.62<br>2.73<br>3.00<br>3.46 | 21.3<br>21.8<br>22.6<br>23.6<br>24.8<br>27.8<br>31.4 | 146<br>158<br>172<br>190<br>207<br>248<br>292 | 420<br>480<br>550<br>620<br>700<br>850<br>1020 |  |

#### TYPE CO-11 RELAY

|                 |      |                                   |                                    |                           | VOLT AMPERES**       |                              |                                     |                                     |  |
|-----------------|------|-----------------------------------|------------------------------------|---------------------------|----------------------|------------------------------|-------------------------------------|-------------------------------------|--|
| AMPERE<br>RANGE | TAP  | CONTINUOUS<br>RATING<br>(AMPERES) | ONE SECOND<br>RATING*<br>(AMPERES) | POWER FACTOR ANGLE $\phi$ | AT TAP VALUE CURRENT | AT 3 TIMES TAP VALUE CURRENT | AT 10 TIMES<br>TAP VALUE<br>CURRENT | AT 20 TIMES<br>TAP VALUE<br>CURRENT |  |
|                 | 0.5  | 1.7                               | 56                                 | 36                        | 0.72                 | 6.54                         | 71.8                                | 250                                 |  |
|                 | 0.6  | 1.9                               | 56                                 | 34                        | 0.75                 | 6.80                         | 75.0                                | 267                                 |  |
|                 | 0.8  | 2.2                               | 56                                 | 30                        | 0.81                 | 7.46                         | 84.0                                | 298                                 |  |
| 0.5/2.5         | 1.0  | 3.5                               | 56                                 | 27                        | 0.89                 | 8.30                         | 93.1                                | 330                                 |  |
|                 | 1.5  | 3.0                               | 56                                 | 22                        | 1.13                 | 10.04                        | 115.5                               | 411                                 |  |
|                 | 2.0  | 3.5                               | 56                                 | 17                        | 1.30                 | 11.95                        | 136.3                               | 502                                 |  |
|                 | 2.5  | 3.8                               | 56                                 | 16                        | 1.48                 | 13.95                        | 160.0                               | 610                                 |  |
|                 | 2.0  | 7.0                               | 230                                | 32                        | 0.73                 | 6.30                         | 74.0                                | 264                                 |  |
|                 | 2.5  | 7.8                               | 230                                | 30                        | 0.78                 | 7.00                         | 78.5                                | 285                                 |  |
|                 | 3.0  | 8.3                               | 230                                | 27                        | 0.83                 | 7.74                         | 84.0                                | 309                                 |  |
| 2/6             | 3.5  | 9.0                               | 230                                | 24                        | 0.88                 | 8.20                         | 89.0                                | 340                                 |  |
|                 | 4.0  | 10.0                              | 230                                | 23                        | 0.96                 | 9.12                         | 102.0                               | 372                                 |  |
|                 | 5.0  | 11.0                              | 230                                | 20                        | 1.07                 | 9.80                         | 109.0                               | 430                                 |  |
|                 | 6.0  | 12.0                              | 230                                | 20                        | 1.23                 | 11.34                        | 129.0                               | 504                                 |  |
|                 | 4.0  | 14                                | 460                                | 29                        | 0.79                 | 7.08                         | 78.4                                | 296                                 |  |
|                 | 5.0  | 16                                | 460                                | 25                        | 0.89                 | 8.00                         | 90.0                                | 340                                 |  |
|                 | 6.0  | 17                                | 460                                | 22                        | 1.02                 | 9.18                         | 101.4                               | 378                                 |  |
| 4/12            | 7.0  | 18                                | 460                                | 20                        | 1.10                 | 10.00                        | 110.0                               | 454                                 |  |
| . ==            | 8.0  | 20                                | 460                                | 18                        | 1.23                 | 11.1                         | 124.8                               | 480                                 |  |
|                 | 10.0 | 22                                | 460                                | 17                        | 1.32                 | 14.9                         | 131.6                               | 600                                 |  |
|                 | 12.0 | 26                                | 460                                | 16                        | 1.8                  | 16.3                         | 180.0                               | 720                                 |  |

<sup>\*</sup> Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

 $<sup>\</sup>phi$  Degrees current lags voltage at tap value current.

<sup>\*\*</sup> Voltages taken with Rectox type voltmeter.



Fig. 7. Typical Time Curves of the Type CO-2 Relay.

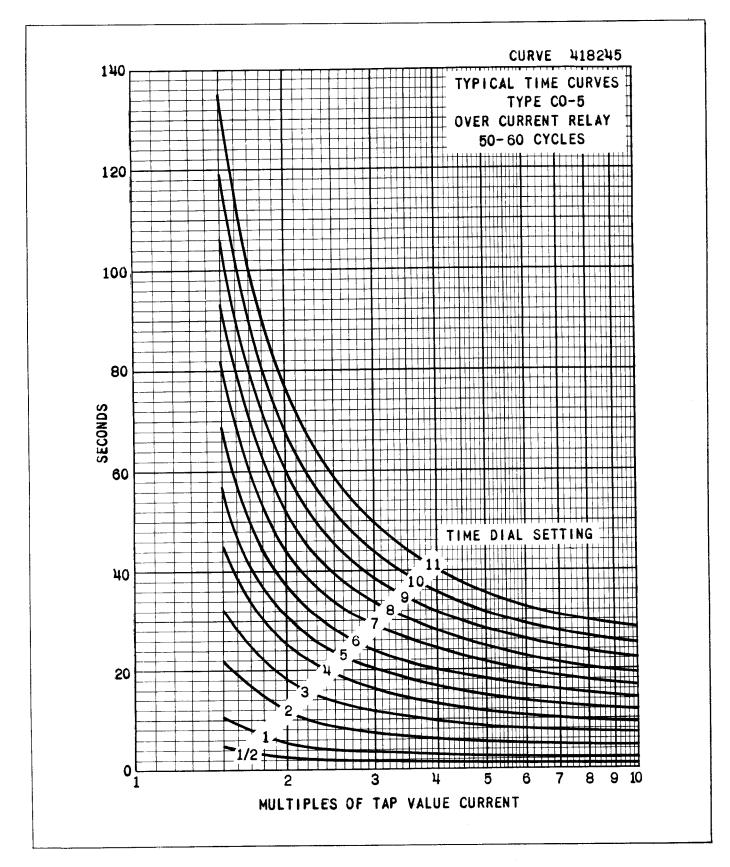



Fig. 8. Typical Time Curves of the Type CO-5 Relay.

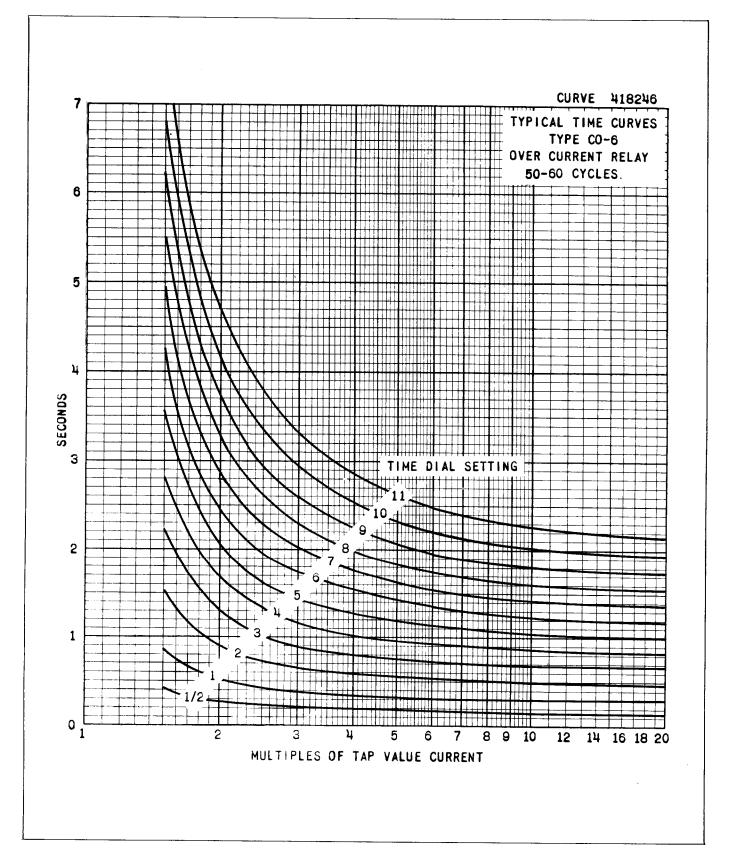



Fig. 9. Typical Time Curves of the Type CO-6 Relay.

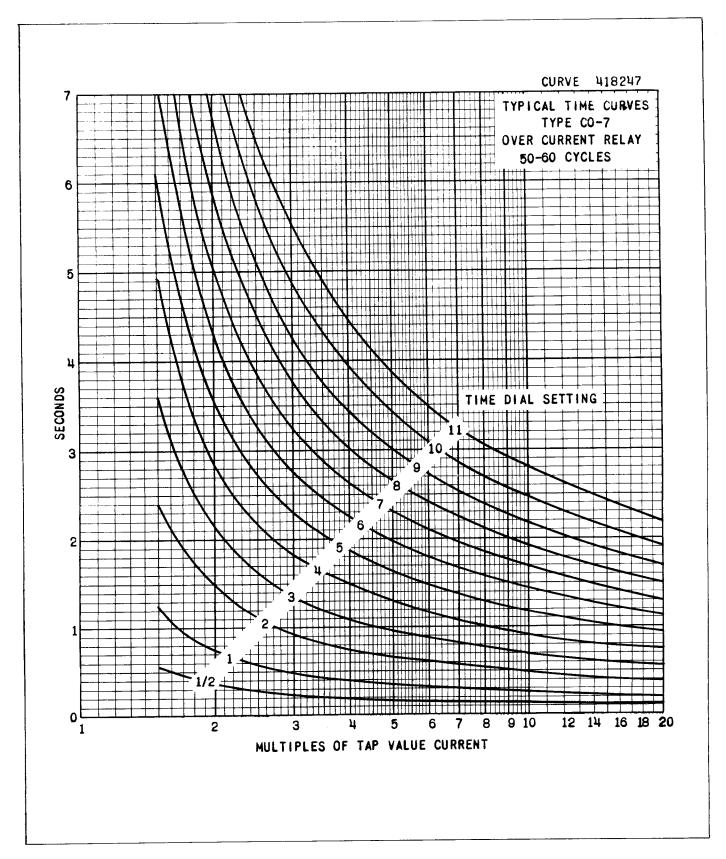



Fig. 10. Typical Time Curves of the Type CO-7 Relay.

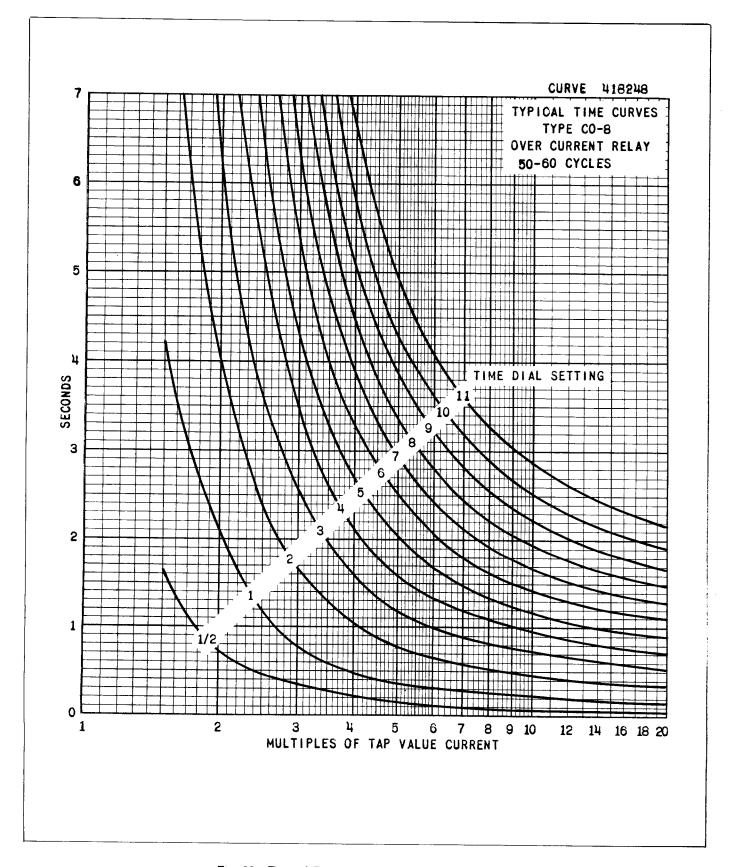



Fig. 11. Typical Time Curves of the Type CO-8 Relay.

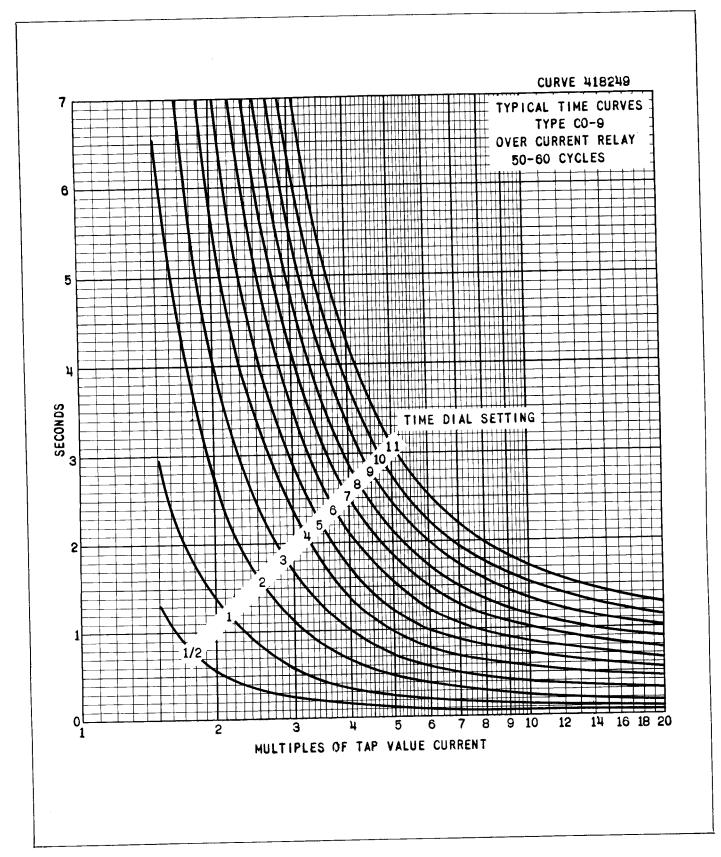



Fig. 12. Typical Time Curves of the Type CO-9 Relay.

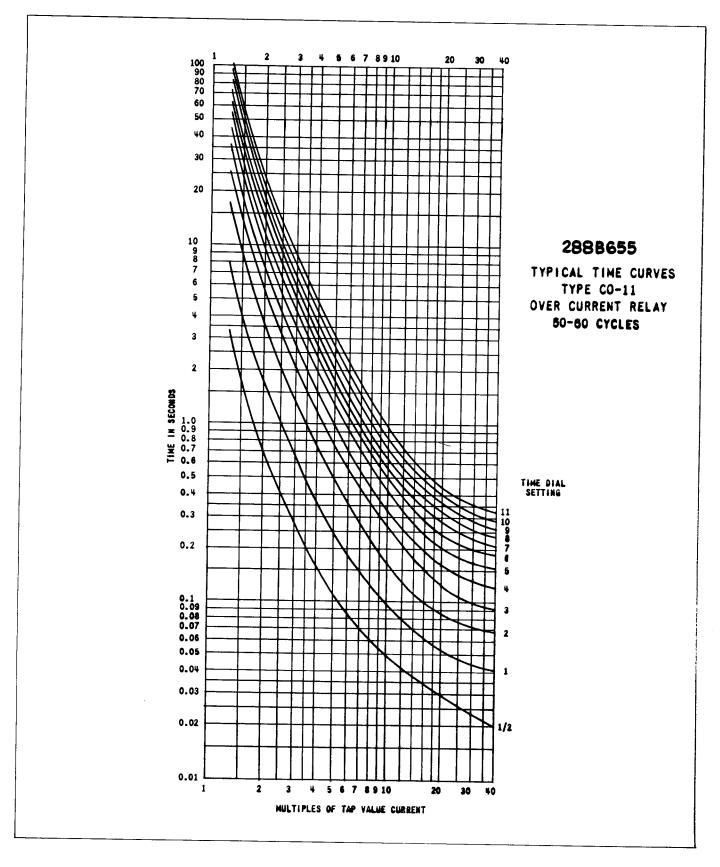



Fig. 13. Typical Time Curves of the Type CO-11 Relay.

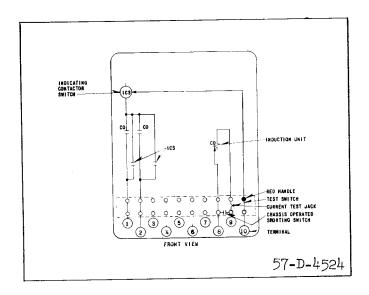
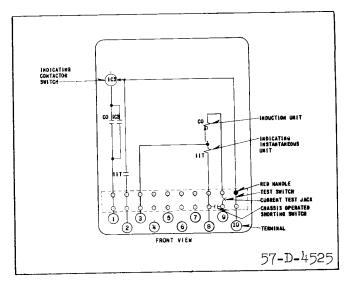




Fig. 14. Internal Schematic of the Double Trip Circuit
Closing Relay. For the Single Trip Relay the
Circuits Associated with Terminal 2 are Omitted.



\* Fig. 15. Internal Schematic of the Single Trip Circuit-Closing Relay with Indicating Instantaneous Trip Unit.

#### **SETTINGS**

#### CO Unit

The overcurrent unit settings can be defined either by tap setting and time dial position or by tap setting and a specific time of operation at some current multiple of the tap setting (e.g. 4 tap setting, 2 time dial position or 4 tap setting, 0.6 seconds at 6 times tap value current).

To provide selective circuit breaker operation, a minimum coordinating time of 0.3 seconds plus circuit breaker time is recommended between the relay being set and the relays with which coordination is to be effected.

The connector screw on the terminal plate above the time dial makes connections to various turns on the operating coil. By placing this screw in the various terminal plate holes, the relay will just close its contacts at the corresponding current 4-5-6-7-8-10-12 amperes, or as marked on the terminal plate.

# Caution

Since the tap block connector screw carries operating current, be sure that the screw is turned tight. In order to avoid opening the current transformer circuits when changing taps under load, connect the spare connector screw in the desired tap position before removing the other tap screw from the original tap position.

# Instantaneous Reclosing

The factory adjustment of the CO unit contact

provides a contact follow. Where instantaneous circuit breaker reclosing will be initiated upon the closure of the CO contact, this contact follow must be eliminated by loosening the stationary contact mounting screw, removing the contact plate and then replacing the plate with the bent end resting against the contact spring. With this change and the contact mounting screw tightened, the stationary contact will rest solidly against its backstop.

\* For double trip relays, the upper stationary contact is adjusted such that the contact rests solidly against the back stop. The lower stationary contact is then adjusted such that both stationary contacts make contact simultaneously with their respective moving contact.

# Indicating Contactor Switch (ICS)

No setting is required on the ICS unit except the selection of the 0.2 or 2.0 ampere tap setting. This selection is made by connecting the lead located in front of the tap block to the desired setting by means of the connecting screw.

# Indicating Instantaneous Trip (IIT)

Since the minimum and maximum markings on the scale only indicate the working range of the core screw, the core screw must be adjusted to the value of pick-up current desired.

The nameplate data will furnish the actual current range that may be obtained from the IIT. unit.

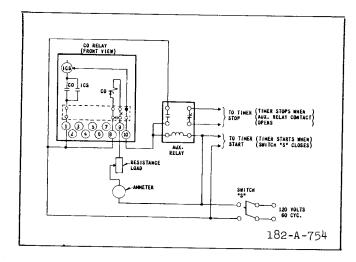



Fig. 16. Diagram of Test Connections for the Circuit-Closing Type CO Relay.

# **INSTALLATION**

The relays should be mounted on switchboard panels or their equivalent in a location free from dirt, moisture, excessive vibration and heat. Mount the relay vertically be means of the mounting stud for the type FT projection case or by means of the four mounting holes on the flange for the semi-flush type FT case. Either the stud or the mounting screws may be utilized for grounding the relay. The electrical connections may be made directly to the terminals by means of screws for steel panel mounting or to be terminal stud furnished with the relay for thick panel mounting. The terminal stud may be easily removed or inserted by locking two nuts on the stud and then turning the proper nut with a wrench.

For detail information on the FT case refer to IL 41-076.

# **ADJUSTMENTS AND MAINTENANCE**

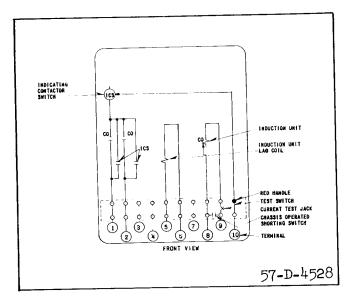
The proper adjustments to insure correct operation of this relay have been made at the factory. Upon receipt of the relay no customer adjustments, other than those covered under "SETTINGS" should be required.

For relays which include an indicating instantaneous trip unit (IIT), the junction of the induction and indicating instantaneous trip coils is brought out to switch jaw #3. With this arrangement the overcurrent units can be tested separately.

#### Acceptance Check

The following check is recommended to insure that the relay is in proper working order:

- Contacts By turning the time dial, move the moving contacts until they deflect the stationary contact to a position where the stationary contact is just resting against its backstop. The index mark located on the movement frame should coincide with the "O" mark on the time dial. For double trip relays, the follow on the stationary contacts should be approximately 1/64".
  - 2. Minimum Trip Current Set the time dial to position 6. Alternately apply tap value current plus 3% and tap value current minus 3%. The moving contact should leave the backstop at tap value current plus 3% and should return to the backstop at tap value current minus 3%.
  - 3. <u>Time Curve</u> Table I shows the time curve calibration points for the various types of relays. With the time dial set to the indicated position, apply the currents specified by Table I, (e.g. for the CO-2, 3 and 20 times tap value current) and measure the operating time of the relay. The operating times should equal those of Table I plus or minus 5 percent.
  - 4. <u>Indicating Instantaneous Trip Unit (IIT)</u> The core screw which is adjustable from the top of the trip unit determines the pickup value. The trip unit has a nominal ratio of adjustment of 1 to 4 and an accuracy within the limits of 10%.


Apply sufficient current to operate the IIT. The operation indicator target should drop freely.

5. Indicating Contactor Switch (ICS) - Close the main relay contacts and pass sufficient d-c current through the trip circuit to close the contacts of the ICS. This value of current should be not greater than the particular ICS tap setting being used. The operation indicator target should drop freely.

#### Routine Maintenance

All relays should be inspected periodically and the time of operation should be checked at least once every year or at such other time intervals as may be dictated by experience to be suitable to the particular application. Phantom loads should not be used in testing induction-type relays because of the resulting distorted current wave form which produces an error in timing.

All contacts should be periodically cleaned. A contact burnisher #182A836H01 is recommended for this purpose. The use of abrasive material for cleaning contacts is not recommended, because of the danger of embedding small particles in the face of the soft silver and thus impairing the contact.



\* Fig. 17. Internal Schematic of the Double Trip Circuit Closing Relay with Torque Control Terminals. For the Single Trip Relay, the Circuits Associated with Terminal 2 are Omitted.

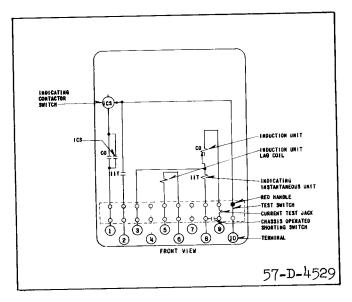



Fig. 18. Internal Schematic of the Single Trip Circuit
Closing Relay with Torque Control Terminals
and Indicating Instantaneous Trip Unit.

# CALIBRATION

Use the following procedure for calibrating the relay if the relay has been taken apart for repairs or the adjustments disturbed. This procedure should not be used until it is apparent that the relay is not in proper working order. (See "Acceptance Check")

# CO\_Unit

- 1) Contacts By turning the time dial move the moving contacts until they deflect the stationary contact to a position where the stationary contact is just resting against its backstop. The index mark located on the movement frame should coincide with the "O" mark on the time dial.
- For double trip relays only, the follow on the stationary contacts is obtained through the use of the stationary contact adjusting screw. The upper stationary contact is adjusted first such that there is approximately 1/64" follow. The lower stationary contact is then adjusted such that both stationary contacts make contact simultaneously with their respective moving contact.
  - 2) Minimum Trip Current The adjustment of the spring tension in setting the minimum trip current value of the relay is most conveniently made with the damping magnet removed.

With the time dial set on "O", wind up the spiral spring by means of the spring adjuster until approximately 6-3/4 convolutions show.

Set the relay on the minimum tap setting, the time dial to position 6.

Adjust the control spring tension so that the moving contact will leave the backstop at tap value current +1.0% and will return to the backstop at tap value current -1.0%.

- 3.  $\underline{\text{Time Curve Calibration}}$  Install the permanent magnet.
- \* Apply the indicated current per Table I for permanent magnet adjustment (e.g. CO-8, 2 times tap value) and measure the operating time. Adjust the permanent magnet keeper until the operating time corresponds to the value of Table I.

Apply the indicated current per Table I for the electromagnet plug adjustment (e.g. CO-8, 20 times tap value) and measure the operating time. Adjust the proper plug until the operating time corresponds to the value in Table I. (Withdrawing the left hand plug, front view, increases the operating time and withdrawing the right hand plug, front view, decreases the time.) In adjusting the plugs, one plug should be screwed in completely and the other plug run in or out until the proper operating time has been obtained.

Recheck the permanent magnet adjustment. If the operating time for this calibration point has changed, readjust the permanent magnet and then recheck the electromagnet plug adjustment. 4. Indicating Contactor Switch (ICS) - Close the main relay contacts and pass sufficient d-c current through the trip circuit to close the contacts of the ICS. This value of current should be not greater than the particular ICS tap setting being used. The operation indicator target should drop freely.

# 5. Indicating Instantaneous Trip Unit (IIT)

Since the minimum and maximum markings on the scale only indicate the working range of the core screw, the core screw must be adjusted to the value of pick-up current desired.

The nameplate data will furnish the actual current range that may be obtained from the IIT unit.

# **RENEWAL PARTS**

Repair work can be done most satisfactorily at the factory. However, interchangeable parts can be furnished to the customers who are equipped for doing repair work. When ordering parts, always give, the complete nameplate data.

TABLE 1

TIME CURVE CALIBRATION DATA - 50 & 60 CYCLES

|               | PERMANEN                 | Γ MAGNET ADJUSTM                       | ELECTROMAGN                  | NET PLUGS                              |                              |
|---------------|--------------------------|----------------------------------------|------------------------------|----------------------------------------|------------------------------|
| RELAY<br>TYPE | TIME<br>DIAL<br>POSITION | CURRENT<br>(MULTIPLES OF<br>TAP VALUE) | OPERATING<br>TIME<br>SECONDS | CURRENT<br>(MULTIPLES OF<br>TAP VALUE) | OPERATING<br>TIME<br>SECONDS |
| CO-2          | 6                        | 3                                      | 0.57                         | 20                                     | 0.22                         |
| CO-5          | 6                        | 2                                      | 37.80                        | 10                                     | 14.30                        |
| CO-6          | 6                        | 2                                      | 2.46                         | 20                                     | 1.19                         |
| CO-7          | 6                        | 2                                      | 4.27                         | 20                                     | 1.11                         |
| CO-8          | 6                        | 2                                      | 13.35                        | 20                                     | 1.11                         |
| CO-9          | 6                        | 2                                      | 8.87                         | 20                                     | 0.65                         |
| CO-11         | 6                        | 2                                      | 11.27                        | 20                                     | 0.24                         |

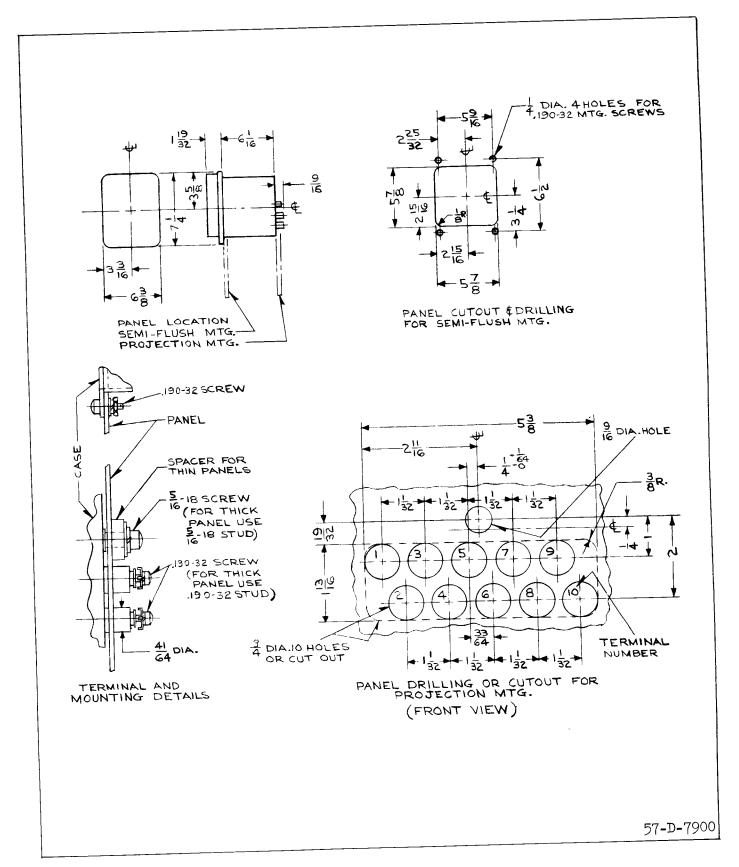



Fig. 19. Outline and Drilling Plan for the Type CO Relay.



WESTINGHOUSE ELECTRIC CORPORATION
METER DIVISION . NEWARK, N.J.



# INSTALLATION • OPERATION • MAINTENANCE INSTALLATION • OPERATION • MAINTENANCE

# TYPE CO OVERCURRENT RELAY

# CAUTION

Before putting relays into service, remove all blocking which may have been inserted for the purpose of securing the parts during shipment, make sure that all moving parts operate freely, inspect the contacts to see that they are clean and close properly, and operate the relay to check the settings and electrical connections.

# **APPLICATION**

These induction overcurrent relays are used to disconnect circuits or apparatus when the current in them exceeds a given value. Where a station battery (48 volts or over) is available, the circuit closing type relays are normally used to trip the circuit breaker.

## **CONTENTS**

This instruction leaflet applies to the following types of relays:

Type CO-2 Short Time Relay

CO-5 Long Time Relay

CO-6 Definite Minimum Time Relay

CO-7 Moderately Inverse Time Relay

CO-8 Inverse Time Relay

CO-9 Very Inverse Time Relay

CO-11 Extremely Inverse Time Relay

# CONSTRUCTION AND OPERATION

The type CO relays consist of an overcurrent unit (CO), an indicating contactor switch (ICS), and an indicating instantaneous trip unit (IIT) when required. The principal component parts of the relay and their location are shown in Figs. 1-5.

# Electromagnet

The electromagnets for the types CO-5, CO-6, CO-7, CO-8 and CO-9 relays have a main tapped coil located on the center leg of an "E" type laminated structure that produces a flux which divides and returns through the outer legs. A shading coil causes the flux through the left leg to lag the main pole flux. The out-of-phase fluxes thus produced in the air gap

cause a contact closing torque.

The electromagnets for the types CO-2 and CO-11 relays have a main coil consisting of a tapped primary winding and a secondary winding. Two identical coils on the outer legs of the lamination structure are connected to the main coil secondary in a manner so that the combination of all the fluxes produced by the electromagnet result in out-of-phase fluxes in the air gap. The out-of-phase air gap fluxes produced cause a contact closing torque.

# Indicating Contactor Switch Unit (ICS)

The d-c indicating contactor switch is a small clapper type device. A magnetic armature, to which leaf-spring mounted contacts are attached, is attracted to the magnetic core upon energization of the switch. When the switch closes the moving contacts bridge two stationary contacts, completing the trip circuit. Also during this operation two fingers on the armature deflect a spring located on the front of the switch, which allows the operation indicator target to drop.

The front spring, in addition to holding the target, provides restraint for the armature and thus controls the pickup value of the switch.

#### Indicating Instantaneous Trip Unit (IIT)

The instantaneous trip unit is a small a-c operated clapper type device. A magnetic armature, to which leaf-spring mounted contacts are attached, is attracted to the magnetic core upon energization of the switch. When the switch closes, the moving contacts bridge two stationary contacts completing the trip circuit. Also, during the operation, two fingers on the armature deflect a spring located on the front of the switch which allows the operation indicator target to drop.

A core screw accessible from the top of the switch provides the adjustable pickup range.

# **CHARACTERISTICS**

The relays are generally available in the following current ranges:

SUPERSEDES I.L. 41-101D

\* Denotes change from superseded issue.

**EFFECTIVE JUNE 1959** 

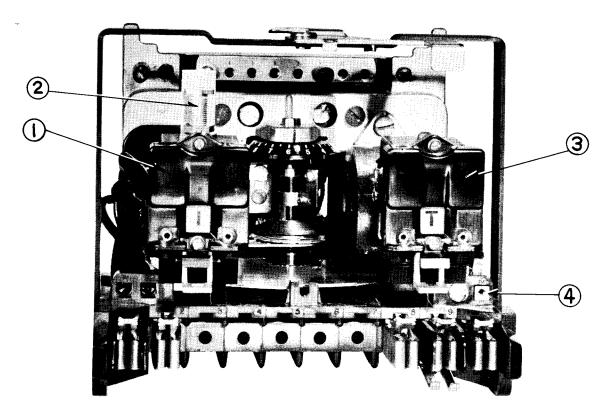



Fig. 1. Type CO Relay Without Case. 1-Indicating Instantaneous trip (IIT). 2-IIT Adjusting Screw. 3-Indicating Contactor Switch (ICS). 4-Indicating Contactor Switch Tap Block.

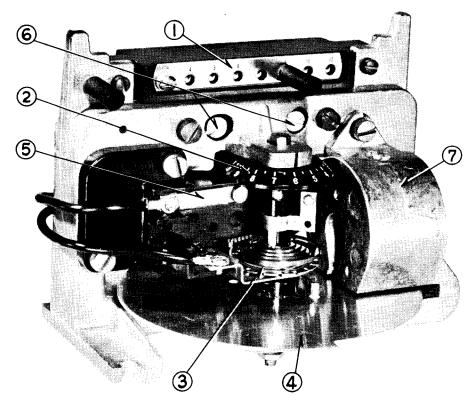
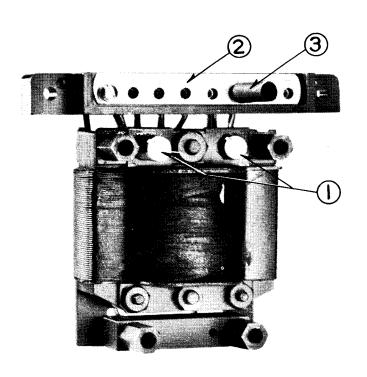




Fig. 2. Time Overcurrent Unit (Front View). 1-Tap Block. 2-Time Dial. 3-Control Spring Assembly. 4-Disc. 5-Stationary Contact Assembly. 6-Magnetic Plugs. 7-Permanent Magnet.



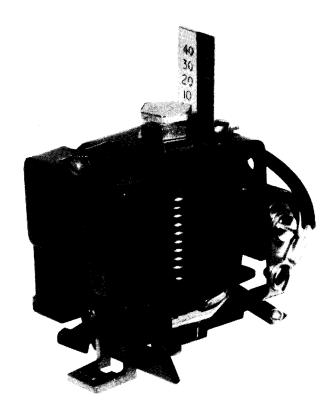



Fig. 3. "E" Type Electromagnet. 1- Magnetic Plugs. 2-Tap \*
Block. 3-Tap Screw.

Fig. 4. Indicating Instantaneous Trip Unit (IIT).



Fig. 5. Indicating Contactor Switch (ICS).

| Range    |     |     |     | Taps |     |     |     |
|----------|-----|-----|-----|------|-----|-----|-----|
| .5 - 2.5 | 0.5 | 0.6 | 0.8 | 1.0  | 1.5 | 2.0 | 2.5 |
| 2 - 6    | 2   | 2.5 | 3   | 3.5  | 4   | 5   | 6   |
| 4 - 12   | 4   | 5   | 6   | 7    | 8   | 10  | 12  |

The tap value is the minimum current required to just close the relay contacts.

These relays may have either single or double circuit closing contacts for tripping either one or two circuit breakers.

The time vs. current characteristics are shown in Figs. 7 to 13. These characteristics give the contact closing time for the various time dial settings when the indicated multiples of tap value current are applied to the relay.

# Trip Circuit

The main contacts will safely close 30 amperes at 250 volts d-c and the seal-in contacts of the indi-

cating contactor switch will safely carry this current long enough to trip a circuit breaker.

The indicating instantaneous trip contacts will safely close 30 amperes at 250 volts d-c, and will carry this current long enough to trip a breaker.

The indicating contactor switch has two taps that provide a pickup setting of 0.2 or 2 amperes. To change taps requires connecting the lead located in front of the tap block to the desired setting by means of a screw connection.

#### Trip Circuit Constants

Contactor Switch -

- 0.2 ampere tap 6.5 ohms d-c resistance
- 2.0 ampere tap 0.15 ohms d-c resistance



Fig. 6. External Schematic of the Circuit-Closing Type CO Relay for Phase and Ground Overcurrent Protection on a Three-Phase System.

TYPE CO-2 RELAY

|                 |      |                                   |                                    |                           |                            | VOLT A                       | MPERES**                            |                                     |
|-----------------|------|-----------------------------------|------------------------------------|---------------------------|----------------------------|------------------------------|-------------------------------------|-------------------------------------|
| AMPERE<br>RANGE | TAP  | CONTINUOUS<br>RATING<br>(AMPERES) | ONE SECOND<br>RATING*<br>(AMPERES) | POWER FACTOR ANGLE $\phi$ | AT<br>TAP VALUE<br>CURRENT | AT 3 TIMES TAP VALUE CURRENT | AT 10 TIMES<br>TAP VALUE<br>CURRENT | AT 20 TIMES<br>TAP VALUE<br>CURRENT |
|                 | 0.5  | 0.91                              | 28                                 | 58                        | 4.8                        | 39.6                         | 256                                 | 790                                 |
|                 | 0.6  | 0.96                              | 28                                 | 57                        | 4.9                        | 39.8                         | 270                                 | 851                                 |
|                 | 0.8  | 1.18                              | 28                                 | 53                        | 5.0                        | 42.7                         | 308                                 | 1024                                |
| 0.5/2.5         | 1.0  | 1.37                              | 28                                 | 50                        | 5.3                        | 45.4                         | 348                                 | 1220                                |
|                 | 1.5  | 1.95                              | 28                                 | 40                        | 6.2                        | 54.4                         | 435                                 | 1740                                |
|                 | 2.0  | 2,24                              | 28                                 | 36                        | 7.2                        | 65.4                         | 580                                 | 2280                                |
|                 | 2.5  | 2.50                              | 28                                 | 29                        | 7.9                        | 73.6                         | 700                                 | 2850                                |
|                 | 2.0  | 3.1                               | 110                                | 59                        | 5.04                       | 38.7                         | 262                                 | 800                                 |
|                 | 2.5  | 4.0                               | 110                                | 55                        | 5.13                       | 39.8                         | 280                                 | 920                                 |
|                 | 3.0  | 4.4                               | 110                                | 51                        | 5.37                       | 42.8                         | 312                                 | 1008                                |
| 2/6             | 3.5  | 4.8                               | 110                                | 47                        | 5.53                       | 42.8                         | 329                                 | 1120                                |
|                 | 4.0  | 5.2                               | 110                                | 45                        | 5.72                       | 46.0                         | 360                                 | 1216                                |
|                 | 5.0  | 5.6                               | 110                                | 41                        | 5.90                       | 50.3                         | 420                                 | 1500                                |
|                 | 6.0  | 6.0                               | 110                                | 37                        | 6.54                       | 54.9                         | 474                                 | 1800                                |
|                 | 4.0  | 7.3                               | 230                                | 65                        | 4.92                       | 39.1                         | 268                                 | 848                                 |
|                 | 5.0  | 8.0                               | 230                                | 50                        | 5,20                       | 42.0                         | 305                                 | 1020                                |
|                 | 6.0  | 8.8                               | 230                                | 47                        | 5.34                       | 44.1                         | 330                                 | 1128                                |
| 4/12            | 7.0  | 9,6                               | 230                                | 46                        | 5.35                       | 45.8                         | 364                                 | 1260                                |
| ,               | 8.0  | 10.4                              | 230                                | 43                        | 5.86                       | 49.9                         | 400                                 | 1408                                |
|                 | 10.0 | 11.2                              | 230                                | 37                        | 6.6                        | 55.5                         | 470                                 | 1720                                |
|                 | 12.0 | 12.0                              | 230                                | 34                        | 7.00                       | 62.3                         | 528                                 | 2064                                |

<sup>\*</sup> Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

 $<sup>\</sup>phi$  Degrees current lags voltage at tap value current.

<sup>\*\*</sup> Voltages taken with Rectox type voltmeter.

# CO-5 LONG TIME AND CO-6 DEFINITE MINIMUM TIME RELAYS

VOLT AMPERES\*\*

|         |       | CONTINUOUS | ONE SECOND | POWER        | $\mathbf{AT}$ | AT 3 TIMES | AT 10 TIMES | AT 20 TIMES |
|---------|-------|------------|------------|--------------|---------------|------------|-------------|-------------|
| AMPERE  |       | RATING     | RATING*    | FACTOR       | TAP VALUE     | TAP VALUE  | TAP VALUE   | TAP VALUE   |
| RANGE   | TAP   | (AMPERES)  | (AMPERES)  | ANGLE $\phi$ | CURRENT       | CURRENT    | CURRENT     | CURRENT     |
|         |       |            |            |              |               |            |             |             |
|         | (0.5  | 2          | 88         | 69           | 3.92          | 20.6       | 103         | 270         |
|         | (0.6) | 2.2        | 88         | 68           | 3.96          | 20.7       | 106         | 288         |
|         | (0.8  | 2.5        | 88         | 67           | 3.96          | 21         | 114         | 325         |
| 0.5/2.5 | (1.0  | 2.8        | 88         | 66           | 4.07          | 21.4       | 122         | 360         |
|         | (1.5  | 3.4        | 88         | 62           | 4.19          | 23.2       | 147         | 462         |
|         | (2.0  | 4.0        | 88         | 60           | 4.30          | 24.9       | 168         | 548         |
|         | (2.5  | 4.4        | 88         | 58           | 4.37          | 26.2       | 180         | 630         |
|         |       |            |            |              |               |            |             |             |
|         | (2    | 8          | 230        | 67           | 3.88          | 21         | 110         | 308         |
|         | (2.5  | 8.8        | 230        | 66           | 3.87          | 21.6       | 113         | 342         |
|         | (3    | 9.7        | 230        | 64           | 3.93          | 22.1       | 126         | 381         |
| 2/6     | (3.5  | 10.4       | 230        | 63           | 4.09          | 23.1       | 136         | 417         |
|         | (4    | 11.2       | 230        | 62           | 4.08          | 23.5       | 144         | 448         |
|         | (5    | 12.5       | 230        | 59           | 4.20          | 24.8       | 162         | 540         |
|         | (6    | 13.7       | 230        | 57           | 4.38          | 26.5       | 183         | 624         |
|         |       |            |            |              |               |            |             |             |
|         | (4    | 16         | 460        | 65           | 4.00          | 22.4       | 126         | 376         |
|         | (5    | 18.8       | 460        | 63           | 4.15          | 23.7       | 143         | 450         |
|         | (6    | 19.3       | 460        | 61           | 4.32          | 25.3       | 162         | 531         |
| 4/12    | (7    | 20.8       | 460        | 59           | 4.27          | 26.4       | 183         | 611         |
|         | (8    | 22.5       | 460        | 56           | 4.40          | 27.8       | 204         | 699         |
|         | (10   | 25         | 460        | 53           | 4.60          | 30.1       | 247         | 880         |
|         | (12   | 28         | 460        | 47           | 4.92          | 35.6       | 288         | 1056        |
|         |       |            |            |              |               |            |             |             |

#### CO-7 MODERATELY INVERSE TIME RELAY

VOLT AMPERES\*\* CONTINUOUS ONE SECOND POWER ΑT AT 3 TIMES AT 10 TIMES AT 20 TIMES TAP VALUE TAP VALUE TAP VALUE TAP VALUE AMPERE RATING\* FACTOR RATING CURRENT RANGE TAP (AMPERES) (AMPERES) ANGLE  $\phi$ CURRENT CURRENT CURRENT (0.5)88 68 3.88 20.7 103 278 (0.6 67 3.93 20.9 107 288 2.2 88 21.1 320 3.93 114 8.0) 2.5 88 66 0.5/2.5(1.0 2.8 88 64 4.00 21.6 122 356 22.9 148 459 61 4.08 (1.5)3.4 88 174 552 24.8 (2.0 4.088 58 4.24 (2.5 4.4 56 4.38 25.9 185 640 88 4.06 21.3 111 306 (2 8 230 66 230 63 4.07 21.8 120 342 (2.5 8.8 22.5 129 366 63 230 4.14 (3 9.72/6 (3.5 10.4 230 62 4.34 23.4 141 413 448 61 4.34 23.8 149 230 (4 11.2 163 530 25,2 (5 12.5 230 59 4.40 4.62 27 183 624 230 58 (6 13.7 460 64 4.24 22.8 129 392 16 (4 460 24.2 149 (5 18.8 460 61 4.30 4/12 19.3 460 60 4.62 25.9 168 540 (6 27.3 187 626 (7 20.8 460 58 4.69 22.5 460 55 4.80 29.8 211 688 (8 860 5.20 33 260 (10 25 460 51 5.40 37.5 308 1032 (12 28 460 46

<sup>\*</sup> Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

 $<sup>\</sup>phi$  Degrees current lags voltage at tap value current.

<sup>\*\*</sup> Voltages taken with Rectox type voltmeter.

# CO-8 INVERSE TIME AND CO-9 VERY INVERSE TIME RELAYS

|                 |                                                             |                                                 |                                                      |                                        | VOLT AMPERES**                                       |                                                      |                                               |                                                |  |
|-----------------|-------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------|--|
| AMPERE<br>RANGE | TAP                                                         | CONTINUOUS<br>RATING<br>(AMPERES)               | ONE SECOND<br>RATING*<br>(AMPERES)                   | POWER FACTOR ANGLE $\phi$              | AT<br>TAP VALUE<br>CURRENT                           | AT 3 TIMES<br>TAP VALUE<br>CURRENT                   | AT 10 TIMES TAP VALUE CURRENT                 | AT 20 TIMES<br>TAP VALUE<br>CURRENT            |  |
| 0.5/2.5         | (0.5)<br>(0.6)<br>(0.8)<br>(1.0)<br>(1.5)<br>(2.0)<br>(2.5) | 2<br>2.2<br>2.5<br>2.8<br>3.4<br>4.0<br>4.4     | 88<br>88<br>88<br>88<br>88<br>88                     | 72<br>71<br>69<br>67<br>62<br>57<br>53 | 2.38<br>2.38<br>2.40<br>2.42<br>2.51<br>2.65<br>2.74 | 21<br>21<br>21.1<br>21.2<br>22<br>23.5<br>24.8       | 132<br>134<br>142<br>150<br>170<br>200<br>228 | 350<br>365<br>400<br>440<br>530<br>675<br>800  |  |
| 2/6             | (2<br>(2.5<br>(3<br>(3.5<br>(4<br>(5<br>(6                  | 8<br>8.8<br>9.7<br>10.4<br>11.2<br>12.5<br>13.7 | 230<br>230<br>230<br>230<br>230<br>230<br>230<br>230 | 70<br>66<br>64<br>62<br>60<br>58<br>56 | 2.38<br>2.40<br>2.42<br>2.48<br>2.53<br>2.64<br>2.75 | 21<br>21.1<br>21.5<br>22<br>22.7<br>24<br>25.2       | 136<br>142<br>149<br>157<br>164<br>180        | 360<br>395<br>430<br>470<br>500<br>580<br>660  |  |
| 4/12            | (4<br>(5<br>(6<br>(7<br>(8<br>(10<br>(12                    | 16<br>18.8<br>19.3<br>20.8<br>22.5<br>25<br>28  | 460<br>460<br>460<br>460<br>460<br>460               | 68<br>63<br>60<br>57<br>54<br>48       | 2.38<br>2.46<br>2.54<br>2.62<br>2.73<br>3.00<br>3.46 | 21.3<br>21.8<br>22.6<br>23.6<br>24.8<br>27.8<br>31.4 | 146<br>158<br>172<br>190<br>207<br>248<br>292 | 420<br>480<br>550<br>620<br>700<br>850<br>1020 |  |

# TYPE CO-11 RELAY

|                 |      |                                      |                                    |                           | VOLT AMPERES**       |                                    |                                     |                                     |  |
|-----------------|------|--------------------------------------|------------------------------------|---------------------------|----------------------|------------------------------------|-------------------------------------|-------------------------------------|--|
| AMPERE<br>RANGE | TAP  | CONTINUOUS<br>RATING<br>AP (AMPERES) | ONE SECOND<br>RATING*<br>(AMPERES) | POWER FACTOR ANGLE $\phi$ | AT TAP VALUE CURRENT | AT 3 TIMES<br>TAP VALUE<br>CURRENT | AT 10 TIMES<br>TAP VALUE<br>CURRENT | AT 20 TIMES<br>TAP VALUE<br>CURRENT |  |
|                 | 0.5  | 1.7                                  | 88                                 | 36                        | 0.72                 | 6.54                               | 71.8                                | 250                                 |  |
|                 | 0.6  | 1.9                                  | 88                                 | 34                        | 0.75                 | 6.80                               | 75.0                                | 267                                 |  |
|                 | 0.8  | 2.2                                  | 88                                 | 30                        | 0.81                 | 7.46                               | 84.0                                | 298                                 |  |
| 0.5/2.5         | 1.0  | 3.5                                  | 88                                 | 27                        | 0.89                 | 8.30                               | 93.1                                | 330                                 |  |
| 010, 210        | 1.5  | 3.0                                  | 88                                 | 22                        | 1.13                 | 10.04                              | 115.5                               | 411                                 |  |
|                 | 2.0  | 3.5                                  | 88                                 | 17                        | 1.30                 | 11.95                              | 136.3                               | 502                                 |  |
|                 | 2.5  | 3.8                                  | 88                                 | 16                        | 1.48                 | 13.95                              | 160.0                               | 610                                 |  |
|                 | 2.0  | 7.0                                  | 230                                | 32                        | 0.73                 | 6.30                               | 74.0                                | 264                                 |  |
|                 | 2.5  | 7.8                                  | 230                                | 30                        | 0.78                 | 7.00                               | 78.5                                | 285                                 |  |
|                 | 3.0  | 8.3                                  | 230                                | 27                        | 0.83                 | 7.74                               | 84.0                                | 309                                 |  |
| 2/6             | 3.5  | 9.0                                  | 230                                | 24                        | 0.88                 | 8.20                               | 89.0                                | 340                                 |  |
| -, -            | 4.0  | 10.0                                 | 230                                | 23                        | 0.96                 | 9.12                               | 102.0                               | 372                                 |  |
|                 | 5.0  | 11.0                                 | 230                                | 20                        | 1.07                 | 9.80                               | 109.0                               | 430                                 |  |
|                 | 6.0  | 12.0                                 | 230                                | 20                        | 1.23                 | 11.34                              | 129.0                               | 504                                 |  |
|                 | 4.0  | 14                                   | 460                                | 29                        | 0.79                 | 7.08                               | 78.4                                | 296                                 |  |
|                 | 5.0  | 16                                   | 460                                | 25                        | 0.89                 | 8.00                               | 90.0                                | 340                                 |  |
|                 | 6.0  | 17                                   | 460                                | 22                        | 1.02                 | 9.18                               | 101.4                               | 378                                 |  |
| 4/12            | 7.0  | 18                                   | 460                                | 20                        | 1.10                 | 10.00                              | 110.0                               | 454                                 |  |
| 1/12            | 8.0  | 20                                   | 460                                | 18                        | 1.23                 | 11.1                               | 124.8                               | 480                                 |  |
|                 | 10.0 | 22                                   | 460                                | 17                        | 1.32                 | 14.9                               | 131.6                               | 600                                 |  |
|                 | 12.0 | 26                                   | 460                                | 16                        | 1.8                  | 16.3                               | 180.0                               | 720                                 |  |

<sup>\*</sup> Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

 $<sup>\</sup>phi$  Degrees current lags voltage at tap value current.

<sup>\*\*</sup> Voltages taken with Rectox type voltmeter.

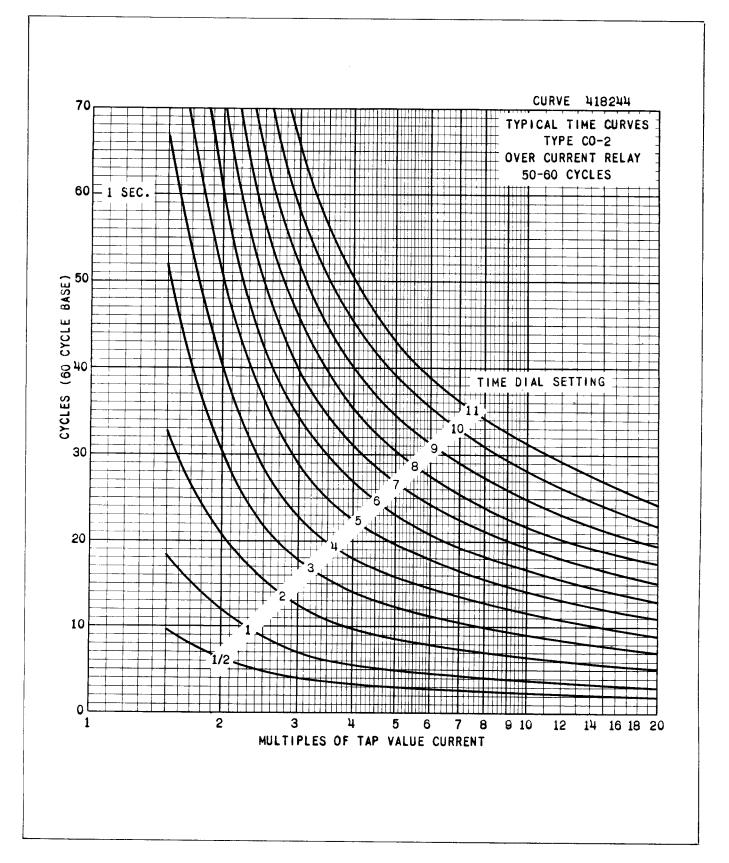



Fig. 7. Typical Time Curves of the Type CO-2 Relay.

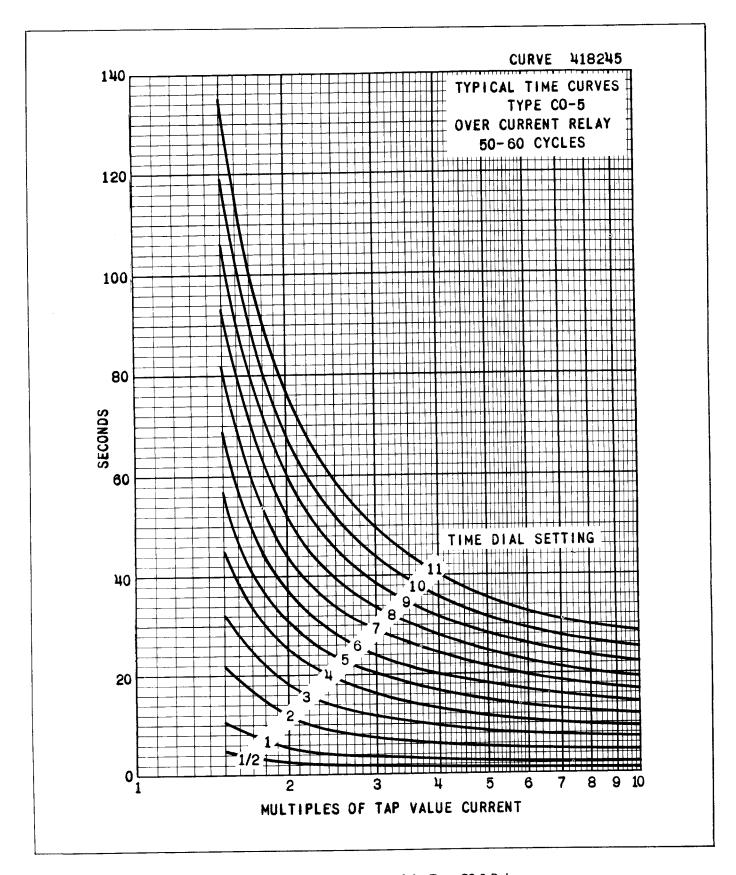



Fig. 8. Typical Time Curves of the Type CO-5 Relay.

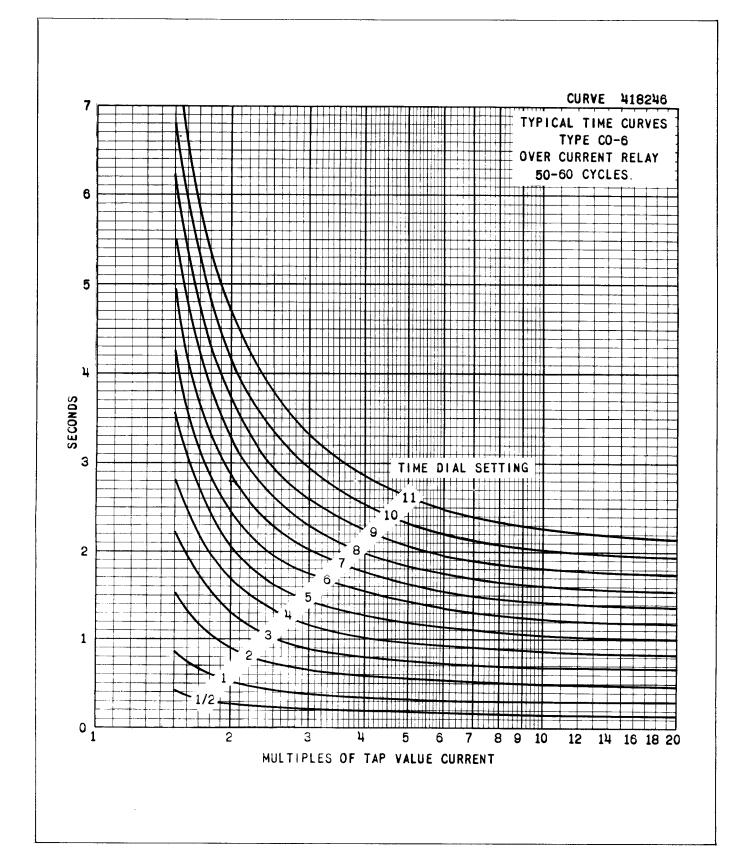



Fig. 9. Typical Time Curves of the Type CO-6 Relay.

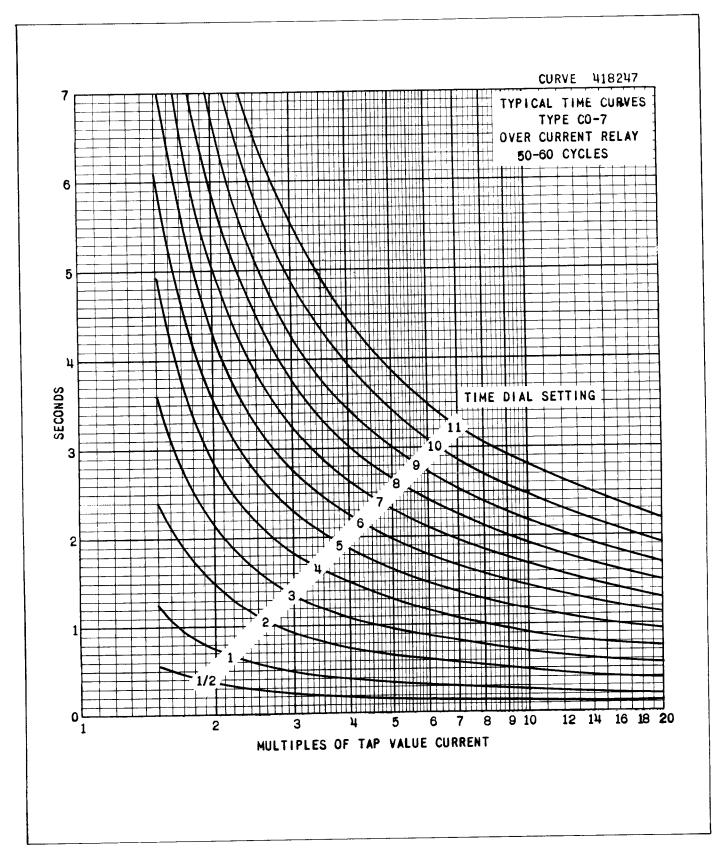



Fig. 10. Typical Time Curves of the Type CO-7 Relay.

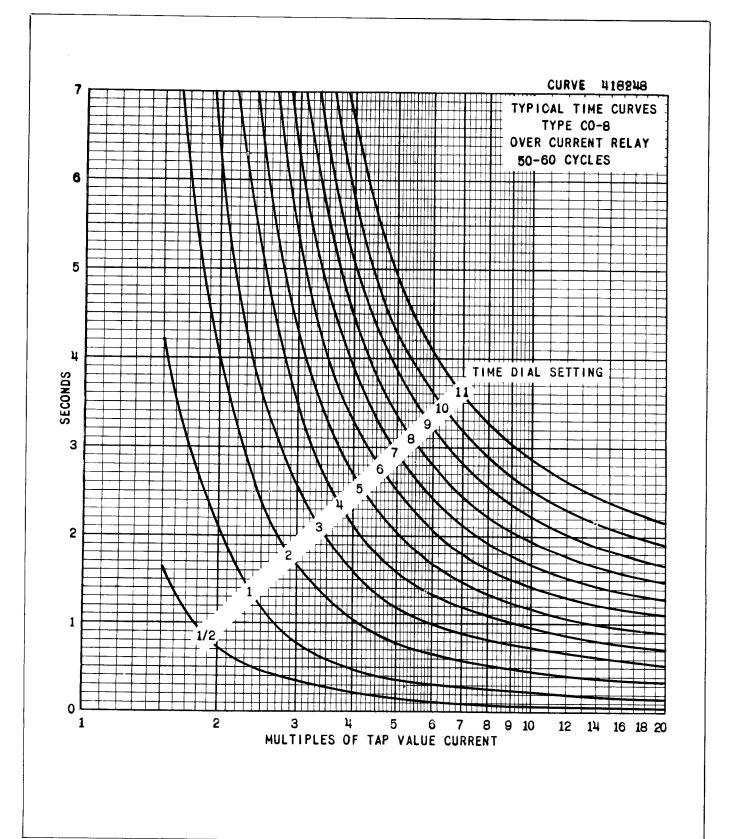



Fig. 11. Typical Time Curves of the Type CO-8 Relay.

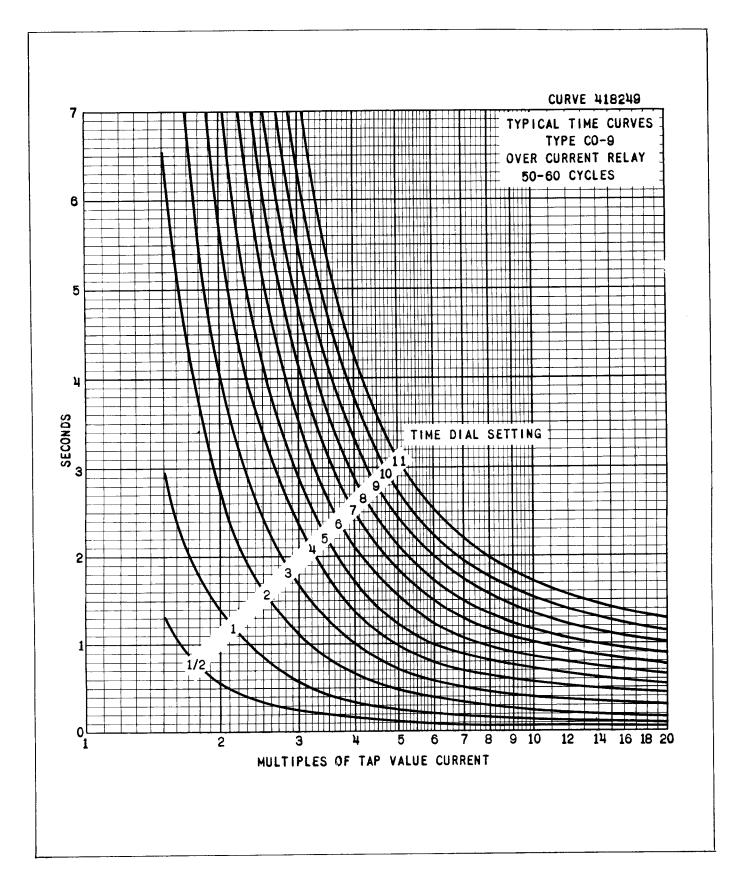



Fig. 12. Typical Time Curves of the Type CO-9 Relay.

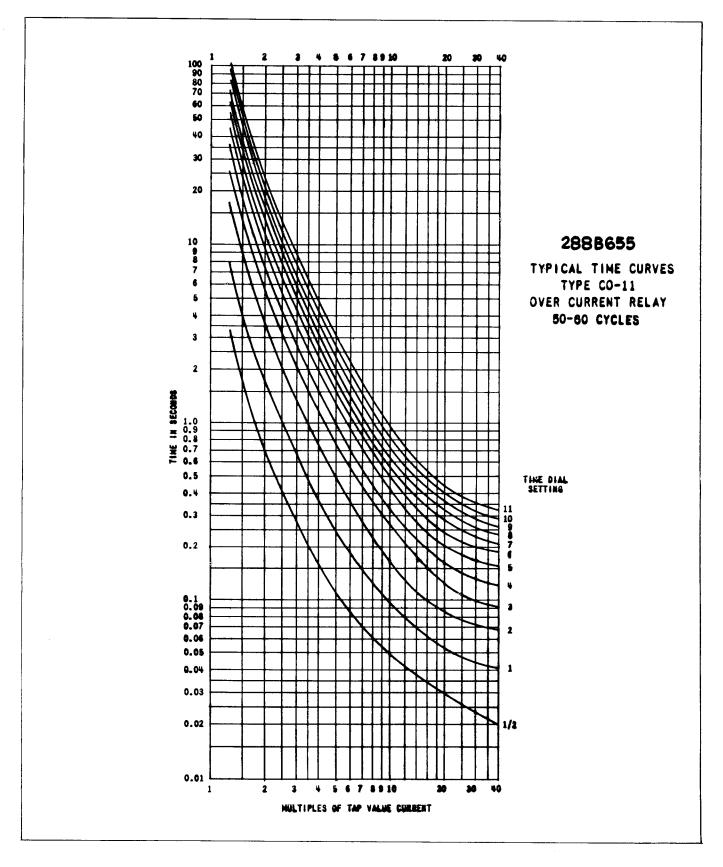



Fig. 13. Typical Time Curves of the Type CO-11 Relay.

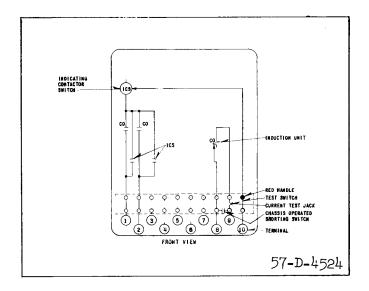



Fig. 14. Internal Schematic of the Double Trip Circuit Closing Relay. For the Single Trip Relay the Circuits Associated with Terminal 2 are Omitted.

#### **SETTINGS**

#### CO Unit

The overcurrent unit settings can be defined either by tap setting and time dial position or by tap setting and a specific time of operation at some current multiple of the tap setting (e.g. 4 tap setting, 2 time dial position or 4 tap setting, 0.6 seconds at 6 times tap value current).

To provide selective circuit breaker operation, a minimum coordinating time of 0.3 seconds plus circuit breaker time is recommended between the relay being set and the relays with which coordination is to be effected.

The connector screw on the terminal plate above the time dial makes connections to various turns on the operating coil. By placing this screw in the various terminal plate holes, the relay will just close its contacts at the corresponding current 4-5-6-7-8-10-12 amperes, or as marked on the terminal plate.

#### Caution

Since the tap block connector screw carries operating current, be sure that the screw is turned tight. In order to avoid opening the current transformer circuits when changing taps under load, connect the spare connector screw in the desired tap position before removing the other tap screw from the original tap position.

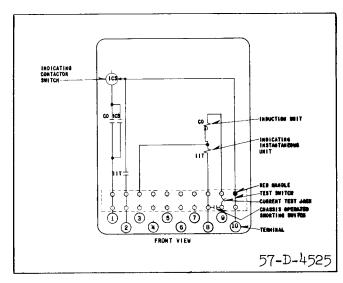



Fig. 15. Internal Schematic of the Single Trip Circuit-Closing Relay with Indicating Instantaneous Trip Unit.

#### Instantaneous Reclosing

The factory adjustment of the CO unit contact provides a contact follow. Where instantaneous circuit breaker reclosing will be initiated upon the closure of the CO contact, this contact follow must be eliminated by loosening the stationary contact mounting screw, removing the contact plate and then replacing the plate with the bent end resting against the contact spring. With this change and the contact mounting screw tightened, the stationary contact will rest solidly against its backstop.

For double trip relays, the upper stationary contact is adjusted such that the contact rests solidly against the back stop. The lower stationary contact is then adjusted such that both stationary contacts make contact simultaneously with their respective moving contact.

#### Indicating Contactor Switch (ICS)

No setting is required on the ICS unit except the selection of the 0.2 or 2.0 ampere tap setting. This selection is made by connecting the lead located in front of the tap block to the desired setting by means of the connecting screw.

#### Indicating Instantaneous Trip (IIT)

The core screw must be adjusted to the value of pick-up current desired.

The nameplate data will furnish the actual current range that may be obtained from the IIT. unit.

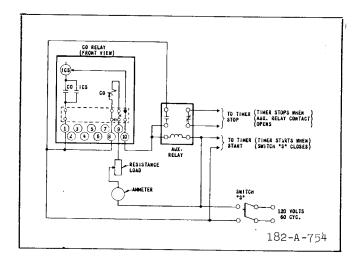



Fig. 16. Diagram of Test Connections for the Circuit-Closing Type CO Relay.

#### INSTALLATION

The relays should be mounted on switchboard panels or their equivalent in a location free from dirt, moisture, excessive vibration and heat. Mount the relay vertically be means of the mounting stud for the type FT projection case or by means of the four mounting holes on the flange for the semi-flush type FT case. Either the stud or the mounting screws may be utilized for grounding the relay. The electrical connections may be made directly to the terminals by means of screws for steel panel mounting or to be terminal stud furnished with the relay for thick panel mounting. The terminal stud may be easily removed or inserted by locking two nuts on the stud and then turning the proper nut with a wrench.

For detail information on the FT case refer to IL 41-076.

#### **ADJUSTMENTS AND MAINTENANCE**

The proper adjustments to insure correct operation of this relay have been made at the factory. Upon receipt of the relay no customer adjustments, other than those covered under "SETTINGS" should be required.

For relays which include an indicating instantaneous trip unit (IIT), the junction of the induction and indicating instantaneous trip coils is brought out to switch jaw #3. With this arrangement the overcurrent units can be tested separately.

#### Acceptance Check

The following check is recommended to insure that the relay is in proper working order:

- 1. Contacts By turning the time dial, move the moving contacts until they deflect the stationary contact to a position where the stationary contact is resting against its backstop. The index mark located on the movement frame should coincide with the "O" mark on the time dial. For double trip relays, the follow on the stationary contacts should be approximately 1/64".
- 2. Minimum Trip Current Set the time dial to position 6 using the lowest tap setting, alternately apply tap value current plus 3% and tap value current minus 3%. The moving contact should leave the backstop at tap value current plus 3% and should return to the backstop at tap value current minus 3%.
- 3. Time Curve Table I shows the time curve calibration points for the various types of relays. With the time dial set to the indicated position and the relay set on the lowest tap setting, apply the currents specified by Table I, (E.G. for the CO-2, 3 and 20 times tap value current) and measure the operating time of the relay. The operating times should equal those of Table I plus or minus 5%.

For Type CO-11 Relay only, the 1.3 times tap value operating time from the number 6 time dial position is  $54.9 \pm 5\%$  seconds.

4. <u>Indicating Instantaneous Trip Unit (IIT)</u> - The core screw which is adjustable from the top of the trip unit determines the pickup value. The trip unit has a nominal ratio of adjustment of 1 to 4 and an accuracy within the limits of 10%.

The making of the contacts and target indication should occur at approximately the same instant. Position the stationary contact for a minimum of 1/32" wipe. The bridging moving contact should touch both stationary contacts simultaneously.

Apply sufficient current to operate the IIT. The operation indicator target should drop freely.

5. Indicating Contactor Switch (ICS) - Close the main relay contacts and pass sufficient d-c current through the trip circuit to close the contacts of the ICS. This value of current should be not greater than the particular ICS tap setting being used. The operation indicator target should drop freely.

The contact gap should be approximately .047" between the bridging moving contact and the adjustable stationary contacts. The bridging moving contact should touch both stationary contacts simultaneously.

#### Routine Maintenance

All relays should be inspected periodically and

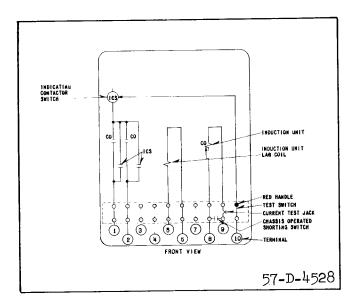



Fig. 17. Internal Schematic of the Double Trip Circuit
Closing Relay with Torque Control Terminals.
For the Single Trip Relay, the Circuits Associated with Terminal 2 are Omitted.

the time of operation should be checked at least once every year or at such other time intervals as may be dictated by experience to be suitable to the particular application. The use of phantom loads, in testing induction-type relays, should be avoided, since the resulting distorted current wave form will produce an error in timing.

All contacts should be periodically cleaned. A contact burnisher #182A836H01 is recommended for this purpose. The use of abrasive material for cleaning contacts is not recommended, because of the danger of embedding small particles in the face of the soft silver and thus impairing the contact.

#### CALIBRATION

Use the following procedure for calibrating the relay if the relay has been taken apart for repairs or the adjustments disturbed. This procedure should not be used until it is apparent that the relay is not in proper working order. (See "Acceptance Check")

#### CO Unit

1) Contacts — By turning the time dial, move the moving contacts until they deflect the stationary contact to a position where the stationary contact is resting against its backstop. The index mark located on the movement frame should coincide with the "O" mark on the time dial.

For double trip relays only, the follow on the stationary contacts is obtained through the use of the stationary contact adjusting screw. The upper stationary contact is adjusted first such that there is ap-

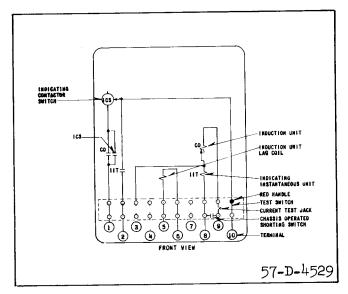



Fig. 18. Internal Schematic of the Single Trip Circuit
Closing Relay with Torque Control Terminals
and Indicating Instantaneous Trip Unit.

proximately 1/64" follow. The lower stationary contact is then adjusted such that both stationary contacts make contact simultaneously with their respective moving contact.

2) Minimum Trip Current - The adjustment of the spring tension in setting the minimum trip current value of the relay is most conveniently made with the damping magnet removed.

With the time dial set on "O", wind up the spiral spring by means of the spring adjuster until approximately 6-3/4 convolutions show.

Set the relay on the minimum tap setting, the time dial to position 6.

Adjust the control spring tension so that the moving contact will leave the backstop at tap value current +1.0% and will return to the backstop at tap value current -1.0%.

3. <u>Time Curve Calibration</u> - Install the permanent magnet.

Apply the indicated current per Table I for permanent magnet adjustment (e.g. CO-8, 2 times tap value) and measure the operating time. Adjust the permanent magnet keeper until the operating time corresponds to the value of Table I.

For Type CO-11 Relay only, the 1.3 times tap value operating time from the number 6 time dial position is  $54.9\pm5\%$  seconds. If the operating time

at 1.3 times tap value is not within these limits, a minor adjustment of the control spring will give the correct operating time without any undue effect on the minimum pick-up of the relay. This check is to be made after the 2 times tap value adjustment has has been completed.

Apply the indicated current per Table I for the electromagnet plug adjustment (e.g. CO-8, 20 times tap value) and measure the operating time. Adjust the proper plug until the operating time corresponds to the value in Table I. (Withdrawing the left hand plug, front view, increases the operating time and withdrawing the right hand plug, front view, decreases the time.) In adjusting the plugs, one plug should be screwed in completely and the other plug run in or out until the proper operating time has been obtained.

Recheck the permanent magnet adjustment. If the operating time for this calibration point has changed, readjust the permanent magnet and then recheck the electromagnet plug adjustment. 4. Indicating Contactor Switch (ICS) - Close the main relay contacts and pass sufficient d-c current through the trip circuit to close the contacts of the ICS. This value of current should be not greater than the particular ICS tap setting being used. The operation indicator target should drop freely.

## 5. Indicating Instantaneous Trip Unit (III)

The core screw must be adjusted to the value of pick-up current desired.

The nameplate data will furnish the actual current range that may be obtained from the IIT unit.

#### **RENEWAL PARTS**

Repair work can be done most satisfactorily at the factory. However, interchangeable parts can be furnished to the customers who are equipped for doing repair work. When ordering parts, always give the complete nameplate data.

TABLE 1

TIME CURVE CALIBRATION DATA - 50 & 60 CYCLES

|               | PERMANENT                | Γ MAGNET ADJUSTM                       | IENT                         | ELECTROMAGNET PLUGS                    |                              |  |  |
|---------------|--------------------------|----------------------------------------|------------------------------|----------------------------------------|------------------------------|--|--|
| RELAY<br>TYPE | TIME<br>DIAL<br>POSITION | CURRENT<br>(MULTIPLES OF<br>TAP VALUE) | OPERATING<br>TIME<br>SECONDS | CURRENT<br>(MULTIPLES OF<br>TAP VALUE) | OPERATING<br>TIME<br>SECONDS |  |  |
| CO-2          | 6                        | 3                                      | 0.57                         | 20                                     | 0.22                         |  |  |
| CO-5          | 6                        | 2                                      | 37.80                        | 10                                     | 14.30                        |  |  |
| CO-6          | 6                        | 2                                      | 2.46                         | 20                                     | 1.19                         |  |  |
| CO-7          | 6                        | 2                                      | 4.27                         | 20                                     | 1.11                         |  |  |
| CO-8          | 6                        | 2                                      | 13.35                        | 20                                     | 1.11                         |  |  |
| CO-9          | 6                        | 2                                      | 8.87                         | 20                                     | 0.65                         |  |  |
| CO-11         | 6                        | 2                                      | 11.27                        | 20                                     | 0.24                         |  |  |

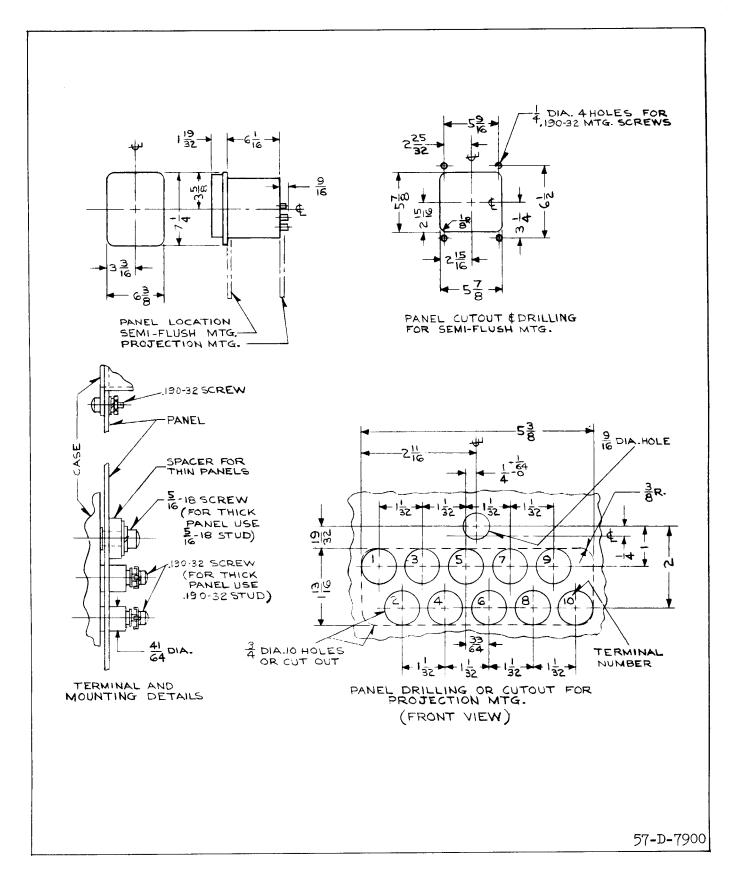



Fig. 19. Outline and Drilling Plan for the Type CO Relay.



WESTINGHOUSE ELECTRIC CORPORATION RELAY DEPARTMENT NEWARK, N. J.

Printed in U.S.A.



## INSTALLATION . OPERATION . MAINTENANCE

# INSTRUCTIONS

## TYPE CO OVERCURRENT RELAY

#### CAUTION

Before putting relays into service, remove all blocking which may have been inserted for the purpose of securing the parts during shipment, make sure that all moving parts operate freely, inspect the contacts to see that they are clean and close properly, and operate the relay to check the settings and electrical connections.

#### **APPLICATION**

These induction overcurrent relays are used to disconnect circuits or apparatus when the current in them exceeds a given value. Where a station battery (48 volts or over) is available, the circuit closing type relays are normally used to trip the circuit breaker.

#### **CONTENTS**

This instruction leaflet applies to the following types of relays:

Type CO-2 Short Time Relay

CO-5 Long Time Relay

CO-6 Definite Minimum Time Relay

CO-7 Moderately Inverse Time Relay

CO-8 Inverse Time Relay

CO-9 Very Inverse Time Relay

CO-11 Extremely Inverse Time Relay

#### CONSTRUCTION AND OPERATION

The type CO relays consist of an overcurrent unit (CO), an indicating contactor switch (ICS), and an indicating instantaneous trip unit (IIT) when required. The principal component parts of the relay and their location are shown in Figs. 1-5.

#### Electromagnet

The electromagnets for the types CO-5, CO-6, CO-7, CO-8 and CO-9 relays have a main tapped coil located on the center leg of an "E" type laminated structure that produces a flux which divides and returns through the outer legs. A shading coil causes the flux through the left leg to lag the main pole flux. The out-of-phase fluxes thus produced in the air gap

cause a contact closing torque.

The electromagnets for the types CO-2 and CO-11 relays have a main coil consisting of a tapped primary winding and a secondary winding. Two identical coils on the outer legs of the lamination structure are connected to the main coil secondary in a manner so that the combination of all the fluxes produced by the electromagnet result in out-of-phase fluxes in the air gap. The out-of-phase air gap fluxes produced cause a contact closing torque.

## Indicating Contactor Switch Unit (ICS)

The d-c indicating contactor switch is a small clapper type device. A magnetic armature, to which leaf-spring mounted contacts are attached, is attracted to the magnetic core upon energization of the switch. When the switch closes the moving contacts bridge two stationary contacts, completing the trip circuit. Also during this operation two fingers on the armature deflect a spring located on the front of the switch, which allows the operation indicator target to drop.

The front spring, in addition to holding the target, provides restraint for the armature and thus controls the pickup value of the switch.

#### Indicating Instantaneous Trip Unit (IIT)

The instantaneous trip unit is a small a-c operated clapper type device. A magnetic armature, to which leaf-spring mounted contacts are attached, is attracted to the magnetic core upon energization of the switch. When the switch closes, the moving contacts bridge two stationary contacts completing the trip circuit. Also, during the operation, two fingers on the armature deflect a spring located on the front of the switch which allows the operation indicator target to drop.

A core screw accessible from the top of the switch provides the adjustable pickup range.

#### **CHARACTERISTICS**

The relays are generally available in the following current ranges:

**EFFECTIVE SEPTEMBER 1960** 



Fig. 1. Type CO Relay Without Case. 1-Indicating Instantaneous trip (IIT). 2-IIT Adjusting Screw. 3-Indicating Contactor Switch (ICS). 4-Indicating Contactor Switch Tap Block.

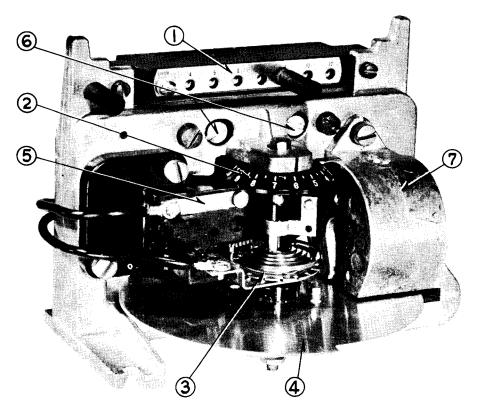
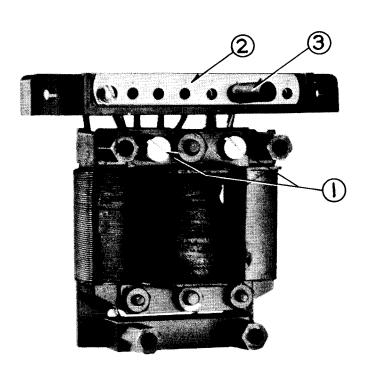




Fig. 2. Time Overcurrent Unit (Front View). 1-Tap Block. 2-Time Dial. 3-Control Spring Assembly. 4-Disc. 5-Stationary Contact Assembly. 6-Magnetic Plugs. 7-Permanent Magnet.



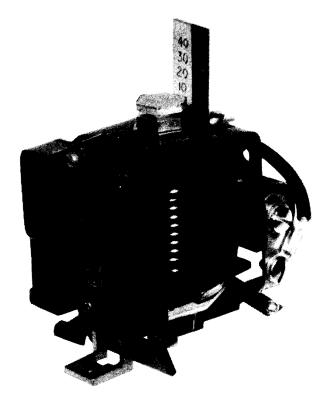



Fig. 3. "E" Type Electromagnet. 1- Magnetic Plugs. 2-Tap Block. 3-Tap Screw.

Fig. 4. Indicating Instantaneous Trip Unit (IIT).

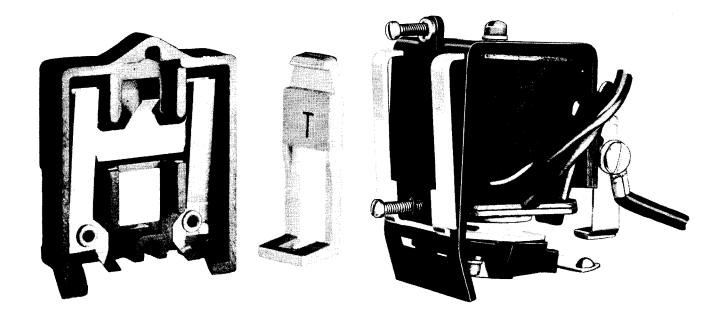



Fig. 5. Indicating Contactor Switch (ICS).

| Range    |     |     |     | Taps |     |     |     |
|----------|-----|-----|-----|------|-----|-----|-----|
| .5 - 2.5 | 0.5 | 0.6 | 0.8 | 1.0  | 1.5 | 2.0 | 2.5 |
| 2 - 6    | 2   | 2.5 | 3   | 3.5  | 4   | 5   | 6   |
| 4 - 12   | 4   | 5   | 6   | 7    | 8   | 10  | 12  |

These relays may have either single or double circuit closing contacts for tripping either one or two circuit breakers.

The time vs. current characteristics are shown in Figs. 7 to 13. These characteristics give the contact closing time for the various time dial settings when the indicated multiples of tap value current are applied to the relay.

#### Trip Circuit

The main contacts will safely close 30 amperes at 250 volts d-c and the seal-in contacts of the indi-

cating contactor switch will safely carry this current long enough to trip a circuit breaker.

The indicating instantaneous trip contacts will safely close 30 amperes at 250 volts d-c, and will carry this current long enough to trip a breaker.

The indicating contactor switch has two taps that provide a pickup setting of 0.2 or 2 amperes. To change taps requires connecting the lead located in front of the tap block to the desired setting by means of a screw connection.

#### Trip Circuit Constants

Contactor Switch -

0.2 ampere tap - 6.5 ohms d-c resistance

2.0 ampere tap - 0.15 ohms d-c resistance

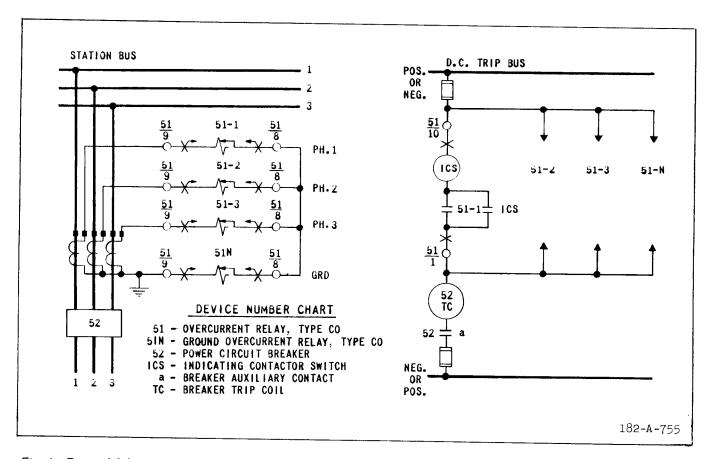



Fig. 6. External Schematic of the Circuit-Closing Type CO Relay for Phase and Ground Overcurrent Protection on a Three-Phase System.

TYPE CO-2 RELAY

|                 |      |                             |                                    |                           |                      | VOLT A                       | AMPERES**                           | ·,                                  |
|-----------------|------|-----------------------------|------------------------------------|---------------------------|----------------------|------------------------------|-------------------------------------|-------------------------------------|
| AMPERE<br>RANGE | TAP  | CONTINUOUS RATING (AMPERES) | ONE SECOND<br>RATING*<br>(AMPERES) | POWER FACTOR ANGLE $\phi$ | AT TAP VALUE CURRENT | AT 3 TIMES TAP VALUE CURRENT | AT 10 TIMES<br>TAP VALUE<br>CURRENT | AT 20 TIMES<br>TAP VALUE<br>CURRENT |
|                 | 0.5  | 0.91                        | 28                                 | 58                        | 4.8                  | 39.6                         | 256                                 | 790                                 |
|                 | 0.6  | 0.96                        | 28                                 | 5 <b>7</b>                | 4.9                  | 39.8                         | 270                                 | 851                                 |
|                 | 0.8  | 1.18                        | 28                                 | 53                        | 5.0                  | 42.7                         | 308                                 | 1024                                |
| 0.5/2.5         | 1.0  | 1.37                        | 28                                 | 50                        | 5.3                  | 45.4                         | 348                                 | 1220                                |
|                 | 1.5  | 1.95                        | 28                                 | 40                        | 6.2                  | 54.4                         | 435                                 | 1740                                |
|                 | 2.0  | 2.24                        | 28                                 | 36                        | 7.2                  | 65.4                         | 580                                 | 2280                                |
|                 | 2.5  | 2.50                        | 28                                 | 29                        | 7.9                  | 73.6                         | 700                                 | 2850                                |
|                 | 2.0  | 3.1                         | 110                                | 59                        | 5.04                 | 38.7                         | 262                                 | 800                                 |
|                 | 2.5  | 4.0                         | 110                                | 55                        | 5.13                 | 39.8                         | 280                                 | 920                                 |
|                 | 3.0  | 4.4                         | 110                                | 51                        | 5.37                 | 42.8                         | 312                                 | 1008                                |
| 2/6             | 3.5  | 4.8                         | 110                                | 47                        | 5.53                 | 42.8                         | 329                                 | 1120                                |
|                 | 4.0  | 5.2                         | 110                                | 45                        | 5.72                 | 46.0                         | 360                                 | 1216                                |
|                 | 5.0  | 5.6                         | 110                                | 41                        | 5.90                 | 50.3                         | 420                                 | 1500                                |
|                 | 6.0  | 6.0                         | 110                                | 37                        | 6.54                 | 54.9                         | 474                                 | 1800                                |
|                 | 4.0  | 7.3                         | 230                                | 65                        | 4.92                 | 39.1                         | 268                                 | 848                                 |
|                 | 5.0  | 8.0                         | 230                                | 50                        | 5.20                 | 42.0                         | 305                                 | 1020                                |
|                 | 6.0  | 8.8                         | 230                                | 47                        | 5.34                 | 44.1                         | 330                                 | 1128                                |
| 4/12            | 7.0  | 9.6                         | 230                                | 46                        | <b>*</b> 5.53        | 45.8                         | 364                                 | 1260                                |
| -,              | 8.0  | 10.4                        | 230                                | 43                        | 5.86                 | 49.9                         | 400                                 | 1408                                |
|                 | 10.0 | 11.2                        | 230                                | 37                        | 6.6                  | 55.5                         | 470                                 | 1720                                |
|                 | 12.0 | 12.0                        | 230                                | 34                        | 7.00                 | 62.3                         | 528                                 | 2064                                |

<sup>\*</sup> Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

 $<sup>\</sup>phi$  Degrees current lags voltage at tap value current.

<sup>\*\*</sup> Voltages taken with Rectox type voltmeter.

## CO-5 LONG TIME AND CO-6 DEFINITE MINIMUM TIME RELAYS

|                 |                                                      |                                                 |                                               |                                        | VOLT AMPERES**                                         |                                                      |                                               |                                                |  |  |
|-----------------|------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------------|--------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------|--|--|
| AMPERE<br>RANGE | ТАР                                                  | CONTINUOUS<br>RATING<br>(AMPERES)               | ONE SECOND<br>RATING*<br>(AMPERES)            | POWER FACTOR ANGLE $\phi$              | AT<br>TAP VALUE<br>CURRENT                             | AT 3 TIMES<br>TAP VALUE<br>CURRENT                   | AT 10 TIMES<br>TAP VALUE<br>CURRENT           | AT 20 TIMES<br>TAP VALUE<br>CURRENT            |  |  |
| 0.5/2.5         | (0.5<br>(0.6<br>(0.8<br>(1.0<br>(1.5<br>(2.0<br>(2.5 | 2.7<br>3.1<br>3.7<br>4.1<br>5.7<br>6.8<br>7.7   | 88<br>88<br>88<br>88<br>88<br>88              | 69<br>68<br>67<br>66<br>62<br>60<br>58 | 3.92<br>3.96<br>3.96<br>4.07<br>4.19<br>4.30<br>4.37   | 20.6<br>20.7<br>21<br>21.4<br>23.2<br>24.9<br>26.2   | 103<br>106<br>114<br>122<br>147<br>168<br>180 | 270<br>288<br>325<br>360<br>462<br>548<br>630  |  |  |
| 2/6             | (2<br>(2.5<br>(3<br>(3.5<br>(4<br>(5<br>(6           | 8<br>8.8<br>9.7<br>10.4<br>11.2<br>12.5<br>13.7 | 230<br>230<br>230<br>230<br>230<br>230<br>230 | 67<br>66<br>64<br>63<br>62<br>59       | 3.88 * 3.90 3.93 4.09 * 4.12 4.20 4.38                 | 21<br>21.6<br>22.1<br>23.1<br>23.5<br>24.8<br>26.5   | 110<br>118<br>126<br>136<br>144<br>162<br>183 | 308<br>342<br>381<br>417<br>448<br>540<br>624  |  |  |
| 4/12            | (4<br>(5<br>(6<br>(7<br>(8<br>(10<br>(12             | 16<br>18.8<br>19.3<br>20.8<br>22.5<br>25        | 460<br>460<br>460<br>460<br>460<br>460        | 65<br>63<br>61<br>59<br>56<br>53       | 4.00<br>4.15<br>4.32<br>* 4.35<br>4.40<br>4.60<br>4.92 | 22.4<br>23.7<br>25.3<br>26.4<br>27.8<br>30.1<br>35.6 | 126<br>143<br>162<br>183<br>204<br>247<br>288 | 376<br>450<br>531<br>611<br>699<br>880<br>1056 |  |  |

#### CO-7 MODERATELY INVERSE TIME RELAY

|                 |                                                             |                                                 |                                               |                                  | VOLT AMPERES**                                       |                                                      |                                               |                                                |  |
|-----------------|-------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------|--|
| AMPERE<br>RANGE | TAP                                                         | CONTINUOUS<br>RATING<br>(AMPERES)               | ONE SECOND<br>RATING*<br>(AMPERES)            | POWER FACTOR ANGLE $\phi$        | AT TAP VALUE CURRENT                                 | AT 3 TIMES<br>TAP VALUE<br>CURRENT                   | AT 10 TIMES<br>TAP VALUE<br>CURRENT           | AT 20 TIMES<br>TAP VALUE<br>CURRENT            |  |
| 0.5/2.5         | (0.5)<br>(0.6)<br>(0.8)<br>(1.0)<br>(1.5)<br>(2.0)<br>(2.5) | 2.7<br>3.1<br>3.7<br>4.1<br>5.7<br>6.8<br>7.7   | 88<br>88<br>88<br>88<br>88<br>88              | 68<br>67<br>66<br>64<br>61<br>58 | 3.88<br>3.93<br>3.93<br>4.00<br>4.08<br>4.24<br>4.38 | 20.7<br>20.9<br>21.1<br>21.6<br>22.9<br>24.8<br>25.9 | 103<br>107<br>114<br>122<br>148<br>174<br>185 | 278<br>288<br>320<br>356<br>459<br>552<br>640  |  |
| 2/6             | (2<br>(2.5<br>(3<br>(3.5<br>(4<br>(5<br>(6                  | 8<br>8.8<br>9.7<br>10.4<br>11.2<br>12.5<br>13.7 | 230<br>230<br>230<br>230<br>230<br>230<br>230 | 66<br>63<br>63<br>62<br>61<br>59 | 4.06<br>4.07<br>4.14<br>4.34<br>4.34<br>4.40         | 21.3<br>21.8<br>22.5<br>23.4<br>23.8<br>25.2         | 111<br>120<br>129<br>141<br>149<br>163<br>183 | 306<br>342<br>366<br>413<br>448<br>530<br>624  |  |
| 4/12            | (4<br>(5<br>(6<br>(7<br>(8<br>(10<br>(12                    | 16<br>18.8<br>19.3<br>20.8<br>22.5<br>25        | 460<br>460<br>460<br>460<br>460<br>460        | 64<br>61<br>60<br>58<br>55<br>51 | 4.24<br>4.30<br>4.62<br>4.69<br>4.80<br>5.20<br>5.40 | 22.8<br>24.2<br>25.9<br>27.3<br>29.8<br>33           | 129<br>149<br>168<br>187<br>211<br>260<br>308 | 392<br>460<br>540<br>626<br>688<br>860<br>1032 |  |

<sup>\*</sup> Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

φ Degrees current lags voltage at tap value current.

<sup>\*\*</sup> Voltages taken with Rectox type voltmeter.

## CO-8 INVERSE TIME AND CO-9 VERY INVERSE TIME RELAYS

| AMPERE<br>RANGE | TAP                                                  | CONTINUOUS RATING (AMPERES)                     | ONE SECOND<br>RATING*<br>(AMPERES)            | POWER FACTOR ANGLE $\phi$              | AT TAP VALUE CURRENT                                 | AT 3 TIMES<br>TAP VALUE<br>CURRENT                   | AT 10 TIMES<br>TAP VALUE<br>CURRENT           | AT 20 TIMES<br>TAP VALUE<br>CURRENT            |
|-----------------|------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------|
| 0.5/2.5         | (0.5<br>(0.6<br>(0.8<br>(1.0<br>(1.5<br>(2.0<br>(2.5 | 2.7<br>3.1<br>3.7<br>4.1<br>5.7<br>6.8<br>7.7   | 88<br>88<br>88<br>88<br>88                    | 72<br>71<br>69<br>67<br>62<br>57<br>53 | 2.38<br>2.38<br>2.40<br>2.42<br>2.51<br>2.65<br>2.74 | 21<br>21<br>21.1<br>21.2<br>22<br>23.5<br>24.8       | 132<br>134<br>142<br>150<br>170<br>200<br>228 | 350<br>365<br>400<br>440<br>530<br>675<br>800  |
| 2/6             | (2<br>(2.5<br>(3<br>(3.5<br>(4<br>(5<br>(6           | 8<br>8.8<br>9.7<br>10.4<br>11.2<br>12.5<br>13.7 | 230<br>230<br>230<br>230<br>230<br>230<br>230 | 70<br>66<br>64<br>62<br>60<br>58<br>56 | 2.38<br>2.40<br>2.42<br>2.48<br>2.53<br>2.64<br>2.75 | 21<br>21.1<br>21.5<br>22<br>22.7<br>24<br>25.2       | 136<br>142<br>149<br>157<br>164<br>180        | 360<br>395<br>430<br>470<br>500<br>580<br>660  |
| 4/12            | (4<br>(5<br>(6<br>(7<br>(8<br>(10<br>(12             | 16<br>18.8<br>19.3<br>20.8<br>22.5<br>25        | 460<br>460<br>460<br>460<br>460<br>460        | 68<br>63<br>60<br>57<br>54<br>48<br>45 | 2.38<br>2.46<br>2.54<br>2.62<br>2.73<br>3.00<br>3.46 | 21.3<br>21.8<br>22.6<br>23.6<br>24.8<br>27.8<br>31.4 | 146<br>158<br>172<br>190<br>207<br>248<br>292 | 420<br>480<br>550<br>620<br>700<br>850<br>1020 |

#### TYPE CO-11 RELAY

|                 |              |                                   |                                    |                           |                      | VOLT A                       | AMPERES**                           |                                     |
|-----------------|--------------|-----------------------------------|------------------------------------|---------------------------|----------------------|------------------------------|-------------------------------------|-------------------------------------|
| AMPERE<br>RANGE | TAP          | CONTINUOUS<br>RATING<br>(AMPERES) | ONE SECOND<br>RATING*<br>(AMPERES) | POWER FACTOR ANGLE $\phi$ | AT TAP VALUE CURRENT | AT 3 TIMES TAP VALUE CURRENT | AT 10 TIMES<br>TAP VALUE<br>CURRENT | AT 20 TIMES<br>TAP VALUE<br>CURRENT |
|                 | 0.5          | 1.7                               | 88                                 | 36                        | 0.72                 | 6.54                         | 71.8                                | 250                                 |
|                 | 0.6          | 1.9                               | 88                                 | 34                        | 0.75                 | 6.80                         | 75.0                                | 267                                 |
|                 | 0.8          | 2.2                               | 88                                 | 30                        | 0.81                 | 7.46                         | 84.0                                | 298                                 |
| 0.5/2.5         | 1.0          | <b>*</b> 2.5                      | 88                                 | 27                        | 0.89                 | 8.30                         | 93.1                                | 330                                 |
| 0.0, 2.0        | 1.5          | 3.0                               | 88                                 | 22                        | 1.13                 | 10.04                        | 115.5                               | 411                                 |
|                 | 2.0          | 3.5                               | 88                                 | 17                        | 1.30                 | 11.95                        | 136.3                               | 502                                 |
|                 | 2.5          | 3.8                               | 88                                 | 16                        | 1.48                 | 13.95                        | 160.0                               | 610                                 |
|                 | 2.0          | 7.0                               | 230                                | 32                        | 0.73                 | 6.30                         | 74.0                                | 264                                 |
|                 | 2.5          | 7.8                               | 230                                | 30                        | 0.78                 | 7.00                         | 78.5                                | 285                                 |
|                 | 3.0          | 8.3                               | 230                                | 27                        | 0.83                 | 7.74                         | 84.0                                | 309                                 |
| 2/6             | 3.5          | 9.0                               | 230                                | 24                        | 0.88                 | 8.20                         | 89.0                                | 340                                 |
| 2, 0            | 4.0          | 10.0                              | 230                                | 23                        | 0.96                 | 9.12                         | 102.0                               | 372                                 |
|                 | 5.0          | 11.0                              | 230                                | 20                        | 1.07                 | 9.80                         | 109.0                               | 430                                 |
|                 | 6.0          | 12.0                              | 230                                | 20                        | 1.23                 | 11.34                        | 129.0                               | 504                                 |
|                 | 4.0          | 14                                | 460                                | 29                        | 0.79                 | 7.08                         | 78.4                                | 296                                 |
|                 | 5.0          | 16                                | 460                                | 25                        | 0.89                 | 8.00                         | 90.0                                | 340                                 |
|                 | 6.0          | 17                                | 460                                | 22                        | 1.02                 | 9.18                         | 101.4                               | 378                                 |
| 4/12            | 7.0          | 18                                | 460                                | 20                        | 1.10                 | 10.00                        | 110.0                               | 454                                 |
| 4/12            |              | 20                                | 460                                | 18                        | 1.23                 | 11.1                         | 124.8                               | 480                                 |
|                 | 8.0          |                                   | 460                                | 17                        | 1.32                 | 14.9                         | 131.6                               | 600                                 |
|                 | 10.0<br>12.0 | 22<br>26                          | 460                                | 16                        | 1.8                  | 16.3                         | 180.0                               | 720                                 |

<sup>\*</sup> Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

 $<sup>\</sup>phi$  Degrees current lags voltage at tap value current.

<sup>\*\*</sup> Voltages taken with Rectox type voltmeter.

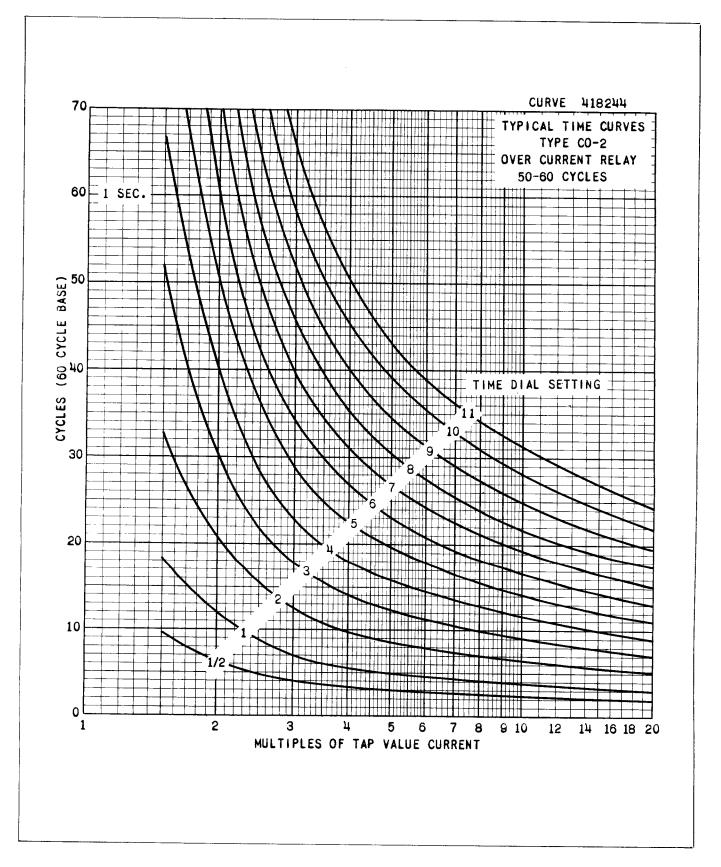



Fig. 7. Typical Time Curves of the Type CO-2 Relay.

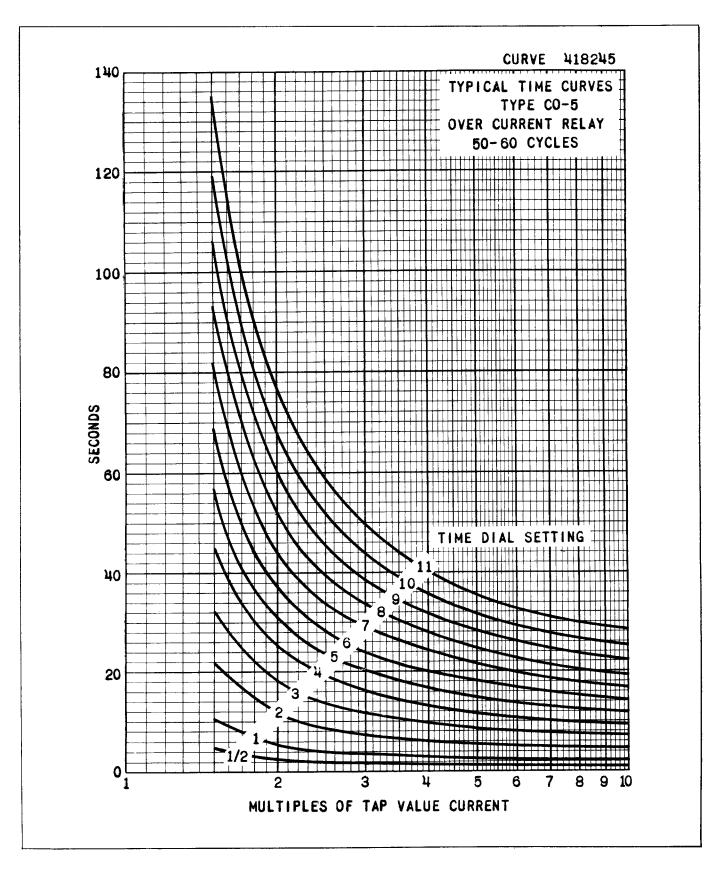



Fig. 8. Typical Time Curves of the Type CO-5 Relay.

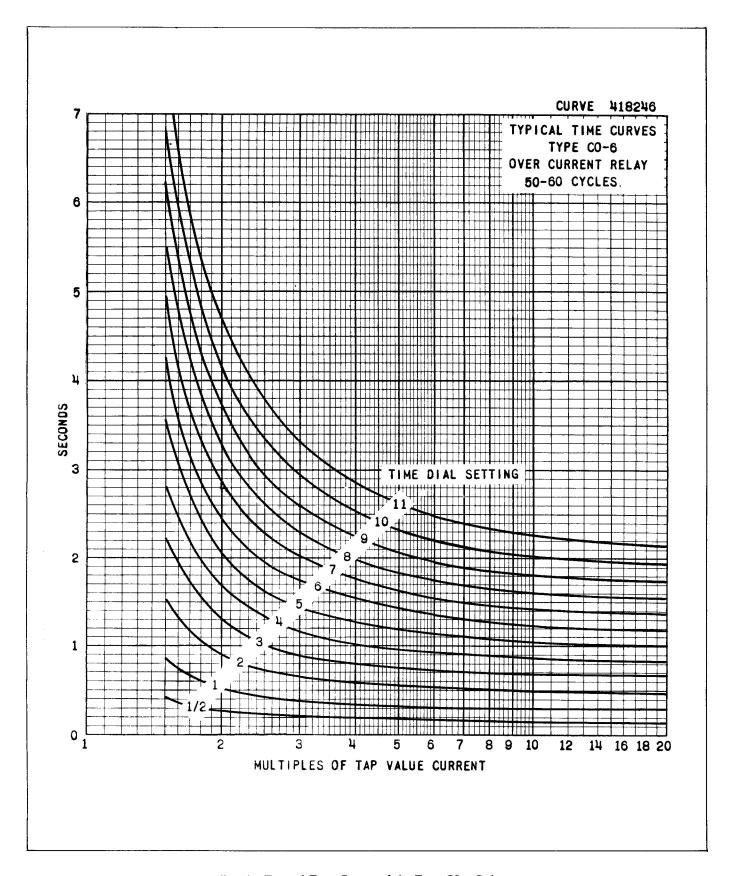



Fig. 9. Typical Time Curves of the Type CO-6 Relay.

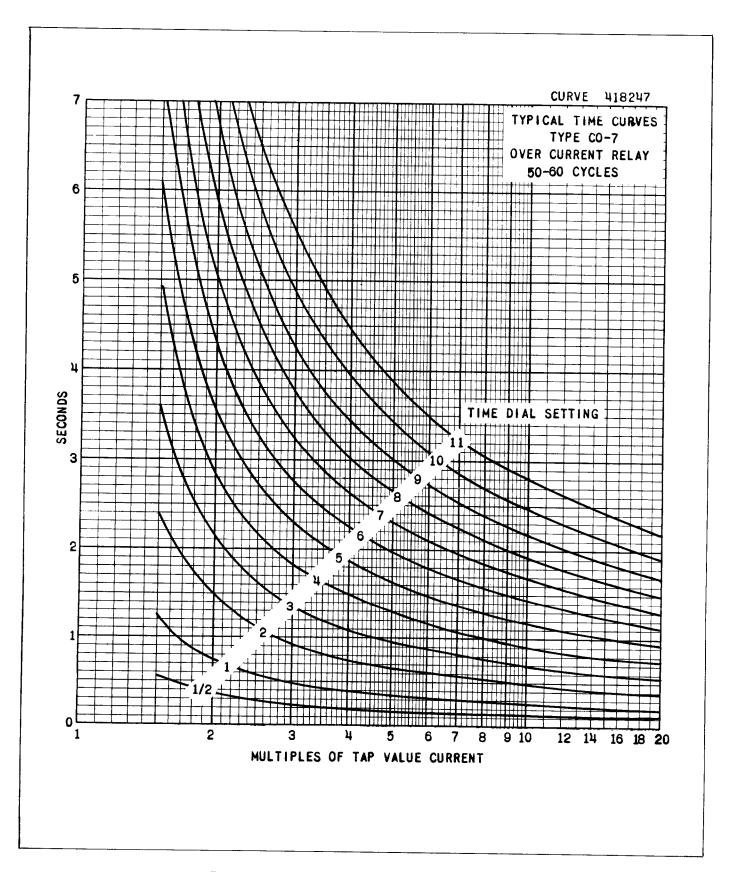



Fig. 10. Typical Time Curves of the Type CO-7 Relay.

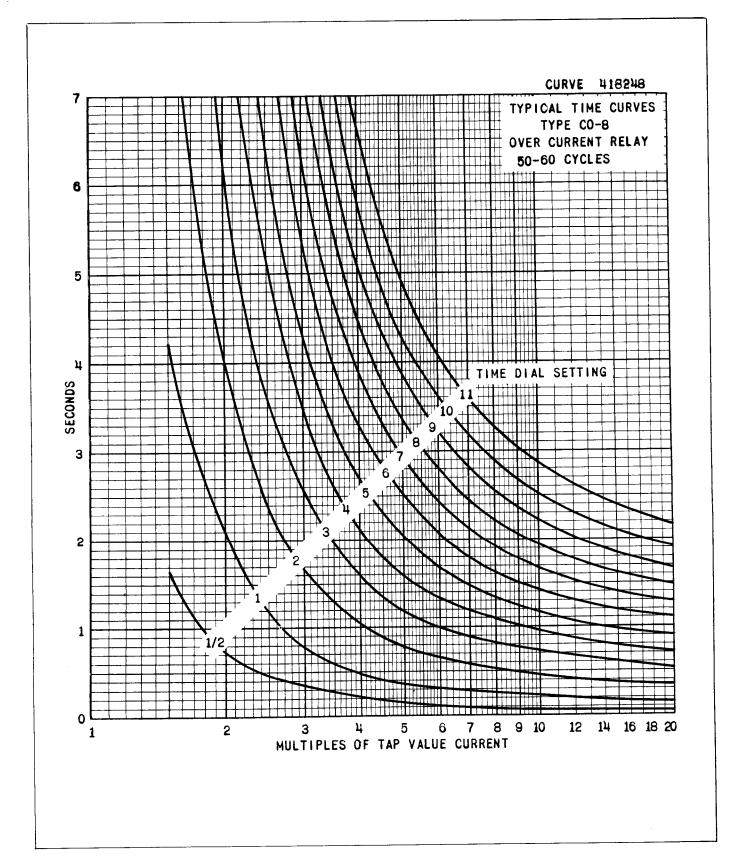



Fig. 11. Typical Time Curves of the Type CO-8 Relay.




Fig. 12. Typical Time Curves of the Type CO-9 Relay.

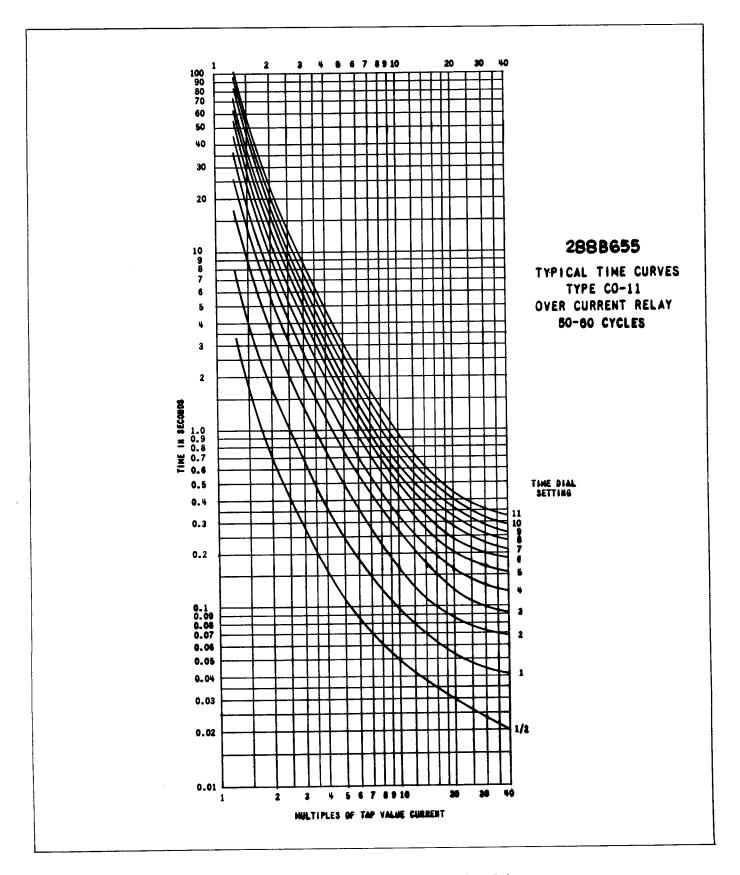



Fig. 13. Typical Time Curves of the Type CO-11 Relay.

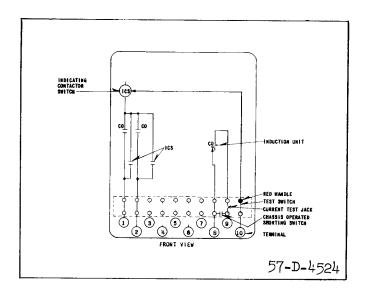



Fig. 14. Internal Schematic of the Double Trip Circuit
Closing Relay. For the Single Trip Relay the
Circuits Associated with Terminal 2 are Omitted.

#### **SETTINGS**

#### CO Unit

The overcurrent unit settings can be defined either by tap setting and time dial position or by tap setting and a specific time of operation at some current multiple of the tap setting (e.g. 4 tap setting, 2 time dial position or 4 tap setting, 0.6 seconds at 6 times tap value current).

To provide selective circuit breaker operation, a minimum coordinating time of 0.3 seconds plus circuit breaker time is recommended between the relay being set and the relays with which coordination is to be effected.

The connector screw on the terminal plate above the time dial makes connections to various turns on the operating coil. By placing this screw in the various terminal plate holes, the relay will respond to multiples of tap value currents in accordance with the various typical time-current curves.

#### Caution

Since the tap block connector screw carries operating current, be sure that the screw is turned tight. In order to avoid opening the current transformer circuits when changing taps under load, connect the spare connector screw in the desired tap position before removing the other tap screw from the original tap position.

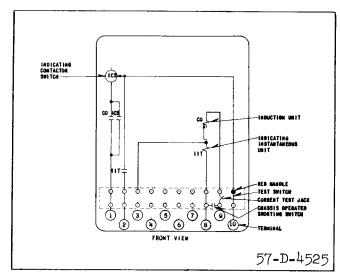



Fig. 15. Internal Schematic of the Single Trip Circuit-Closing Relay with Indicating Instantaneous Trip Unit.

#### Instantaneous Reclosing

The factory adjustment of the CO unit contacts provides a contact follow. Where circuit breaker reclosing will be initiated immediately after a trip by the CO contact, the time of the opening of the contacts should be a minimum. This condition is obtained by loosening the stationary contact mounting screw, removing the contact plate and then replacing the plate with the bent end resting against the contact spring.

For double trip relays, the upper stationary contact is adjusted such that the contact spring rests solidly against the back stop. The lower stationary contact is then adjusted such that both stationary contacts make contact simultaneously with their respective moving contact.

#### Indicating Contactor Switch (ICS)

No setting is required on the ICS unit except the selection of the 0.2 or 2.0 ampere tap setting. This selection is made by connecting the lead located in front of the tap block to the desired setting by means of the connecting screw.

## Indicating Instantaneous Trip (IIT)

The core screw must be adjusted to the value of pick-up current desired.

The nameplate data will furnish the actual current range that may be obtained from the IIT. unit.

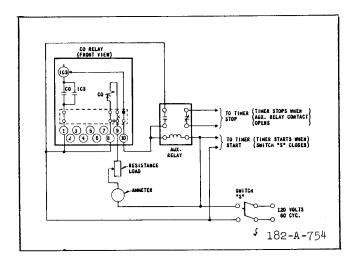



Fig. 16. Diagram of Test Connections for the Circuit-Closing Type CO Relay.

#### INSTALLATION

The relays should be mounted on switchboard panels or their equivalent in a location free from dirt, moisture, excessive vibration and heat. Mount the relay vertically by means of the mounting stud for projection mounting or by means of the four mounting holes on the flange for the semi-flush mounting. Either the stud or the mounting screws may be utilized for grounding the relay. The electrical connections may be made directly to the terminals by means of screws for steel panel mounting or to be terminal stud furnished with the relay for thick panel mounting. The terminal stud may be easily removed or inserted by locking two nuts on the stud and then turning the proper nut with a wrench.

For detail information on the FT case refer to IL 41-076.

#### **ADJUSTMENTS AND MAINTENANCE**

The proper adjustments to insure correct operation of this relay have been made at the factory. Upon receipt of the relay no customer adjustments, other than those covered under "SETTINGS" should be required.

For relays which include an indicating instantaneous trip unit (IIT), the junction of the induction and indicating instantaneous trip coils is brought out to switch jaw #3. With this arrangement the overcurrent units can be tested separately.

#### Acceptance Check

The following check is recommended to insure that the relay is in proper working order:

#### 1. Contact

- a) By turning the time dial, move the moving contacts until they deflect the stationary contact to a position where the stationary contact is resting against its backstop. The index mark located on the movement frame should coincide with the "O" mark on the time dial. For double trip relays, the follow on the stationary contacts should be approximately 1/64".
- b) For relays identified with a "T", located at lower left of stationary contact block, the index mark on the movement frame will coincide with the "O" mark on the time dial when the stationary contact has moved through approximately one-half of its normal deflection. Therefore, with the stationary contact resting against the backstop, the index mark is offset to the right of the "O" mark by approximately .020". The placement of the various time dial positions in line with the index mark will give operating times as shown on the respective time-current curves. For double trip relays, the follow on the stationary contacts should be approximately 1/32".
- 2. Minimum Trip Current Set the time dial to position 6 using the lowest tap setting, alternately apply tap value current plus 3% and tap value current minus 3%. The moving contact should leave the backstop at tap value current plus 3% and should return to the backstop at tap value current minus 3%.
- 3. <u>Time Curve</u> Table I shows the time curve calibration points for the various types of relays. With the time dial set to the indicated position and the relay set on the lowest tap setting, apply the currents specified by Table I, (e.g. for the CO-2, 3 and 20 times tap value current) and measure the operating time of the relay. The operating times should equal those of Table I plus or minus 5%.

For type CO-11 relay only, the 1.30 times tap value operating time from the number 6 time dial position is  $54.9 \pm 5\%$  seconds. It is important that the 1.30 times tap value current be maintained accurately. The maintaining of this current accurately is necessary because of the steepness of the slope of the time-current characteristic (Figure 13). A 1% variation in the 1.30 times tap value current (including measuring instrument deviation) will change the the nominal operating time by approximately 4%.

4. <u>Indicating Instantaneous Trip Unit (IIT)</u> - The core screw which is adjustable from the top of the trip unit determines the pickup value. The trip unit has a nominal ratio of adjustment of 1 to 4 and an accuracy within the limits of 10%.

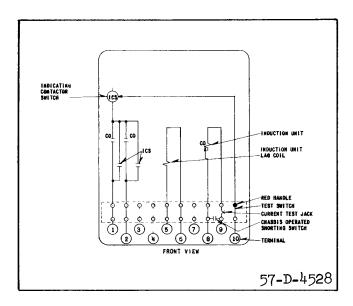



Fig. 17. Internal Schematic of the Double Trip Circuit
Closing Relay with Torque Control Terminals.
For the Single Trip Relay, the Circuits Associated with Terminal 2 are Omitted.

The making of the contacts and target indication should occur at approximately the same instant. Position the stationary contact for a minimum of 1/32" wipe. The bridging moving contact should touch both stationary contacts simultaneously.

Apply sufficient current to operate the IIT. The operation indicator target should drop freely.

5. Indicating Contactor Switch (ICS) - Close the main relay contacts and pass sufficient d-c current through the trip circuit to close the contacts of the ICS. This value of current should be not greater than the particular ICS tap setting being used. The operation indicator target should drop freely.

The contact gap should be approximately .047" between the bridging moving contact and the adjustable stationary contacts. The bridging moving contact should touch both stationary contacts simultaneously.

#### Routine Maintenance

All relays should be inspected periodically and the time of operation should be checked at least once every year or at such other time intervals as may be dictated by experience to be suitable to the particular application. The use of phantom loads, in testing induction-type relays, should be avoided, since the resulting distorted current wave form will produce an error in timing.

All contacts should be periodically cleaned. A contact burnisher #182A836H01 is recommended for this purpose. The use of abrasive material for

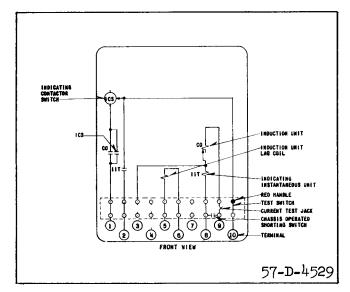



Fig. 18. Internal Schematic of the Single Trip Circuit
Closing Relay with Torque Control Terminals
and Indicating Instantaneous Trip Unit.

cleaning contacts is not recommended, because of the danger of embedding small particles in the face of the soft silver and thus impairing the contact.

#### CALIBRATION

Use the following procedure for calibrating the relay if the relay has been taken apart for repairs or the adjustments disturbed. This procedure should not be used until it is apparent that the relay is not in proper working order. (See "Acceptance Check")

#### CO Unit

- 1. Contact
- a) By turning the time dial, move the moving contacts until they deflect the stationary contact to a position where the stationary contact is resting against its backstop. The index mark located on the movement frame should coincide with the "O" mark on the time dial. For double trip relays, the follow on the stationary contacts should be approximately 1/64".
- b) For relays identified with a "T", located at lower left of stationary contact block, the index mark on the movement frame will coincide with the "O" mark on the time dial when the stationary contact has moved through approximately one-half of its normal deflection. Therefore, with the stationary contact resting against the backstop, the index mark is offset to the right of the "O" mark by approximately .020". The

placement of the various time dial positions in line with the index mark will give operating times as shown on the respective time-current curves. For double trip relays, the follow on the stationary contacts should be approximately 1/32".

2) Minimum Trip Current - The adjustment of the spring tension in setting the minimum trip current value of the relay is most conveniently made with the damping magnet removed.

With the time dial set on "O", wind up the spiral spring by means of the spring adjuster until approximately 6-3/4 convolutions show.

Set the relay on the minimum tap setting, the time dial to position 6.

Adjust the control spring tension so that the moving contact will leave the backstop at tap value current +1.0% and will return to the backstop at tap value current -1.0%.

3. <u>Time Curve Calibration</u> - Install the permanent magnet.

Apply the indicated current per Table I for permanent magnet adjustment (e.g. CO-8, 2 times tap value) and measure the operating time. Adjust the permanent magnet keeper until the operating time corresponds to the value of Table I.

For type CO-11 relay only, the 1.30 times tap value operating time from the number 6 time dial position is  $54.9 \pm 5\%$  seconds. It is important that the 1.30 times tap value current be maintained accurately. The maintaining of this current accurately is necessary because of the steepness of the slope of the time-current characteristic (Figure 13). A 1% variation in the 1.30 times tap value current (including measuring instrument deviation) will change the nominal operating time by approximately 4%. If the operating time at 1.3 times tap value is not within these limits, a minor adjustment of the control spring will give the

correct operating time without any undue effect on the minimum pick-up of the relay. This check is to be made after the 2 times tap value adjustment has has been completed.

Apply the indicated current per Table I for the electromagnet plug adjustment (e.g. CO-8, 20 times tap value) and measure the operating time. Adjust the proper plug until the operating time corresponds to the value in Table I. (Withdrawing the left hand plug, front view, increases the operating time and withdrawing the right hand plug, front view, decreases the time.) In adjusting the plugs, one plug should be screwed in completely and the other plug run in or out until the proper operating time has been obtained.

Recheck the permanent magnet adjustment. If the operating time for this calibration point has changed, readjust the permanent magnet and then recheck the electromagnet plug adjustment.

4. Indicating Contactor Switch (ICS) - Close the main relay contacts and pass sufficient d-c current through the trip circuit to close the contacts of the ICS. This value of current should be not greater than the particular ICS tap setting being used. The operation indicator target should drop freely.

#### 5. Indicating Instantaneous Trip Unit (IIT)

The core screw must be adjusted to the value of pick-up current desired.

The nameplate data will furnish the actual current range that may be obtained from the IIT unit.

#### RENEWAL PARTS

Repair work can be done most satisfactorily at the factory. However, interchangeable parts can be furnished to the customers who are equipped for doing repair work. When ordering parts, always give the complete nameplate data.

TABLE 1

TIME CURVE CALIBRATION DATA = 50 & 60 CYCLES

|               | PERMANENT                | Γ MAGNET ADJUSTM                       | <u>IENT</u>                  | ELECTROMAGNET PLUGS                    |                              |  |  |
|---------------|--------------------------|----------------------------------------|------------------------------|----------------------------------------|------------------------------|--|--|
| RELAY<br>TYPE | TIME<br>DIAL<br>POSITION | CURRENT<br>(MULTIPLES OF<br>TAP VALUE) | OPERATING<br>TIME<br>SECONDS | CURRENT<br>(MULTIPLES OF<br>TAP VALUE) | OPERATING<br>TIME<br>SECONDS |  |  |
| CO-2          | 6                        | 3                                      | 0.57                         | 20                                     | 0.22                         |  |  |
| CO-5          | 6                        | 2                                      | 37.80                        | 10                                     | 14.30                        |  |  |
| CO-6          | 6                        | 2                                      | 2.46                         | 20                                     | 1.19                         |  |  |
| CO-7          | 6                        | 2                                      | 4.27                         | 20                                     | 1.11                         |  |  |
| CO-8          | 6                        | 2                                      | 13.35                        | 20                                     | 1.11                         |  |  |
| CO-9          | 6                        | 2                                      | 8.87                         | 20                                     | 0.65                         |  |  |
| CO-11         | 6                        | 2                                      | 11.27                        | 20                                     | 0.24 △                       |  |  |

 $\triangle$  For 50 cycle CO-11 relay 20 times operating time limits are 0.24 + 10%, -5%.

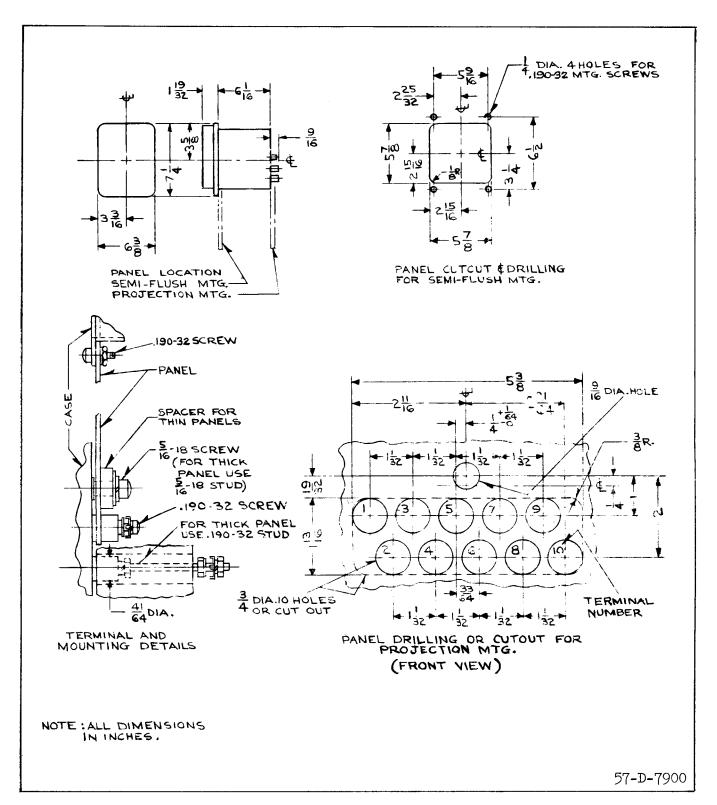



Fig. 19. Outline and Drilling Plan for the Type CO Relay.

# WESTINGHOUSE ELECTRIC CORPORATION RELAY DEPARTMENT NEWARK, N. J.



## INSTALLATION . OPERATION . MAINTENANCE

# INSTRUCTIONS

## TYPE CO OVERCURRENT RELAY

#### CAUTION

Before putting relays into service, remove all blocking which may have been inserted for the purpose of securing the parts during shipment, make sure that all moving parts operate freely, inspect the contacts to see that they are clean and close properly, and operate the relay to check the settings and electrical connections.

## **APPLICATION**

These induction overcurrent relays are used to disconnect circuits or apparatus when the current in them exceeds a given value. Where a station battery (48 volts or over) is available, the circuit closing type relays are normally used to trip the circuit breaker.

#### **CONTENTS**

This instruction leaflet applies to the following types of relays:

Type CO-2 Short Time Relay

CO-5 Long Time Relay

CO-6 Definite Minimum Time Relay

CO-7 Moderately Inverse Time Relay

CO-8 Inverse Time Relay

CO-9 Very Inverse Time Relay

CO-11 Extremely Inverse Time Relay

## CONSTRUCTION AND OPERATION

The type CO relays consist of an overcurrent unit (CO), an indicating contactor switch (ICS), and an indicating instantaneous trip unit (IIT) when required. The principal component parts of the relay and their location are shown in Figs. 1-5.

#### Electromagnet

The electromagnets for the types CO-5, CO-6, CO-7, CO-8 and CO-9 relays have a main tapped coil located on the center leg of an "E" type laminated structure that produces a flux which divides and returns through the outer legs. A shading coil causes the flux through the left leg to lag the main pole flux. The out-of-phase fluxes thus produced in the air gap

cause a contact closing torque.

The electromagnets for the types CO-2 and CO-11 relays have a main coil consisting of a tapped primary winding and a secondary winding. Two identical coils on the outer legs of the lamination structure are connected to the main coil secondary in a manner so that the combination of all the fluxes produced by the electromagnet result in out-of-phase fluxes in the air gap. The out-of-phase air gap fluxes produced cause a contact closing torque.

## Indicating Contactor Switch Unit (ICS)

The d-c indicating contactor switch is a small clapper type device. A magnetic armature, to which leaf-spring mounted contacts are attached, is attracted to the magnetic core upon energization of the switch. When the switch closes the moving contacts bridge two stationary contacts, completing the trip circuit. Also during this operation two fingers on the armature deflect a spring located on the front of the switch, which allows the operation indicator target to drop.

The front spring, in addition to holding the target, provides restraint for the armature and thus controls the pickup value of the switch.

## Indicating Instantaneous Trip Unit (IIT)

The instantaneous trip unit is a small a-c operated clapper type device. A magnetic armature, to which leaf-spring mounted contacts are attached, is attracted to the magnetic core upon energization of the switch. When the switch closes, the moving contacts bridge two stationary contacts completing the trip circuit. Also, during the operation, two fingers on the armature deflect a spring located on the front of the switch which allows the operation indicator target to drop.

A core screw accessible from the top of the switch provides the adjustable pickup range.

## CHARACTERISTICS

The relays are generally available in the following current ranges:

**EFFECTIVE FEBRUARY 1962** 

CO-5 LONG TIME AND CO-6 DEFINITE MINIMUM TIME RELAYS

|                 |                                                      |                                                 |                                               |                                        | VOLT AMPERES**                                       |                                                      |                                               |                                                |  |  |
|-----------------|------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------|--|--|
| AMPERE<br>RANGE | ТАР                                                  | CONTINUOUS<br>RATING<br>(AMPERES)               | ONE SECOND<br>RATING*<br>(AMPERES)            | POWER FACTOR ANGLE $\phi$              | AT<br>TAP VALUE<br>CURRENT                           | AT 3 TIMES<br>TAP VALUE<br>CURRENT                   | AT 10 TIMES<br>TAP VALUE<br>CURRENT           | AT 20 TIMES<br>TAP VALUE<br>CURRENT            |  |  |
| 0.5/2.5         | (0.5<br>(0.6<br>(0.8<br>(1.0<br>(1.5<br>(2.0<br>(2.5 | 2.7<br>3.1<br>3.7<br>4.1<br>5.7<br>6.8<br>7.7   | 88<br>88<br>88<br>88<br>88<br>88              | 69<br>68<br>67<br>66<br>62<br>60<br>58 | 3.92<br>3.96<br>3.96<br>4.07<br>4.19<br>4.30         | 20.6<br>20.7<br>21<br>21.4<br>23.2<br>24.9<br>26.2   | 103<br>106<br>114<br>122<br>147<br>168<br>180 | 270<br>288<br>325<br>360<br>462<br>548<br>630  |  |  |
| 2/6             | (2<br>(2.5<br>(3<br>(3.5<br>(4<br>(5<br>(6           | 8<br>8.8<br>9.7<br>10.4<br>11.2<br>12.5<br>13.7 | 230<br>230<br>230<br>230<br>230<br>230<br>230 | 67<br>66<br>64<br>63<br>62<br>59       | 3.88<br>3.90<br>3.93<br>4.09<br>4.12<br>4.20<br>4.38 | 21<br>21.6<br>22.1<br>23.1<br>23.5<br>24.8<br>26.5   | 110<br>118<br>126<br>136<br>144<br>162        | 308<br>342<br>381<br>417<br>448<br>540<br>624  |  |  |
| 4/12            | (4<br>(5<br>(6<br>(7<br>(8<br>(10<br>(12             | 16<br>18.8<br>19.3<br>20.8<br>22.5<br>25        | 460<br>460<br>460<br>460<br>460<br>460        | 65<br>63<br>61<br>59<br>56<br>53<br>47 | 4.00<br>4.15<br>4.32<br>4.35<br>4.40<br>4.60<br>4.92 | 22.4<br>23.7<br>25.3<br>26.4<br>27.8<br>30.1<br>35.6 | 126<br>143<br>162<br>183<br>204<br>247<br>288 | 376<br>450<br>531<br>611<br>699<br>880<br>1056 |  |  |

#### CO-7 MODERATELY INVERSE TIME RELAY

|                 |                                                      |                                                 |                                               |                                  | VOLT AMPERES**                                       |                                                      |                                               |                                                |  |  |
|-----------------|------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------|--|--|
| AMPERE<br>RANGE | TAP                                                  | CONTINUOUS<br>RATING<br>(AMPERES)               | ONE SECOND<br>RATING*<br>(AMPERES)            | POWER FACTOR ANGLE $\phi$        | AT<br>TAP VALUE<br>CURRENT                           | AT 3 TIMES<br>TAP VALUE<br>CURRENT                   | AT 10 TIMES<br>TAP VALUE<br>CURRENT           | AT 20 TIMES<br>TAP VALUE<br>CURRENT            |  |  |
| 0.5/2.5         | (0.5<br>(0.6<br>(0.8<br>(1.0<br>(1.5<br>(2.0<br>(2.5 | 2.7<br>3.1<br>3.7<br>4.1<br>5.7<br>6.8<br>7.7   | 88<br>88<br>88<br>88<br>88<br>88              | 68<br>67<br>66<br>64<br>61<br>58 | 3.88<br>3.93<br>3.93<br>4.00<br>4.08<br>4.24<br>4.38 | 20.7<br>20.9<br>21.1<br>21.6<br>22.9<br>24.8<br>25.9 | 103<br>107<br>114<br>122<br>148<br>174        | 278<br>288<br>320<br>356<br>459<br>552<br>640  |  |  |
| 2/6             | (2<br>(2.5<br>(3<br>(3.5<br>(4<br>(5<br>(6           | 8<br>8.8<br>9.7<br>10.4<br>11.2<br>12.5<br>13.7 | 230<br>230<br>230<br>230<br>230<br>230<br>230 | 66<br>63<br>63<br>62<br>61<br>59 | 4.06<br>4.07<br>4.14<br>4.34<br>4.34<br>4.40         | 21.3<br>21.8<br>22.5<br>23.4<br>23.8<br>25.2         | 111<br>120<br>129<br>141<br>149<br>163<br>183 | 306<br>342<br>366<br>413<br>448<br>530<br>624  |  |  |
| 4/12            | (4<br>(5<br>(6<br>(7<br>(8<br>(10<br>(12             | 16<br>18.8<br>19.3<br>20.8<br>22.5<br>25        | 460<br>460<br>460<br>460<br>460<br>460        | 64<br>61<br>60<br>58<br>55<br>51 | 4.24<br>4.30<br>4.62<br>4.69<br>4.80<br>5.20<br>5.40 | 22.8<br>24.2<br>25.9<br>27.3<br>29.8<br>33<br>37.5   | 129<br>149<br>168<br>187<br>211<br>260<br>308 | 392<br>460<br>540<br>626<br>688<br>860<br>1032 |  |  |

<sup>\*</sup> Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the

φ Degrees current lags voltage at tap value current.

<sup>\*\*</sup> Voltages taken with Rectox type voltmeter.

#### CO-8 INVERSE TIME AND CO-9 VERY INVERSE TIME RELAYS

|                 |                                                      |                                                 |                                               |                                        |                                                      | MPERES**                                             |                                               |                                               |
|-----------------|------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| AMPERE<br>RANGE | TAP                                                  | CONTINUOUS<br>RATING<br>(AMPERES)               | ONE SECOND<br>RATING*<br>(AMPERES)            | POWER FACTOR ANGLE $\phi$              | AT<br>TAP VALUE<br>CURRENT                           | AT 3 TIMES TAP VALUE CURRENT                         | AT 10 TIMES<br>TAP VALUE<br>CURRENT           | AT 20 TIMES<br>TAP VALUE<br>CURRENT           |
| 0.5/2.5         | (0.5<br>(0.6<br>(0.8<br>(1.0<br>(1.5<br>(2.0<br>(2.5 | 2.7<br>3.1<br>3.7<br>4.1<br>5.7<br>6.8<br>7.7   | 88<br>88<br>88<br>88<br>88                    | 72<br>71<br>69<br>67<br>62<br>57<br>53 | 2.38<br>2.38<br>2.40<br>2.42<br>2.51<br>2.65<br>2.74 | 21<br>21<br>21.1<br>21.2<br>22<br>23.5<br>24.8       | 132<br>134<br>142<br>150<br>170<br>200<br>228 | 350<br>365<br>400<br>440<br>530<br>675<br>800 |
| 2/6             | (2<br>(2.5<br>(3<br>(3.5<br>(4<br>(5<br>(6           | 8<br>8.8<br>9.7<br>10.4<br>11.2<br>12.5<br>13.7 | 230<br>230<br>230<br>230<br>230<br>230<br>230 | 70<br>66<br>64<br>62<br>60<br>58<br>56 | 2.38<br>2.40<br>2.42<br>2.48<br>2.53<br>2.64<br>2.75 | 21<br>21.1<br>21.5<br>22<br>22.7<br>24<br>25.2       | 136<br>142<br>149<br>157<br>164<br>180        | 360<br>395<br>430<br>470<br>500<br>580<br>660 |
| 4/12            | (4<br>(5<br>(6<br>(7<br>(8<br>(10<br>(12             | 16<br>18.8<br>19.3<br>20.8<br>22.5<br>25        | 460<br>460<br>460<br>460<br>460<br>460        | 68<br>63<br>60<br>57<br>54<br>48<br>45 | 2.38<br>2.46<br>2.54<br>2.62<br>2.73<br>3.00<br>3.46 | 21.3<br>21.8<br>22.6<br>23.6<br>24.8<br>27.8<br>31.4 | 146<br>158<br>172<br>190<br>207<br>248<br>292 | 420<br>480<br>550<br>620<br>700<br>850        |

#### TYPE CO-11 RELAY

|                 |      |      |                    |        |         | VOLT AMPERES**            |                      |                              |                                     |                                     |  |
|-----------------|------|------|--------------------|--------|---------|---------------------------|----------------------|------------------------------|-------------------------------------|-------------------------------------|--|
| AMPERE<br>RANGE | TAP  |      | RATING RATING* FAC | RATING | RATING* | POWER FACTOR ANGLE $\phi$ | AT TAP VALUE CURRENT | AT 3 TIMES TAP VALUE CURRENT | AT 10 TIMES<br>TAP VALUE<br>CURRENT | AT 20 TIMES<br>TAP VALUE<br>CURRENT |  |
|                 | 0.5  | 1.7  |                    | 56     | 36      | 0.72                      | 6.54                 | 71.8                         | 250                                 |                                     |  |
|                 | 0.6  | 1.9  |                    | 56     | 34      | 0.75                      | 6.80                 | 75.0                         | 267                                 |                                     |  |
|                 | 0.8  | 2.2  |                    | 56     | 30      | 0.81                      | 7.46                 | 84.0                         | 298                                 |                                     |  |
| 0.5/2.5         | 1.0  | 2.5  | *                  | 56     | 27      | 0.89                      | 8.30                 | 93.1                         | 330                                 |                                     |  |
|                 | 1.5  | 3.0  |                    | 56     | 22      | 1.13                      | 10.04                | 115.5                        | 411                                 |                                     |  |
|                 | 2.0  | 3.5  |                    | 56     | 17      | 1.30                      | 11.95                | 136.3                        | 502                                 |                                     |  |
|                 | 2.5  | 3.8  |                    | 56     | 16      | 1.48                      | 13.95                | 160.0                        | 610                                 |                                     |  |
|                 | 2.0  | 7.0  |                    | 230    | 32      | 0.73                      | 6.30                 | 74.0                         | 264                                 |                                     |  |
|                 | 2.5  | 7.8  |                    | 230    | 30      | 0.78                      | 7.00                 | 78.5                         | 285                                 |                                     |  |
|                 | 3.0  | 8.3  |                    | 230    | 27      | 0.83                      | 7.74                 | 84.0                         | 309                                 |                                     |  |
| 2/6             | 3.5  | 9.0  |                    | 230    | 24      | 0.88                      | 8.20                 | 89.0                         | 340                                 |                                     |  |
| 2, 0            | 4.0  | 10.0 |                    | 230    | 23      | 0.96                      | 9.12                 | 102.0                        | 372                                 |                                     |  |
|                 | 5.0  | 11.0 |                    | 230    | 20      | 1.07                      | 9.80                 | 109.0                        | 430                                 |                                     |  |
|                 | 6.0  | 12.0 |                    | 230    | 20      | 1.23                      | 11.34                | 129.0                        | 504                                 |                                     |  |
|                 | 4.0  | 14   |                    | 460    | 29      | 0.79                      | 7.08                 | 78.4                         | 296                                 |                                     |  |
|                 | 5.0  | 16   |                    | 460    | 25      | 0.89                      | 8.00                 | 90.0                         | 340                                 |                                     |  |
|                 | 6.0  | 17   |                    | 460    | 22      | 1.02                      | 9.18                 | 101.4                        | 378                                 |                                     |  |
| 4/12            | 7.0  | 18   |                    | 460    | 20      | 1.10                      | 10.00                | 110,0                        | 454                                 |                                     |  |
| 4/12            |      | 20   |                    | 460    | 18      | 1.23                      | 11.1                 | 124.8                        | 480                                 |                                     |  |
|                 | 8.0  |      |                    | 460    | 17      | 1.32                      | 14.9                 | 131.6                        | 600                                 |                                     |  |
|                 | 10.0 | 22   |                    |        | 16      | 1.8                       | 16.3                 | 180.0                        | 720                                 |                                     |  |
|                 | 12.0 | 26   |                    | 460    | 10      | 1.0                       | 10.0                 | 100.0                        | .20                                 |                                     |  |

<sup>\*</sup> Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

 $<sup>\</sup>phi$  Degrees current lags voltage at tap value current.

<sup>\*\*</sup> Voltages taken with Rectox type voltmeter.

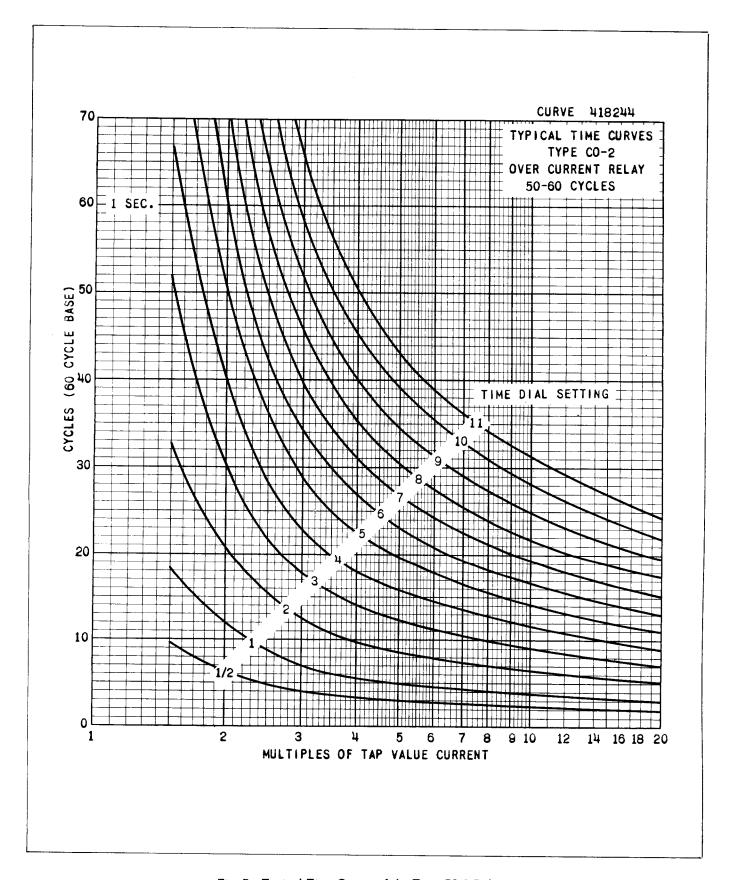



Fig. 7. Typical Time Curves of the Type CO-2 Relay.

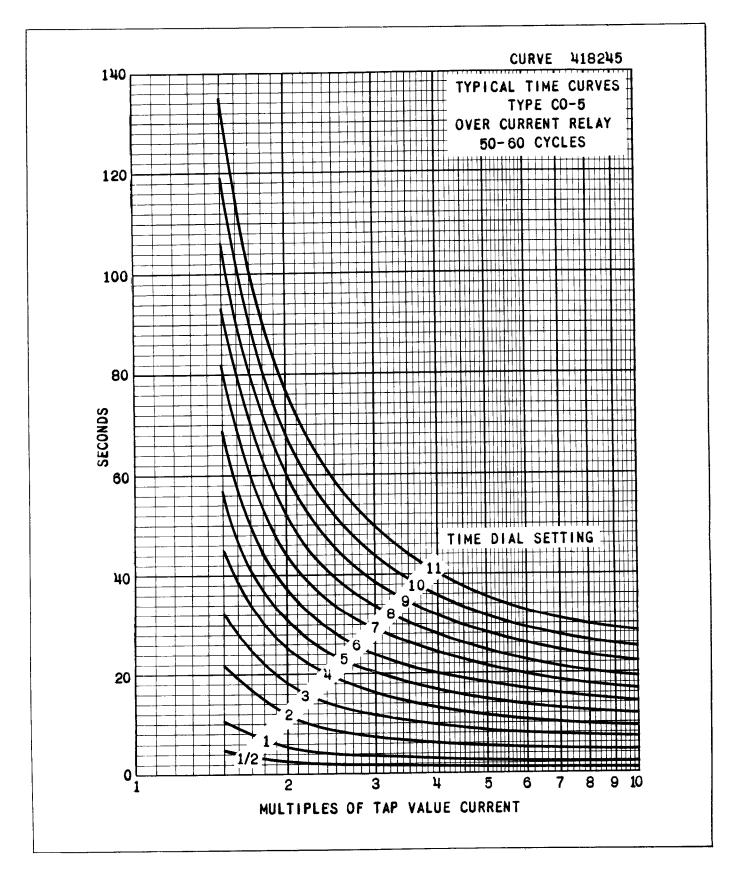



Fig. 8. Typical Time Curves of the Type CO-5 Relay.

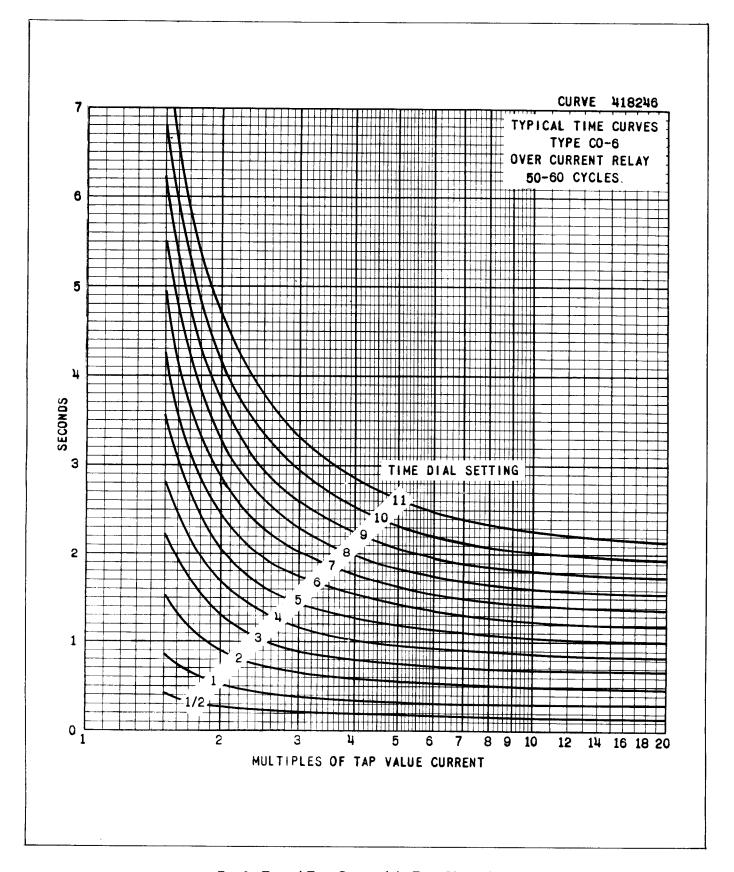



Fig. 9. Typical Time Curves of the Type CO-6 Relay.

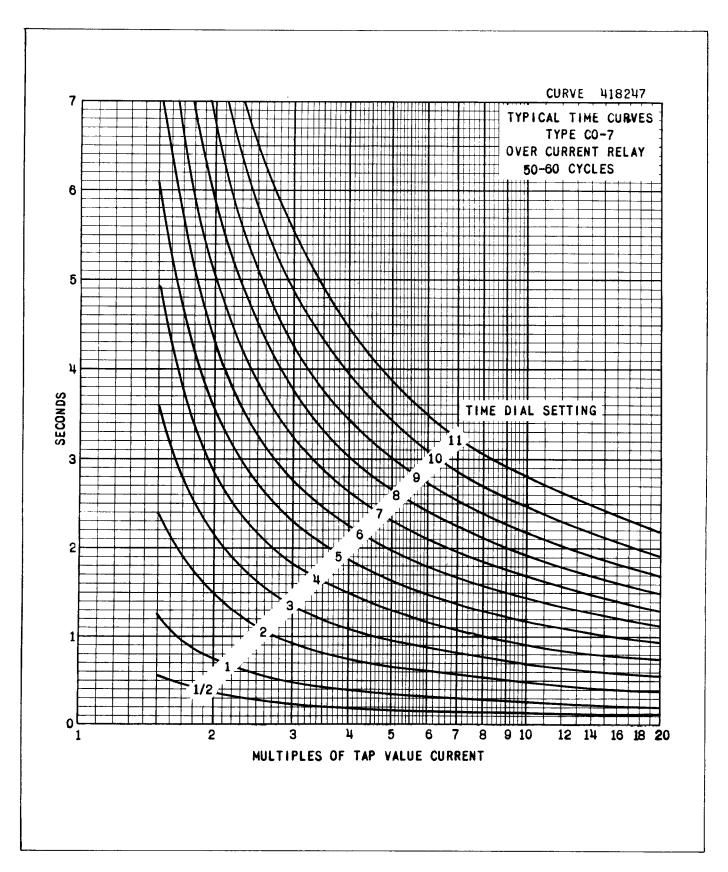



Fig. 10. Typical Time Curves of the Type CO-7 Relay.

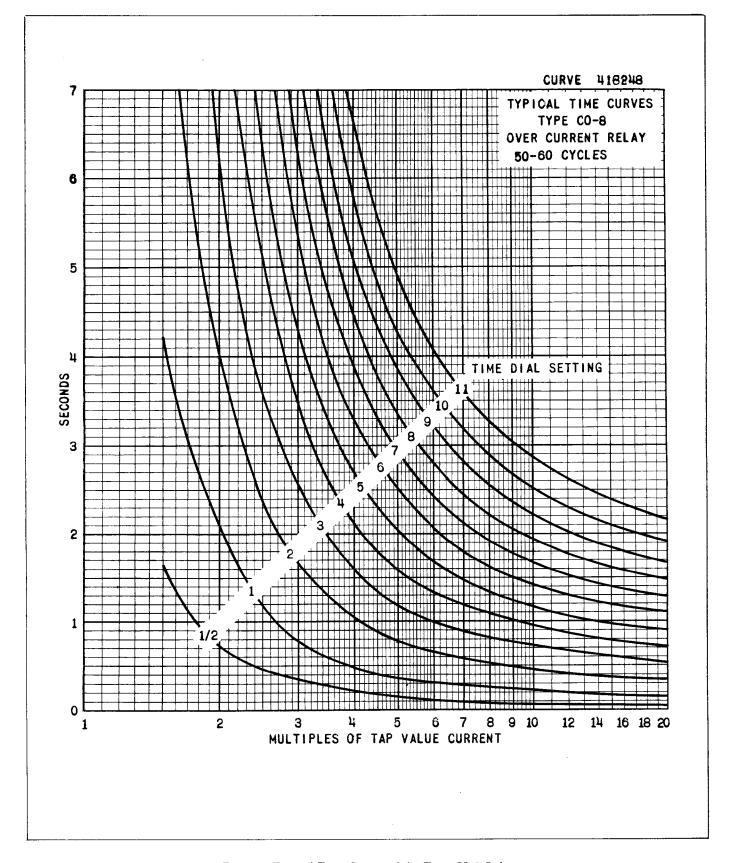



Fig. 11. Typical Time Curves of the Type CO-8 Relay.

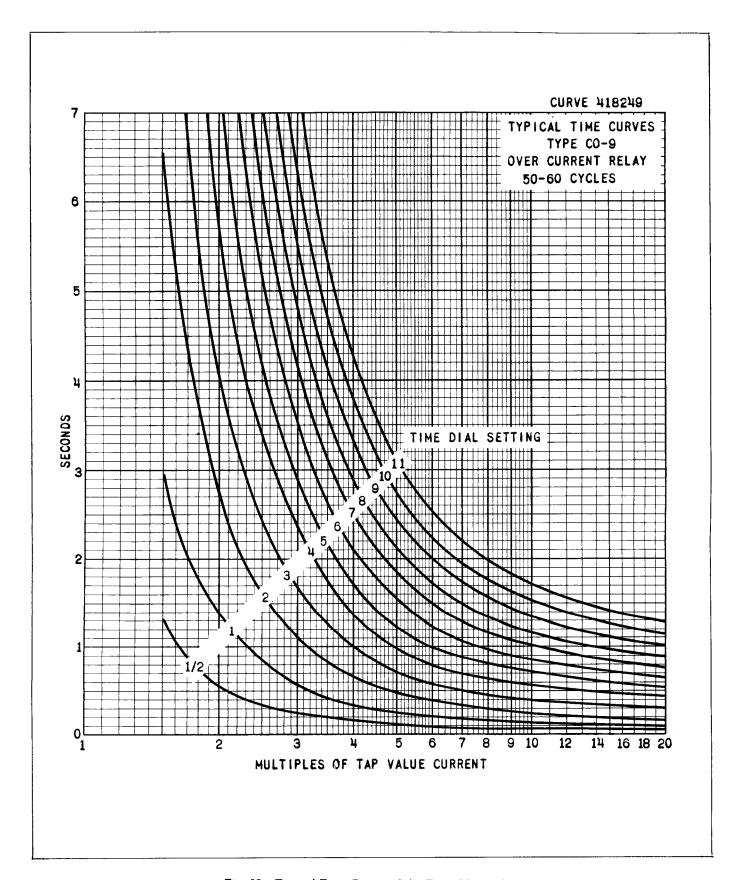



Fig. 12. Typical Time Curves of the Type CO-9 Relay.

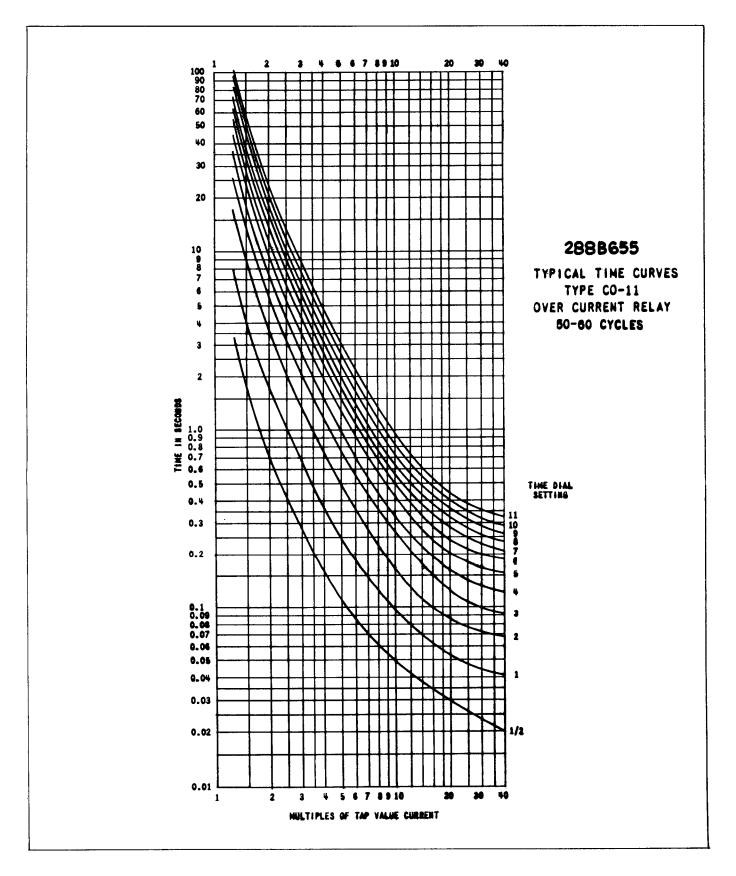



Fig. 13. Typical Time Curves of the Type CO-11 Relay.

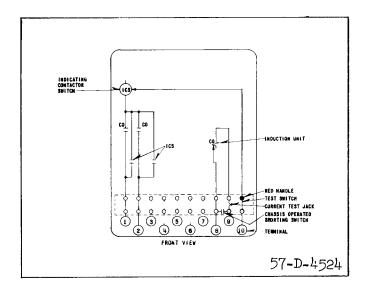



Fig. 14. Internal Schematic of the Double Trip Circuit
Closing Relay. For the Single Trip Relay the
Circuits Associated with Terminal 2 are Omitted.

## **SETTINGS**

### CO Unit

The overcurrent unit settings can be defined either by tap setting and time dial position or by tap setting and a specific time of operation at some current multiple of the tap setting (e.g. 4 tap setting, 2 time dial position or 4 tap setting, 0.6 seconds at 6 times tap value current).

To provide selective circuit breaker operation, a minimum coordinating time of 0.3 seconds plus circuit breaker time is recommended between the relay being set and the relays with which coordination is to be effected.

The connector screw on the terminal plate above the time dial makes connections to various turns on the operating coil. By placing this screw in the various terminal plate holes, the relay will respond to multiples of tap value currents in accordance with the various typical time-current curves.

### Caution

Since the tap block connector screw carries operating current, be sure that the screw is turned tight. In order to avoid opening the current transformer circuits when changing taps under load, connect the spare connector screw in the desired tap position before removing the other tap screw from the original tap position.

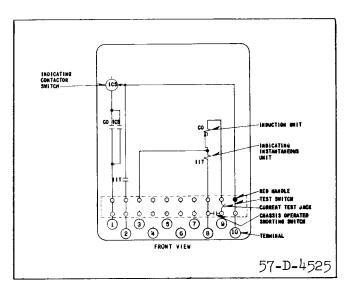
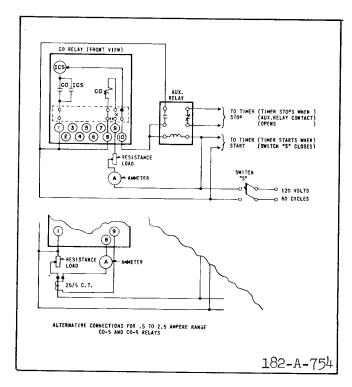



Fig. 15. Internal Schematic of the Single Trip Circuit-Closing Relay with Indicating Instantaneous Trip Unit.

#### Instantaneous Reclosing

The factory adjustment of the CO unit contacts provides a contact follow. Where circuit breaker reclosing will be initiated immediately after a trip by the CO contact, the time of the opening of the contacts should be a minimum. This condition is obtained by loosening the stationary contact mounting screw, removing the contact plate and then replacing the plate with the bent end resting against the contact spring.

For double trip relays, the upper stationary contact is adjusted such that the contact spring rests solidly against the back stop. The lower stationary contact is then adjusted such that both stationary contacts make contact simultaneously with their respective moving contact.


## Indicating Contactor Switch (ICS)

No setting is required on the ICS unit except the selection of the 0.2 or 2.0 ampere tap setting. This selection is made by connecting the lead located in front of the tap block to the desired setting by means of the connecting screw.

## Indicating Instantaneous Trip (IIT)

The core screw must be adjusted to the value of pick-up current desired.

The nameplate data will furnish the actual current range that may be obtained from the IIT. unit.



\* Fig. 16. Diagram of Test Connections for the Circuit-Closing Type CO Relay.

## INSTALLATION

The relays should be mounted on switchboard panels or their equivalent in a location free from dirt, moisture, excessive vibration and heat. Mount the relay vertically by means of the mounting stud for projection mounting or by means of the four mounting holes on the flange for the semi-flush mounting. Either the stud or the mounting screws may be utilized for grounding the relay. The electrical connections may be made directly to the terminals by means of screws for steel panel mounting or to be terminal stud furnished with the relay for thick panel mounting. The terminal stud may be easily removed or inserted by locking two nuts on the stud and then turning the proper nut with a wrench.

For detail information on the FT case refer to IL 41-076.

## **ADJUSTMENTS AND MAINTENANCE**

The proper adjustments to insure correct operation of this relay have been made at the factory. Upon receipt of the relay no customer adjustments, other than those covered under "SETTINGS" should be required.

For relays which include an indicating instantaneous trip unit (IIT), the junction of the induction and indicating instantaneous trip coils is brought out to switch jaw #3. With this arrangement the overcurrent units can be tested separately.

## Acceptance Check

The following check is recommended to insure that the relay is in proper working order:

#### 1. Contact

- a) By turning the time dial, move the moving contacts until they deflect the stationary contact to a position where the stationary contact is resting against its backstop. The index mark located on the movement frame should coincide with the "O" mark on the time dial. For double trip relays, the follow on the stationary contacts should be approximately 1/64".
- b) For relays identified with a "T", located at lower left of stationary contact block, the index mark on the movement frame will coincide with the "O" mark on the time dial when the stationary contact has moved through approximately one-half of its normal deflection. Therefore, with the stationary contact resting against the backstop, the index mark is offset to the right of the "O" mark by approximately .020". The placement of the various time dial positions in line with the index mark will give operating times as shown on the respective time-current curves. For double trip relays, the follow on the stationary contacts should be approximately 1/32".
- 2. Minimum Trip Current Set the time dial to position 6 using the lowest tap setting, alternately apply tap value current plus 3% and tap value current minus 3%. The moving contact should leave the backstop at tap value current plus 3% and should return to the backstop at tap value current minus 3%.
- 3. <u>Time Curve</u> Table I shows the time curve calibration points for the various types of relays. With the time dial set to the indicated position and the relay set on the lowest tap setting, apply the currents specified by Table I, (e.g. for the CO-2, 3 and 20 times tap value current) and measure the operating time of the relay. The operating times should equal those of Table I plus or minus 5%.

For type CO-11 relay only, the 1.30 times tap value operating time from the number 6 time dial position is  $54.9 \pm 5\%$  seconds. It is important that the 1.30 times tap value current be maintained ac-

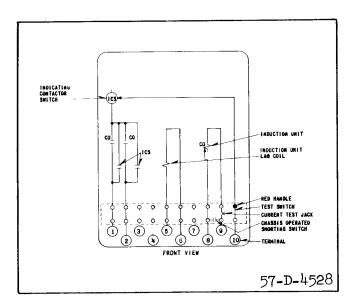



Fig. 17. Internal Schematic of the Double Trip Circuit Closing Relay with Torque Control Terminals. For the Single Trip Relay, the Circuits Associated with Terminal 2 are Omitted.

curately. The maintaining of this current accurately is necessary because of the steepness of the slope of the time-current characteristic (Figure 13). A 1% variation in the 1.30 times tap value current (including measuring instrument deviation) will change the the nominal operating time by approximately 4%.

4. <u>Indicating Instantaneous Trip Unit (IIT)</u> The core screw which is adjustable from the top of the trip unit determines the pickup value. The trip unit has a nominal ratio of adjustment of 1 to 4 and an accuracy within the limits of 10%.

The making of the contacts and target indication should occur at approximately the same instant. Position the stationary contact for a minimum of 1/32" wipe. The bridging moving contact should touch both stationary contacts simultaneously.

Apply sufficient current to operate the IIT. The operation indicator target should drop freely.

5. Indicating Contactor Switch (ICS) - Close the main relay contacts and pass sufficient d-c current through the trip circuit to close the contacts of the ICS. This value of current should be not greater than the particular ICS tap setting being used. The operation indicator target should drop freely.

The contact gap should be approximately .047" between the bridging moving contact and the adjustable stationary contacts. The bridging moving contact should touch both stationary contacts simultaneously.

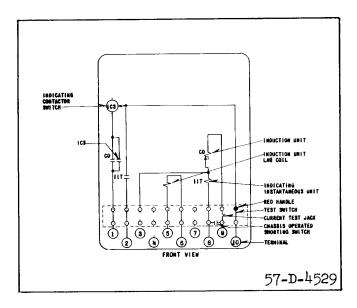



Fig. 18. Internal Schematic of the Single Trip Circuit
Closing Relay with Torque Control Terminals
and Indicating Instantaneous Trip Unit.

#### Routine Maintenance

All relays should be inspected and checked periodically to assure proper operation. Generally a visual inspection should call attention to any noticeable changes. A minimum suggested check on the relay system is to close the contacts manually to assure that the breaker trips and the target drops. Then release the contacts and observe that the reset is smooth and positive.

If an additional time check is desired, pass secondary current through the relay and check the time of operation. It is preferable to make this at several times pick-up current at an expected operating point for the particular application. For the .5 to 2.5 ampere range CO-5 and CO-6 induction unit use the alternative test circuit in Fig. 16 as these relays are affected by a distorted wave form. With this connection the 25/5 ampere current transformers should be worked well below the knee of the saturation (i.e. use 10L50 or better).

All contacts should be periodically cleaned. A contact burnisher #182A836H01 is recommended for this purpose. The use of abrasive material for cleaning contacts is not recommended, because of the danger of embedding small particles in the face of the soft silver and thus impairing the contact.

## **CALIBRATION**

Use the following procedure for calibrating the relay if the relay has been taken apart for repairs or

the adjustments disturbed. This procedure should not be used until it is apparent that the relay is not in proper working order. (See "Acceptance Check")

#### CO Unit

#### 1. Contact

- a) By turning the time dial, move the moving contacts until they deflect the stationary contact to a position where the stationary contact is resting against its backstop. The index mark located on the movement frame should coincide with the "O" mark on the time dial. For double trip relays, the follow on the stationary contacts should be approximately 1/64".
- b) For relays identified with a "T", located at lower left of stationary contact block, the index mark on the movement frame will coincide with the "O" mark on the time dial when the stationary contact has moved through approximately one-half of its normal deflection. Therefore, with the stationary contact resting against the backstop, the index mark is offset to the right of the "O" mark by approximately .020". The placement of the various time dial positions in line with the index mark will give operating times as shown on the respective time-current curves. For double trip relays, the follow on the stationary contacts should be approximately 1/32".
- 2) Minimum Trip Current The adjustment of the spring tension in setting the minimum trip current value of the relay is most conveniently made with the damping magnet removed.

With the time dial set on "O", wind up the spiral spring by means of the spring adjuster until approximately 6-3/4 convolutions show.

Set the relay on the minimum tap setting, the time dial to position 6.

Adjust the control spring tension so that the moving contact will leave the backstop at tap value current +1.0% and will return to the backstop at tap value current -1.0%.

3. <u>Time Curve Calibration</u> - Install the permanent magnet.

Apply the indicated current per Table I for permanent magnet adjustment (e.g. CO-8, 2 times tap value) and measure the operating time. Adjust the permanent magnet keeper until the operating time corresponds to the value of Table I.

For type CO-11 relay only, the 1.30 times tap value operating time from the number 6 time dial position is 54.9 ±5% seconds. It is important that the 1.30 times tap value current be maintained accurately. The maintaining of this current accurately is necessary because of the steepness of the slope of the timecurrent characteristic (Figure 13). A 1% variation in the 1.30 times tap value current (including measuring instrument deviation) will change the nominal operating time by approximately 4%. If the operating time at 1.3 times tap value is not within these limits, a minor adjustment of the control spring will give the correct operating time without any undue effect on the minimum pick-up of the relay. This check is to be made after the 2 times tap value adjustment has has been completed.

Apply the indicated current per Table I for the electromagnet plug adjustment (e.g. CO-8, 20 times tap value) and measure the operating time. Adjust the proper plug until the operating time corresponds to the value in Table I. (Withdrawing the left hand plug, front view, increases the operating time and withdrawing the right hand plug, front view, decreases the time.) In adjusting the plugs, one plug should be screwed in completely and the other plug run in or out until the proper operating time has been obtained.

Recheck the permanent magnet adjustment. If the operating time for this calibration point has changed, readjust the permanent magnet and then recheck the electromagnet plug adjustment.

4. Indicating Contactor Switch (ICS) - Close the main relay contacts and pass sufficient d-c current through the trip circuit to close the contacts of the ICS. This value of current should be not greater than the particular ICS tap setting being used. The operation indicator target should drop freely.

## 5. Indicating Instantaneous Trip Unit (IIT)

The core screw must be adjusted to the value of pick-up current desired.

The nameplate data will furnish the actual current range that may be obtained from the HT unit.

### **RENEWAL PARTS**

Repair work can be done most satisfactorily at the factory. However, interchangeable parts can be furnished to the customers who are equipped for doing repair work. When ordering parts, always give the complete nameplate data.

TABLE 1

TIME CURVE CALIBRATION DATA = 50 & 60 CYCLES

|               | PERMANENT                | Γ MAGNET ADJUSTM                       | MENT                         | ELECTROMAGNET PLUGS                    |                              |  |  |
|---------------|--------------------------|----------------------------------------|------------------------------|----------------------------------------|------------------------------|--|--|
| RELAY<br>TYPE | TIME<br>DIAL<br>POSITION | CURRENT<br>(MULTIPLES OF<br>TAP VALUE) | OPERATING<br>TIME<br>SECONDS | CURRENT<br>(MULTIPLES OF<br>TAP VALUE) | OPERATING<br>TIME<br>SECONDS |  |  |
| CO-2          | 6                        | 3                                      | 0.57                         | 20                                     | 0.22                         |  |  |
| CO-5          | 6                        | 2                                      | 37.80                        | 10                                     | 14.30                        |  |  |
| CO-6          | 6                        | 2                                      | 2.46                         | 20                                     | 1.19                         |  |  |
| CO-7          | 6                        | 2                                      | 4.27                         | 20                                     | 1.11                         |  |  |
| CO-8          | 6                        | 2                                      | 13.35                        | 20                                     | 1.11                         |  |  |
| CO-9          | 6                        | 2                                      | 8.87                         | 20                                     | 0.65                         |  |  |
| CO-11         | 6                        | 2                                      | 11.27                        | 20                                     | 0.24 △                       |  |  |

 $\triangle$  For 50 cycle CO-11 relay 20 times operating time limits are 0.24 + 10%, -5%.

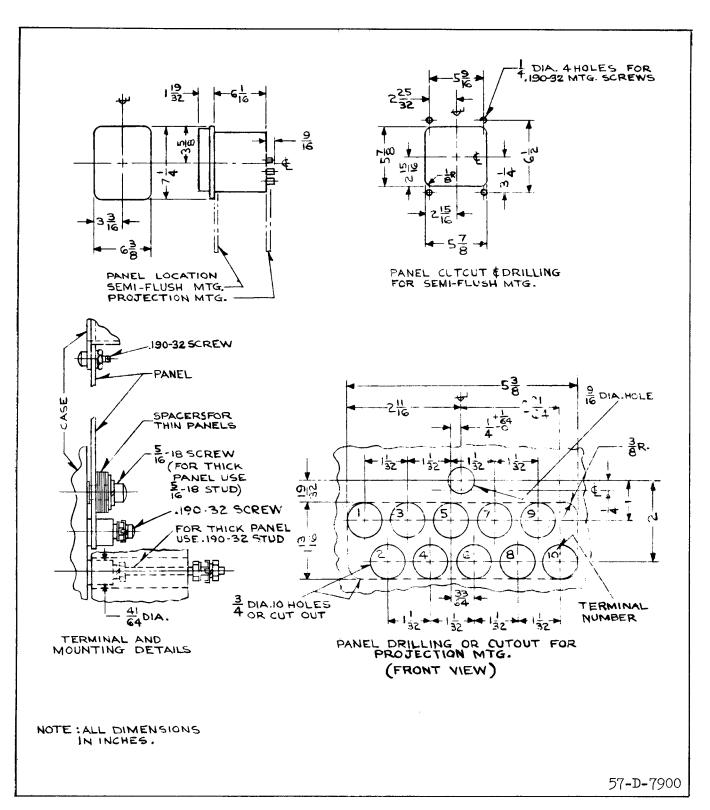



Fig. 19. Outline and Drilling Plan for the Type CO Relay.

# WESTINGHOUSE ELECTRIC CORPORATION RELAY - INSTRUMENT DEPARTMENT NEWARK, N. J.



## INSTALLATION

## OPERATION . MAINTENA

# INSTRUCTIONS

# TYPE CO OVERCURRENT RELAY

## CAUTION

Before putting relays into service, remove all blocking which may have been inserted for the purpose of securing the parts during shipment, make sure that all moving parts operate freely, inspect the contacts to see that they are clean and close properly, and operate the relay to check the settings and electrical connections.

#### **APPLICATION**

These induction overcurrent relays are used to disconnect circuits or apparatus when the current in them exceeds a given value. Where a station battery (48 volts or over) is available, the circuit closing type relays are normally used to trip the circuit breaker.

## **CONTENTS**

This instruction leaflet applies to the following types of relays:

Type CO-2 Short Time Relay

CO-5 Long Time Relay

CO-6 Definite Minimum Time Relay

CO-7 Moderately Inverse Time Relay

CO-8 Inverse Time Relay

CO-9 Very Inverse Time Relay

CO-11 Extremely Inverse Time Relay

## CONSTRUCTION AND OPERATION

The type CO relays consist of an overcurrent unit (CO), an indicating contactor switch (ICS), and an indicating instantaneous trip unit (IIT) when required. The principal component parts of the relay and their location are shown in Figs. 1-5.

### Electromagnet

The electromagnets for the types CO-5, CO-6, CO-7, CO-8 and CO-9 relays have a main tapped coil located on the center leg of an "E" type laminated structure that produces a flux which divides and returns through the outer legs. A shading coil causes the flux through the left leg to lag the main pole flux. The out-of-phase fluxes thus produced in the air gap

cause a contact closing torque.

The electromagnets for the types CO-2 and CO-11 relays have a main coil consisting of a tapped primary winding and a secondary winding. Two identical coils on the outer legs of the lamination structure are connected to the main coil secondary in a manner so that the combination of all the fluxes produced by the electromagnet result in out-of-phase fluxes in the air gap. The out-of-phase air gap fluxes produced cause a contact closing torque.

#### Indicating Contactor Switch Unit (ICS)

The d-c indicating contactor switch is a small clapper type device. A magnetic armature, to which leaf-spring mounted contacts are attached, is attracted to the magnetic core upon energization of the switch. When the switch closes the moving contacts bridge two stationary contacts, completing the trip circuit. Also during this operation two fingers on the armature deflect a spring located on the front of the switch, which allows the operation indicator target to drop.

The front spring, in addition to holding the target, provides restraint for the armature and thus controls the pickup value of the switch.

## Indicating Instantaneous Trip Unit (IIT)

The instantaneous trip unit is a small a-c operated clapper type device. A magnetic armature, to which leaf-spring mounted contacts are attached, is attracted to the magnetic core upon energization of the switch. When the switch closes, the moving contacts bridge two stationary contacts completing the trip circuit. Also, during the operation, two fingers on the armature deflect a spring located on the front of the switch which allows the operation indicator target to drop.

A core screw accessible from the top of the switch provides the adjustable pickup range.

## **CHARACTERISTICS**

The relays are generally available in the following current ranges:

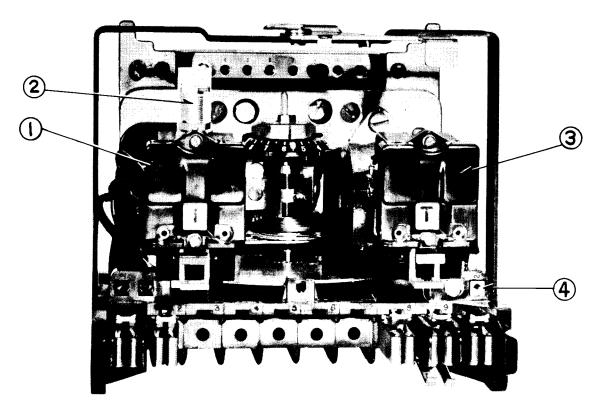



Fig. 1. Type CO Relay Without Case. 1-Indicating Instantaneous trip (IIT). 2-IIT Adjusting Screw. 3-Indicating Contactor Switch (ICS). 4-Indicating Contactor Switch Tap Block.

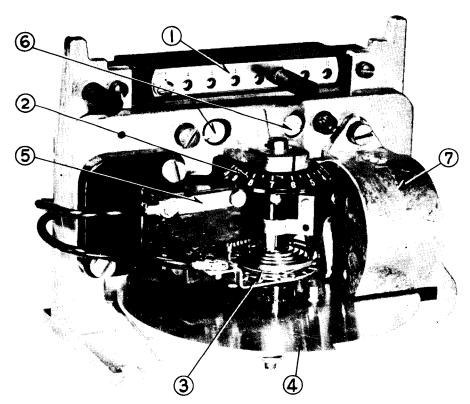
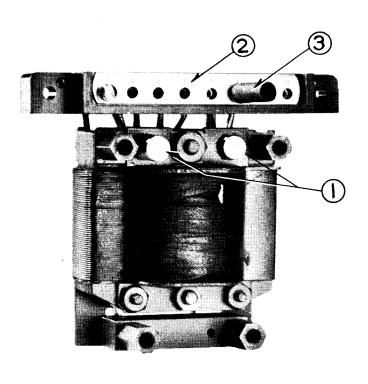




Fig. 2. Time Overcurrent Unit (Front View). 1-Tap Block. 2-Time Dial. 3-Control Spring Assembly. 4-Disc. 5-Stationary Contact Assembly. 6-Magnetic Plugs. 7-Permanent Magnet.



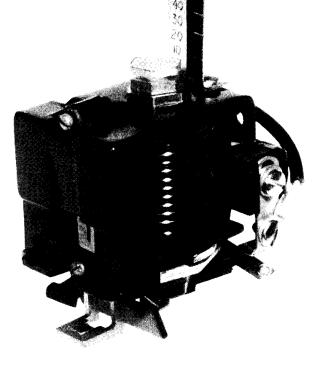



Fig. 3. "E" Type Electromagnet. 1- Magnetic Plugs. 2-Tap Block. 3-Tap Screw.

Fig. 4. Indicating Instantaneous Trip Unit (IIT).

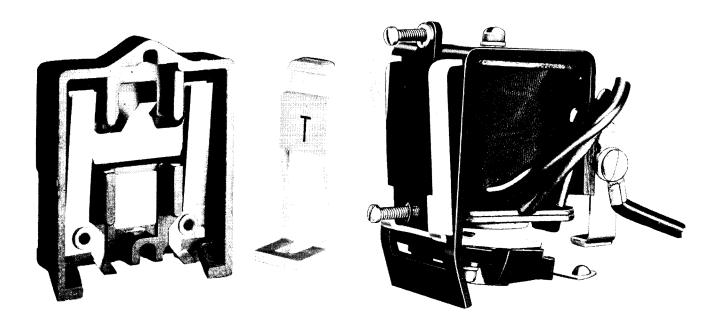



Fig. 5. Indicating Contactor Switch (ICS).

| Range    |     |          |     | Taps |     |     |          |
|----------|-----|----------|-----|------|-----|-----|----------|
| .5 - 2.5 | 0.5 | 0.6      | 0.8 | 1.0  | 1.5 | 2.0 | $^{2.5}$ |
| 2 - 6    | 2   | $^{2.5}$ | 3   | 3.5  | 4   | 5   | 6        |
| 4 - 12   | 4   | 5        | 6   | 7    | 8   | 10  | 12       |

These relays may have either single or double circuit closing contacts for tripping either one or two circuit breakers.

The time vs. current characteristics are shown in Figs. 7 to 13. These characteristics give the contact closing time for the various time dial settings when the indicated multiples of tap value current are applied to the relay.

## Trip Circuit

The main contacts will safely close 30 amperes at 250 volts d-c and the seal-in contacts of the indi-

cating contactor switch will safely carry this current long enough to trip a circuit breaker.

The indicating instantaneous trip contacts will safely close 30 amperes at 250 volts d-c, and will carry this current long enough to trip a breaker.

The indicating contactor switch has two taps that provide a pickup setting of 0.2 or 2 amperes. To change taps requires connecting the lead located in front of the tap block to the desired setting by means of a screw connection.

## Trip Circuit Constants

Contactor Switch -

0.2 ampere tap - 6.5 ohms d-c resistance

2.0 ampere tap - 0.15 ohms d-c resistance

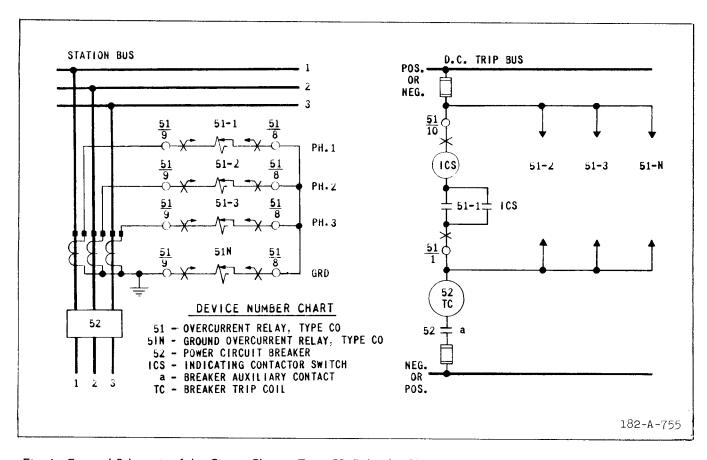



Fig. 6. External Schematic of the Circuit-Closing Type CO Relay for Phase and Ground Overcurrent Protection on a Three-Phase System.

TYPE CO-2 RELAY

|                 |      |                                   |                                    | POWER FACTOR ANGLE $\phi$ | VOLT AMPERES**             |                                    |                                     |                                     |  |  |
|-----------------|------|-----------------------------------|------------------------------------|---------------------------|----------------------------|------------------------------------|-------------------------------------|-------------------------------------|--|--|
| AMPERE<br>RANGE | TAP  | CONTINUOUS<br>RATING<br>(AMPERES) | ONE SECOND<br>RATING*<br>(AMPERES) |                           | AT<br>TAP VALUE<br>CURRENT | AT 3 TIMES<br>TAP VALUE<br>CURRENT | AT 10 TIMES<br>TAP VALUE<br>CURRENT | AT 20 TIMES<br>TAP VALUE<br>CURRENT |  |  |
|                 | 0.5  | 0.91                              | 28                                 | 58                        | 4.8                        | 39.6                               | 256                                 | 790                                 |  |  |
|                 | 0.6  | 0.96                              | 28                                 | 57                        | 4.9                        | 39.8                               | 270                                 | 851                                 |  |  |
|                 | 0.8  | 1.18                              | 28                                 | 53                        | 5.0                        | 42.7                               | 308                                 | 1024                                |  |  |
| 0.5/2.5         | 1.0  | 1.37                              | 28                                 | 50                        | 5.3                        | 45.4                               | 348                                 | 1220                                |  |  |
|                 | 1.5  | 1.95                              | 28                                 | 40                        | 6.2                        | 54.4                               | 435                                 | 1740                                |  |  |
|                 | 2.0  | 2.24                              | 28                                 | 36                        | 7.2                        | 65.4                               | 580                                 | 2280                                |  |  |
|                 | 2.5  | 2.50                              | 28                                 | 29                        | 7.9                        | 73.6                               | 700                                 | 2850                                |  |  |
|                 | 2.0  | 3.1                               | 110                                | 59                        | 5.04                       | 38.7                               | 262                                 | 800                                 |  |  |
|                 | 2.5  | 4.0                               | 110                                | 55                        | 5.13                       | 39.8                               | 280                                 | 920                                 |  |  |
|                 | 3.0  | 4.4                               | 110                                | 51                        | 5.37                       | 42.8                               | 312                                 | 1008                                |  |  |
| 2/6             | 3.5  | 4.8                               | 110                                | 47                        | 5.53                       | 42.8                               | 329                                 | 1120                                |  |  |
|                 | 4.0  | 5.2                               | 110                                | 45                        | 5.72                       | 46.0                               | 360                                 | 1216                                |  |  |
|                 | 5.0  | 5.6                               | 110                                | 41                        | 5.90                       | 50.3                               | 420                                 | 1500                                |  |  |
|                 | 6.0  | 6.0                               | 110                                | 37                        | 6.54                       | 54.9                               | 474                                 | 1800                                |  |  |
|                 | 4.0  | 7.3                               | . 230                              | 65                        | 4.92                       | 39.1                               | 268                                 | 848                                 |  |  |
|                 | 5.0  | 8.0                               | 230                                | 50                        | 5.20                       | 42.0                               | 305                                 | 1020                                |  |  |
|                 | 6.0  | 8.8                               | 230                                | 47                        | 5.34                       | 44.1                               | 330                                 | 1128                                |  |  |
| 4/12            | 7.0  | 9.6                               | 230                                | 46                        | 5.53                       | 45.8                               | 364                                 | 1260                                |  |  |
|                 | 8.0  | 10.4                              | 230                                | 43                        | 5.86                       | 49.9                               | 400                                 | 1408                                |  |  |
|                 | 10.0 | 11.2                              | 230                                | 37                        | 6.6                        | 55.5                               | 470                                 | 1720                                |  |  |
|                 | 12.0 | 12.0                              | 230                                | 34                        | 7.00                       | 62.3                               | 528                                 | 2064                                |  |  |

<sup>\*</sup> Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

 $<sup>\</sup>phi$  Degrees current lags voltage at tap value current.

<sup>\*\*</sup> Voltages taken with Rectox type voltmeter.

CO-5 LONG TIME AND CO-6 DEFINITE MINIMUM TIME RELAYS

VOLT AMPERES\*\* CONTINUOUS ONE SECOND POWER AΤ AT 3 TIMES AT 10 TIMES AT 20 TIMES AMPERE RATING RATING\* FACTOR TAP VALUE TAP VALUE TAP VALUE TAP VALUE RANGE TAP ANGLE  $\phi$ (AMPERES) (AMPENES) CURRENT CURRENT CURRENT CURRENT 88 (0.5 2.7 69 3.92 20.6 103 270 (0.6)3.1 88 68 3.96 20.7 106 288 (0,8 3.7 88 67 3.96 21 114 325 0.5/2.5(1.0 4.1 88 66 4.07 21.4 122 360 (1.5 5.7 88 62 4.19 23.2 147 462 6.8 (2.0)88 60 4.30 24.9 168 548 7.7 (2.5 88 58 4.37 26.2 180 630 (2 230 67 3.88 21 110 308 (2.5 8.8 230 66 3.90 21.6 118 342 (3 9.7 230 64 3.93 22.1 126 381 2/6 (3.5 10.4 230 63 4.09 23.1 136 417 (4 11.2 230 62 4.12 23.5 144 448 (5 12.5 230 59 4.20 24.8 162 540 (6 13.7 230 57 4.38 26.5183 624 (4 16 460 65 4.00 22.4 126 376 (5 18.8 460 63 4.15 23.7 143 450 (6 19.3 460 61 4.32 25.3 162 531 4/12 (7 20.8 460 59 4.35 26.4 183 611 (8 22.5 460 56 4.40 27.8 204 699 (10 25 460 53 4.60 30.1 247 880 (12 28 460 47 4.92 35.6

## CO-7 MODERATELY INVERSE TIME RELAY

288

1056

|                 |              |                             |                                    |                           | VOLT AMPERES** |                      |                          |                          |  |
|-----------------|--------------|-----------------------------|------------------------------------|---------------------------|----------------|----------------------|--------------------------|--------------------------|--|
| AMPERE<br>RANGE | TAP          | CONTINUOUS RATING (AMPERES) | ONE SECOND<br>RATING*<br>(AMPERES) | POWER FACTOR ANGLE $\phi$ | AT TAP VALUE   | AT 3 TIMES TAP VALUE | AT 10 TIMES<br>TAP VALUE | AT 20 TIMES<br>TAP VALUE |  |
| MINGE           |              | (AMEERED)                   | (AMPERES)                          | ANGLE $\phi$              | CURRENT        | CURRENT              | CURRENT                  | CURRENT                  |  |
|                 | (0.5<br>(0.6 | 2.7<br>3.1                  | 88<br>88                           | 68<br>67                  | 3.88<br>3.93   | 20.7<br>20.9         | 103<br>107               | 278<br>288               |  |
|                 | (0.8         | 3.7                         | 88                                 | 66                        | 3.93           | 21.1                 | 114                      | 320                      |  |
| 0.5/2.5         | (1.0         | 4.1                         | 88                                 | 64                        | 4.00           | 21.6                 | 122                      | 320<br>356               |  |
|                 | (1.5         | 5.7                         | 88                                 | 61                        | 4.08           | 22.9                 | 148                      | 459                      |  |
|                 | (2.0         | 6.8                         | 88                                 | 58                        | 4.24           | 24.8                 | 174                      | 552                      |  |
|                 | (2.5         | 7.7                         | 88                                 | 56                        | 4.38           | 25.9                 | 185                      | 640                      |  |
|                 | (2           | 8                           | 230                                | 66                        | 4.06           | 21.3                 | 111                      | 306                      |  |
|                 | (2.5         | 8.8                         | 230                                | 63                        | 4.07           | 21.8                 | 120                      | 342                      |  |
|                 | (3           | 9.7                         | 230                                | 63                        | 4.14           | 22.5                 | 129                      | 366                      |  |
| 2/6             | (3.5         | 10.4                        | 230                                | 62                        | 4.34           | 23.4                 | 141                      | 413                      |  |
|                 | (4           | 11.2                        | 230                                | 61                        | 4.34           | 23.8                 | 149                      | 448                      |  |
|                 | (5           | 12.5                        | 230                                | 59                        | 4.40           | 25.2                 | 163                      | 530                      |  |
|                 | (6           | 13.7                        | 230                                | 58                        | 4.62           | 27                   | 183                      | 624                      |  |
|                 | (4           | 16                          | 460                                | 64                        | 4.24           | 22.8                 | 129                      | 392                      |  |
|                 | (5           | 18.8                        | 460                                | 61                        | 4.30           | 24.2                 | 149                      | 460                      |  |
| 4/12            | (6           | 19.3                        | 460                                | 60                        | 4.62           | 25.9                 | 168                      | 540                      |  |
|                 | (7           | 20.8                        | 460                                | 58                        | 4.69           | 27.3                 | 187                      | 626                      |  |
|                 | (8           | 22.5                        | 460                                | 55                        | 4.80           | 29.8                 | 211                      | 688                      |  |
|                 | (10          | 25                          | 460                                | 51                        | 5.20           | 33                   | 260                      | 860                      |  |
|                 | (12          | 28                          | 460                                | 46                        | 5.40           | 37.5                 | 308                      | 1032                     |  |

Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

φ Degrees current lags voltage at tap value current.

Voltages taken with Rectox type voltmeter.

## CO-8 INVERSE TIME AND CO-9 VERY INVERSE TIME RELAYS

|                 |                                                             |                                                 |                                               |                                        | VOLT AMPERES**                                       |                                                      |                                               |                                                |  |
|-----------------|-------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------|--|
| AMPERE<br>RANGE | TAP                                                         | CONTINUOUS<br>RATING<br>(AMPERES)               | ONE SECOND<br>RATING*<br>(AMPERES)            | POWER FACTOR ANGLE $\phi$              | AT TAP VALUE CURRENT                                 | AT 3 TIMES<br>TAP VALUE<br>CURRENT                   | AT 10 TIMES TAP VALUE CURRENT                 | AT 20 TIMES<br>TAP VALUE<br>CURRENT            |  |
| 0.5/2.5         | (0.5)<br>(0.6)<br>(0.8)<br>(1.0)<br>(1.5)<br>(2.0)<br>(2.5) | 2.7<br>3.1<br>3.7<br>4.1<br>5.7<br>6.8<br>7.7   | 88<br>88<br>88<br>88<br>88<br>88              | 72<br>71<br>69<br>67<br>62<br>57       | 2.38<br>2.38<br>2.40<br>2.42<br>2.51<br>2.65<br>2.74 | 21<br>21<br>21.1<br>21.2<br>22<br>23.5<br>24.8       | 132<br>134<br>142<br>150<br>170<br>200<br>228 | 350<br>365<br>400<br>440<br>530<br>675<br>800  |  |
| 2/6             | (2<br>(2.5<br>(3<br>(3.5<br>(4<br>(5<br>(6                  | 8<br>8.8<br>9.7<br>10.4<br>11.2<br>12.5<br>13.7 | 230<br>230<br>230<br>230<br>230<br>230<br>230 | 70<br>66<br>64<br>62<br>60<br>58<br>56 | 2.38<br>2.40<br>2.42<br>2.48<br>2.53<br>2.64<br>2.75 | 21<br>21.1<br>21.5<br>22<br>22.7<br>24<br>25.2       | 136<br>142<br>149<br>157<br>164<br>180        | 360<br>395<br>430<br>470<br>500<br>580<br>660  |  |
| 4/12            | (4<br>(5<br>(6<br>(7<br>(8<br>(10<br>(12                    | 16<br>18.8<br>19.3<br>20.8<br>22.5<br>25        | 460<br>460<br>460<br>460<br>460<br>460        | 68<br>63<br>60<br>57<br>54<br>48<br>45 | 2.38<br>2.46<br>2.54<br>2.62<br>2.73<br>3.00<br>3.46 | 21.3<br>21.8<br>22.6<br>23.6<br>24.8<br>27.8<br>31.4 | 146<br>158<br>172<br>190<br>207<br>248<br>292 | 420<br>480<br>550<br>620<br>700<br>850<br>1020 |  |

## TYPE CO-11 RELAY

|                 |      |                                   |                                    |                           | VOLT AMPERES**             |                                    |                                     |                                     |  |
|-----------------|------|-----------------------------------|------------------------------------|---------------------------|----------------------------|------------------------------------|-------------------------------------|-------------------------------------|--|
| AMPERE<br>RANGE | TAP  | CONTINUOUS<br>RATING<br>(AMPERES) | ONE SECOND<br>RATING*<br>(AMPERES) | POWER FACTOR ANGLE $\phi$ | AT<br>TAP VALUE<br>CURRENT | AT 3 TIMES<br>TAP VALUE<br>CURRENT | AT 10 TIMES<br>TAP VALUE<br>CURRENT | AT 20 TIMES<br>TAP VALUE<br>CURRENT |  |
|                 | 0.5  | 1.7                               | 56                                 | 36                        | 0.72                       | 6.54                               | 71.8                                | 250                                 |  |
|                 | 0.6  | 1.9                               | 56                                 | 34                        | 0.75                       | 6.80                               | 75.0                                | 267                                 |  |
|                 | 0.8  | 2.2                               | 56                                 | 30                        | 0.81                       | 7.46                               | 84.0                                | 298                                 |  |
| 0.5/2.5         | 1.0  | 2.5                               | 56                                 | 27                        | 0.89                       | 8.30                               | 93.1                                | 330                                 |  |
|                 | 1.5  | 3.0                               | 56                                 | 22                        | 1.13                       | 10.04                              | 115.5                               | 411                                 |  |
|                 | 2.0  | 3.5                               | 56                                 | 17                        | 1.30                       | 11.95                              | 136.3                               | 502                                 |  |
|                 | 2.5  | 3.8                               | 56                                 | 16                        | 1.48                       | 13.95                              | 160.0                               | 610                                 |  |
|                 |      |                                   |                                    |                           | 2                          | 2.00                               | <b>7.</b> 0                         | 264                                 |  |
|                 | 2.0  | 7.0                               | 230                                | 32                        | 0.73                       | 6.30                               | 74.0                                |                                     |  |
|                 | 2.5  | 7.8                               | 230                                | 30                        | 0.78                       | 7.00                               | 78.5                                | 285                                 |  |
|                 | 3.0  | 8.3                               | 230                                | 27                        | 0.83                       | 7.74                               | 84.0                                | 309                                 |  |
| 2/6             | 3.5  | 9.0                               | 230                                | 24                        | 0.88                       | 8.20                               | 89.0                                | 340                                 |  |
|                 | 4.0  | 10.0                              | 230                                | 23                        | 0.96                       | 9.12                               | 102.0                               | 372                                 |  |
|                 | 5.0  | 11.0                              | 230                                | 20                        | 1.07                       | 9.80                               | 109.0                               | 430                                 |  |
|                 | 6.0  | 12.0                              | 230                                | 20                        | 1.23                       | 11.34                              | 129.0                               | 504                                 |  |
|                 | 4.0  | 14                                | 460                                | 29                        | 0.79                       | 7.08                               | 78.4                                | 296                                 |  |
|                 | 5.0  | 16                                | 460                                | 25                        | 0.89                       | 8.00                               | 90.0                                | 340                                 |  |
|                 | 6.0  | 17                                | 460                                | 22                        | 1.02                       | 9.18                               | 101.4                               | 378                                 |  |
| 4/12            | 7.0  | 18                                | 460                                | 20                        | 1.10                       | 10.00                              | 110.0                               | 454                                 |  |
| -, 12           | 8.0  | 20                                | 460                                | 18                        | 1.23                       | 11.1                               | 124.8                               | 480                                 |  |
|                 | 10.0 | 22                                | 460                                | 17                        | 1.32                       | 14.9                               | 131.6                               | 600                                 |  |
|                 | 12.0 | 26                                | 460                                | 16                        | 1.8                        | 16.3                               | 180.0                               | 720                                 |  |

<sup>\*</sup> Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

 $<sup>\</sup>phi$  Degrees current lags voltage at tap value current.

<sup>\*\*</sup> Voltages taken with Rectox type voltmeter.

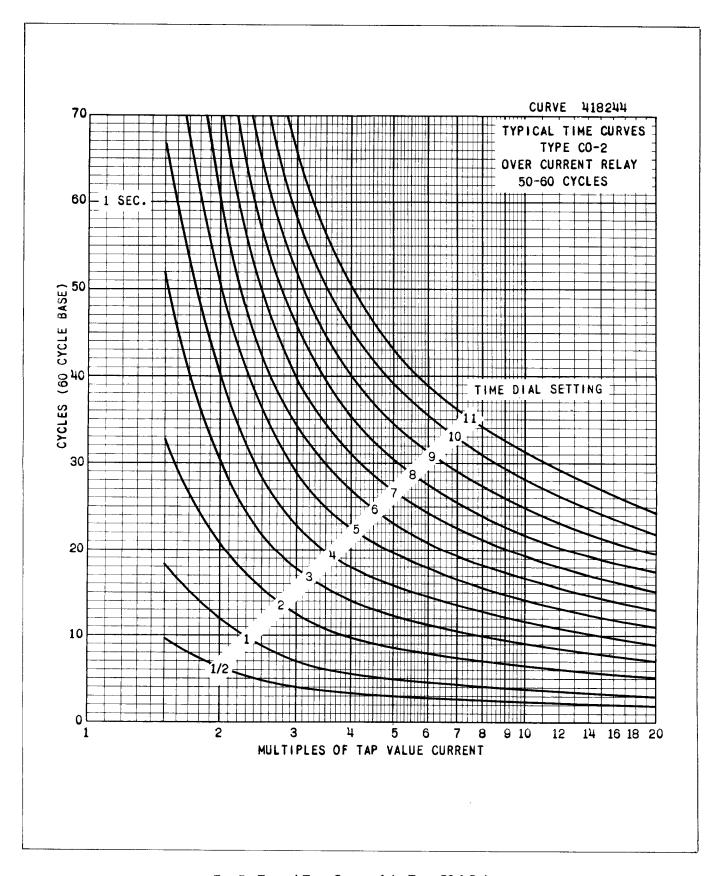



Fig. 7. Typical Time Curves of the Type CO-2 Relay.

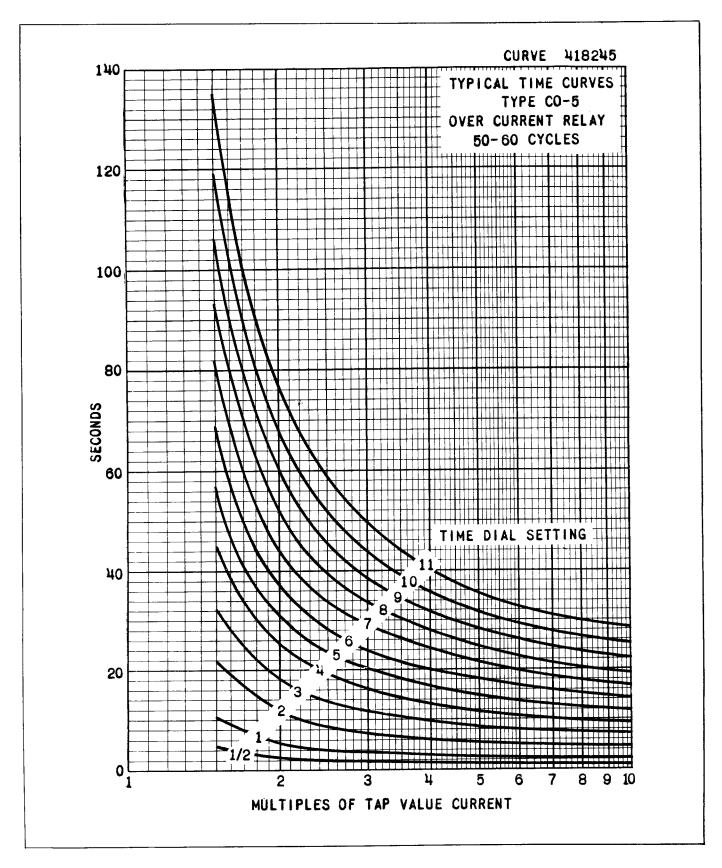



Fig. 8. Typical Time Curves of the Type CO-5 Relay.

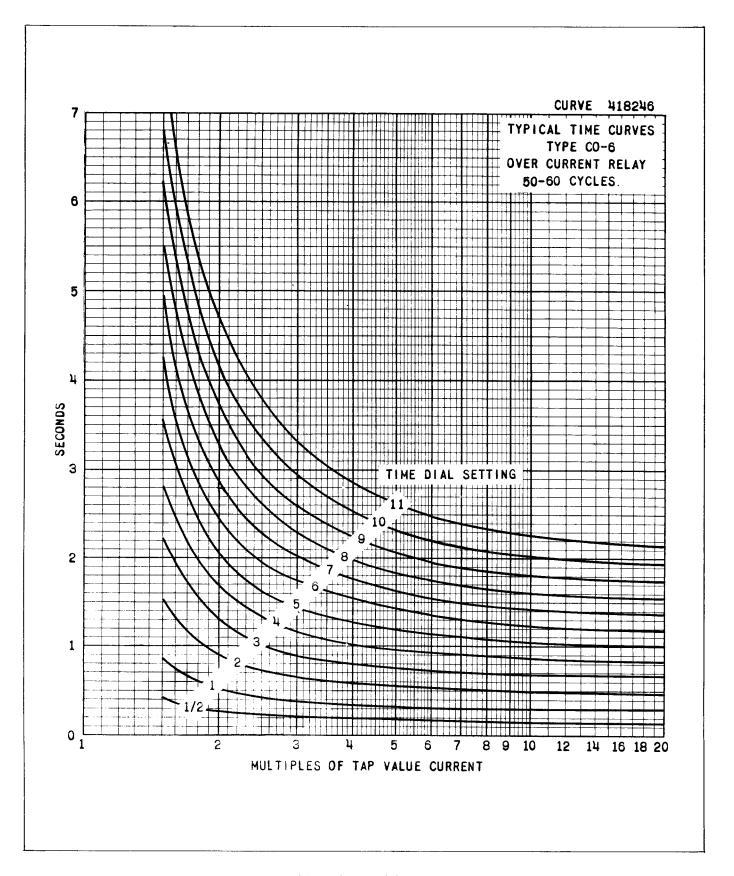



Fig. 9. Typical Time Curves of the Type CO-6 Relay.

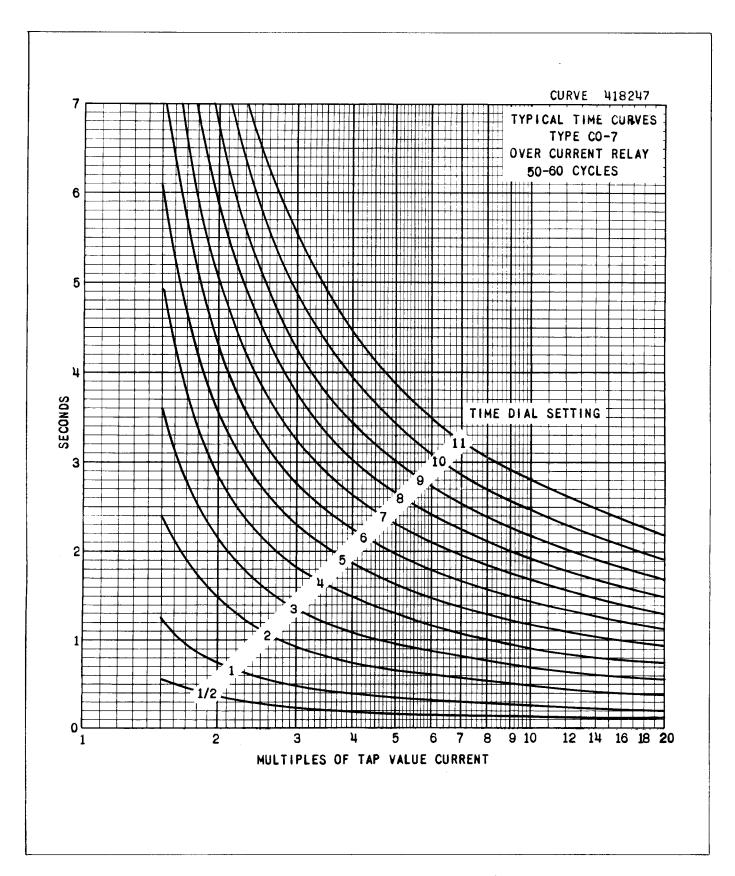



Fig. 10. Typical Time Curves of the Type CO-7 Relay.

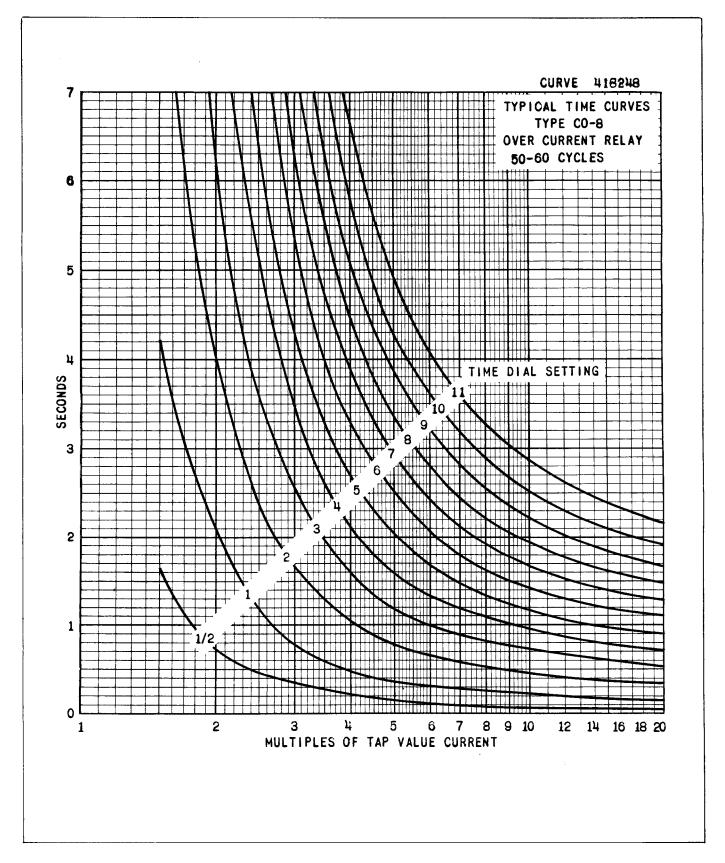



Fig. 11. Typical Time Curves of the Type CO-8 Relay.

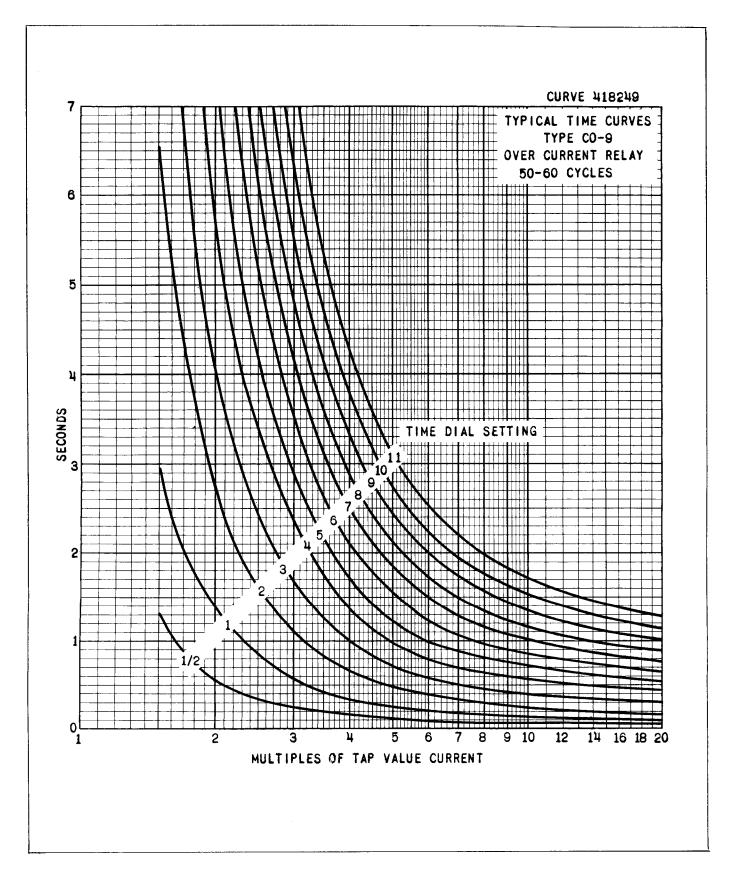



Fig. 12. Typical Time Curves of the Type CO-9 Relay.

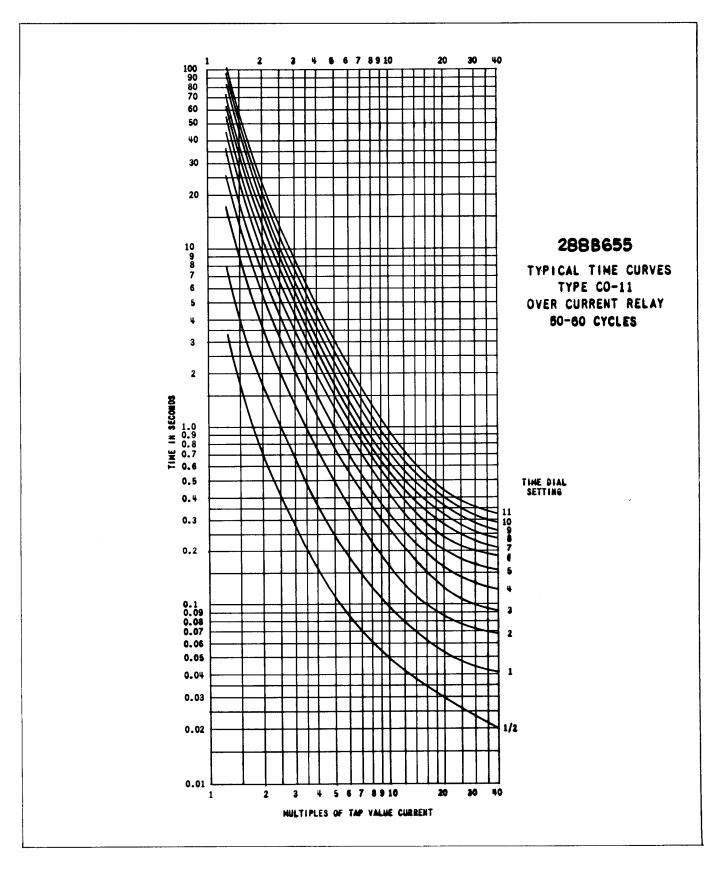



Fig. 13. Typical Time Curves of the Type CO-11 Relay.

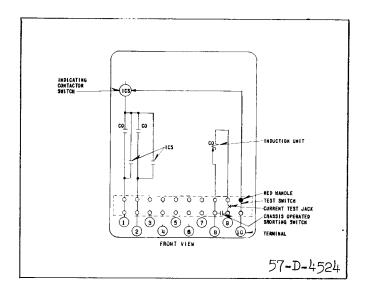



Fig. 14. Internal Schematic of the Double Trip Circuit
Closing Relay. For the Single Trip Relay the
Circuits Associated with Terminal 2 are Omitted.

## **SETTINGS**

## CO Unit

The overcurrent unit settings can be defined either by tap setting and time dial position or by tap setting and a specific time of operation at some current multiple of the tap setting (e.g. 4 tap setting, 2 time dial position or 4 tap setting, 0.6 seconds at 6 times tap value current).

To provide selective circuit breaker operation, a minimum coordinating time of 0.3 seconds plus circuit breaker time is recommended between the relay being set and the relays with which coordination is to be effected.

The connector screw on the terminal plate above the time dial makes connections to various turns on the operating coil. By placing this screw in the various terminal plate holes, the relay will respond to multiples of tap value currents in accordance with the various typical time-current curves.

### Caution

Since the tap block connector screw carries operating current, be sure that the screw is turned tight. In order to avoid opening the current transformer circuits when changing taps under load, connect the spare connector screw in the desired tap position before removing the other tap screw from the original tap position.

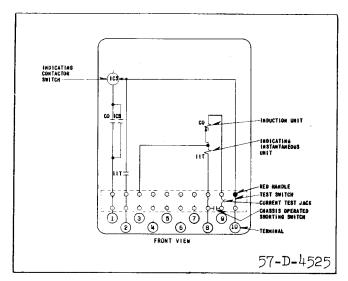



Fig. 15. Internal Schematic of the Single Trip Circuit-Closing Relay with Indicating Instantaneous Trip Unit.

## Instantaneous Reclosing

The factory adjustment of the CO unit contacts provides a contact follow. Where circuit breaker reclosing will be initiated immediately after a trip by the CO contact, the time of the opening of the contacts should be a minimum. This condition is obtained by loosening the stationary contact mounting screw, removing the contact plate and then replacing the plate with the bent end resting against the contact spring.

For double trip relays, the upper stationary contact is adjusted such that the contact spring rests solidly against the back stop. The lower stationary contact is then adjusted such that both stationary contacts make contact simultaneously with their respective moving contact.

## Indicating Contactor Switch (ICS)

No setting is required on the ICS unit except the selection of the 0.2 or 2.0 ampere tap setting. This selection is made by connecting the lead located in front of the tap block to the desired setting by means of the connecting screw.

#### Indicating Instantaneous Trip (IIT)

The core screw must be adjusted to the value of pick-up current desired.

The nameplate data will furnish the actual current range that may be obtained from the IIT. unit.

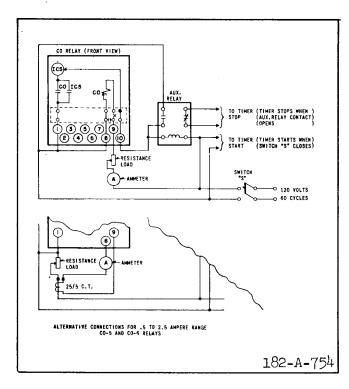



Fig. 16. Diagram of Test Connections for the Circuit-Closing Type CO Relay.

## INSTALLATION

The relays should be mounted on switchboard panels or their equivalent in a location free from dirt, moisture, excessive vibration and heat. Mount the relay vertically by means of the mounting stud for projection mounting or by means of the four mounting holes on the flange for the semi-flush mounting. Either the stud or the mounting screws may be utilized for grounding the relay. The electrical connections may be made directly to the terminals by means of screws for steel panel mounting or to be terminal stud furnished with the relay for thick panel mounting. The terminal stud may be easily removed or inserted by locking two nuts on the stud and then turning the proper nut with a wrench.

For detail information on the FT case refer to IL 41-076.

## **ADJUSTMENTS AND MAINTENANCE**

The proper adjustments to insure correct operation of this relay have been made at the factory. Upon receipt of the relay no customer adjustments, other than those covered under "SETTINGS" should be required.

For relays which include an indicating instantaneous trip unit (IIT), the junction of the induction and indicating instantaneous trip coils is brought out to switch jaw #3. With this arrangement the overcurrent units can be tested separately.

#### Acceptance Check

The following check is recommended to insure that the relay is in proper working order:

#### 1. Contact

- a) By turning the time dial, move the moving contacts until they deflect the stationary contact to a position where the stationary contact is resting against its backstop. The index mark located on the movement frame should coincide with the "O" mark on the time dial. For double trip relays, the follow on the stationary contacts should be approximately 1/64".
- b) For relays identified with a "T", located at lower left of stationary contact block, the index mark on the movement frame will coincide with the "O" mark on the time dial when the stationary contact has moved through approximately one-half of its normal deflection. Therefore, with the stationary contact resting against the backstop, the index mark is offset to the right of the "O" mark by approximately .020". The placement of the various time dial positions in line with the index mark will give operating times as shown on the respective time-current curves. For double trip relays, the follow on the stationary contacts should be approximately 1/32".
- 2. <u>Minimum Trip Current</u> Set the time dial to position 6 using the lowest tap setting, alternately apply tap value current plus 3% and tap value current minus 3%. The moving contact should leave the backstop at tap value current plus 3% and should return to the backstop at tap value current minus 3%.
- 3. Time Curve For type CO-11 relay only, the 1.30 times tap value operating time from the number 6 time dial position is  $54.9 \pm 5\%$  seconds and should be checked first. It is important that the 1.30 times tap value current be maintained accurately. The maintaining of this current accurately is necessary because of the steepness of the slope of the time-current characteristic (Figure 13). A 1% variation in the 1.30 times tap value current (including measuring instrument deviation) will change the nominal operating time by approximately 4%

Table I shows the time curve calibration points for the various types of relays. With the time

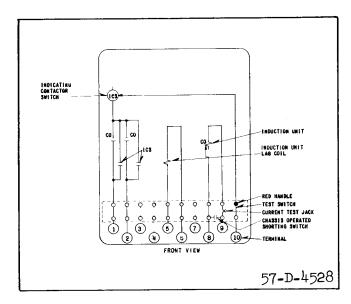



Fig. 17. Internal Schematic of the Double Trip Circuit Closing Relay with Torque Control Terminals. For the Single Trip Relay, the Circuits Associated with Terminal 2 are Omitted.

dial set to the indicated position and the relay set on the lowest tap setting, apply the currents specified by Table I, (e.g. for the CO-2, 3 and 20 times tap value current) and measure the operating time of the relay. The operating times should equal those of Table I plus or minus 5%

4. <u>Indicating Instantaneous Trip Unit (IIT)</u> - The core screw which is adjustable from the top of the trip unit determines the pickup value. The trip unit has a nominal ratio of adjustment of 1 to 4 and an accuracy within the limits of 10%.

The making of the contacts and target indication should occur at approximately the same instant. Position the stationary contact for a minimum of 1/32" wipe. The bridging moving contact should touch both stationary contacts simultaneously.

Apply sufficient current to operate the IIT. The operation indicator target should drop freely.

5. Indicating Contactor Switch (ICS) - Close the main relay contacts and pass sufficient d-c current through the trip circuit to close the contacts of the ICS. This value of current should be not greater than the particular ICS tap setting being used. The operation indicator target should drop freely.

The contact gap should be approximately .047" between the bridging moving contact and the adjustable stationary contacts. The bridging moving contact should touch both stationary contacts simultaneously.

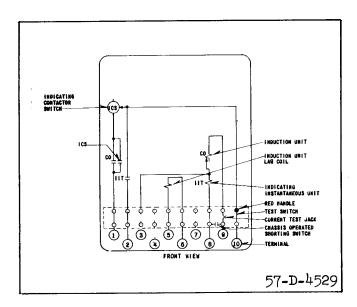



Fig. 18. Internal Schematic of the Single Trip Circuit
Closing Relay with Torque Control Terminals
and Indicating Instantaneous Trip Unit.

### Routine Maintenance

All relays should be inspected and checked periodically to assure proper operation. Generally a visual inspection should call attention to any noticeable changes. A minimum suggested check on the relay system is to close the contacts manually to assure that the breaker trips and the target drops. Then release the contacts and observe that the reset is smooth and positive.

If an additional time check is desired, pass secondary current through the relay and check the time of operation. It is preferable to make this at several times pick-up current at an expected operating point for the particular application. For the .5 to 2.5 ampere range CO-5 and CO-6 induction unit use the alternative test circuit in Fig. 16 as these relays are affected by a distorted wave form. With this connection the 25/5 ampere current transformers should be worked well below the knee of the saturation (i.e. use 10L50 or better).

All contacts should be periodically cleaned. A contact burnisher #182A836H01 is recommended for this purpose. The use of abrasive material for cleaning contacts is not recommended, because of the danger of embedding small particles in the face of the soft silver and thus impairing the contact.

## **CALIBRATION**

Use the following procedure for calibrating the relay if the relay has been taken apart for repairs or

the adjustments disturbed. This procedure should not be used until it is apparent that the relay is not in proper working order. (See "Acceptance Check")

## CO Unit

#### 1. Contact

- a) By turning the time dial, move the moving contacts until they deflect the stationary contact to a position where the stationary contact is resting against its backstop. The index mark located on the movement frame should coincide with the "O" mark on the time dial. For double trip relays, the follow on the stationary contacts should be approximately 1/64".
- b) For relays identified with a "T", located at lower left of stationary contact block, the index mark on the movement frame will coincide with the "O" mark on the time dial when the stationary contact has moved through approximately one-half of its normal deflection. Therefore, with the stationary contact resting against the backstop, the index mark is offset to the right of the "O" mark by approximately .020". The placement of the various time dial positions in line with the index mark will give operating times as shown on the respective time-current curves. For double trip relays, the follow on the stationary contacts should be approximately 1/32".
- 2) Minimum Trip Current The adjustment of the spring tension in setting the minimum trip current value of the relay is most conveniently made with the damping magnet removed.

With the time dial set on "O", wind up the spiral spring by means of the spring adjuster until approximately 6-3/4 convolutions show.

Set the relay on the minimum tap setting, the time dial to position  $\boldsymbol{6}$ .

Adjust the control spring tension so that the moving contact will leave the backstop at tap value current +1.0% and will return to the backstop at tap value current -1.0%.

3. <u>Time Curve Calibration</u> - Install the permanent magnet.

Apply the indicated current per Table I for permanent magnet adjustment (e.g. CO-8, 2 times tap value) and measure the operating time. Adjust the permanent magnet keeper until the operating time corresponds to the value of Table I.

For type CO-11 relay only, the 1.30 times tap value operating time from the number 6 time dial position is 54.9 ±5% seconds. It is important that the 1.30 times tap value current be maintained accurately. The maintaining of this current accurately is necessary because of the steepness of the slope of the timecurrent characteristic (Figure 13). A 1% variation in the 1.30 times tap value current (including measuring instrument deviation) will change the nominal operating time by approximately 4%. If the operating time at 1.3 times tap value is not within these limits, a minor adjustment of the control spring will give the correct operating time without any undue effect on the minimum pick-up of the relay. This check is to be made after the 2 times tap value adjustment has has been completed.

Apply the indicated current per Table I for the electromagnet plug adjustment (e.g. CO-8, 20 times tap value) and measure the operating time. Adjust the proper plug until the operating time corresponds to the value in Table I. (Withdrawing the left hand plug, front view, increases the operating time and withdrawing the right hand plug, front view, decreases the time.) In adjusting the plugs, one plug should be screwed in completely and the other plug run in or out until the proper operating time has been obtained.

Recheck the permanent magnet adjustment. If the operating time for this calibration point has changed, readjust the permanent magnet and then recheck the electromagnet plug adjustment.

4. Indicating Contactor Switch (ICS) - Close the main relay contacts and pass sufficient d-c current through the trip circuit to close the contacts of the ICS. This value of current should be not greater than the particular ICS tap setting being used. The operation indicator target should drop freely.

#### 5. Indicating Instantaneous Trip Unit (IIT)

The core screw must be adjusted to the value of pick-up current desired.

The nameplate data will furnish the actual curtent range that may be obtained from the IIT unit.

### **RENEWAL PARTS**

Repair work can be done most satisfactorily at the factory. However, interchangeable parts can be furnished to the customers who are equipped for doing repair work. When ordering parts, always give the complete nameplate data.

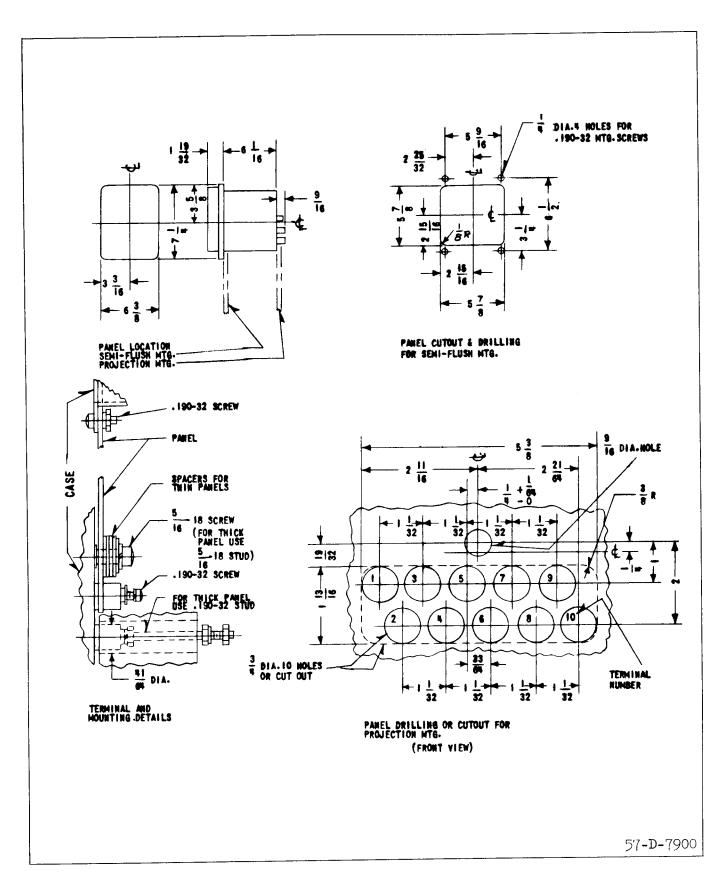



Fig. 19. Outline and Drilling Plan for the Type CO Relay.

TABLE 1

TIME CURVE CALIBRATION DATA - 50 & 60 CYCLES

#### PERMANENT MAGNET ADJUSTMENT ELECTROMAGNET PLUGS TIME CURRENT **OPERATING** CURRENT **OPERATING** RELAY DIAL (MULTIPLES OF TIME (MULTIPLES OF TIME TYPE POSITION TAP VALUE) SECONDS TAP VALUE) SECONDS CO-2 6 0.57 20 0.22 CO-5 2 37.80 10 14.30 CO-6 2 2.46 20 1.19 CO-7 2 4.27 20 1.11 CO-8 2 13.35 20 1.11 CO-9 6 8.87 20 0.65 CO-11 6 11.27 20 0.24 $\triangle$

 $\Delta \, \text{For 50}$  cycle CO-11 relay 20 times operating time limits are 0.24 + 10%, -5%.

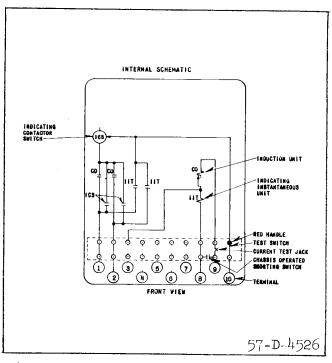
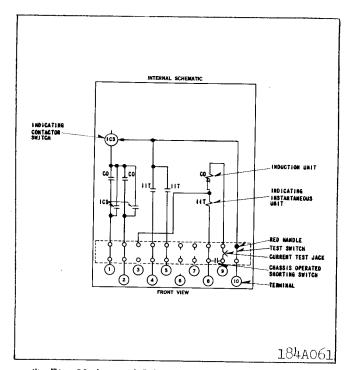




Fig. 20 Internal Schematic of the Double Trip Circuit Closing Relay with Indicating Instantaneous Trip Unit.



\* Fig. 21 Internal Schematic of the Double Trip
Circuit Closing Realy with Indicating
Instantaneous Trip Unit to Separate
Terminals.

WESTINGHOUSE ELECTRIC CORPORATION RELAY-INSTRUMENT DIVISION NEWARK, N. J.



## INSTALLATION . OPERATION . MAINTENANCE

# INSTRUCTIONS

# TYPE CO OVERCURRENT RELAY

#### CAUTION

Before putting relays into service, remove all blocking which may have been inserted for the purpose of securing the parts during shipment, make sure that all moving parts operate freely, inspect the contacts to see that they are clean and close properly, and operate the relay to check the settings and electrical connections.

## **APPLICATION**

These induction overcurrent relays are used to disconnect circuits or apparatus when the current in them exceeds a given value. Where a station battery (48 volts or over) is available, the circuit closing type relays are normally used to trip the circuit breaker.

### **CONTENTS**

This instruction leaflet applies to the following types of relays:

Type CO-2 Short Time Relay

CO-5 Long Time Relay

CO-6 Definite Minimum Time Relay

CO-7 Moderately Inverse Time Relay

CO-8 Inverse Time Relay

CO-9 Very Inverse Time Relay

CO-11 Extremely Inverse Time Relay

#### CONSTRUCTION AND OPERATION

The type CO relays consist of an overcurrent unit (CO), an indicating contactor switch (ICS), and an indicating instantaneous trip unit (IIT) when required. The principal component parts of the relay and their location are shown in Figs. 1-5.

#### Electromagnet

The electromagnets for the types CO-5, CO-6, CO-7, CO-8 and CO-9 relays have a main tapped coil located on the center leg of an "E" type laminated structure that produces a flux which divides and returns through the outer legs. A shading coil causes the flux through the left leg to lag the main pole flux. The out-of-phase fluxes thus produced in the air gap

cause a contact closing torque.

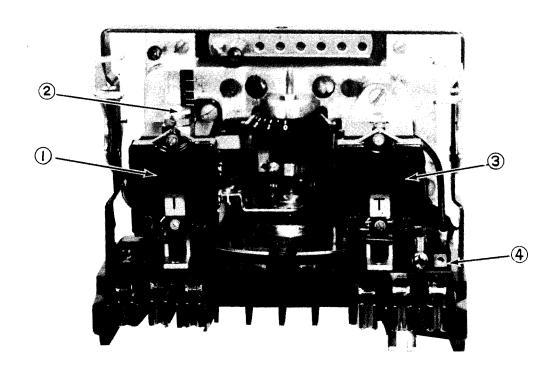
The electromagnets for the types CO-2 and CO-11 relays have a main coil consisting of a tapped primary winding and a secondary winding. Two identical coils on the outer legs of the lamination structure are connected to the main coil secondary in a manner so that the combination of all the fluxes produced by the electromagnet result in out-of-phase fluxes in the air gap. The out-of-phase air gap fluxes produced cause a contact closing torque.

## Indicating Contactor Switch Unit (ICS)

The d-c indicating contactor switch is a small clapper type device. A magnetic armature, to which leaf-spring mounted contacts are attached, is attracted to the magnetic core upon energization of the switch. When the switch closes the moving contacts bridge two stationary contacts, completing the trip circuit. Also during this operation two fingers on the armature deflect a spring located on the front of the switch, which allows the operation indicator target to drop.

The front spring, in addition to holding the target, provides restraint for the armature and thus controls the pickup value of the switch.

## Indicating Instantaneous Trip Unit (IIT)


The instantaneous trip unit is a small a-c operated clapper type device. A magnetic armature, to which leaf-spring mounted contacts are attached, is attracted to the magnetic core upon energization of the switch. When the switch closes, the moving contacts bridge two stationary contacts completing the trip circuit. Also, during the operation, two fingers on the armature deflect a spring located on the front of the switch which allows the operation indicator target to drop.

A core screw accessible from the top of the switch provides the adjustable pickup range.

## **CHARACTERISTICS**

The relays are generally available in the following current ranges:

## SUPERSEDES I.L. 41-101K



\*Fig. 1. Type CO Relay Without Case. 1-Indicating Instantaneous trip (IIT). 2-IIT Adjusting Screw. 3-Indicating Contactor Switch (ICS). 4-Indicating Contactor Switch Tap Block.

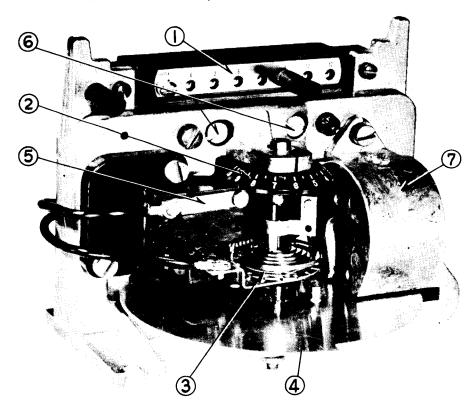
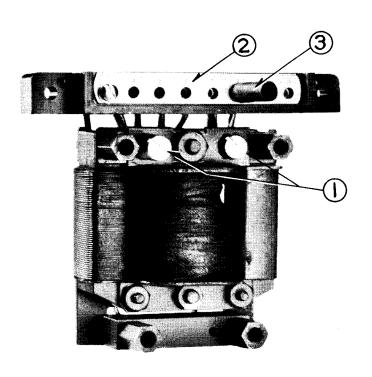
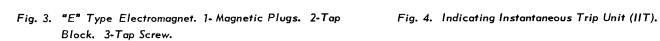
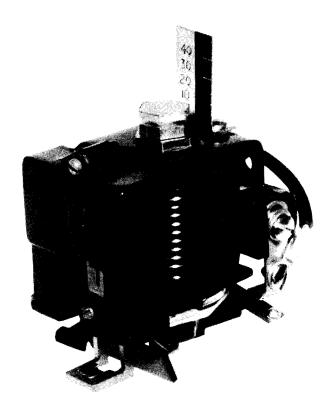






Fig. 2. Time Overcurrent Unit (Front View). 1-Tap Block. 2-Time Dial. 3-Control Spring Assembly. 4-Disc. 5-Stationary Contact Assembly. 6-Magnetic Plugs. 7-Permanent Magnet.







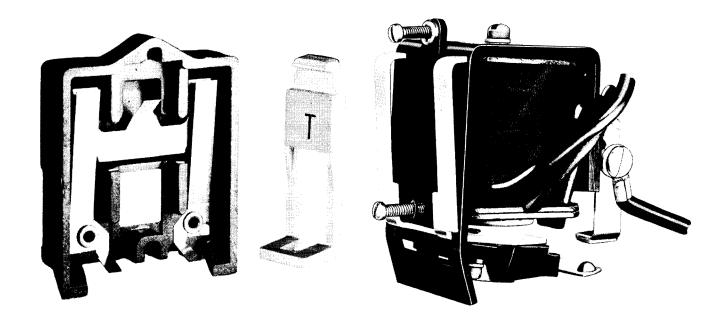



Fig. 5. Indicating Contactor Switch (ICS).

| Range    | Taps |     |     |     |     |     |     |
|----------|------|-----|-----|-----|-----|-----|-----|
| .5 - 2.5 | 0.5  | 0.6 | 0.8 | 1.0 | 1.5 | 2.0 | 2.5 |
| 2 - 6    | 2    | 2.5 | 3   | 3.5 | 4   | 5   | 6   |
| 4 - 12   | 4    | 5   | 6   | 7   | 8   | 10  | 12  |

These relays may have either single or double circuit closing contacts for tripping either one or two circuit breakers.

The time vs. current characteristics are shown in Figs. 7 to 13. These characteristics give the contact closing time for the various time dial settings when the indicated multiples of tap value current are applied to the relay.

#### Trip Circuit

The main contacts will safely close 30 amperes at 250 volts d-c and the seal-in contacts of the indi-

cating contactor switch will safely carry this current long enough to trip a circuit breaker.

The indicating instantaneous trip contacts will safely close 30 amperes at 250 volts d-c, and will carry this current long enough to trip a breaker.

The indicating contactor switch has two taps that provide a pickup setting of 0.2 or 2 amperes. To change taps requires connecting the lead located in front of the tap block to the desired setting by means of a screw connection.

#### Trip Circuit Constants

Contactor Switch -

0.2 ampere tap - 6.5 ohms d-c resistance

2.0 ampere tap - 0.15 ohms d-c resistance

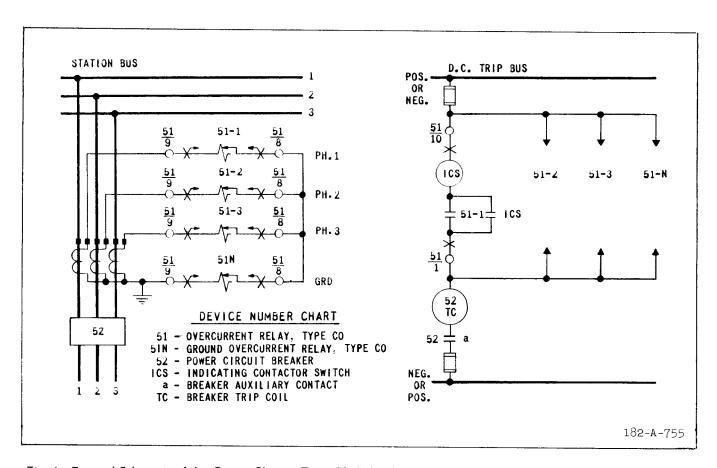



Fig. 6. External Schematic of the Circuit-Closing Type CO Relay for Phase and Ground Overcurrent Protection on a Three-Phase System.

## \* Instantaneous Trip Unit (IIT)

| RANGE IN | BURDEN IN VOLT-AMPS. AT |                 |  |  |  |  |
|----------|-------------------------|-----------------|--|--|--|--|
| AMPERES  | MINIMUM SETTING         | MAXIMUM SETTING |  |  |  |  |
| 2 - 8    | 4.5                     | 32              |  |  |  |  |
| 4 - 16   | 4.5                     | 32              |  |  |  |  |
| 10 - 40  | 4.5                     | 40              |  |  |  |  |
| 20 - 80  | 6.5                     | 70              |  |  |  |  |
| 40 - 160 | 9.0                     | 144             |  |  |  |  |

#### TYPE CO-2 RELAY

|                 |      |                                   |                                    |                           | VOLT AMPERES**       |                              |                                     |                                     |  |  |
|-----------------|------|-----------------------------------|------------------------------------|---------------------------|----------------------|------------------------------|-------------------------------------|-------------------------------------|--|--|
| AMPERE<br>RANGE | TAP  | CONTINUOUS<br>RATING<br>(AMPERES) | ONE SECOND<br>RATING*<br>(AMPERES) | POWER FACTOR ANGLE $\phi$ | AT TAP VALUE CURRENT | AT 3 TIMES TAP VALUE CURRENT | AT 10 TIMES<br>TAP VALUE<br>CURRENT | AT 20 TIMES<br>TAP VALUE<br>CURRENT |  |  |
|                 | 0.5  | 0.91                              | 28                                 | 58                        | 4.8                  | 39.6                         | 256                                 | 790                                 |  |  |
|                 | 0.6  | 0.96                              | 28                                 | 57                        | 4.9                  | 39.8                         | 270                                 | 851                                 |  |  |
|                 | 0.8  | 1.18                              | 28                                 | 53                        | 5.0                  | 42.7                         | 308                                 | 1024                                |  |  |
| 0.5/2.5         | 1.0  | 1.37                              | 28                                 | 50                        | 5.3                  | 45.4                         | 348                                 | 1220                                |  |  |
| -10, -10        | 1.5  | 1.95                              | 28                                 | 40                        | 6.2                  | 54.4                         | 435                                 | 1740                                |  |  |
|                 | 2.0  | 2.24                              | 28                                 | 36                        | 7.2                  | 65.4                         | 580                                 | 2280                                |  |  |
|                 | 2.5  | 2.50                              | 28                                 | 29                        | 7.9                  | 73.6                         | 700                                 | 2850                                |  |  |
|                 | 2.0  | 3.1                               | 110                                | 59                        | 5.04                 | 38.7                         | 262                                 | 800                                 |  |  |
|                 | 2.5  | 4.0                               | 110                                | 55                        | 5.13                 | 39.8                         | 280                                 | 920                                 |  |  |
|                 | 3.0  | 4.4                               | 110                                | 51                        | 5.37                 | 42.8                         | 312                                 | 1008                                |  |  |
| 2/6             | 3.5  | 4.8                               | 110                                | 47                        | 5.53                 | 42.8                         | 329                                 | 1120                                |  |  |
| _, -            | 4.0  | 5.2                               | 110                                | 45                        | 5.72                 | 46.0                         | 360                                 | 1216                                |  |  |
|                 | 5.0  | 5.6                               | 110                                | 41                        | 5.90                 | 50.3                         | 420                                 | 1500                                |  |  |
|                 | 6.0  | 6.0                               | 110                                | 37                        | 6.54                 | 54.9                         | 474                                 | 1800                                |  |  |
|                 | 4.0  | 7.3                               | 230                                | 65                        | 4.92                 | 39.1                         | 268                                 | 848                                 |  |  |
|                 | 5.0  | 8.0                               | 230                                | 50                        | 5.20                 | 42.0                         | 305                                 | 1020                                |  |  |
|                 | 6.0  | 8.8                               | 230                                | 47                        | 5.34                 | 44.1                         | 330                                 | 1128                                |  |  |
| 4/12            | 7.0  | 9.6                               | 230                                | 46                        | 5.53                 | 45.8                         | 364                                 | 1260                                |  |  |
| -•              | 8.0  | 10.4                              | 230                                | 43                        | 5.86                 | 49.9                         | 400                                 | 1408                                |  |  |
|                 | 10.0 | 11.2                              | 230                                | 37                        | 6.6                  | 55.5                         | 470                                 | 1720                                |  |  |
|                 | 12.0 | 12.0                              | 230                                | 34                        | 7.00                 | 62.3                         | 528                                 | 2064                                |  |  |

<sup>\*</sup> Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

 $<sup>\</sup>phi$  Degrees current lags voltage at tap value current.

<sup>\*\*</sup> Voltages taken with Rectox type voltmeter.

CO-5 LONG TIME AND CO-6 DEFINITE MINIMUM TIME RELAYS

|                 |                                                      |                                                 |                                               |                                        | VOLT AMPERES**                                       |                                                      |                                               |                                                |  |
|-----------------|------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------|--|
| AMPERE<br>RANGE | TAP                                                  | CONTINUOUS<br>RATING<br>(AMPERES)               | ONE SECOND<br>RATING*<br>(AMFERES)            | POWER FACTOR ANGLE $\phi$              | AT<br>TAP VALUE<br>CURRENT                           | AT 3 TIMES<br>TAP VALUE<br>CURRENT                   | AT 10 TIMES<br>TAP VALUE<br>CURRENT           | AT 20 TIMES<br>TAP VALUE<br>CURRENT            |  |
| 0.5/2.5         | (0.5<br>(0.6<br>(0.8<br>(1.0<br>(1.5<br>(2.0<br>(2.5 | 2.7<br>3.1<br>3.7<br>4.1<br>5.7<br>6.8<br>7.7   | 88<br>88<br>88<br>88<br>88<br>88              | 69<br>68<br>67<br>66<br>62<br>60<br>58 | 3.92<br>3.96<br>3.96<br>4.07<br>4.19<br>4.30         | 20.6<br>20.7<br>21<br>21.4<br>23.2<br>24.9<br>26.2   | 103<br>106<br>114<br>122<br>147<br>168<br>180 | 270<br>288<br>325<br>360<br>462<br>548<br>630  |  |
| 2/6             | (2<br>(2.5<br>(3<br>(3.5<br>(4<br>(5<br>(6           | 8<br>8.8<br>9.7<br>10.4<br>11.2<br>12.5<br>13.7 | 230<br>230<br>230<br>230<br>230<br>230<br>230 | 67<br>66<br>64<br>63<br>62<br>59       | 3.88<br>3.90<br>3.93<br>4.09<br>4.12<br>4.20<br>4.38 | 21<br>21.6<br>22.1<br>23.1<br>23.5<br>24.8<br>26.5   | 110<br>118<br>126<br>136<br>144<br>162<br>183 | 308<br>342<br>381<br>417<br>448<br>540<br>624  |  |
| 4/12            | (4<br>(5<br>(6<br>(7<br>(8<br>(10<br>(12             | 16<br>18.8<br>19.3<br>20.8<br>22.5<br>25        | 460<br>460<br>460<br>460<br>460<br>460        | 65<br>63<br>61<br>59<br>56<br>53<br>47 | 4.00<br>4.15<br>4.32<br>4.35<br>4.40<br>4.60<br>4.92 | 22.4<br>23.7<br>25.3<br>26.4<br>27.8<br>30.1<br>35.6 | 126<br>143<br>162<br>183<br>204<br>247<br>288 | 376<br>450<br>531<br>611<br>699<br>880<br>1056 |  |

## CO-7 MODERATELY INVERSE TIME RELAY

|                 |                                                             |                                                 |                                                      |                                  | VOLT AMPERES**                                       |                                                      |                                               |                                               |  |
|-----------------|-------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|----------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--|
| AMPERE<br>RANGE | TAP                                                         | CONTINUOUS RATING (AMPERES)                     | ONE SECOND<br>RATING*<br>(AMPERES)                   | POWER FACTOR ANGLE $\phi$        | AT<br>TAP VALUE<br>CURRENT                           | AT 3 TIMES<br>TAP VALUE<br>CURRENT                   | AT 10 TIMES<br>TAP VALUE<br>CURRENT           | AT 20 TIMES<br>TAP VALUE<br>CURRENT           |  |
| 0.5/2.5         | (0.5)<br>(0.6)<br>(0.8)<br>(1.0)<br>(1.5)<br>(2.0)<br>(2.5) | 2.7<br>3.1<br>3.7<br>4.1<br>5.7<br>6.8<br>7.7   | 88<br>88<br>88<br>88<br>88<br>88                     | 68<br>67<br>66<br>64<br>61<br>58 | 3.88<br>3.93<br>3.93<br>4.00<br>4.08<br>4.24<br>4.38 | 20.7<br>20.9<br>21.1<br>21.6<br>22.9<br>24.8<br>25.9 | 103<br>107<br>114<br>122<br>148<br>174        | 278<br>288<br>320<br>356<br>459<br>552<br>640 |  |
| 2/6             | (2<br>(2.5<br>(3<br>(3.5<br>(4<br>(5<br>(6                  | 8<br>8.8<br>9.7<br>10.4<br>11.2<br>12.5<br>13.7 | 230<br>230<br>230<br>230<br>230<br>230<br>230<br>230 | 66<br>63<br>63<br>62<br>61<br>59 | 4.06<br>4.07<br>4.14<br>4.34<br>4.34<br>4.40         | 21.3<br>21.8<br>22.5<br>23.4<br>23.8<br>25.2         | 111<br>120<br>129<br>141<br>149<br>163<br>183 | 306<br>342<br>366<br>413<br>448<br>530<br>624 |  |
| 4/12            | (4<br>(5<br>(6<br>(7<br>(8<br>(10<br>(12                    | 16<br>18.8<br>19.3<br>20.8<br>22.5<br>25        | 460<br>460<br>460<br>460<br>460<br>460               | 64<br>61<br>60<br>58<br>55<br>51 | 4.24<br>4.30<br>4.62<br>4.69<br>4.80<br>5.20<br>5.40 | 22.8<br>24.2<br>25.9<br>27.3<br>29.8<br>33<br>37.5   | 129<br>149<br>168<br>187<br>211<br>260<br>308 | 392<br>460<br>540<br>626<br>688<br>860        |  |

<sup>\*</sup> Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

 $<sup>\</sup>phi$  Degrees current lags voltage at tap value current.

<sup>\*\*</sup> Voltages taken with Rectox type voltmeter.

## CO-8 INVERSE TIME AND CO-9 VERY INVERSE TIME RELAYS

|                 |                                                             |                                                 |                                                      |                                        | VOLT AMPERES**                                       |                                                      |                                               |                                                |  |
|-----------------|-------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------|--|
| AMPERE<br>RANGE | TAP                                                         | CONTINUOUS<br>RATING<br>(AMPERES)               | ATING RATING* FACTO                                  | POWER FACTOR ANGLE $\phi$              | AT<br>TAP VALUE<br>CURRENT                           | AT 3 TIMES<br>TAP VALUE<br>CURRENT                   | AT 10 TIMES<br>TAP VALUE<br>CURRENT           | AT 20 TIMES<br>TAP VALUE<br>CURRENT            |  |
| 0.5/2.5         | (0.5)<br>(0.6)<br>(0.8)<br>(1.0)<br>(1.5)<br>(2.0)<br>(2.5) | 2.7<br>3.1<br>3.7<br>4.1<br>5.7<br>6.8<br>7.7   | 88<br>88<br>88<br>88<br>88<br>88                     | 72<br>71<br>69<br>67<br>62<br>57<br>53 | 2.38<br>2.38<br>2.40<br>2.42<br>2.51<br>2.65<br>2.74 | 21<br>21<br>21.1<br>21.2<br>22<br>23.5<br>24.8       | 132<br>134<br>142<br>150<br>170<br>200<br>228 | 350<br>365<br>400<br>440<br>530<br>675<br>800  |  |
| 2/6             | (2<br>(2.5<br>(3<br>(3.5<br>(4<br>(5<br>(6                  | 8<br>8.8<br>9.7<br>10.4<br>11.2<br>12.5<br>13.7 | 230<br>230<br>230<br>230<br>230<br>230<br>230<br>230 | 70<br>66<br>64<br>62<br>60<br>58<br>56 | 2.38<br>2.40<br>2.42<br>2.48<br>2.53<br>2.64<br>2.75 | 21<br>21.1<br>21.5<br>22<br>22.7<br>24<br>25.2       | 136<br>142<br>149<br>157<br>164<br>180        | 360<br>395<br>430<br>470<br>500<br>580<br>660  |  |
| 4/12            | (4<br>(5<br>(6<br>(7<br>(8<br>(10<br>(12                    | 16<br>18.8<br>19.3<br>20.8<br>22.5<br>25        | 460<br>460<br>460<br>460<br>460<br>460               | 68<br>63<br>60<br>57<br>54<br>48<br>45 | 2.38 2.46 2.54 2.62 2.73 3.00 3.46                   | 21.3<br>21.8<br>22.6<br>23.6<br>24.8<br>27.8<br>31.4 | 146<br>158<br>172<br>190<br>207<br>248<br>292 | 420<br>480<br>550<br>620<br>700<br>850<br>1020 |  |

### TYPE CO-11 RELAY

|                 |                                                 | CONTINUOUS RATING P (AMPERES)                 | ONE SECOND<br>RATING*<br>(AMPERES)            | POWER FACTOR ANGLE $\phi$              | VOLT AMPERES**                                       |                                                         |                                                           |                                               |
|-----------------|-------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------|------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------|
| AMPERE<br>RANGE | TAP                                             |                                               |                                               |                                        | AT<br>TAP VALUE<br>CURRENT                           | AT 3 TIMES<br>TAP VALUE<br>CURRENT                      | AT 10 TIMES<br>TAP VALUE<br>CURRENT                       | AT 20 TIMES<br>TAP VALUE<br>CURRENT           |
| 0.5/2.5         | 0.5<br>0.6<br>0.8<br>1.0<br>1.5<br>2.0<br>2.5   | 1.7<br>1.9<br>2.2<br>2.5<br>3.0<br>3.5<br>3.8 | 56<br>56<br>56<br>56<br>56<br>56              | 36<br>34<br>30<br>27<br>22<br>17<br>16 | 0.72<br>0.75<br>0.81<br>0.89<br>1.13<br>1.30         | 6.54<br>6.80<br>7.46<br>8.30<br>10.04<br>11.95<br>13.95 | 71.8<br>75.0<br>84.0<br>93.1<br>115.5<br>136.3<br>160.0   | 250<br>267<br>298<br>330<br>411<br>502<br>610 |
| 2/6             | 2.0<br>2.5<br>3.0<br>3.5<br>4.0<br>5.0<br>6.0   | 7.0<br>7.8<br>8.3<br>9.0<br>10.0<br>11.0      | 230<br>230<br>230<br>230<br>230<br>230<br>230 | 32<br>30<br>27<br>24<br>23<br>20       | 0.73<br>0.78<br>0.83<br>0.88<br>0.96<br>1.07<br>1.23 | 6.30<br>7.00<br>7.74<br>8.20<br>9.12<br>9.80<br>11.34   | 74.0<br>78.5<br>84.0<br>89.0<br>102.0<br>109.0<br>129.0   | 264<br>285<br>309<br>340<br>372<br>430<br>504 |
| 4/12            | 4.0<br>5.0<br>6.0<br>7.0<br>8.0<br>10.0<br>12.0 | 14<br>16<br>17<br>18<br>20<br>22<br>26        | 460<br>460<br>460<br>460<br>460<br>460        | 29<br>25<br>22<br>20<br>18<br>17<br>16 | 0.79<br>0.89<br>1.02<br>1.10<br>1.23<br>1.32         | 7.08<br>8.00<br>9.18<br>10.00<br>11.1<br>14.9<br>16.3   | 78.4<br>90.0<br>101.4<br>110.0<br>124.8<br>131.6<br>180.0 | 296<br>340<br>378<br>454<br>480<br>600<br>720 |

<sup>\*</sup> Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

 $<sup>\</sup>phi$  Degrees current lags voltage at tap value current.

<sup>\*\*</sup> Voltages taken with Rectox type voltmeter.

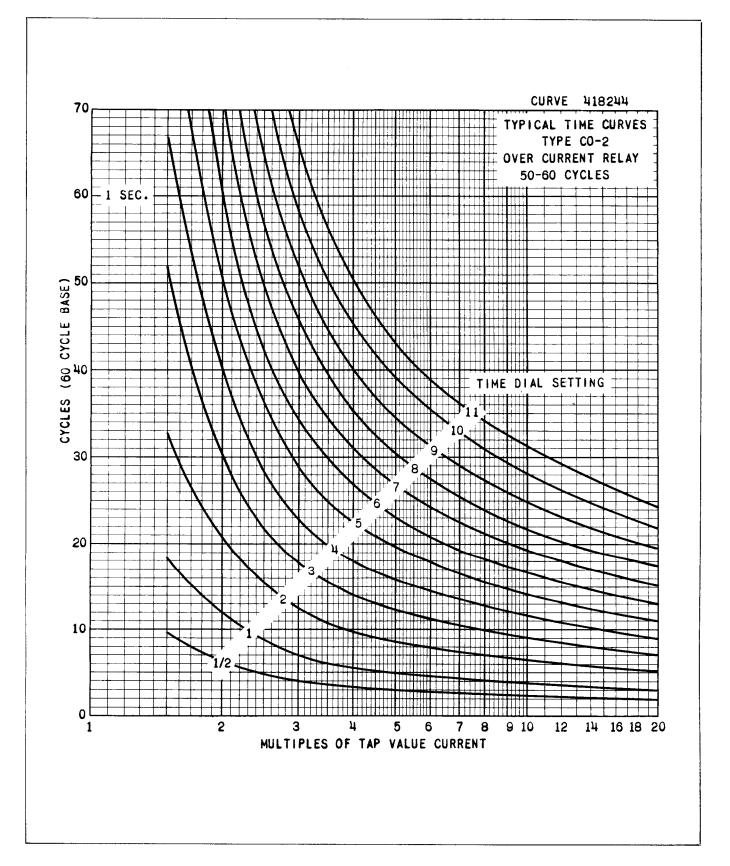



Fig. 7. Typical Time Curves of the Type CO-2 Relay.

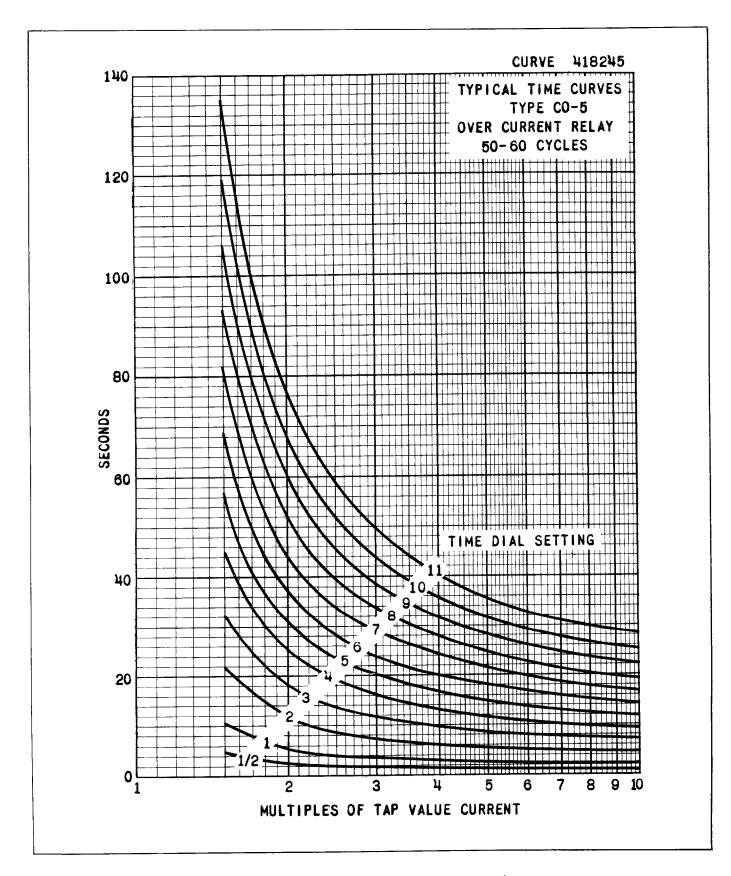



Fig. 8. Typical Time Curves of the Type CO-5 Relay.

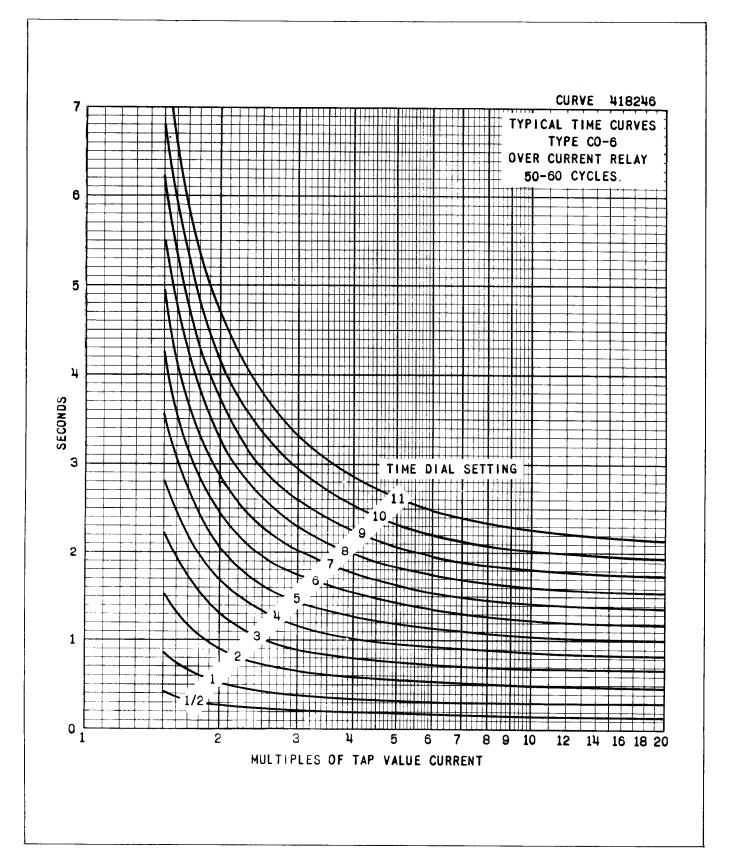



Fig. 9. Typical Time Curves of the Type CO-6 Relay.

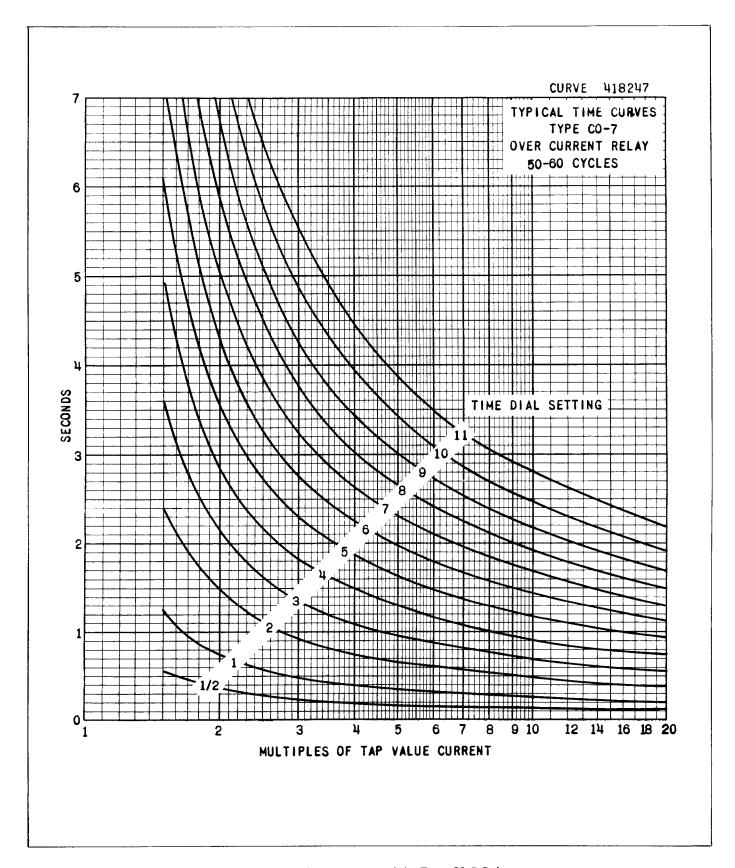



Fig. 10. Typical Time Curves of the Type CO-7 Relay.

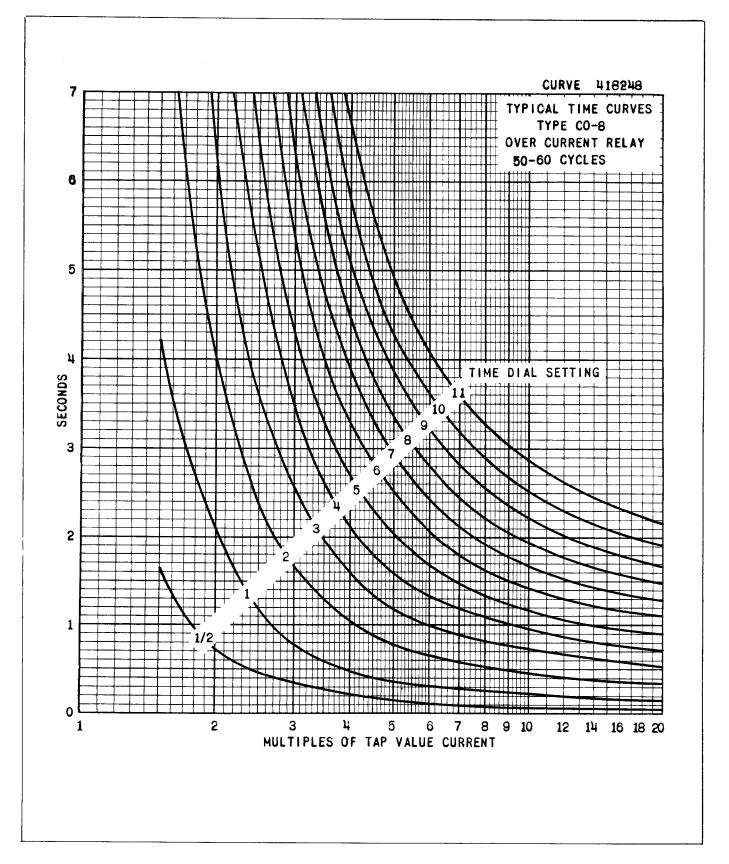



Fig. 11. Typical Time Curves of the Type CO-8 Relay.

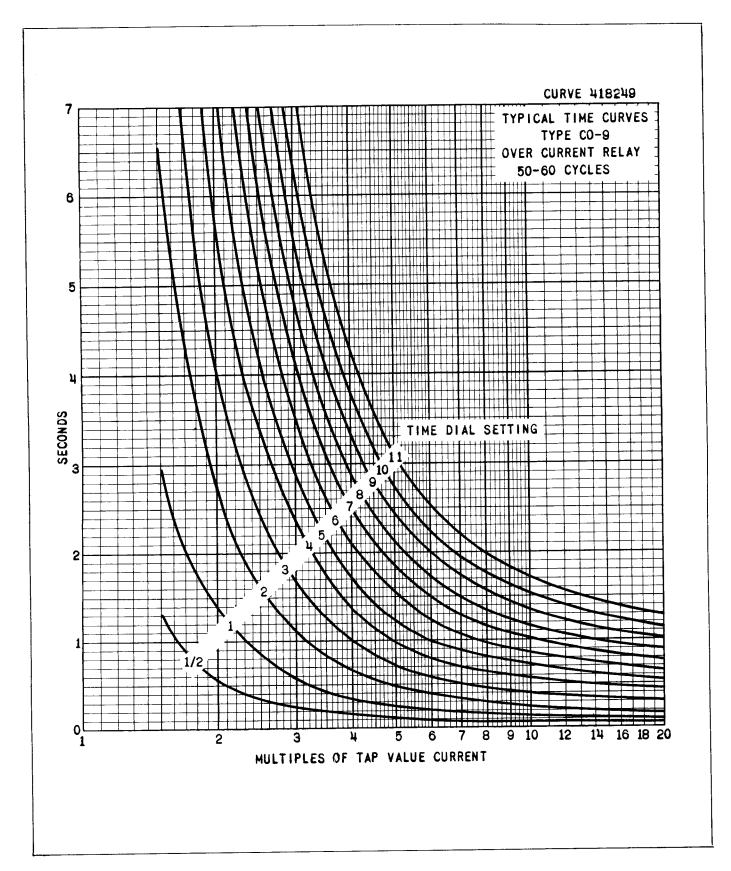



Fig. 12. Typical Time Curves of the Type CO-9 Relay.

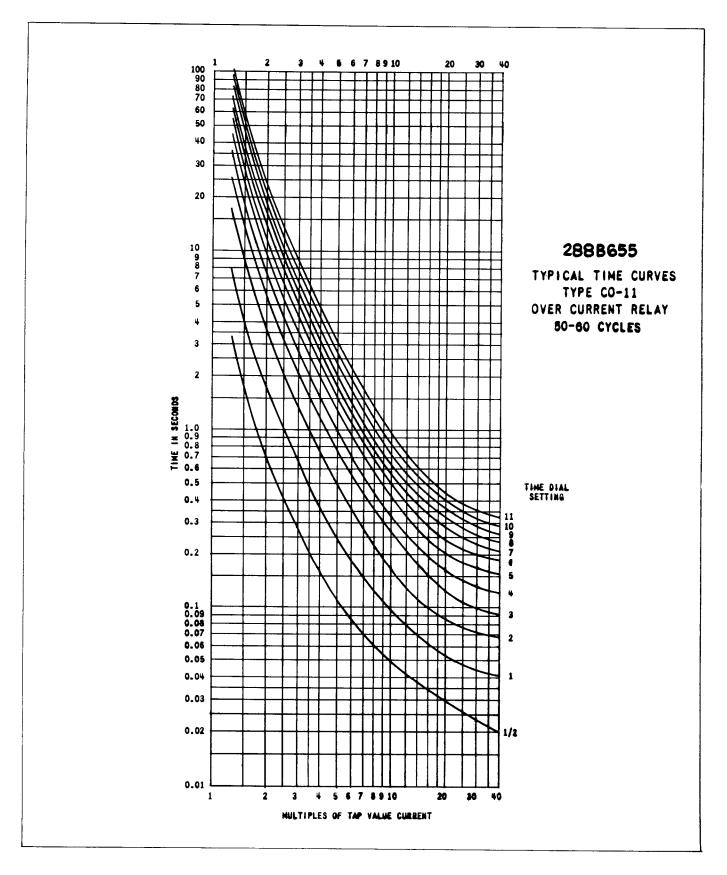



Fig. 13. Typical Time Curves of the Type CO-11 Relay.

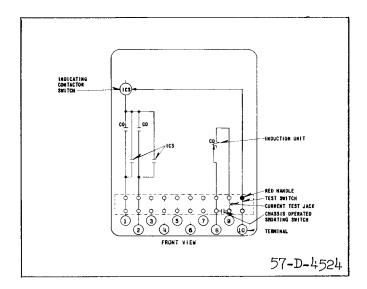



Fig. 14. Internal Schematic of the Double Trip Circuit
Closing Relay. For the Single Trip Relay the
Circuits Associated with Terminal 2 are Omitted.

#### **SETTINGS**

#### CO Unit

The overcurrent unit settings can be defined either by tap setting and time dial position or by tap setting and a specific time of operation at some current multiple of the tap setting (e.g. 4 tap setting, 2 time dial position or 4 tap setting, 0.6 seconds at 6 times tap value current).

To provide selective circuit breaker operation, a minimum coordinating time of 0.3 seconds plus circuit breaker time is recommended between the relay being set and the relays with which coordination is to be effected.

The connector screw on the terminal plate above the time dial makes connections to various turns on the operating coil. By placing this screw in the various terminal plate holes, the relay will respond to multiples of tap value currents in accordance with the various typical time-current curves.

#### Caution

Since the tap block connector screw carries operating current, be sure that the screw is turned tight. In order to avoid opening the current transformer circuits when changing taps under load, connect the spare connector screw in the desired tap position before removing the other tap screw from the original tap position.

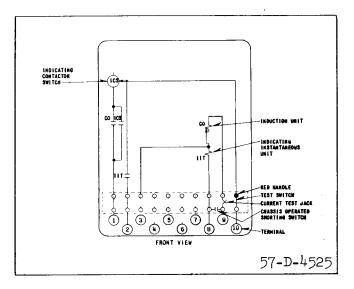



Fig. 15. Internal Schematic of the Single Trip Circuit-Closing Relay with Indicating Instantaneous Trip Unit.

#### Instantaneous Reclosing

The factory adjustment of the CO unit contacts provides a contact follow. Where circuit breaker reclosing will be initiated immediately after a trip by the CO contact, the time of the opening of the contacts should be a minimum. This condition is obtained by loosening the stationary contact mounting screw, removing the contact plate and then replacing the plate with the bent end resting against the contact spring.

For double trip relays, the upper stationary contact is adjusted such that the contact spring rests solidly against the back stop. The lower stationary contact is then adjusted such that both stationary contacts make contact simultaneously with their respective moving contact.

#### Indicating Contactor Switch (ICS)

The only setting required on the ICS unit is the selection of the 0.2 or 2.0 ampere tap setting. This selection is made by connecting the lead located in front of the tap block to the desired setting by means of the connecting screw.

#### Indicating Instantaneous Trip (IIT)

The core screw must be adjusted to the value of pick-up current desired.

The nameplate data will furnish the actual current range that may be obtained from the IIT. unit.

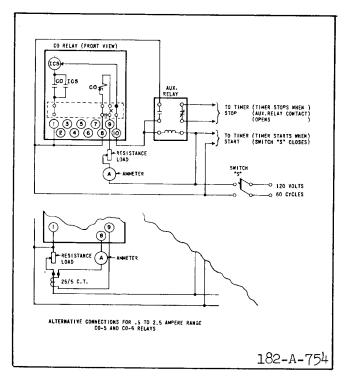



Fig. 16. Diagram of Test Connections for the Circuit-Closing Type CO Relay.

#### INSTALLATION

The relays should be mounted on switchboard panels or their equivalent in a location free from dirt, moisture, excessive vibration and heat. Mount the relay vertically by means of the mounting stud for projection mounting or by means of the four mounting holes on the flange for the semi-flush mounting. Either the stud or the mounting screws may be utilized for grounding the relay. The electrical connections may be made directly to the terminals by means of screws for steel panel mounting or to be terminal stud furnished with the relay for thick panel mounting. The terminal stud may be easily removed or inserted by locking two nuts on the stud and then turning the proper nut with a wrench.

For detail information on the FT case refer to IL 41-076.

#### **ADJUSTMENTS AND MAINTENANCE**

The proper adjustments to insure correct operation of this relay have been made at the factory. Upon receipt of the relay no customer adjustments, other than those covered under "SETTINGS" should be required.

For relays which include an indicating instantaneous trip unit (IIT), the junction of the induction and indicating instantaneous trip coils is brought out to switch jaw #3. With this arrangement the overcurrent units can be tested separately.

#### Acceptance Check

The following check is recommended to insure that the relay is in proper working order:

#### 1. Contact

- a) By turning the time dial, move the moving contacts until they deflect the stationary contact to a position where the stationary contact is resting against its backstop. The index mark located on the movement frame should coincide with the "O" mark on the time dial. For double trip relays, the follow on the stationary contacts should be approximately 1/64".
- b) For relays identified with a "T", located at lower left of stationary contact block, the index mark on the movement frame will coincide with the "O" mark on the time dial when the stationary contact has moved through approximately one-half of its normal deflection. Therefore, with the stationary contact resting against the backstop, the index mark is offset to the right of the "O" mark by approximately .020". The placement of the various time dial positions in line with the index mark will give operating times as shown on the respective time-current curves. For double trip relays, the follow on the stationary contacts should be approximately 1/32".
- 2. Minimum Trip Current Set the time dial to position 6 using the lowest tap setting, alternately apply tap value current plus 3% and tap value current minus 3%. The moving contact should leave the backstop at tap value current plus 3% and should return to the backstop at tap value current minus 3%.
- 3. Time Curve For type CO-11 relay only, the 1.30 times tap value operating time from the number 6 time dial position is  $54.9 \pm 5\%$  seconds and should be checked first. It is important that the 1.30 times tap value current be maintained accurately. The maintaining of this current accurately is necessary because of the steepness of the slope of the time-current characteristic (Figure 13). A 1% variation in the 1.30 times tap value current (including measuring instrument deviation) will change the nominal operating time by approximately 4%

Table I shows the time curve calibration points for the various types of relays. With the time

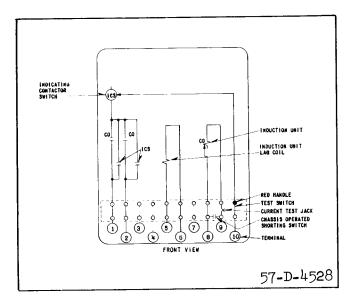



Fig. 17. Internal Schematic of the Double Trip Circuit
Closing Relay with Torque Control Terminals.
For the Single Trip Relay, the Circuits Associated with Terminal 2 are Omitted.

dial set to the indicated position and the relay set on the lowest tap setting, apply the currents specified by Table I, (e.g. for the CO-2, 3 and 20 times tap value current) and measure the operating time of the relay. The operating times should equal those of Table I plus or minus 5%

4. <u>Indicating Instantaneous Trip Unit (IIT)</u> The core screw which is adjustable from the top of the trip unit determines the pickup value. The trip unit has a nominal ratio of adjustment of 1 to 4 and an accuracy within the limits of 10%.

The making of the contacts and target indication should occur at approximately the same instant. Position the stationary contact for a minimum of 1/32" wipe. The bridging moving contact should touch both stationary contacts simultaneously.

Apply sufficient current to operate the IIT. The operation indicator target should drop freely.

5. Indicating Contactor Switch (ICS) - Close the main relay contacts and pass sufficient d-c current through the trip circuit to close the contacts of the ICS. This value of current should be not greater than the particular ICS tap setting being used. The operation indicator target should drop freely.

The contact gap should be approximately .047" between the bridging moving contact and the adjustable stationary contacts. The bridging moving contact should touch both stationary contacts simultaneously.

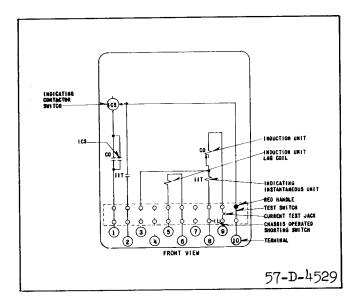



Fig. 18. Internal Schematic of the Single Trip Circuit Closing Relay with Torque Control Terminals and Indicating Instantaneous Trip Unit.

#### Routine Maintenance

All relays should be inspected and checked periodically to assure proper operation. Generally a visual inspection should call attention to any noticeable changes. A minimum suggested check on the relay system is to close the contacts manually to assure that the breaker trips and the target drops. Then release the contacts and observe that the reset is smooth and positive.

If an additional time check is desired, pass secondary current through the relay and check the time of operation. It is preferable to make this at several times pick-up current at an expected operating point for the particular application. For the .5 to 2.5 ampere range CO-5 and CO-6 induction unit use the alternative test circuit in Fig. 16 as these relays are affected by a distorted wave form. With this connection the 25/5 ampere current transformers should be worked well below the knee of the saturation (i.e. use 10L50 or better).

All contacts should be periodically cleaned. A contact burnisher #182A836H01 is recommended for this purpose. The use of abrasive material for cleaning contacts is not recommended, because of the danger of embedding small particles in the face of the soft silver and thus impairing the contact.

#### CALIBRATION

Use the following procedure for calibrating the relay if the relay has been taken apart for repairs or

the adjustments disturbed. This procedure should not be used until it is apparent that the relay is not in proper working order. (See "Acceptance Check")

#### CO Unit

#### 1. Contact

- a) By turning the time dial, move the moving contacts until they deflect the stationary contact to a position where the stationary contact is resting against its backstop. The index mark located on the movement frame should coincide with the "O" mark on the time dial. For double trip relays, the follow on the stationary contacts should be approximately 1/64".
- b) For relays identified with a "T", located at lower left of stationary contact block, the index mark on the movement frame will coincide with the "O" mark on the time dial when the stationary contact has moved through approximately one-half of its normal deflection. Therefore, with the stationary contact resting against the backstop, the index mark is offset to the right of the "O" mark by approximately .020". The placement of the various time dial positions in line with the index mark will give operating times as shown on the respective time-current curves. For double trip relays, the follow on the stationary contacts should be approximately 1/32".
- 2) Minimum Trip Current The adjustment of the spring tension in setting the minimum trip current value of the relay is most conveniently made with the damping magnet removed.

With the time dial set on "O", wind up the spiral spring by means of the spring adjuster until approximately 6-3/4 convolutions show.

Set the relay on the minimum tap setting, the time dial to position 6.

Adjust the control spring tension so that the moving contact will leave the backstop at tap value current +1.0% and will return to the backstop at tap value current -1.0%.

3. <u>Time Curve Calibration</u> - Install the permanent magnet.

Apply the indicated current per Table I for permanent magnet adjustment (e.g. CO-8, 2 times tap value) and measure the operating time. Adjust the permanent magnet keeper until the operating time corresponds to the value of Table I.

For type CO-11 relay only, the 1.30 times tap value operating time from the number 6 time dial position is 54.9 ±5% seconds. It is important that the 1.30 times tap value current be maintained accurately. The maintaining of this current accurately is necessary because of the steepness of the slope of the timecurrent characteristic (Figure 13). A 1% variation in the 1.30 times tap value current (including measuring instrument deviation) will change the nominal operating time by approximately 4%. If the operating time at 1.3 times tap value is not within these limits, a minor adjustment of the control spring will give the correct operating time without any undue effect on the minimum pick-up of the relay. This check is to be made after the 2 times tap value adjustment has has been completed.

Apply the indicated current per Table I for the electromagnet plug adjustment (e.g. CO-8, 20 times tap value) and measure the operating time. Adjust the proper plug until the operating time corresponds to the value in Table I. (Withdrawing the left hand plug, front view, increases the operating time and withdrawing the right hand plug, front view, decreases the time.) In adjusting the plugs, one plug should be screwed in completely and the other plug run in or out until the proper operating time has been obtained.

Recheck the permanent magnet adjustment. If the operating time for this calibration point has changed, readjust the permanent magnet and then recheck the electromagnet plug adjustment.

4. Indicating Contactor Switch (ICS) - Close the main relay contacts and pass sufficient d-c current through the trip circuit to close the contacts of the ICS. This value of current should be not greater than the particular ICS tap setting being used. The operation indicator target should drop freely.

#### 5. Indicating Instantaneous Trip Unit (IIT)

The core screw must be adjusted to the value of pick-up current desired.

The nameplate data will furnish the actual current range that may be obtained from the IIT unit.

#### **RENEWAL PARTS**

Repair work can be done most satisfactorily at the factory. However, interchangeable parts can be furnished to the customers who are equipped for doing repair work. When ordering parts, always give the complete nameplate data.

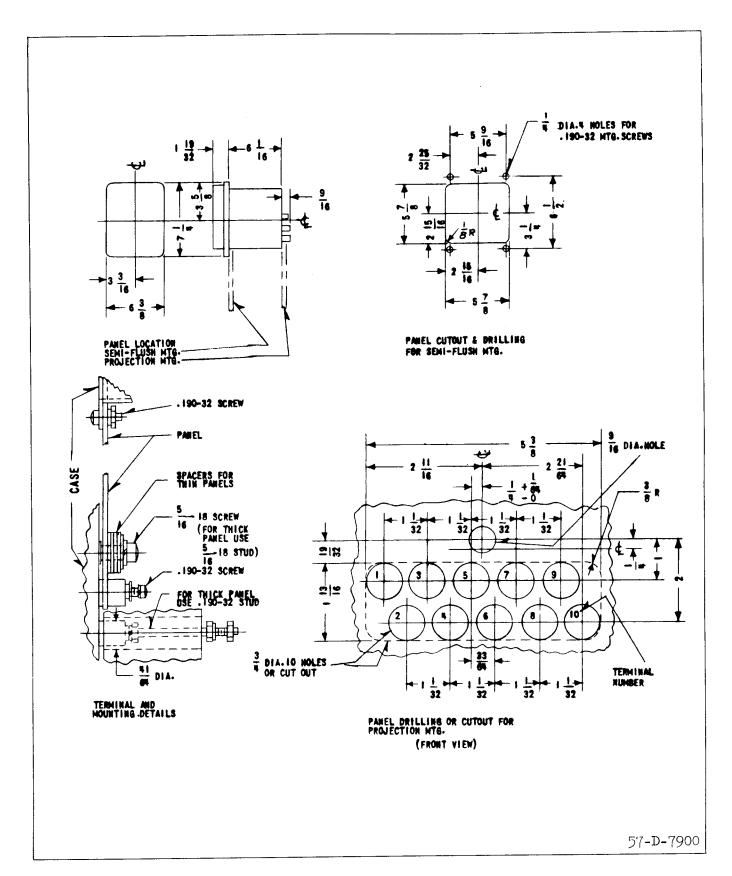



Fig. 19. Outline and Drilling Plan for the Type CO Relay.

TABLE 1

TIME CURVE CALIBRATION DATA = 50 & 60 CYCLES

|               | PERMANEN'                | r magnet adjustm                       | MENT                         | ELECTROMAGN                            | NET PLUGS                    |
|---------------|--------------------------|----------------------------------------|------------------------------|----------------------------------------|------------------------------|
| RELAY<br>TYPE | TIME<br>DIAL<br>POSITION | CURRENT<br>(MULTIPLES OF<br>TAP VALUE) | OPERATING<br>TIME<br>SECONDS | CURRENT<br>(MULTIPLES OF<br>TAP VALUE) | OPERATING<br>TIME<br>SECONDS |
| CO-2          | 6                        | 3                                      | 0.57                         | 20                                     | 0.22                         |
| CO-5          | 6                        | 2                                      | 37.80                        | 10                                     | 14.30                        |
| CO-6          | 6                        | 2                                      | 2.46                         | 20                                     | 1.19                         |
| CO-7          | 6                        | 2                                      | 4.27                         | 20                                     | 1.11                         |
| CO-8          | 6                        | 2                                      | 13.35                        | 20                                     | 1.11                         |
| CO-9          | 6                        | 2                                      | 8.87                         | 20                                     | 0.65                         |
| CO-11         | 6                        | 2                                      | 11.27                        | 20                                     | 0.24 △                       |

 $\Delta$  For 50 cycle CO-11 relay 20 times operating time limits are 0.24 + 10%, -5%.

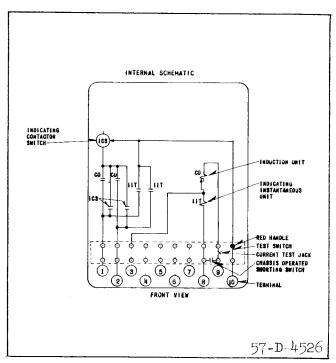



Fig. 20 Internal Schematic of the Double Trip Circuit Closing Relay with Indicating Instantaneous Trip Unit.

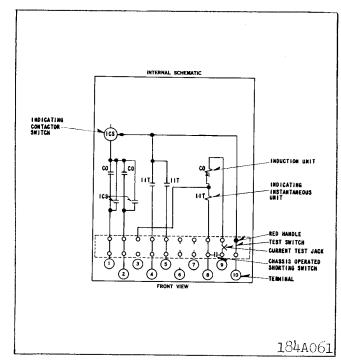



Fig. 21 Internal Schematic of the Double Trip Circuit Closing Realy with Indicating Instantaneous Trip Unit to Separate Terminals.

WESTINGHOUSE ELECTRIC CORPORATION RELAY-INSTRUMENT DIVISION NEWARK, N. J.



## INSTALLATION . OPERATION . MAINTENANCE

# INSTRUCTIONS

## TYPE CO OVERCURRENT RELAY

#### CAUTION

Before putting relays into service, remove all blocking which may have been inserted for the purpose of securing the parts during shipment, make sure that all moving parts operate freely, inspect the contacts to see that they are clean and close properly, and operate the relay to check the settings and electrical connections.

#### **APPLICATION**

These induction overcurrent relays are used to disconnect circuits or apparatus when the current in them exceeds a given value. Where a station battery (48 volts or over) is available, the circuit closing type relays are normally used to trip the circuit breaker.

#### CONTENTS

This instruction leaflet applies to the following types of relays:

Type CO-2 Short Time Relay

CO-5 Long Time Relay

CO-6 Definite Minimum Time Relay

CO-7 Moderately Inverse Time Relay

CO-8 Inverse Time Relay

CO-9 Very Inverse Time Relay

CO-11 Extremely Inverse Time Relay

#### CONSTRUCTION AND OPERATION

The type CO relays consist of an overcurrent unit (CO), an indicating contactor switch (ICS), and an indicating instantaneous trip unit (IIT) when required. The principal component parts of the relay and their location are shown in Figs. 1-5.

#### Electromagnet

The electromagnets for the types CO-5, CO-6, CO-7, CO-8 and CO-9 relays have a main tapped coil located on the center leg of an "E" type laminated structure that produces a flux which divides and returns through the outer legs. A shading coil causes the flux through the left leg to lag the main pole flux. The out-of-phase fluxes thus produced in the air gap

cause a contact closing torque.

The electromagnets for the types CO-2 and CO-11 relays have a main coil consisting of a tapped primary winding and a secondary winding. Two identical coils on the outer legs of the lamination structure are connected to the main coil secondary in a manner so that the combination of all the fluxes produced by the electromagnet result in out-of-phase fluxes in the air gap. The out-of-phase air gap fluxes produced cause a contact closing torque.

## Indicating Contactor Switch Unit (ICS)

The d-c indicating contactor switch is a small clapper type device. A magnetic armature, to which leaf-spring mounted contacts are attached, is attracted to the magnetic core upon energization of the switch. When the switch closes the moving contacts bridge two stationary contacts, completing the trip circuit. Also during this operation two fingers on the armature deflect a spring located on the front of the switch, which allows the operation indicator target to drop.

The front spring, in addition to holding the target, provides restraint for the armature and thus controls the pickup value of the switch.

## Indicating Instantaneous Trip Unit (IIT)

The instantaneous trip unit is a small a-c operated clapper type device. A magnetic armature, to which leaf-spring mounted contacts are attached, is attracted to the magnetic core upon energization of the switch. When the switch closes, the moving contacts bridge two stationary contacts completing the trip circuit. Also, during the operation, two fingers on the armature deflect a spring located on the front of the switch which allows the operation indicator target to drop.

A core screw accessible from the top of the switch provides the adjustable pickup range.

#### **CHARACTERISTICS**

The relays are generally available in the following current ranges:

SUPERSEDES 1.L. 41-101L
\* Denotes change from superseded issue.

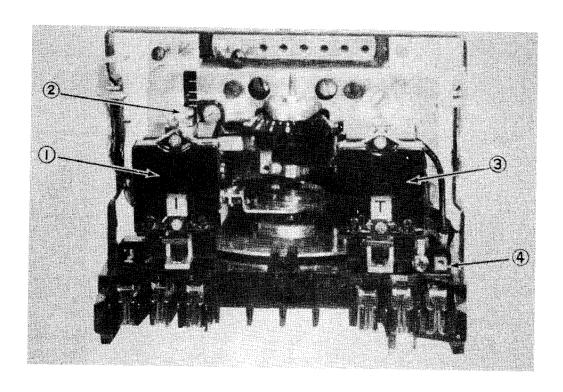



Fig. 1. Type CO Relay Without Case. 1-Indicating Instantaneous trip (IIT). 2-IIT Adjusting Screw. 3-Indicating Contactor Switch (ICS). 4-Indicating Contactor Switch Tap Block.

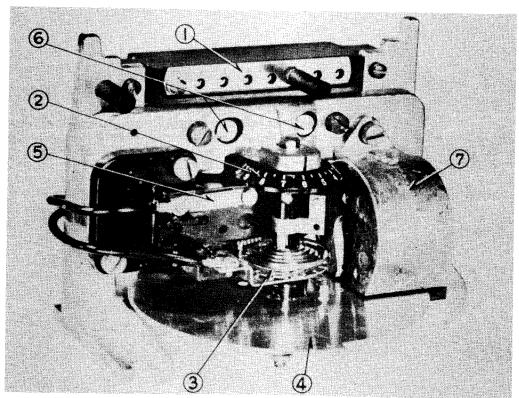



Fig. 2. Time Overcurrent Unit (Front View). 1-Tap Block. 2-Time Dial. 3-Control Spring Assembly. 4-Disc. 5-Stationary Contact Assembly. 6-Magnetic Plugs. 7-Permanent Magnet.

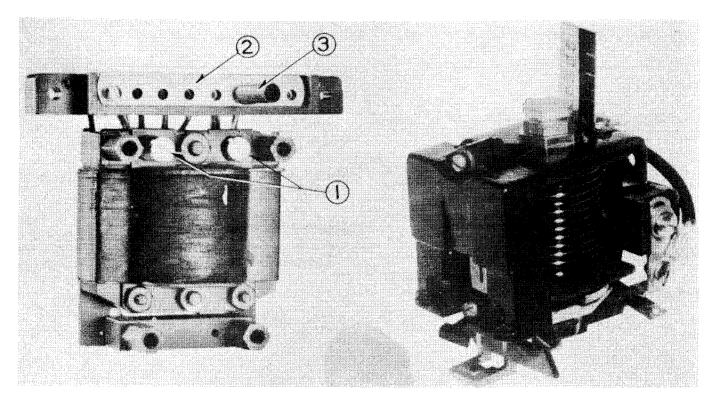



Fig. 3. "E" Type Electromagnet. 1- Magnetic Plugs. 2-Tap Fig. 4. Indicating Instantaneous Trip Unit (IIT). Block. 3-Tap Screw.

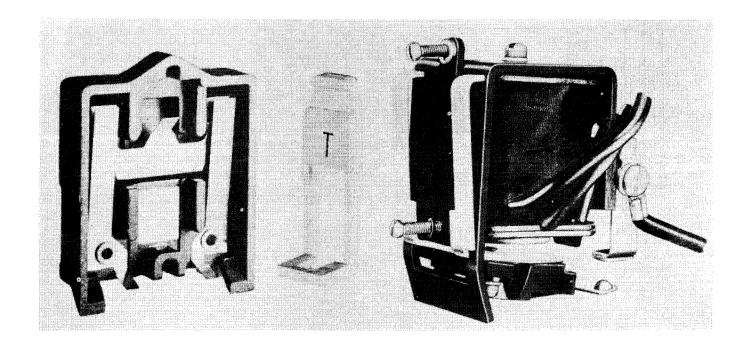



Fig. 5. Indicating Contactor Switch (ICS).

| Range    | Taps |     |     |     |     |     |     |
|----------|------|-----|-----|-----|-----|-----|-----|
| .5 - 2.5 | 0.5  | 0.6 | 0.8 | 1.0 | 1.5 | 2.0 | 2.5 |
| 2 - 6    | 2    | 2.5 | 3   | 3.5 | 4   | 5   | 6   |
| 4 - 12   | 4    | 5   | 6   | 7   | 8   | 10  | 12  |

These relays may have either single or double circuit closing contacts for tripping either one or two circuit breakers.

The time vs. current characteristics are shown in Figs. 7 to 13. These characteristics give the contact closing time for the various time dial settings when the indicated multiples of tap value current are applied to the relay.

#### Trip Circuit

The main contacts will safely close 30 amperes at 250 volts d-c and the seal-in contacts of the indi-

cating contactor switch will safely carry this current long enough to trip a circuit breaker.

The indicating instantaneous trip contacts will safely close 30 amperes at 250 volts d-c, and will carry this current long enough to trip a breaker.

The indicating contactor switch has two taps that provide a pickup setting of 0.2 or 2 amperes. To change taps requires connecting the lead located in front of the tap block to the desired setting by means of a screw connection.

#### Trip Circuit Constants

Contactor Switch -

0.2 ampere tap - 6.5 ohms d-c resistance

2.0 ampere tap - 0.15 ohms d-c resistance

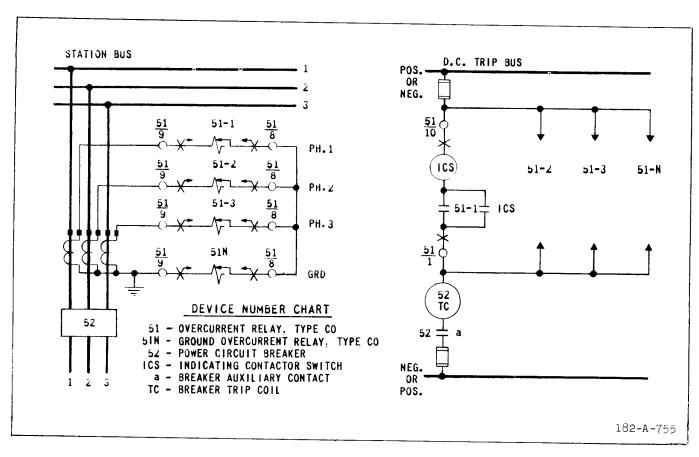



Fig. 6. External Schematic of the Circuit-Closing Type CO Relay for Phase and Ground Overcurrent Protection on a Three-Phase System.

#### **ENERGY REQUIREMENTS**

#### \* Instantaneous Trip Unit (IIT)

| RANGE IN | BURDEN IN VOLT-AMPS. AT |                 |  |  |  |  |  |
|----------|-------------------------|-----------------|--|--|--|--|--|
| AMPERES  | MINIMUM SETTING         | MAXIMUM SETTING |  |  |  |  |  |
| 2 - 8    | 4.5                     | 32              |  |  |  |  |  |
| 4 - 16   | 4.5                     | 32              |  |  |  |  |  |
| 10 - 40  | 4.5                     | 40              |  |  |  |  |  |
| 20 - 80  | 6.5                     | 70              |  |  |  |  |  |
| 40 - 160 | 9.0                     | 144             |  |  |  |  |  |

#### TYPE CO-2 RELAY

|                 |      | CONTINUOUS<br>RATING<br>(AMPERES) | ONE SECOND<br>RATING*<br>(AMPERES) | POWER FACTOR ANGLE $\phi$ | VOLT AMPERES**       |                                    |                                     |                                     |  |
|-----------------|------|-----------------------------------|------------------------------------|---------------------------|----------------------|------------------------------------|-------------------------------------|-------------------------------------|--|
| AMPERE<br>RANGE | TAP  |                                   |                                    |                           | AT TAP VALUE CURRENT | AT 3 TIMES<br>TAP VALUE<br>CURRENT | AT 10 TIMES<br>TAP VALUE<br>CURRENT | AT 20 TIMES<br>TAP VALUE<br>CURRENT |  |
|                 | 0.5  | 0.91                              | 28                                 | 58                        | 4.8                  | 39.6                               | 256                                 | 790                                 |  |
|                 | 0.6  | 0.96                              | 28                                 | 5 <b>7</b>                | 4.9                  | 39.8                               | 270                                 | 851                                 |  |
|                 | 0.8  | 1.18                              | 28                                 | 53                        | 5.0                  | 42.7                               | 308                                 | 1024                                |  |
| 0.5/2.5         | 1.0  | 1.37                              | 28                                 | 50                        | 5.3                  | 45.4                               | 348                                 | 1220                                |  |
|                 | 1.5  | 1.95                              | 28                                 | 40                        | 6.2                  | 54.4                               | 435                                 | 1740                                |  |
|                 | 2.0  | 2.24                              | 28                                 | 36                        | 7.2                  | 65.4                               | 580                                 | 2280                                |  |
|                 | 2.5  | 2.50                              | 28                                 | 29                        | 7.9                  | 73.6                               | 700                                 | 2850                                |  |
|                 | 2.0  | 3.1                               | 110                                | 59                        | 5.04                 | 38.7                               | 262                                 | 800                                 |  |
|                 | 2.5  | 4.0                               | 110                                | 55                        | 5.13                 | 39.8                               | 280                                 | 920                                 |  |
|                 | 3.0  | 4.4                               | 110 .                              | 51                        | 5.37                 | 42.8                               | 312                                 | 1008                                |  |
| 2/6             | 3.5  | 4.8                               | 110                                | 47                        | 5.53                 | 42.8                               | 329                                 | 1120                                |  |
|                 | 4.0  | 5.2                               | 110                                | . 45                      | 5.72                 | 46.0                               | 360                                 | 1216                                |  |
|                 | 5.0  | 5.6                               | 110                                | 41                        | 5.90                 | 50.3                               | 420                                 | 1500                                |  |
|                 | 6.0  | 6.0                               | 110                                | 37                        | 6.54                 | 54.9                               | 474                                 | 1800                                |  |
|                 | 4.0  | 7.3                               | 230                                | 65                        | 4.92                 | 39.1                               | 268                                 | 848                                 |  |
|                 | 5.0  | 8.0                               | 230                                | 50                        | 5.20                 | 42.0                               | 305                                 | 1020                                |  |
|                 | 6.0  | 8.8                               | 230                                | 47                        | 5.34                 | 44.1                               | 330                                 | 1128                                |  |
| 4/12            | 7.0  | 9.6                               | 230                                | 46                        | 5.53                 | 45.8                               | 364                                 | 1260                                |  |
| -7              | 8.0  | 10.4                              | 230                                | 43                        | 5.86                 | 49.9                               | 400                                 | 1408                                |  |
|                 | 10.0 | 11.2                              | 230                                | 37                        | 6.6                  | 55.5                               | 470                                 | 1720                                |  |
|                 | 12.0 | 12.0                              | 230 .                              | 34                        | 7.00                 | 62.3                               | 528                                 | 2064                                |  |

<sup>\*</sup> Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

 $<sup>\</sup>phi$  Degrees current lags voltage at tap value current.

<sup>\*\*</sup> Voltages taken with Rectox type voltmeter.

## ENERGY REQUIREMENTS

## CO-5 LONG TIME AND CO-6 DEFINITE MINIMUM TIME RELAYS

|                 |                                                      |                                                 |                                               |                                        |                                                      | VOLT A                                               | MPERES**                                      |                                                       |
|-----------------|------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|
| AMPERE<br>RANGE | ТАР                                                  | CONTINUOUS<br>RATING<br>(AMPERES)               | ONE SECOND<br>RATING*<br>(AMPERES)            | POWER FACTOR ANGLE $\phi$              | AT<br>TAP VALUE<br>CURRENT                           | AT 3 TIMES<br>TAP VALUE<br>CURRENT                   | AT 10 TIMES<br>TAP VALUE<br>CURRENT           | AT 20 TIMES<br>TAP VALUE<br>CURRENT                   |
| 0.5/2.5         | (0.5<br>(0.6<br>(0.8<br>(1.0<br>(1.5<br>(2.0<br>(2.5 | 2.7<br>3.1<br>3.7<br>4.1<br>5.7<br>6.8<br>7.7   | 88<br>88<br>88<br>88<br>88<br>88              | 69<br>68<br>67<br>66<br>62<br>60<br>58 | 3.92<br>3.96<br>3.96<br>4.07<br>4.19<br>4.30<br>4.37 | 20.6<br>20.7<br>21<br>21.4<br>23.2<br>24.9<br>26.2   | 103<br>106<br>114<br>122<br>147<br>168<br>180 | 270<br>288<br>325<br>360<br>462<br>548<br>630         |
| 2/6             | (2<br>(2.5<br>(3<br>(3.5<br>(4<br>(5<br>(6           | 8<br>8.8<br>9.7<br>10.4<br>11.2<br>12.5<br>13.7 | 230<br>230<br>230<br>230<br>230<br>230<br>230 | 67<br>66<br>64<br>63<br>62<br>59       | 3.88<br>3.90<br>3.93<br>4.09<br>4.12<br>4.20<br>4.38 | 21<br>21.6<br>22.1<br>23.1<br>23.5<br>24.8<br>26.5   | 110<br>118<br>126<br>136<br>144<br>162        | 308<br>342<br>381<br>417<br>448<br>540                |
| 4/12            | (4<br>(5<br>(6<br>(7<br>(8<br>(10<br>(12             | 16<br>18.8<br>19.3<br>20.8<br>22.5<br>25        | 460<br>460<br>460<br>460<br>460<br>460        | 65<br>63<br>61<br>59<br>56<br>53<br>47 | 4.00<br>4.15<br>4.32<br>4.35<br>4.40<br>4.60<br>4.92 | 22.4<br>23.7<br>25.3<br>26.4<br>27.8<br>30.1<br>35.6 | 126<br>143<br>162<br>183<br>204<br>247        | 624<br>376<br>450<br>531<br>611<br>699<br>880<br>1056 |

## CO-7 MODERATELY INVERSE TIME RELAY

|                 |                                                      |                                                 |                                                      |                                  | VOLT AMPERES**                                       |                                                      |                                               |                                               |
|-----------------|------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|----------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| AMPERE<br>RANGE | TAP                                                  | CONTINUOUS RATING (AMPERES)                     | ONE SECOND<br>RATING*<br>(AMPERES)                   | POWER FACTOR ANGLE $\phi$        | AT<br>TAP VALUE<br>CURRENT                           | AT 3 TIMES<br>TAP VALUE<br>CURRENT                   | AT 10 TIMES<br>TAP VALUE<br>CURRENT           | AT 20 TIMES<br>TAP VALUE<br>CURRENT           |
| 0.5/2.5         | (0.5<br>(0.6<br>(0.8<br>(1.0<br>(1.5<br>(2.0<br>(2.5 | 2.7<br>3.1<br>3.7<br>4.1<br>5.7<br>6.8<br>7.7   | 88<br>88<br>88<br>88<br>88<br>88                     | 68<br>67<br>66<br>64<br>61<br>58 | 3.88<br>3.93<br>3.93<br>4.00<br>4.08<br>4.24<br>4.38 | 20.7<br>20.9<br>21.1<br>21.6<br>22.9<br>24.8<br>25.9 | 103<br>107<br>114<br>122<br>148<br>174        | 278<br>288<br>320<br>356<br>459<br>552<br>640 |
| 2/6             | (2<br>(2.5<br>(3<br>(3.5<br>(4<br>(5<br>(6           | 8<br>8.8<br>9.7<br>10.4<br>11.2<br>12.5<br>13.7 | 230<br>230<br>230<br>230<br>230<br>230<br>230<br>230 | 66<br>63<br>63<br>62<br>61<br>59 | 4.06<br>4.07<br>4.14<br>4.34<br>4.34<br>4.40<br>4.62 | 21.3<br>21.8<br>22.5<br>23.4<br>23.8<br>25.2         | 111<br>120<br>129<br>141<br>149<br>163<br>183 | 306<br>342<br>366<br>413<br>448<br>530<br>624 |
| 4/12            | (4<br>(5<br>(6<br>(7<br>(8<br>(10<br>(12             | 16<br>18.8<br>19.3<br>20.8<br>22.5<br>25        | 460<br>460<br>460<br>460<br>460<br>460               | 64<br>61<br>60<br>58<br>55<br>51 | 4.24<br>4.30<br>4.62<br>4.69<br>4.80<br>5.20<br>5.40 | 22.8<br>24.2<br>25.9<br>27.3<br>29.8<br>33<br>37.5   | 129<br>149<br>168<br>187<br>211<br>260<br>308 | 392<br>460<br>540<br>626<br>688<br>860        |

<sup>\*</sup> Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

φ Degrees current lags voltage at tap value current.

<sup>\*\*</sup> Voltages taken with Rectox type voltmeter.

## **ENERGY REQUIREMENTS**

#### CO-8 INVERSE TIME AND CO-9 VERY INVERSE TIME RELAYS

|                 |                                                             | ·                                               |                                               |                                        | VOLT AMPERES**                                       |                                                      |                                               |                                                |  |
|-----------------|-------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------|--|
| AMPERE<br>RANGE | TAP                                                         | CONTINUOUS<br>RATING<br>(AMPERES)               | ONE SECOND<br>RATING*<br>(AMPERES)            | POWER FACTOR ANGLE $\phi$              | AT TAP VALUE CURRENT                                 | AT 3 TIMES<br>TAP VALUE<br>CURRENT                   | AT 10 TIMES<br>TAP VALUE<br>CURRENT           | AT 20 TIMES<br>TAP VALUE<br>CURRENT            |  |
| 0.5/2.5         | (0.5)<br>(0.6)<br>(0.8)<br>(1.0)<br>(1.5)<br>(2.0)<br>(2.5) | 2.7<br>3.1<br>3.7<br>4.1<br>5.7<br>6.8<br>7.7   | 88<br>88<br>88<br>88<br>88                    | 72<br>71<br>69<br>67<br>62<br>57<br>53 | 2.38<br>2.38<br>2.40<br>2.42<br>2.51<br>2.65<br>2.74 | 21<br>21<br>21.1<br>21.2<br>22<br>23.5<br>24.8       | 132<br>134<br>142<br>150<br>170<br>200<br>228 | 350<br>365<br>400<br>440<br>530<br>675<br>800  |  |
| 2/6             | (2<br>(2.5<br>(3<br>(3.5<br>(4<br>(5<br>(6                  | 8<br>8.8<br>9.7<br>10.4<br>11.2<br>12.5<br>13.7 | 230<br>230<br>230<br>230<br>230<br>230<br>230 | 70<br>66<br>64<br>62<br>60<br>58<br>56 | 2.38<br>2.40<br>2.42<br>2.48<br>2.53<br>2.64<br>2.75 | 21<br>21.1<br>21.5<br>22<br>22.7<br>24<br>25.2       | 136<br>142<br>149<br>157<br>164<br>180        | 360<br>395<br>430<br>470<br>500<br>580<br>660  |  |
| 4/12            | (4<br>(5<br>(6<br>(7<br>(8<br>(10<br>(12                    | 16<br>18.8<br>19.3<br>20.8<br>22.5<br>25        | 460<br>460<br>460<br>460<br>460<br>460        | 68<br>63<br>60<br>57<br>54<br>48<br>45 | 2.38<br>2.46<br>2.54<br>2.62<br>2.73<br>3.00<br>3.46 | 21.3<br>21.8<br>22.6<br>23.6<br>24.8<br>27.8<br>31.4 | 146<br>158<br>172<br>190<br>207<br>248<br>292 | 420<br>480<br>550<br>620<br>700<br>850<br>1020 |  |

#### TYPE CO-11 RELAY

|                 |      |                                   |                                    |                           | VOLT AMPERES**       |                              |                                     |                                     |  |
|-----------------|------|-----------------------------------|------------------------------------|---------------------------|----------------------|------------------------------|-------------------------------------|-------------------------------------|--|
| AMPERE<br>RANGE | TAP  | CONTINUOUS<br>RATING<br>(AMPERES) | ONE SECOND<br>RATING*<br>(AMPERES) | POWER FACTOR ANGLE $\phi$ | AT TAP VALUE CURRENT | AT 3 TIMES TAP VALUE CURRENT | AT 10 TIMES<br>TAP VALUE<br>CURRENT | AT 20 TIMES<br>TAP VALUE<br>CURRENT |  |
|                 | 0.5  | 1.7                               | 56                                 | 36                        | 0.72                 | 6.54                         | 71.8                                | 250                                 |  |
|                 | 0.6  | 1.9                               | 56                                 | 34                        | 0.75                 | 6.80                         | 75.0                                | 267                                 |  |
|                 | 0.8  | 2.2                               | 56                                 | 30                        | 0.81                 | 7.46                         | 84.0                                | 298                                 |  |
| 0.5/2.5         | 1.0  | 2.5                               | 56                                 | 27                        | 0.89                 | 8.30                         | 93.1                                | 330                                 |  |
|                 | 1.5  | 3.0                               | 56                                 | 22                        | 1.13                 | 10.04                        | 115.5                               | 411                                 |  |
|                 | 2.0  | 3.5                               | 56                                 | 17                        | 1.30                 | 11.95                        | 136.3                               | 502                                 |  |
|                 | 2.5  | 3.8                               | 56                                 | 16                        | 1.48                 | 13.95                        | 160.0                               | 610                                 |  |
|                 | 2.0  | 7.0                               | 230                                | 32                        | 0.73                 | 6.30                         | 74.0                                | 264                                 |  |
|                 | 2.5  | 7.8                               | 230                                | 30                        | 0.78                 | 7.00                         | 78.5                                | 285                                 |  |
|                 | 3.0  | 8.3                               | 230                                | 27                        | 0.83                 | 7.74                         | 84.0                                | 309                                 |  |
| 2/6             | 3.5  | 9.0                               | 230                                | 24                        | 0.88                 | 8.20                         | 89.0                                | 340                                 |  |
|                 | 4.0  | 10.0                              | 230                                | 23                        | 0.96                 | 9.12                         | 102.0                               | 372                                 |  |
|                 | 5.0  | 11.0                              | 230                                | 20                        | 1.07                 | 9.80                         | 109.0                               | 430                                 |  |
|                 | 6.0  | 12.0                              | 230                                | 20                        | 1.23                 | 11.34                        | 129.0                               | 504                                 |  |
|                 | 4.0  | 14                                | 460                                | 29                        | 0.79                 | 7.08                         | 78.4                                | 296                                 |  |
|                 | 5.0  | 16                                | 460                                | 25                        | 0.89                 | 8.00                         | 90.0                                | 340                                 |  |
|                 | 6.0  | 17                                | 460                                | 22                        | 1.02                 | 9.18                         | 101.4                               | 378                                 |  |
| 4/12            | 7.0  | 18                                | 460                                | 20                        | 1.10                 | 10.00                        | 110.0                               | 454                                 |  |
|                 | 8.0  | 20                                | 460                                | 18                        | 1.23                 | 11.1                         | 124.8                               | 480                                 |  |
|                 | 10.0 | 22                                | 460                                | 17                        | 1.32                 | 14.9                         | 131.6                               | 600                                 |  |
|                 | 12.0 | 26                                | 460                                | 16                        | 1.8                  | 16.3                         | 180.0                               | 720                                 |  |

<sup>\*</sup> Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

 $<sup>\</sup>phi$  Degrees current lags voltage at tap value current.

<sup>\*\*</sup> Voltages taken with Rectox type voltmeter.

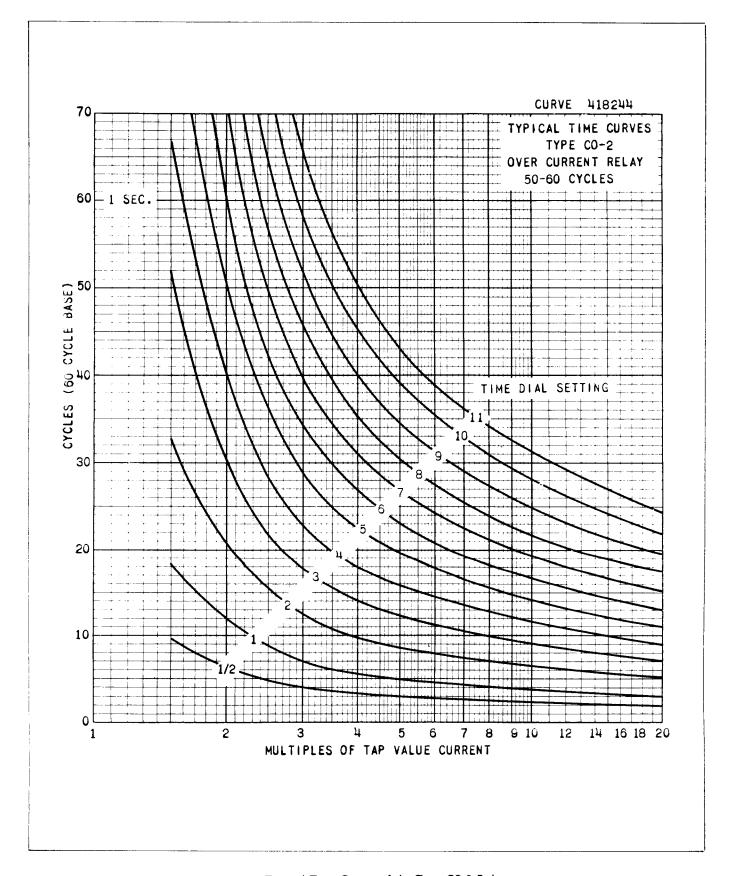



Fig. 7. Typical Time Curves of the Type CO-2 Relay.

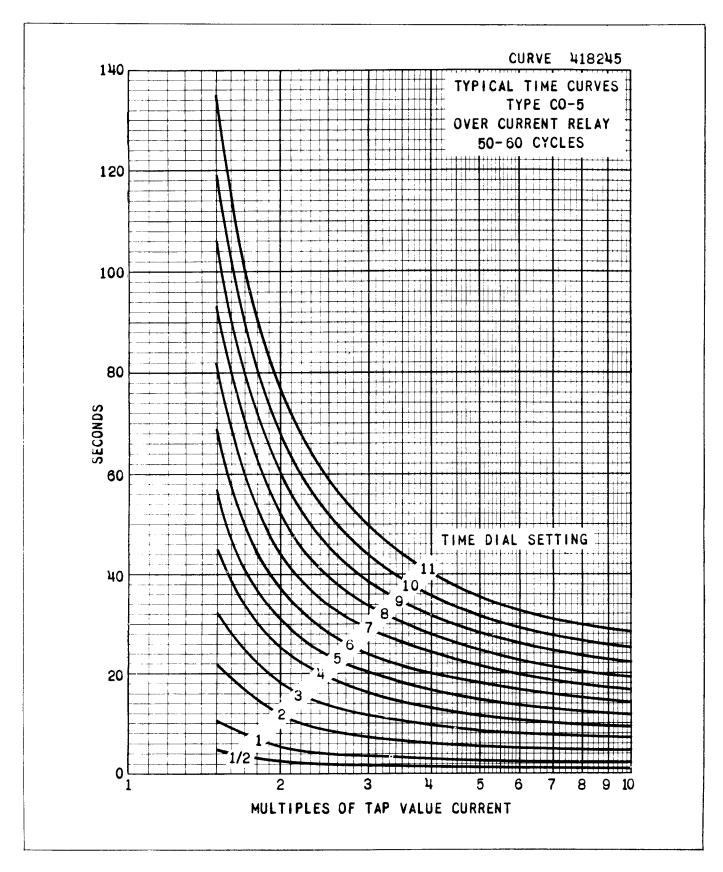



Fig. 8. Typical Time Curves of the Type CO-5 Relay.

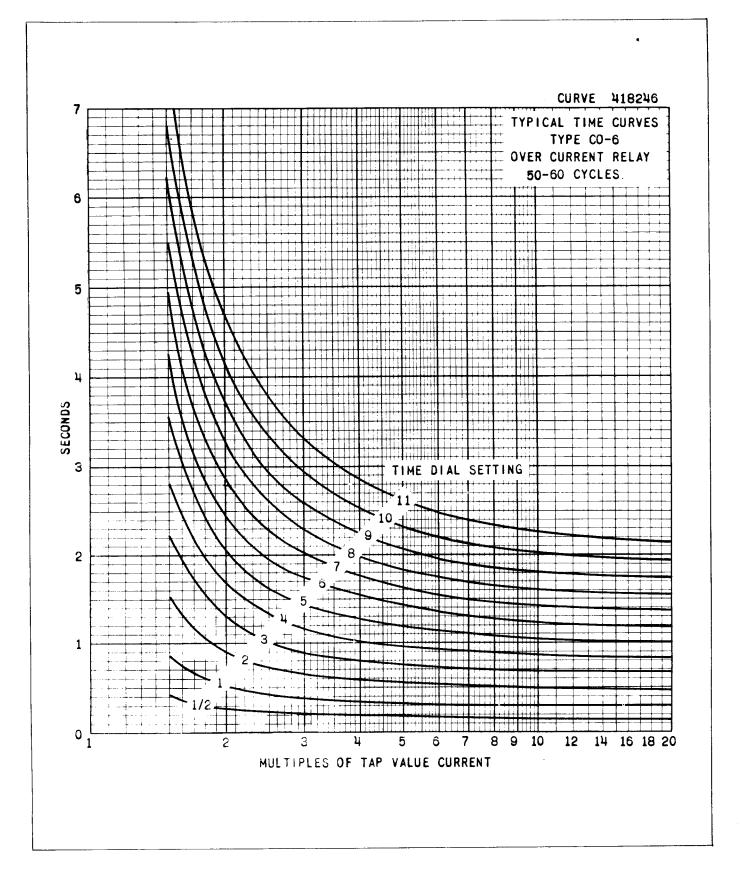



Fig. 9. Typical Time Curves of the Type CO-6 Relay.

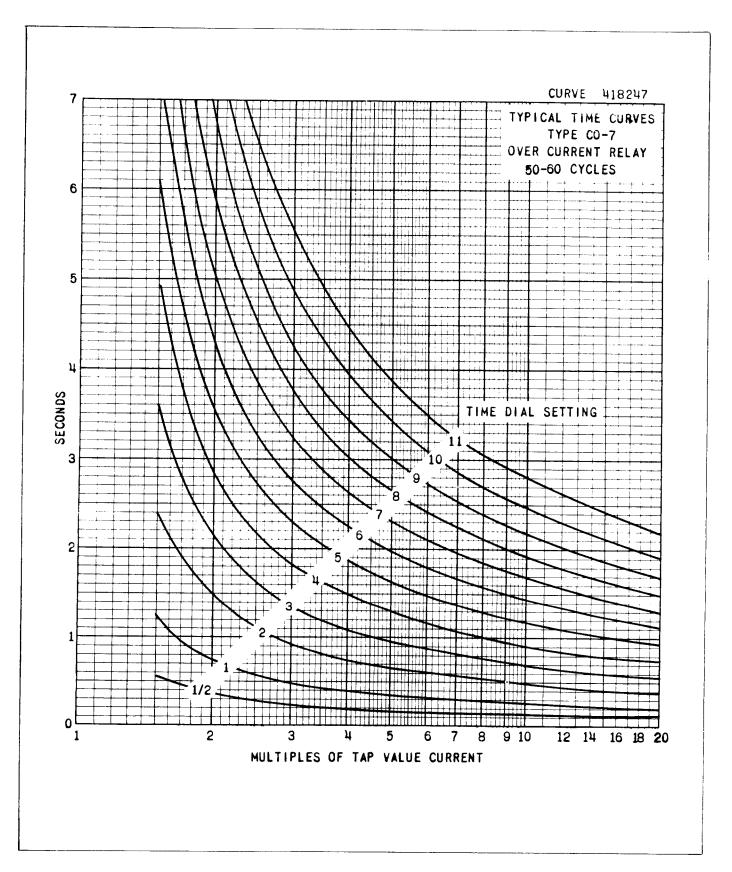



Fig. 10. Typical Time Curves of the Type CO-7 Relay.

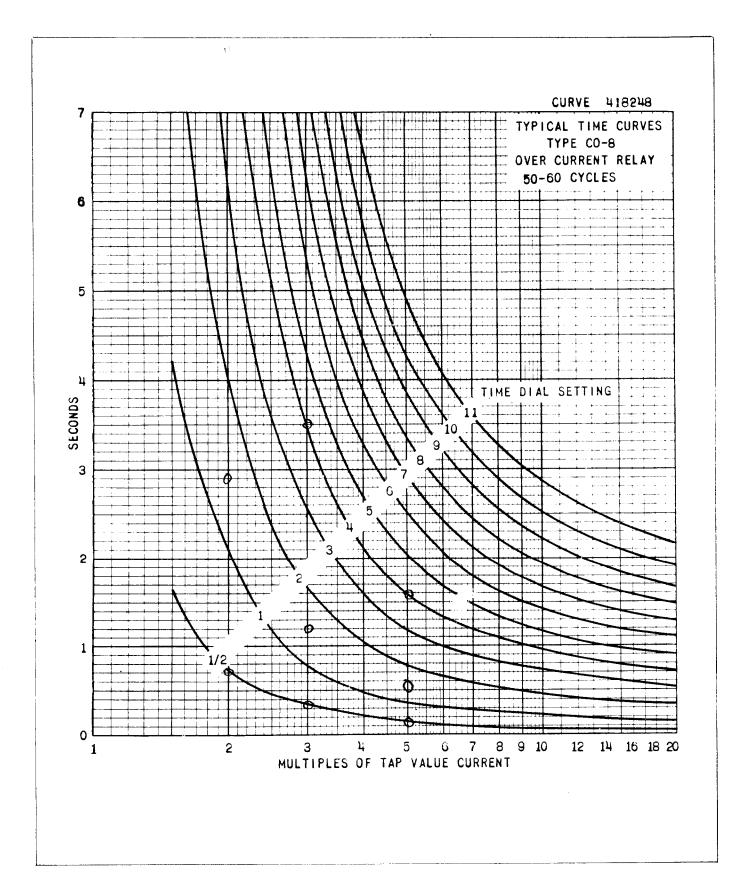



Fig. 11. Typical Time Curves of the Type CO-8 Relay.

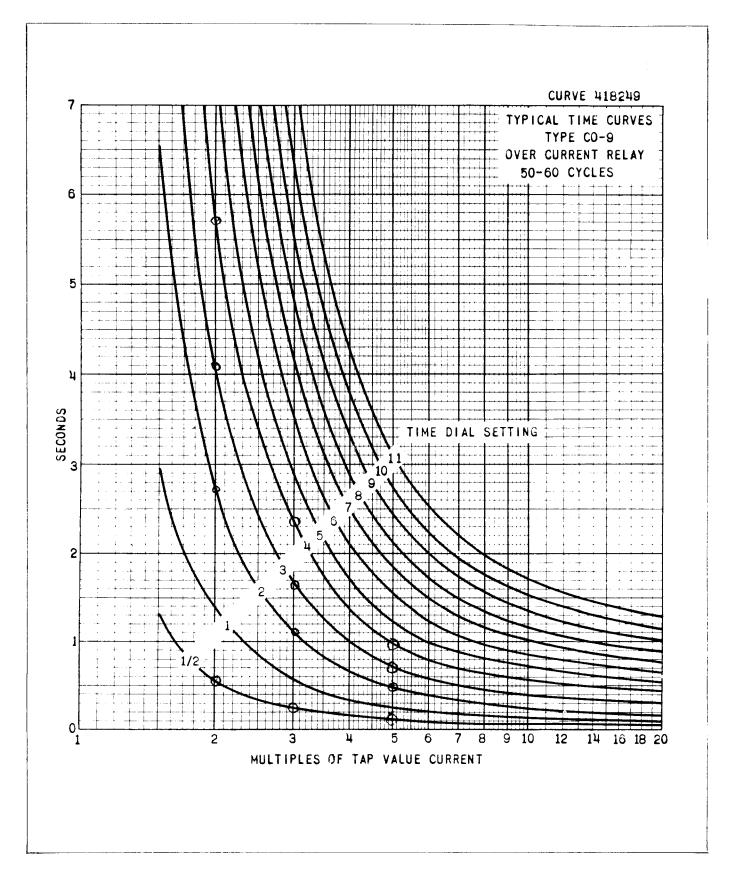



Fig. 12. Typical Time Curves of the Type CO-9 Relay.

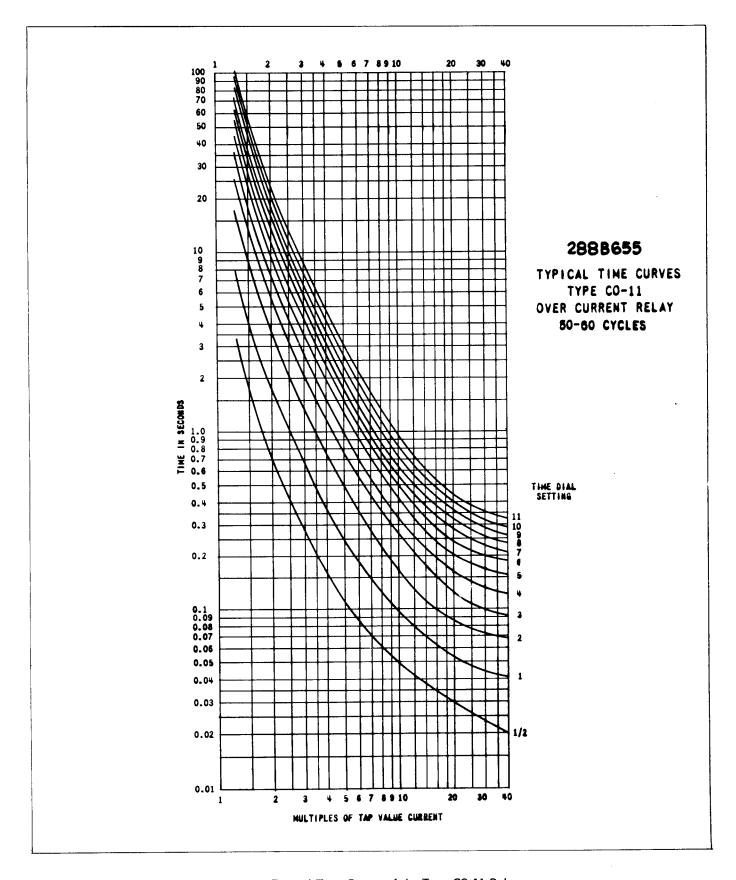
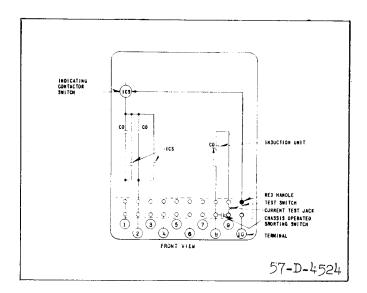




Fig. 13. Typical Time Curves of the Type CO-11 Relay.



\* Fig. 14. Internal Schematic of the Double Trip Circuit Closing Relay. For the Single Trip Relay the Circuits Associated with Terminal 2 are Omitted. Dwg. 57-D-4523.

#### **SETTINGS**

#### CO Unit

The overcurrent unit settings can be defined either by tap setting and time dial position or by tap setting and a specific time of operation at some current multiple of the tap setting (e.g. 4 tap setting, 2 time dial position or 4 tap setting, 0.6 seconds at 6 times tap value current).

To provide selective circuit breaker operation, a minimum coordinating time of 0.3 seconds plus circuit breaker time is recommended between the relay being set and the relays with which coordination is to be effected.

The connector screw on the terminal plate above the time dial makes connections to various turns on the operating coil. By placing this screw in the various terminal plate holes, the relay will respond to multiples of tap value currents in accordance with the various typical time-current curves.

#### Caution

Since the tap block connector screw carries operating current, be sure that the screw is turned tight. In order to avoid opening the current transformer circuits when changing taps under load, connect the spare connector screw in the desired tap position before removing the other tap screw from the original tap position.

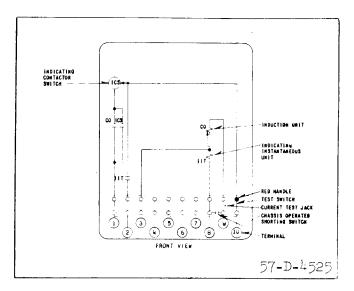



Fig. 15. Internal Schematic of the Single Trip Circuit-Closing Relay with Indicating Instantaneous Trip Unit.

#### Instantaneous Reclosing

The factory adjustment of the CO unit contacts provides a contact follow. Where circuit breaker reclosing will be initiated immediately after a trip by the CO contact, the time of the opening of the contacts should be a minimum. This condition is obtained by loosening the stationary contact mounting screw, removing the contact plate and then replacing the plate with the bent end resting against the contact spring.

For double trip relays, the upper stationary contact is adjusted such that the contact spring rests solidly against the back stop. The lower stationary contact is then adjusted such that both stationary contacts make contact simultaneously with their respective moving contact.

#### Indicating Contactor Switch (ICS)

The only setting required on the ICS unit—is the selection of the 0.2 or 2.0 ampere tap setting. This selection is made by connecting the lead located in front of the tap block to the desired setting by means of the connecting screw.

#### Indicating Instantaneous Trip (IIT)

The core screw must be adjusted to the value of pick-up current desired.

The nameplate data will furnish the actual current range that may be obtained from the IIT, unit.

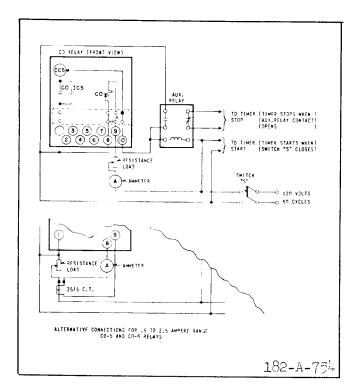



Fig. 16. Diagram of Test Connections for the Circuit-Closing Type CO Relay.

#### INSTALLATION

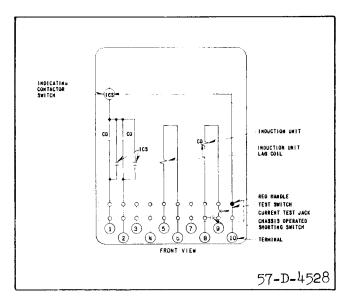
The relays should be mounted on switchboard panels or their equivalent in a location free from dirt, moisture, excessive vibration and heat. Mount the relay vertically by means of the mounting stud for projection mounting or by means of the four mounting holes on the flange for the semi-flush mounting. Either the stud or the mounting screws may be utilized for grounding the relay. The electrical connections may be made directly to the terminals by means of screws for steel panel mounting or to be terminal stud furnished with the relay for thick panel mounting. The terminal stud may be easily removed or inserted by locking two nuts on the stud and then turning the proper nut with a wrench.

For detail information on the FT case refer to IL 41-076.

#### **ADJUSTMENTS AND MAINTENANCE**

The proper adjustments to insure correct operation of this relay have been made at the factory. Upon receipt of the relay no customer adjustments, other than those covered under "SETTINGS" should be required.

For relays which include an indicating instantaneous trip unit (IIT), the junction of the induction and indicating instantaneous trip coils is brought out to switch jaw #3. With this arrangement the overcurrent units can be tested separately.


#### Acceptance Check

The following check is recommended to insure that the relay is in proper working order:

#### 1. Contact

- a) By turning the time dial, move the moving contacts until they deflect the stationary contact to a position where the stationary contact is resting against its backstop. The index mark located on the movement frame should coincide with the "O" mark on the time dial. For double trip relays, the follow on the stationary contacts should be approximately 1/64".
- b) For relays identified with a "T", located at lower left of stationary contact block, the index mark on the movement frame will coincide with the "O" mark on the time dial when the stationary contact has moved through approximately one-half of its normal deflection. Therefore, with the stationary contact resting against the backstop, the index mark is offset to the right of the "O" mark by approximately .020". The placement of the various time dial positions in line with the index mark will give operating times as shown on the respective time-current curves. For double trip relays, the follow on the stationary contacts should be approximately 1/32".
- 2. Minimum Trip Current Set the time dial to position 6 using the lowest tap setting, alternately apply tap value current plus 3% and tap value current minus 3%. The moving contact should leave the backstop at tap value current plus 3% and should return to the backstop at tap value current minus 3%.
- 3. Time Curve For type CO-11 relay only, the 1.30 times tap value operating time from the number 6 time dial position is  $54.9 \pm 5\%$  seconds and should be checked first. It is important that the 1.30 times tap value current be maintained accurately. The maintaining of this current accurately is necessary because of the steepness of the slope of the time-current characteristic (Figure 13). A 1% variation in the 1.30 times tap value current (including measuring instrument deviation) will change the nominal operating time by approximately 4%

Table I shows the time curve calibration points for the various types of relays. With the time



\* Fig. 17. Internal Schematic of the Double Trip Circuit Closing Relay with Torque Control Terminals. For the Single Trip Relay, the Circuits Associated with Terminal 2 are Omitted. Dwg. 57-D-4527.

dial set to the indicated position and the relay set on the lowest tap setting, apply the currents specified by Table I. (e.g. for the CO-2, 3 and 20 times tap value current) and measure the operating time of the relay. The operating times should equal those of Table I plus or minus 5%

4. <u>Indicating Instantaneous Trip Unit (IIT)</u> The core screw which is adjustable from the top of the trip unit determines the pickup value. The trip unit has a nominal ratio of adjustment of 1 to 4 and an accuracy within the limits of 10%.

The making of the contacts and target indication should occur at approximately the same instant. Position the stationary contact for a minimum of 1/32" wipe. The bridging moving contact should touch both stationary contacts simultaneously.

Apply sufficient current to operate the IIT. The operation indicator target should drop freely.

5. Indicating Contactor Switch (ICS) - Close the main relay contacts and pass sufficient d-c current through the trip circuit to close the contacts of the ICS. This value of current should be not greater than the particular ICS tap setting being used. The operation indicator target should drop freely.

The contact gap should be approximately .047" between the bridging moving contact and the adjustable stationary contacts. The bridging moving contact should touch both stationary contacts simultaneously.

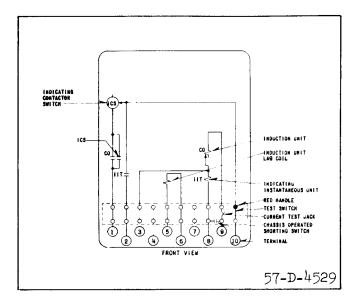



Fig. 18. Internal Schematic of the Single Trip Circuit Closing Relay with Torque Control Terminals and Indicating Instantaneous Trip Unit.

#### Routine Maintenance

All relays should be inspected and checked periodically to assure proper operation. Generally a visual inspection should call attention to any noticeable changes. A minimum suggested check on the relay system is to close the contacts manually to assure that the breaker trips and the target drops. Then release the contacts and observe that the reset is smooth and positive.

If an additional time check is desired, pass secondary current through the relay and check the time of operation. It is preferable to make this at several times pick-up current at an expected operating point for the particular application. For the .5 to 2.5 ampere range CO-5 and CO-6 induction unit use the alternative test circuit in Fig. 16 as these relays are affected by a distorted wave form. With this connection the 25/5 ampere current transformers should be worked well below the knee of the saturation (i.e. use 10L50 or better).

All contacts should be periodically cleaned. A contact burnisher #182A836H01 is recommended for this purpose. The use of abrasive material for cleaning contacts is not recommended, because of the danger of embedding small particles in the face of the soft silver and thus impairing the contact.

#### **CALIBRATION**

Use the following procedure for calibrating the relay if the relay has been taken apart for repairs or

the adjustments disturbed. This procedure should not be used until it is apparent that the relay is not in proper working order. (See "Acceptance Check")

#### CO Unit

#### 1. Contact

- a) By turning the time dial, move the moving contacts until they deflect the stationary contact to a position where the stationary contact is resting against its backstop. The index mark located on the movement frame should coincide with the "O" mark on the time dial. For double trip relays, the follow on the stationary contacts should be approximately 1/64".
- b) For relays identified with a "T", located at lower left of stationary contact block, the index mark on the movement frame will coincide with the "O" mark on the time dial when the stationary contact has moved through approximately one-half of its normal deflection. Therefore, with the stationary contact resting against the backstop, the index mark is offset to the right of the "O" mark by approximately .020". The placement of the various time dial positions in line with the index mark will give operating times as shown on the respective time-current curves. For double trip relays, the follow on the stationary contacts should be approximately 1/32".
- 2) Minimum Trip Current The adjustment of the spring tension in setting the minimum trip current value of the relay is most conveniently made with the damping magnet removed.

With the time dial set on "O", wind up the spiral spring by means of the spring adjuster until approximately 6-3/4 convolutions show.

Set the relay on the minimum tap setting, the time dial to position 6.

Adjust the control spring tension so that the moving contact will leave the backstop at tap value current +1.0% and will return to the backstop at tap value current -1.0%.

3. <u>Time Curve Calibration</u> - Install the permanent magnet.

Apply the indicated current per Table I for permanent magnet adjustment (e.g. CO-8, 2 times tap value) and measure the operating time. Adjust the permanent magnet keeper until the operating time corresponds to the value of Table I.

For type CO-11 relay only, the 1.30 times tap value operating time from the number 6 time dial position is  $54.9 \pm 5\%$  seconds. It is important that the 1.30 times tap value current be maintained accurately. The maintaining of this current accurately is necessary because of the steepness of the slope of the timecurrent characteristic (Figure 13). A 1% variation in the 1.30 times tap value current (including measuring instrument deviation) will change the nominal operating time by approximately 4%. If the operating time at 1.3 times tap value is not within these limits, a minor adjustment of the control spring will give the correct operating time without any undue effect on the minimum pick-up of the relay. This check is to be made after the 2 times tap value adjustment has has been completed.

Apply the indicated current per Table I for the electromagnet plug adjustment (e.g. CO-8, 20 times tap value) and measure the operating time. Adjust the proper plug until the operating time corresponds to the value in Table I. (Withdrawing the left hand plug, front view, increases the operating time and withdrawing the right hand plug, front view, decreases the time.) In adjusting the plugs, one plug should be screwed in completely and the other plug run in or out until the proper operating time has been obtained.

Recheck the permanent magnet adjustment. If the operating time for this calibration point has changed, readjust the permanent magnet and then recheck the electromagnet plug adjustment.

4. Indicating Contactor Switch (ICS) - Close the main relay contacts and pass sufficient d-c current through the trip circuit to close the contacts of the ICS. This value of current should be not greater than the particular ICS tap setting being used. The operation indicator target should drop freely.

#### 5. Indicating Instantaneous Trip Unit (IIT)

The core screw must be adjusted to the value of pick-up current desired.

The nameplate data will furnish the actual current range that may be obtained from the IIT unit.

#### RENEWAL PARTS

Repair work can be done most satisfactorily at the factory. However, interchangeable parts can be furnished to the customers who are equipped for doing repair work. When ordering parts, always give the complete nameplate data.

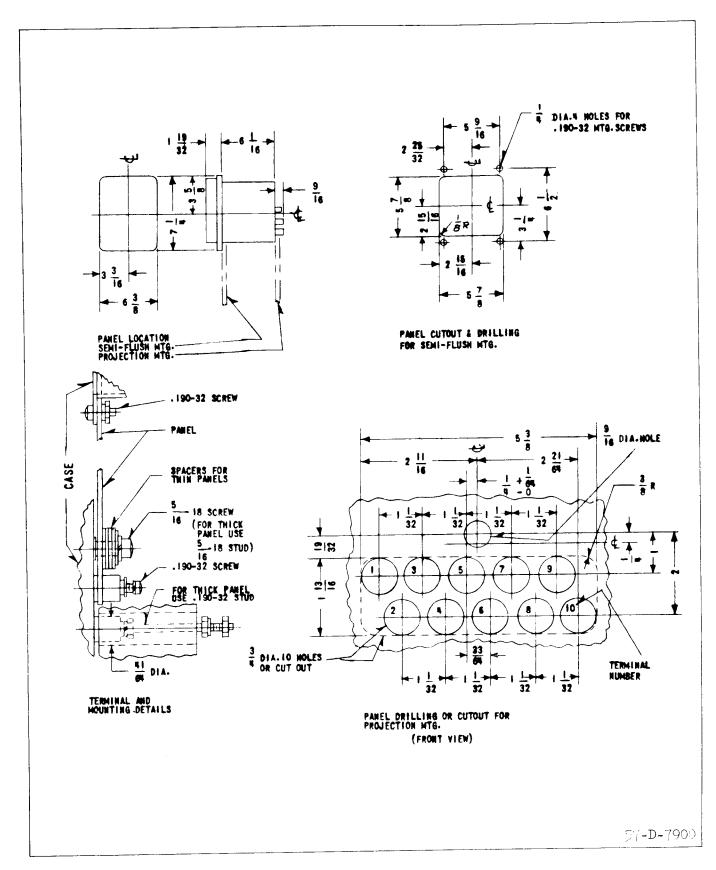



Fig. 19. Outline and Drilling Plan for the Type CO Relay.

TABLE 1

TIME CURVE CALIBRATION DATA - 50 & 60 CYCLES

#### PERMANENT MAGNET ADJUSTMENT ELECTROMAGNET PLUGS TIME CURRENT **OPERATING** CURRENT **OPERATING** RELAY DIAL (MULTIPLES OF TIME (MULTIPLES OF TIME TYPE **POSITION** TAP VALUE) SECONDS TAP VALUE) SECONDS CO-2 6 3 0.57 20 0.22 CO-5 6 37.80 10 14.30 CO-6 6 2.46 20 1.19 CO-7 4.27 20 1.11 CO-8 13.35 1.11 CO-9 8.87 20 0.65 CO-11 6 11.27 20 $0.24 \wedge$

 $\Delta$  For 50 cycle CO-11 relay 20 times operating time limits are 0.24 + 10%, -5%.

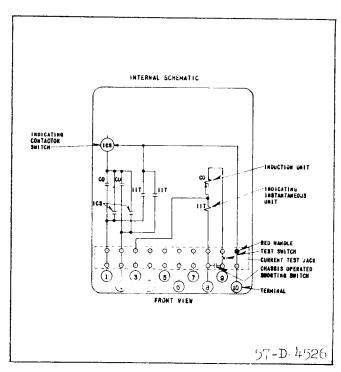



Fig. 20 Internal Schematic of the Double Trip Circuit Closing Relay with Indicating Instantaneous Trip Unit.

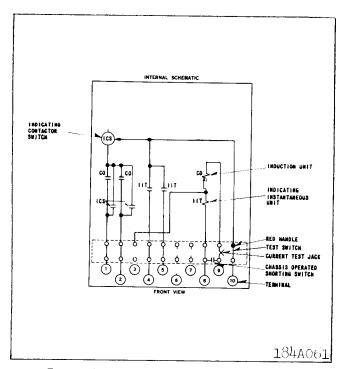



Fig. 21 Internal Schematic of the Double Trip Circuit Closing Realy with Indicating Instantaneous Trip Unit to Separate Terminals.

WESTINGHOUSE ELECTRIC CORPORATION RELAY-INSTRUMENT DIVISION NEWARK, N. J.



## INSTALLATION . OPERATION . MAINTENANCE

# INSTRUCTIONS

## TYPE CO OVERCURRENT RELAY

#### CAUTION

Before putting relays into service, remove all blocking which may have been inserted for the purpose of securing the parts during shipment, make sure that all moving parts operate freely, inspect the contacts to see that they are clean and close properly, and operate the relay to check the settings and electrical connections.

#### **APPLICATION**

These induction overcurrent relays are used to disconnect circuits or apparatus when the current in them exceeds a given value. Where a station battery (48 volts or over) is available, the circuit closing type relays are normally used to trip the circuit breaker.

#### CONTENTS

This instruction leaflet applies to the following types of relays:

Type CO-2 Short Time Relay

CO-5 Long Time Relay

CO-6 Definite Minimum Time Relay

CO-7 Moderately Inverse Time Relay

CO-8 Inverse Time Relay

CO-9 Very Inverse Time Relay

CO-11 Extremely Inverse Time Relay

#### CONSTRUCTION AND OPERATION

The type CO relays consist of an overcurrent unit (CO), an indicating contactor switch (ICS), and an indicating instantaneous trip unit (IIT) when required. The principal component parts of the relay and their location are shown in Figs. 1-5.

#### Electromagnet

The electromagnets for the types CO-5, CO-6, CO-7, CO-8 and CO-9 relays have a main tapped coil located on the center leg of an "E" type laminated structure that produces a flux which divides and returns through the outer legs. A shading coil causes the flux through the left leg to lag the main pole flux. The out-of-phase fluxes thus produced in the air gap

\* cause a contact closing torque. A torque controlled CO has the lag coil connections of the electromagnet brought out to separate terminals. This permits control of the closing torque such that only when these terminals are connected together will the unit operate.

The electromagnets for the types CO-2 and CO-11 relays have a main coil consisting of a tapped primary winding and a secondary winding. Two identical coils on the outer legs of the lamination structure are connected to the main coil secondary in a manner so that the combination of all the fluxes produced by the electromagnet result in out-of-phase fluxes in the air gap. The out-of-phase air gap fluxes produced cause a contact closing torque.

## Indicating Contactor Switch Unit (ICS)

The d-c indicating contactor switch is a small clapper type device. A magnetic armature, to which leaf-spring mounted contacts are attached, is attracted to the magnetic core upon energization of the switch. When the switch closes the moving contacts bridge two stationary contacts, completing the trip circuit. Also during this operation two fingers on the armature deflect a spring located on the front of the switch, which allows the operation indicator target to drop.

The front spring, in addition to holding the target, provides restraint for the armature and thus controls the pickup value of the switch.

## Indicating Instantaneous Trip Unit (IIT)

The instantaneous trip unit is a small a-c operated clapper type device. A magnetic armature, to which leaf-spring mounted contacts are attached, is attracted to the magnetic core upon energization of the switch. When the switch closes, the moving contacts bridge two stationary contacts completing the trip circuit. Also, during the operation, two fingers on the armature deflect a spring located on the front of the switch which allows the operation indicator target to drop.

A core screw accessible from the top of the switch provides the adjustable pickup range.

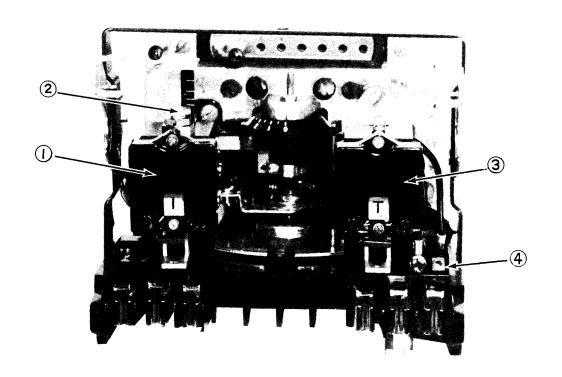



Fig. 1. Type CO Relay Without Case. 1-Indicating Instantaneous trip (IIT). 2-IIT Adjusting Screw. 3-Indicating Contactor Switch (ICS). 4-Indicating Contactor Switch Tap Block.

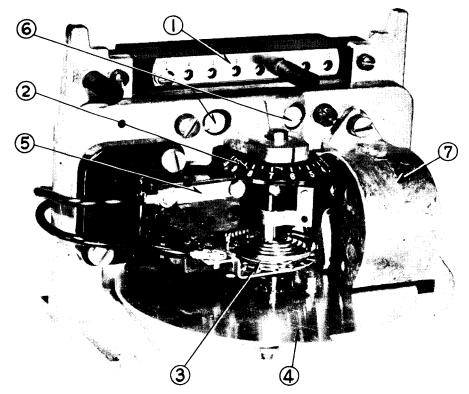
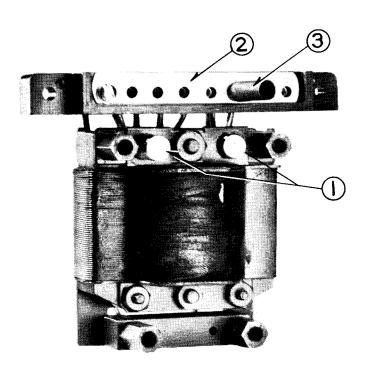




Fig. 2. Time Overcurrent Unit (Front View). 1-Tap Block. 2-Time Dial. 3-Control Spring Assembly. 4-Disc. 5-Stationary Contact Assembly. 6-Magnetic Plugs. 7-Permanent Magnet.



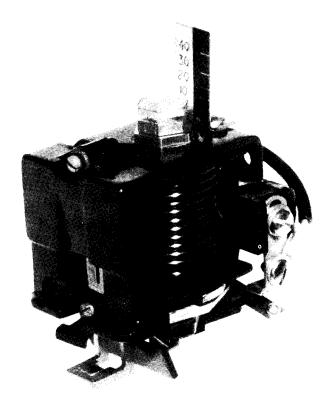



Fig. 3. "E" Type Electromagnet. 1- Magnetic Plugs. 2-Tap Block. 3-Tap Screw.

Fig. 4. Indicating Instantaneous Trip Unit (IIT).

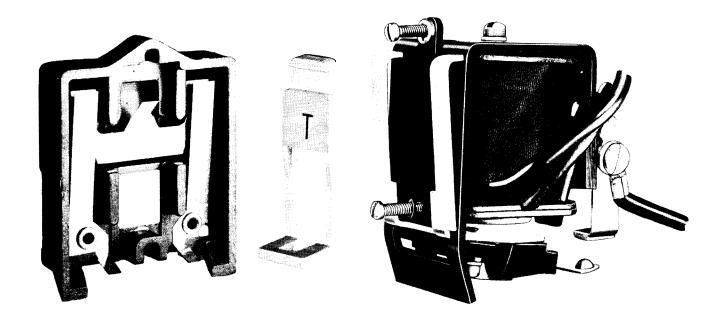



Fig. 5. Indicating Contactor Switch (ICS).

#### CHARACTERISTICS

The relays are generally available in the following current ranges:

| Range    | Taps |     |     |     |     |     |     |  |
|----------|------|-----|-----|-----|-----|-----|-----|--|
| .5 - 2.5 | 0.5  | 0.6 | 8.0 | 1.0 | 1.5 | 2.0 | 2.5 |  |
| 2 - 6    | 2    | 2.5 | 3   | 3.5 | 4   | 5   | 6   |  |
| 4 - 12   | 4    | 5   | 6   | 7   | 8   | 10  | 12  |  |

These relays may have either single or double circuit closing contacts for tripping either one or two circuit breakers.

The time vs. current characteristics are shown in Figs. 7 to 13. These characteristics give the contact closing time for the various time dial settings when the indicated multiples of tap value current are applied to the relay.

#### Trip Circuit

The main contacts will safely close 30 amperes

at 250 volts d-c and the seal-in contacts of the indicating contactor switch will safely carry this current long enough to trip a circuit breaker.

The indicating instantaneous trip contacts will safely close 30 amperes at 250 volts d-c, and will carry this current long enough to trip a breaker.

The indicating contactor switch has two taps that provide a pickup setting of 0.2 or 2 amperes. To change taps requires connecting the lead located in front of the tap block to the desired setting by means of a screw connection.

#### Trip Circuit Constants

Contactor Switch -

- 0.2 ampere tap 6.5 ohms d-c resistance
- 2.0 ampere tap 0.15 ohms d-c resistance

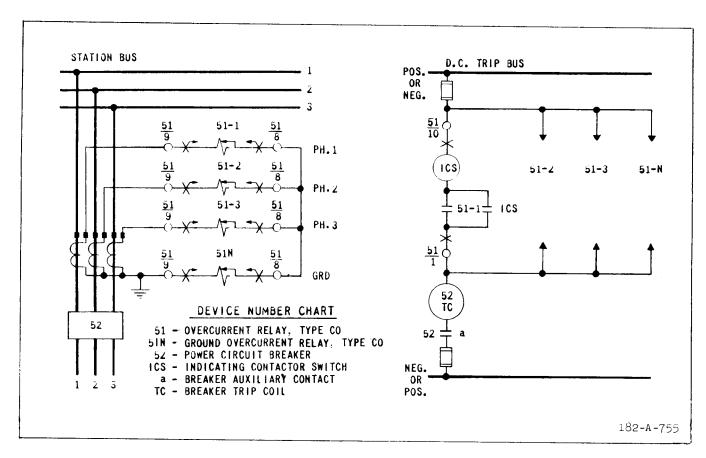



Fig. 6. External Schematic of the Circuit-Closing Type CO Relay for Phase and Ground Overcurrent Protection on a Three-Phase System.

## ENERGY REQUIREMENTS $\Delta$

#### Instantaneous Trip Unit (IIT)

| RANGE IN | BURDEN IN VOLT-AMPS. AT |                 |  |  |  |
|----------|-------------------------|-----------------|--|--|--|
| AMPERES  | MINIMUM SETTING         | MAXIMUM SETTING |  |  |  |
| 2 - 8    | 4.5                     | 32              |  |  |  |
| 4 - 16   | 4.5                     | 32              |  |  |  |
| 10 - 40  | 4.5                     | 40              |  |  |  |
| 20 - 80  | 6.5                     | 70              |  |  |  |
| 40 - 160 | 9.0                     | 144             |  |  |  |

#### TYPE CO-2 RELAY

|                 |      |                                   |                                    |                           | VOLT AMPERES**       |                              |                                     |                                     |  |
|-----------------|------|-----------------------------------|------------------------------------|---------------------------|----------------------|------------------------------|-------------------------------------|-------------------------------------|--|
| AMPERE<br>RANGE | TAP  | CONTINUOUS<br>RATING<br>(AMPERES) | ONE SECOND<br>RATING*<br>(AMPERES) | POWER FACTOR ANGLE $\phi$ | AT TAP VALUE CURRENT | AT 3 TIMES TAP VALUE CURRENT | AT 10 TIMES<br>TAP VALUE<br>CURRENT | AT 20 TIMES<br>TAP VALUE<br>CURRENT |  |
|                 | 0.5  | 0.91                              | 28                                 | 58                        | 4.8                  | 39.6                         | 256                                 | <b>7</b> 90                         |  |
|                 | 0.6  | 0.96                              | 28                                 | 57                        | 4.9                  | 39.8                         | 270                                 | 851                                 |  |
|                 | 0.8  | 1.18                              | 28                                 | 53                        | 5.0                  | 42.7                         | 308                                 | 1024                                |  |
| 0.5/2.5         | 1.0  | 1.37                              | 28                                 | 50                        | 5.3                  | 45.4                         | 348                                 | 1220                                |  |
| 0.0, 2.0        | 1.5  | 1.95                              | 28                                 | 40                        | 6.2                  | 54.4                         | 435                                 | 1740                                |  |
|                 | 2.0  | 2.24                              | 28                                 | 36                        | 7.2                  | 65.4                         | 580                                 | 2280                                |  |
|                 | 2.5  | 2.50                              | 28                                 | 29                        | 7.9                  | 73.6                         | 700                                 | 2850                                |  |
|                 | 2.0  | 3.1                               | 110                                | 59                        | 5.04                 | 38.7                         | 262                                 | 800                                 |  |
|                 | 2.5  | 4.0                               | 110                                | 55                        | 5.13                 | 39.8                         | 280                                 | 920                                 |  |
|                 | 3.0  | 4.4                               | 110                                | 51                        | 5.37                 | 42.8                         | 312                                 | 1008                                |  |
| 2/6             | 3.5  | 4.8                               | 110                                | 47                        | 5.53                 | 42.8                         | 329                                 | 1120                                |  |
| 2, 0            | 4.0  | 5.2                               | 110                                | 45                        | 5.72                 | 46.0                         | 360                                 | 1216                                |  |
|                 | 5.0  | 5.6                               | 110                                | 41                        | 5.90                 | 50.3                         | 420                                 | 1500                                |  |
|                 | 6.0  | 6.0                               | 110                                | 37                        | 6.54                 | 54.9                         | 474                                 | 1800                                |  |
|                 | 4.0  | 7.3                               | 230                                | 65                        | 4.92                 | 39.1                         | 268                                 | 848                                 |  |
|                 | 5.0  | 8.0                               | 230                                | 50                        | 5.20                 | 42.0                         | 305                                 | 1020                                |  |
|                 | 6.0  | 8.8                               | 230                                | 47                        | 5.34                 | 44.1                         | 330                                 | 1128                                |  |
| 4/12            | 7.0  | 9.6                               | 230                                | 46                        | 5.53                 | 45.8                         | 364                                 | 1260                                |  |
| 7/12            | 8.0  | 10.4                              | 230                                | 43                        | 5.86                 | 49.9                         | 400                                 | 1408                                |  |
|                 | 10.0 | 11.2                              | 230                                | 37                        | 6.6                  | 55.5                         | 470                                 | 1720                                |  |
|                 | 12.0 | 12.0                              | 230                                | 34                        | 7.00                 | 62.3                         | 528                                 | 2064                                |  |

<sup>\*</sup> Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

 $<sup>\</sup>phi$  Degrees current lags voltage at tap value current.

<sup>\*\*</sup> Voltages taken with Rectox type voltmeter.

 $<sup>\</sup>Lambda$  Further information can be obtained in Performance Data 41-100.

# CO-5 LONG TIME AND CO-6 DEFINITE MINIMUM TIME RELAYS

|                 |                                                             |                                                 |                                               |                                        | VOLT AMPERES**                                       |                                                      |                                               |                                                |  |
|-----------------|-------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------|--|
| AMPERE<br>RANGE | ТАР                                                         | CONTINUOUS<br>RATING<br>(AMPERES)               | ONE SECOND<br>RATING*<br>(AMPERES)            | POWER FACTOR ANGLE $\phi$              | AT<br>TAP VALUE<br>CURRENT                           | AT 3 TIMES<br>TAP VALUE<br>CURRENT                   | AT 10 TIMES<br>TAP VALUE<br>CURRENT           | AT 20 TIMES<br>TAP VALUE<br>CURRENT            |  |
| 0.5/2.5         | (0.5)<br>(0.6)<br>(0.8)<br>(1.0)<br>(1.5)<br>(2.0)<br>(2.5) | 2.7<br>3.1<br>3.7<br>4.1<br>5.7<br>6.8<br>7.7   | 88<br>88<br>88<br>88<br>88<br>88              | 69<br>68<br>67<br>66<br>62<br>60<br>58 | 3.92<br>3.96<br>3.96<br>4.07<br>4.19<br>4.30         | 20.6<br>20.7<br>21<br>21.4<br>23.2<br>24.9<br>26.2   | 103<br>106<br>114<br>122<br>147<br>168<br>180 | 270<br>288<br>325<br>360<br>462<br>548<br>630  |  |
| 2/6             | (2<br>(2.5<br>(3<br>(3.5<br>(4<br>(5<br>(6                  | 8<br>8.8<br>9.7<br>10.4<br>11.2<br>12.5<br>13.7 | 230<br>230<br>230<br>230<br>230<br>230<br>230 | 67<br>66<br>64<br>63<br>62<br>59       | 3.88<br>3.90<br>3.93<br>4.09<br>4.12<br>4.20<br>4.38 | 21<br>21.6<br>22.1<br>23.1<br>23.5<br>24.8<br>26.5   | 110<br>118<br>126<br>136<br>144<br>162<br>183 | 308<br>342<br>381<br>417<br>448<br>540<br>624  |  |
| 4/12            | (4<br>(5<br>(6<br>(7<br>(8<br>(10<br>(12                    | 16<br>18.8<br>19.3<br>20.8<br>22.5<br>25        | 460<br>460<br>460<br>460<br>460<br>460        | 65<br>63<br>61<br>59<br>56<br>53<br>47 | 4.00<br>4.15<br>4.32<br>4.35<br>4.40<br>4.60<br>4.92 | 22.4<br>23.7<br>25.3<br>26.4<br>27.8<br>30.1<br>35.6 | 126<br>143<br>162<br>183<br>204<br>247<br>288 | 376<br>450<br>531<br>611<br>699<br>880<br>1056 |  |

#### CO-7 MODERATELY INVERSE TIME RELAY

|                 |                                                             |                                                 |                                                      |                                  | VOLT AMPERES**                                       |                                                      |                                               |                                               |  |
|-----------------|-------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|----------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--|
| AMPERE<br>RANGE | TAP                                                         | CONTINUOUS<br>RATING<br>(AMPERES)               | ONE SECOND<br>RATING*<br>(AMPERES)                   | POWER FACTOR ANGLE $\phi$        | AT<br>TAP VALUE<br>CURRENT                           | AT 3 TIMES<br>TAP VALUE<br>CURRENT                   | AT 10 TIMES<br>TAP VALUE<br>CURRENT           | AT 20 TIMES<br>TAP VALUE<br>CURRENT           |  |
| 0.5/2.5         | (0.5)<br>(0.6)<br>(0.8)<br>(1.0)<br>(1.5)<br>(2.0)<br>(2.5) | 2.7<br>3.1<br>3.7<br>4.1<br>5.7<br>6.8<br>7.7   | 88<br>88<br>88<br>88<br>88<br>88                     | 68<br>67<br>66<br>64<br>61<br>58 | 3.88<br>3.93<br>3.93<br>4.00<br>4.08<br>4.24<br>4.38 | 20.7<br>20.9<br>21.1<br>21.6<br>22.9<br>24.8<br>25.9 | 103<br>107<br>114<br>122<br>148<br>174        | 278<br>288<br>320<br>356<br>459<br>552<br>640 |  |
| 2/6             | (2<br>(2.5<br>(3<br>(3.5<br>(4<br>(5<br>(6                  | 8<br>8.8<br>9.7<br>10.4<br>11.2<br>12.5<br>13.7 | 230<br>230<br>230<br>230<br>230<br>230<br>230<br>230 | 66<br>63<br>63<br>62<br>61<br>59 | 4.06<br>4.07<br>4.14<br>4.34<br>4.34<br>4.40<br>4.62 | 21.3<br>21.8<br>22.5<br>23.4<br>23.8<br>25.2         | 111<br>120<br>129<br>141<br>149<br>163<br>183 | 306<br>342<br>366<br>413<br>448<br>530<br>624 |  |
| 4/12            | (4<br>(5<br>(6<br>(7<br>(8<br>(10<br>(12                    | 16<br>18.8<br>19.3<br>20.8<br>22.5<br>25        | 460<br>460<br>460<br>460<br>460<br>460               | 64<br>61<br>60<br>58<br>55<br>51 | 4.24<br>4.30<br>4.62<br>4.69<br>4.80<br>5.20<br>5.40 | 22.8<br>24.2<br>25.9<br>27.3<br>29.8<br>33<br>37.5   | 129<br>149<br>168<br>187<br>211<br>260<br>308 | 392<br>460<br>540<br>626<br>688<br>860        |  |

<sup>\*</sup> Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

 $<sup>\</sup>phi$  Degrees current lags voltage at tap value current.

<sup>\*\*</sup> Voltages taken with Rectox type voltmeter.

# CO-8 INVERSE TIME AND CO-9 VERY INVERSE TIME RELAYS

|                 |                                                      |                                                 |                                               |                                        | VOLT AMPERES**                                       |                                                      |                                               |                                                |  |
|-----------------|------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------|--|
| AMPERE<br>RANGE | TAP                                                  | CONTINUOUS<br>RATING<br>(AMPERES)               | ONE SECOND<br>RATING*<br>(AMPERES)            | POWER FACTOR ANGLE $\phi$              | AT<br>TAP VALUE<br>CURRENT                           | AT 3 TIMES<br>TAP VALUE<br>CURRENT                   | AT 10 TIMES<br>TAP VALUE<br>CURRENT           | AT 20 TIMES<br>TAP VALUE<br>CURRENT            |  |
| 0.5/2.5         | (0.5<br>(0.6<br>(0.8<br>(1.0<br>(1.5<br>(2.0<br>(2.5 | 2.7<br>3.1<br>3.7<br>4.1<br>5.7<br>6.8<br>7.7   | 88<br>88<br>88<br>88<br>88<br>88              | 72<br>71<br>69<br>67<br>62<br>57<br>53 | 2.38<br>2.38<br>2.40<br>2.42<br>2.51<br>2.65<br>2.74 | 21<br>21<br>21.1<br>21.2<br>22<br>23.5<br>24.8       | 132<br>134<br>142<br>150<br>170<br>200<br>228 | 350<br>365<br>400<br>440<br>530<br>675<br>800  |  |
| 2/6             | (2<br>(2.5<br>(3<br>(3.5<br>(4<br>(5<br>(6           | 8<br>8.8<br>9.7<br>10.4<br>11.2<br>12.5<br>13.7 | 230<br>230<br>230<br>230<br>230<br>230<br>230 | 70<br>66<br>64<br>62<br>60<br>58<br>56 | 2.38<br>2.40<br>2.42<br>2.48<br>2.53<br>2.64<br>2.75 | 21<br>21.1<br>21.5<br>22<br>22.7<br>24<br>25.2       | 136<br>142<br>149<br>157<br>164<br>180        | 360<br>395<br>430<br>470<br>500<br>580<br>660  |  |
| 4/12            | (4<br>(5<br>(6<br>(7<br>(8<br>(10<br>(12             | 16<br>18.8<br>19.3<br>20.8<br>22.5<br>25<br>28  | 460<br>460<br>460<br>460<br>460<br>460<br>460 | 68<br>63<br>60<br>57<br>54<br>48<br>45 | 2.38<br>2.46<br>2.54<br>2.62<br>2.73<br>3.00<br>3.46 | 21.3<br>21.8<br>22.6<br>23.6<br>24.8<br>27.8<br>31.4 | 146<br>158<br>172<br>190<br>207<br>248<br>292 | 420<br>480<br>550<br>620<br>700<br>850<br>1020 |  |

#### TYPE CO-11 RELAY

|      |                                                                                                                      |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VOLT AMPERES**                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| TAP  | CONTINUOUS<br>RATING<br>(AMPERES)                                                                                    | ONE SECOND<br>RATING*<br>(AMPERES)                                                                                                                                                | POWER FACTOR ANGLE $\phi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AT<br>TAP VALUE<br>CURRENT                            | AT 3 TIMES<br>TAP VALUE<br>CURRENT                    | AT 10 TIMES<br>TAP VALUE<br>CURRENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AT 20 TIMES<br>TAP VALUE<br>CURRENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 0.5  | 1 7                                                                                                                  | 56                                                                                                                                                                                | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.72                                                  | 6.54                                                  | 71.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|      |                                                                                                                      | 56                                                                                                                                                                                | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.75                                                  | 6.80                                                  | 75.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|      |                                                                                                                      | 56                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.81                                                  | 7.46                                                  | 84.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|      |                                                                                                                      | 56                                                                                                                                                                                | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.89                                                  | 8.30                                                  | 93.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|      |                                                                                                                      | 56                                                                                                                                                                                | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.13                                                  | 10.04                                                 | 115.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|      |                                                                                                                      | 56                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.30                                                  | 11.95                                                 | 136.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 2.5  | 3.8                                                                                                                  | 56                                                                                                                                                                                | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.48                                                  | 13.95                                                 | 160.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 2.0  | 7.0                                                                                                                  | 230                                                                                                                                                                               | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.73                                                  | 6.30                                                  | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|      | 7.8                                                                                                                  | 230                                                                                                                                                                               | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.78                                                  | 7.00                                                  | 78.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|      |                                                                                                                      | 230                                                                                                                                                                               | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.83                                                  | 7.74                                                  | 84.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|      |                                                                                                                      | 230                                                                                                                                                                               | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.88                                                  | 8.20                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|      |                                                                                                                      | 230                                                                                                                                                                               | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.96                                                  | 9.12                                                  | 102.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|      |                                                                                                                      | 230                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.07                                                  | 9.80                                                  | 109.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 6.0  | 12.0                                                                                                                 | 230                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.23                                                  | 11.34                                                 | 129.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 4.0  | 1.4                                                                                                                  | 460                                                                                                                                                                               | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.79                                                  | 7.08                                                  | 78.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|      |                                                                                                                      |                                                                                                                                                                                   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.89                                                  | 8.00                                                  | 90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|      |                                                                                                                      |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.02                                                  | 9.18                                                  | 101.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|      |                                                                                                                      |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | 10.00                                                 | 110.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|      |                                                                                                                      |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | 11.1                                                  | 124.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|      |                                                                                                                      |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                     |                                                       | 131.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 12.0 | 22<br>26                                                                                                             | 460                                                                                                                                                                               | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.8                                                   | 16.3                                                  | 180.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|      | 0.5<br>0.6<br>0.8<br>1.0<br>1.5<br>2.0<br>2.5<br>2.0<br>2.5<br>3.0<br>3.5<br>4.0<br>5.0<br>6.0<br>7.0<br>8.0<br>10.0 | RATING (AMPERES)  0.5 1.7 0.6 1.9 0.8 2.2 1.0 2.5 1.5 3.0 2.0 3.5 2.5 3.8  2.0 7.0 2.5 7.8 3.0 8.3 3.5 9.0 4.0 10.0 5.0 11.0 6.0 12.0  4.0 14 5.0 16 6.0 17 7.0 18 8.0 20 10.0 22 | RATING (AMPERES)         RATING* (AMPERES)           0.5         1.7         56           0.6         1.9         56           0.8         2.2         56           1.0         2.5         56           1.5         3.0         56           2.0         3.5         56           2.5         3.8         56           2.0         7.0         230           2.5         7.8         230           3.0         8.3         230           3.5         9.0         230           4.0         10.0         230           5.0         11.0         230           6.0         12.0         230           4.0         14         460           5.0         16         460           6.0         17         460           7.0         18         460           8.0         20         460           10.0         22         460 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | CONTINUOUS RATING RATING*         RATING*         FACTOR TAP VALUE CURRENT         AT 3 TIMES TAP VALUE CURRENT           0.5         1.7         56         36         0.72         6.54           0.6         1.9         56         34         0.75         6.80           0.8         2.2         56         30         0.81         7.46           1.0         2.5         56         27         0.89         8.30           1.5         3.0         56         22         1.13         10.04           2.0         3.5         56         17         1.30         11.95           2.5         3.8         56         16         1.48         13.95           2.0         7.0         230         32         0.73         6.30           2.5         7.8         230         30         0.78         7.00           3.0         8.3         230         27         0.83         7.74           3.5         9.0         230         24         0.88         8.20           4.0         10.0         230         23         0.96         9.12           5.0         11.0         230         20         1.07 | TAP         CONTINUOUS RATING* (AMPERES)         ONE SECOND RATING* FACTOR (AMPERES)         POWER FACTOR TAP VALUE CURRENT         AT 3 TIMES TAP VALUE CURRENT         AT 10 TIMES TAP VALUE CURRENT           0.5         1.7         56         36         0.72         6.54         71.8           0.6         1.9         56         34         0.75         6.80         75.0           0.8         2.2         56         30         0.81         7.46         84.0           1.0         2.5         56         27         0.89         8.30         93.1           1.5         3.0         56         22         1.13         10.04         115.5           2.0         3.5         56         17         1.30         11.95         136.3           2.5         3.8         56         16         1.48         13.95         160.0           2.0         7.0         230         32         0.73         6.30         74.0           2.5         7.8         230         30         0.78         7.00         78.5           3.0         8.3         230         27         0.83         7.74         84.0           3.5         9.0         230 |  |

<sup>\*</sup> Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

 $<sup>\</sup>phi$  Degrees current lags voltage at tap value current.

<sup>\*\*</sup> Voltages taken with Rectox type voltmeter.

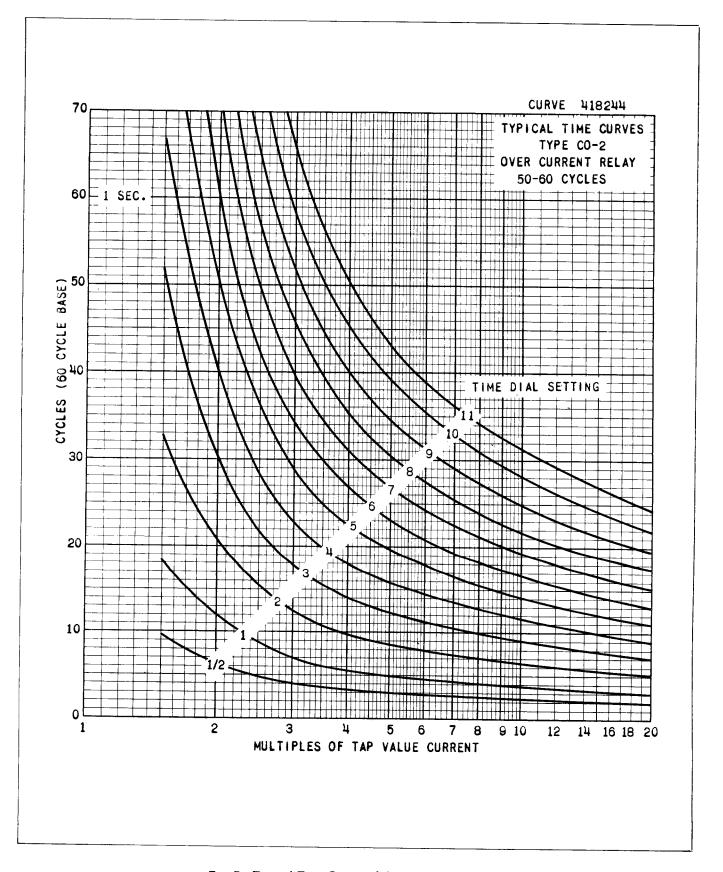



Fig. 7. Typical Time Curves of the Type CO-2 Relay.

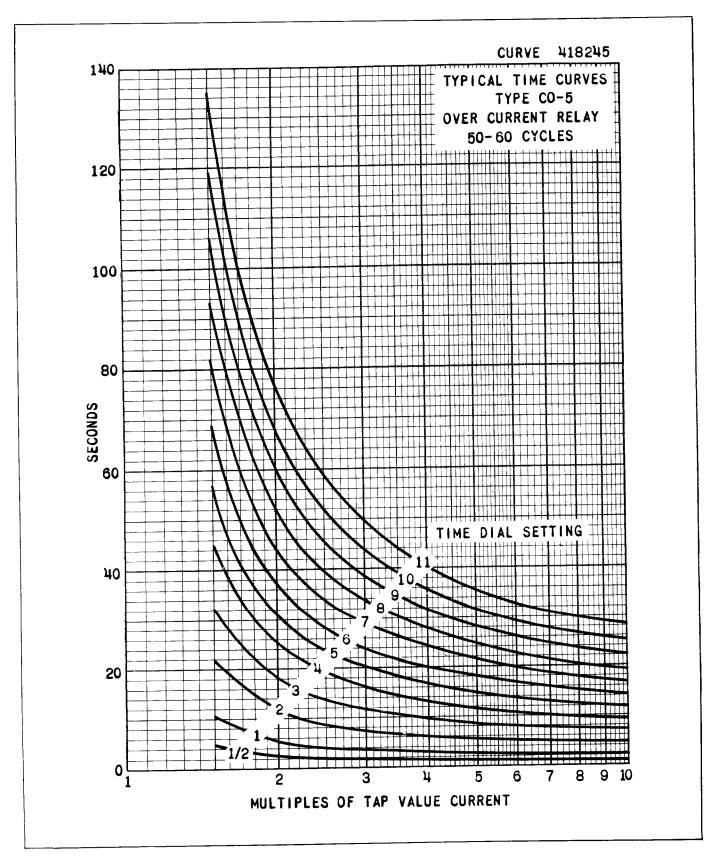



Fig. 8. Typical Time Curves of the Type CO-5 Relay.

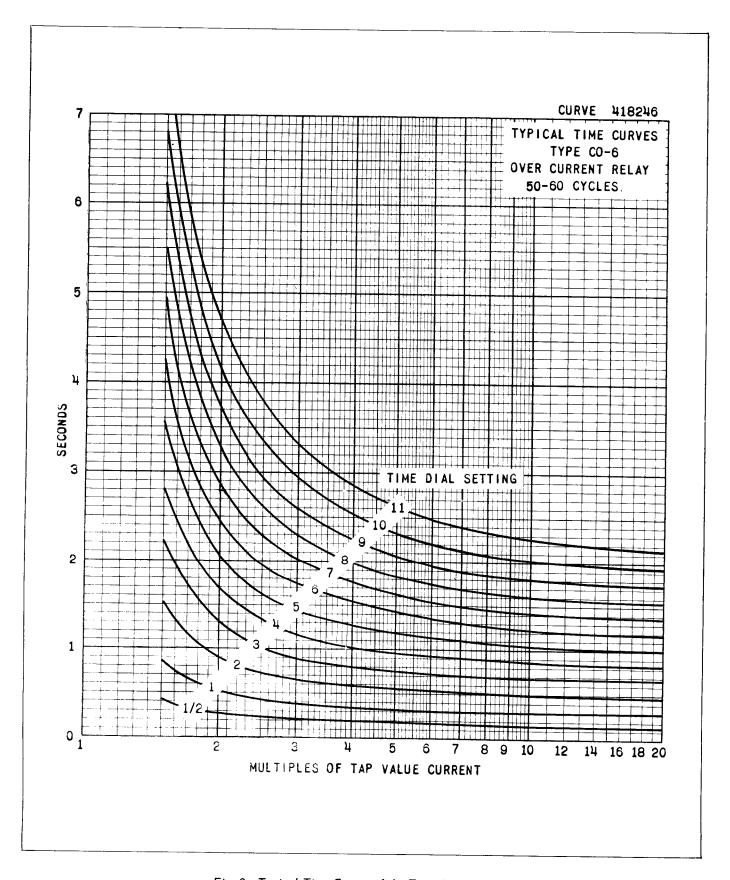



Fig. 9. Typical Time Curves of the Type CO-6 Relay.

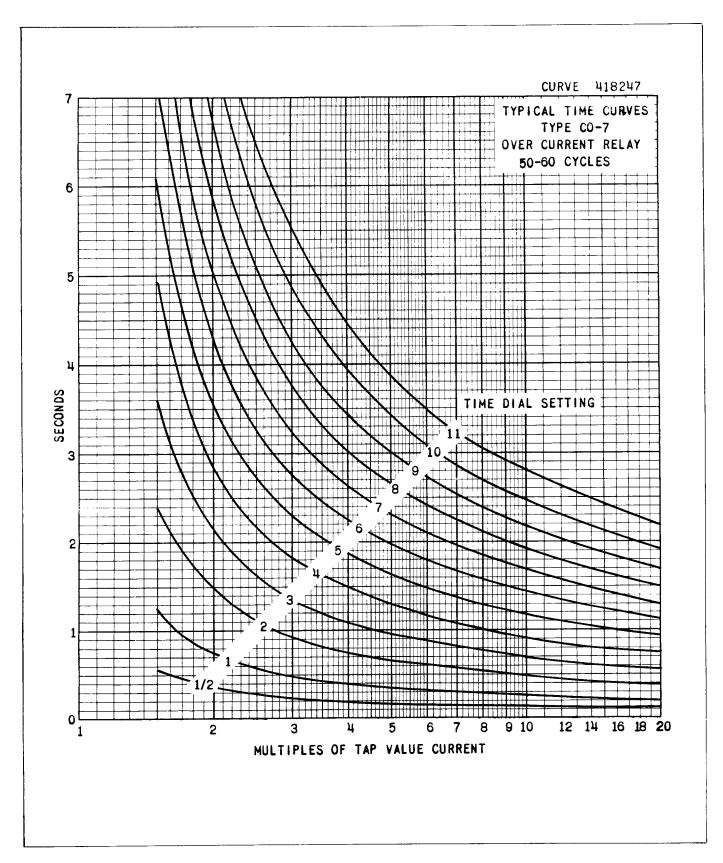



Fig. 10. Typical Time Curves of the Type CO-7 Relay.

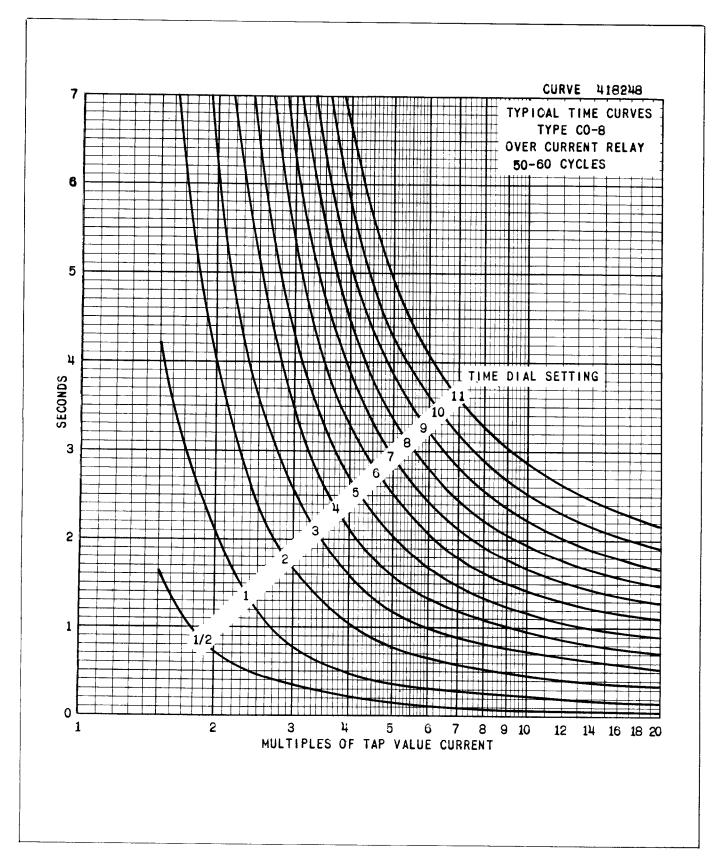



Fig. 11. Typical Time Curves of the Type CO-8 Relay.

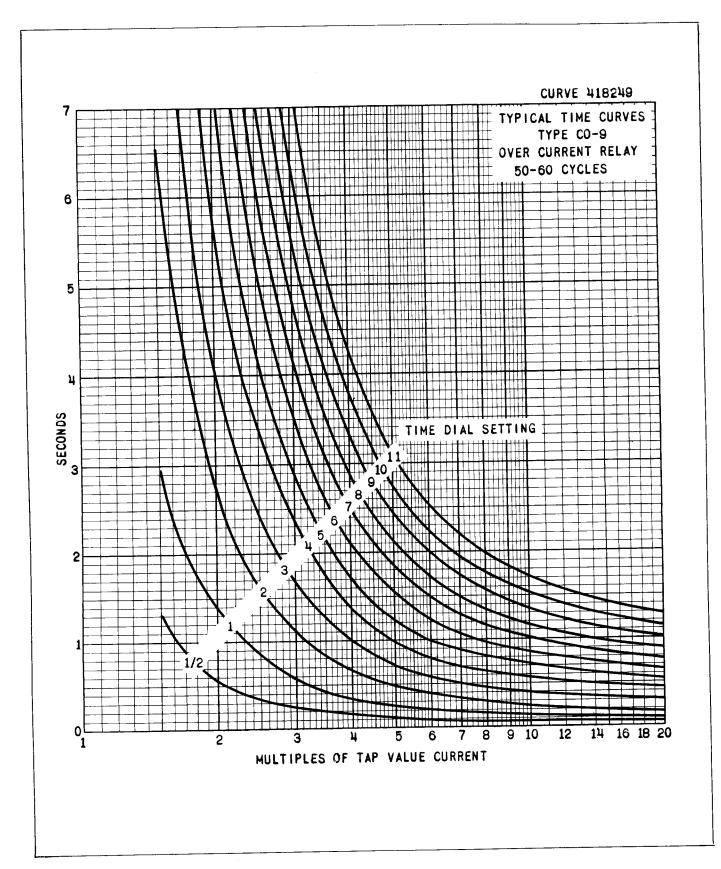



Fig. 12. Typical Time Curves of the Type CO-9 Relay.

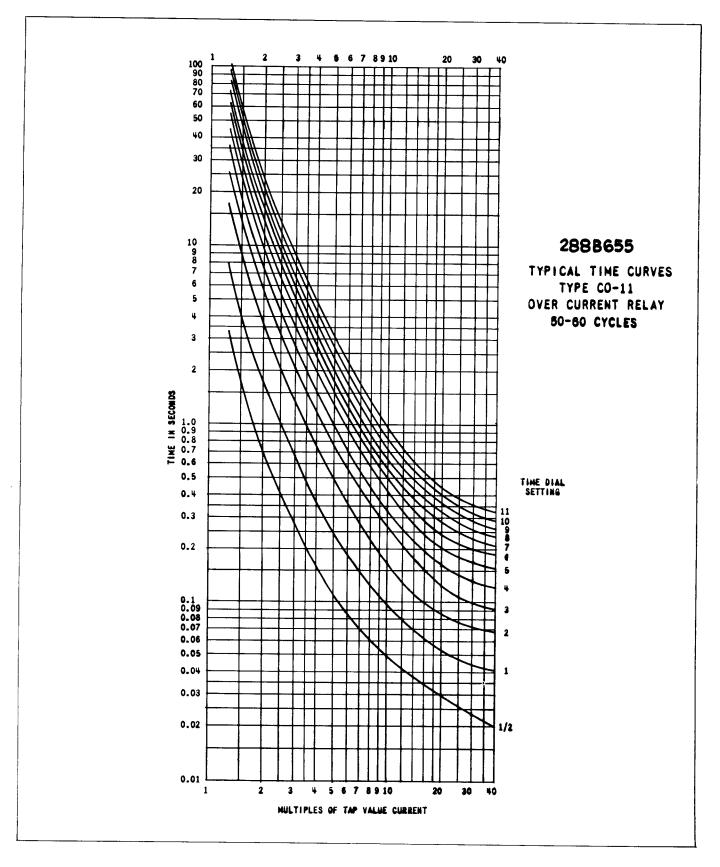



Fig. 13. Typical Time Curves of the Type CO-11 Relay.

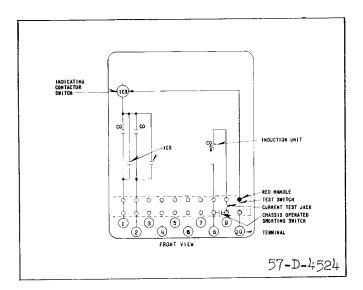



Fig. 14. Internal Schematic of the Double Trip Circuit Closing Relay. For the Single Trip Relay the Circuits Associated with Terminal 2 are Omitted. Dwg. 57-D-4523.

#### **SETTINGS**

#### CO Unit

The overcurrent unit settings can be defined either by tap setting and time dial position or by tap setting and a specific time of operation at some current multiple of the tap setting (e.g. 4 tap setting, 2 time dial position or 4 tap setting, 0.6 seconds at 6 times tap value current).

To provide selective circuit breaker operation, a minimum coordinating time of 0.3 seconds plus circuit breaker time is recommended between the relay being set and the relays with which coordination is to be effected.

The connector screw on the terminal plate above the time dial makes connections to various turns on the operating coil. By placing this screw in the various terminal plate holes, the relay will respond to multiples of tap value currents in accordance with the various typical time-current curves.

#### Caution

Since the tap block connector screw carries operating current, be sure that the screw is turned tight. In order to avoid opening the current transformer circuits when changing taps under load, connect the spare connector screw in the desired tap position before removing the other tap screw from the original tap position.

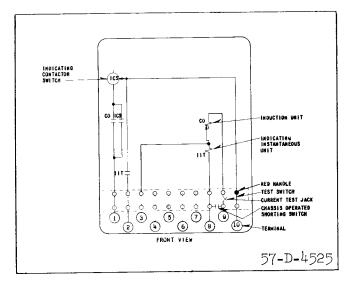



Fig. 15. Internal Schematic of the Single Trip Circuit-Closing Relay with Indicating Instantaneous Trip Unit.

#### Instantaneous Reclosing

The factory adjustment of the CO unit contacts provides a contact follow. Where circuit breaker reclosing will be initiated immediately after a trip by the CO contact, the time of the opening of the contacts should be a minimum. This condition is obtained by loosening the stationary contact mounting screw, removing the contact plate and then replacing the plate with the bent end resting against the contact spring.

For double trip relays, the upper stationary contact is adjusted such that the contact spring rests solidly against the back stop. The lower stationary contact is then adjusted such that both stationary contacts make contact simultaneously with their respective moving contact.

#### Indicating Contactor Switch (ICS)

The only setting required on the ICS unit is the selection of the 0.2 or 2.0 ampere tap setting. This selection is made by connecting the lead located in front of the tap block to the desired setting by means of the connecting screw.

#### Indicating Instantaneous Trip (IIT)

The core screw must be adjusted to the value of pick-up current desired.

The nameplate data will furnish the actual current range that may be obtained from the IIT. unit.

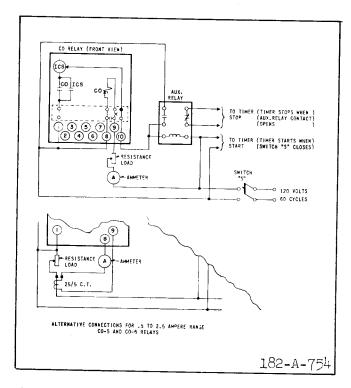



Fig. 16. Diagram of Test Connections for the Circuit-Closing Type CO Relay.

#### INSTALLATION

The relays should be mounted on switchboard panels or their equivalent in a location free from dirt, moisture, excessive vibration and heat. Mount the relay vertically by means of the mounting stud for projection mounting or by means of the four mounting holes on the flange for the semi-flush mounting. Either the stud or the mounting screws may be utilized for grounding the relay. The electrical connections may be made directly to the terminals by means of screws for steel panel mounting or to be terminal stud furnished with the relay for thick panel mounting. The terminal stud may be easily removed or inserted by locking two nuts on the stud and then turning the proper nut with a wrench.

For detail information on the FT case refer to IL 41-076.

## **ADJUSTMENTS AND MAINTENANCE**

The proper adjustments to insure correct operation of this relay have been made at the factory. Upon receipt of the relay no customer adjustments, other than those covered under "SETTINGS" should be required.

For relays which include an indicating instantaneous trip unit (IIT), the junction of the induction and indicating instantaneous trip coils is brought out to switch jaw #3. With this arrangement the overcurrent units can be tested separately.

#### Acceptance Check

The following check is recommended to insure that the relay is in proper working order:

#### 1. Contact

- a) By turning the time dial, move the moving contacts until they deflect the stationary contact to a position where the stationary contact is resting against its backstop. The index mark located on the movement frame should coincide with the "O" mark on the time dial. For double trip relays, the follow on the stationary contacts should be approximately 1/64".
- b) For relays identified with a "T", located at lower left of stationary contact block, the index mark on the movement frame will coincide with the "O" mark on the time dial when the stationary contact has moved through approximately one-half of its normal deflection. Therefore, with the stationary contact resting against the backstop, the index mark is offset to the right of the "O" mark by approximately .020". The placement of the various time dial positions in line with the index mark will give operating times as shown on the respective time-current curves. For double trip relays, the follow on the stationary contacts should be approximately 1/32".
- 2. <u>Minimum Trip Current</u> Set the time dial to position 6 using the lowest tap setting, alternately apply tap value current plus 3% and tap value current minus 3%. The moving contact should leave the backstop at tap value current plus 3% and should return to the backstop at tap value current minus 3%.
- 3. Time Curve For type CO-11 relay only, the 1.30 times tap value operating time from the number 6 time dial position is  $54.9 \pm 5\%$  seconds and should be checked first. It is important that the 1.30 times tap value current be maintained accurately. The maintaining of this current accurately is necessary because of the steepness of the slope of the time-current characteristic (Figure 13). A 1% variation in the 1.30 times tap value current (including measuring instrument deviation) will change the nominal operating time by approximately 4%

Table I shows the time curve calibration points for the various types of relays. With the time

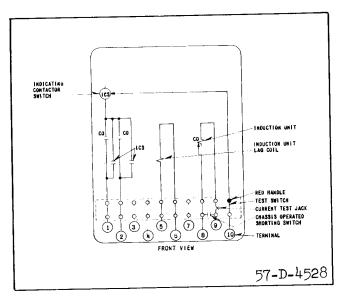



Fig. 17. Internal Schematic of the Double Trip Circuit Closing Relay with Torque Control Terminals. For the Single Trip Relay, the Circuits Associated with Terminal 2 are Omitted. Dwg. 57-D-4527.

dial set to the indicated position and the relay set on the lowest tap setting, apply the currents specified by Table I, (e.g. for the CO-2, 3 and 20 times tap value current) and measure the operating time of the relay. The operating times should equal those of Table I plus or minus 5%

4. <u>Indicating Instantaneous Trip Unit (IIT)</u> The core screw which is adjustable from the top of the trip unit determines the pickup value. The trip unit has a nominal ratio of adjustment of 1 to 4 and an accuracy within the limits of 10%.

The making of the contacts and target indication should occur at approximately the same instant. Position the stationary contact for a minimum of 1/32" wipe. The bridging moving contact should touch both stationary contacts simultaneously.

Apply sufficient current to operate the IIT. The operation indicator target should drop freely.

5. Indicating Contactor Switch (ICS) - Close the main relay contacts and pass sufficient d-c current through the trip circuit to close the contacts of the ICS. This value of current should be not greater than the particular ICS tap setting being used. The operation indicator target should drop freely.

The contact gap should be approximately .047" between the bridging moving contact and the adjustable stationary contacts. The bridging moving contact should touch both stationary contacts simultaneously.

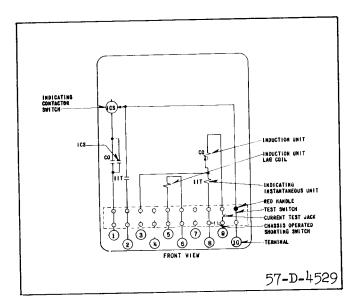



Fig. 18. Internal Schematic of the Single Trip Circuit Closing Relay with Torque Control Terminals and Indicating Instantaneous Trip Unit.

#### Routine Maintenance

All relays should be inspected and checked periodically to assure proper operation. Generally a visual inspection should call attention to any noticeable changes. A minimum suggested check on the relay system is to close the contacts manually to assure that the breaker trips and the target drops. Then release the contacts and observe that the reset is smooth and positive.

If an additional time check is desired, pass secondary current through the relay and check the time of operation. It is preferable to make this at several times pick-up current at an expected operating point for the particular application. For the .5 to 2.5 ampere range CO-5 and CO-6 induction unit use the alternative test circuit in Fig. 16 as these relays are affected by a distorted wave form. With this connection the 25/5 ampere current transformers should be worked well below the knee of the saturation (i.e. use 10L50 or better).

All contacts should be periodically cleaned. A contact burnisher #182A836H01 is recommended for this purpose. The use of abrasive material for cleaning contacts is not recommended, because of the danger of embedding small particles in the face of the soft silver and thus impairing the contact.

#### CALIBRATION

Use the following procedure for calibrating the relay if the relay has been taken apart for repairs or

the adjustments disturbed. This procedure should not be used until it is apparent that the relay is not in proper working order. (See "Acceptance Check")

#### CO Unit

#### 1. Contact

- a) By turning the time dial, move the moving contacts until they deflect the stationary contact to a position where the stationary contact is resting against its backstop. The index mark located on the movement frame should coincide with the "O" mark on the time dial. For double trip relays, the follow on the stationary contacts should be approximately 1/64".
- b) For relays identified with a "T", located at lower left of stationary contact block, the index mark on the movement frame will coincide with the "O" mark on the time dial when the stationary contact has moved through approximately one-half of its normal deflection. Therefore, with the stationary contact resting against the backstop, the index mark is offset to the right of the "O" mark by approximately .020". The placement of the various time dial positions in line with the index mark will give operating times as shown on the respective time-current curves. For double trip relays, the follow on the stationary contacts should be approximately 1/32".
- 2) Minimum Trip Current The adjustment of the spring tension in setting the minimum trip current value of the relay is most conveniently made with the damping magnet removed.

With the time dial set on "O", wind up the spiral spring by means of the spring adjuster until approximately 6-3/4 convolutions show.

Set the relay on the minimum tap setting, the time dial to position 6.

Adjust the control spring tension so that the moving contact will leave the backstop at tap value current +1.0% and will return to the backstop at tap value current -1.0%.

3. <u>Time Curve Calibration</u> - Install the permanent magnet.

Apply the indicated current per Table I for permanent magnet adjustment (e.g. CO-8, 2 times tap value) and measure the operating time. Adjust the permanent magnet keeper until the operating time corresponds to the value of Table I.

For type CO-11 relay only, the 1.30 times tap value operating time from the number 6 time dial position is  $54.9 \pm 5\%$  seconds. It is important that the 1.30 times tap value current be maintained accurately. The maintaining of this current accurately is necessary because of the steepness of the slope of the timecurrent characteristic (Figure 13). A 1% variation in the 1.30 times tap value current (including measuring instrument deviation) will change the nominal operating time by approximately 4%. If the operating time at 1.3 times tap value is not within these limits, a minor adjustment of the control spring will give the correct operating time without any undue effect on the minimum pick-up of the relay. This check is to be made after the 2 times tap value adjustment has has been completed.

Apply the indicated current per Table I for the electromagnet plug adjustment (e.g. CO-8, 20 times tap value) and measure the operating time. Adjust the proper plug until the operating time corresponds to the value in Table I. (Withdrawing the left hand plug, front view, increases the operating time and withdrawing the right hand plug, front view, decreases the time.) In adjusting the plugs, one plug should be screwed in completely and the other plug run in or out until the proper operating time has been obtained.

Recheck the permanent magnet adjustment. If the operating time for this calibration point has changed, readjust the permanent magnet and then recheck the electromagnet plug adjustment.

4. Indicating Contactor Switch (ICS) - Close the main relay contacts and pass sufficient d-c current through the trip circuit to close the contacts of the ICS. This value of current should be not greater than the particular ICS tap setting being used. The operation indicator target should drop freely.

# 5. Indicating Instantaneous Trip Unit (IIT)

The core screw must be adjusted to the value of pick-up current desired.

The nameplate data will furnish the actual current range that may be obtained from the IIT unit.

#### RENEWAL PARTS

Repair work can be done most satisfactorily at the factory. However, interchangeable parts can be furnished to the customers who are equipped for doing repair work. When ordering parts, always give the complete nameplate data.

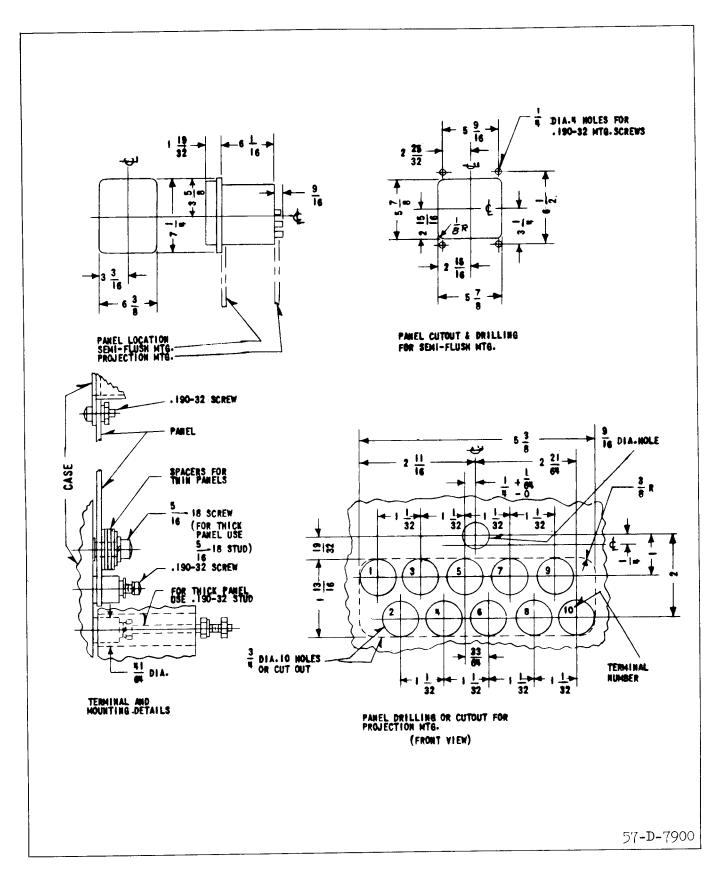



Fig. 19. Outline and Drilling Plan for the Type CO Relay.

TABLE 1

TIME CURVE CALIBRATION DATA \_ 50 & 60 CYCLES

#### PERMANENT MAGNET ADJUSTMENT **ELECTROMAGNET PLUGS** TIME CURRENT **OPERATING** CURRENT **OPERATING** RELAY DIAL (MULTIPLES OF TIME (MULTIPLES OF TIME TYPE **POSITION** TAP VALUE) **SECONDS** TAP VALUE) SECONDS CO-2 6 3 0.57 20 0.22 CO-5 6 2 37.80 10 14.30 CO-6 6 2 2.46 20 1.19 CO-7 6 4.27 20 1.11 CO-8 6 13.35 20 1.11 CO-9 6 2 8.87 20 0.65 CO-11 6 11.27 20 0.24 $\triangle$

 $\Delta$  For 50 cycle CO-11 relay 20 times operating time limits are 0.24 + 10%, -5%.

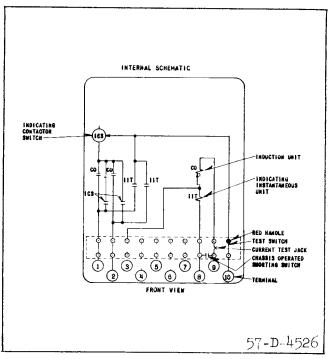



Fig. 20 Internal Schematic of the Double Trip Circuit Closing Relay with Indicating Instantaneous Trip Unit.

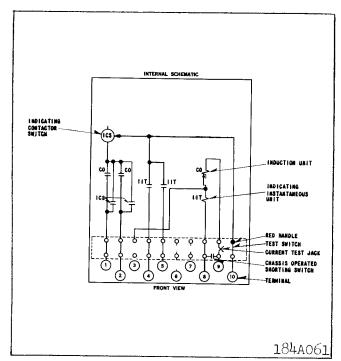



Fig. 21 Internal Schematic of the Double Trip Circuit Closing Realy with Indicating Instantaneous Trip Unit to Separate Terminals.

WESTINGHOUSE ELECTRIC CORPORATION RELAY-INSTRUMENT DIVISION NEWARK, N. J.



# INSTALLATION . OPERATION . MAINTENANCE

# INSTRUCTIONS

# monte

# TYPE CO OVERCURRENT RELAY

#### CAUTION

Before putting relays into service, remove all blocking which may have been inserted for the purpose of securing the parts during shipment, make sure that all moving parts operate freely, inspect the contacts to see that they are clean and close properly, and operate the relay to check the settings and electrical connections.

# O APPLICATION

These induction type of relays are single phase, nondirectional, ac current sensitive devices. They are used for phase or ground overcurrent protection of feeders, transmission lines, ac machines, transformers, capacitors, reactors, and in other application where a relay is required whose operating time inversely is related to operating current.

For selective coordination between relays, 7 different types of relays are available as listed below. Their time curves are as shown in figures 7 to 13.

Type CO-2 Short Time Relay

CO-5 Long Time Relay

CO-6 Definite Minimum Time Relay

CO-7 Moderately Inverse Time Relay

CO-8 Inverse Time Relay

CO-9 Very Inverse Time Relay

CO-11 Extremely Inverse Time Relay

In general, the application will indicate the use of a specific type of CO relay. Short time relays act fast to avoid equipment damage. Long time relays hold off tripping on heavy initial overload or more extended moderate overloads. At higher fault currents, definite-time and moderately inverse relays maintain more nearly constant operating time, despite variation in fault currents. Inverse and extremely inverse relays operate respectively faster on higher fault currents.

#### **CONTENTS**

This instruction leaflet applies to the following types of relays:

Type CO-2 Short Time Relay

CO-5 Long Time Relay

CO-6 Definite Minimum Time Relay

CO-7 Moderately Inverse Time Relay

CO-8 Inverse Time Relay

CO-9 Very Inverse Time Relay

CO-11 Extremely Inverse Time Relay

## **CONSTRUCTION AND OPERATION**

The type CO relays consist of an overcurrent unit (CO), an indicating contactor switch (ICS), and an indicating instantaneous trip unit (IIT) when required. The principal component parts of the relay and their location are shown in Figs. 1-5.

#### **ELECTROMAGNET**

The electromagnets for the types CO-5, CO-6, CO-7, CO-8 and CO-9 relays have a main tapped coil located on the center leg of an "E" type laminated structure that produces a flux which divides and returns through the outer legs. A shading coil causes the flux through the left leg to lag the main pole flux. The out-of-phase fluxes thus produced in the air gap cause a contact closing torque. A torque controlled CO has the lag coil connections of the electromagnet brought out to separate terminals. This permits control of the closing torque such that only when these terminals are connected together will the unit operate.

The electromagnets for the types CO-2 and CO-11 relays have a main coil consisting of a tapped primary winding and a secondary winding. Two identical coils on the outer legs of the lamination structure are connected to the main coil secondary in a manner so that the combination of all the fluxes produced by the electromagnet result in out-of-phase fluxes in the air gap. The out-of-phase air gap fluxes produced cause a contact closing torque.

# INDICATING CONTACTOR SWITCH UNIT (ICS)

The dc indicating contactor switch is a small clapper type device. A magnetic armature, to which leaf-spring mounted contacts are attached, is attracted to the magnetic core upon

All possible contingencies which may arise during installation, operation, or maintenance, and all details and variations of this equipment do not purport to be covered by these instructions. If further information is desired by purchaser regarding his particular installation, operation or maintenance of his equipment, the local Westinghouse Electric Corporation representative should be contacted.

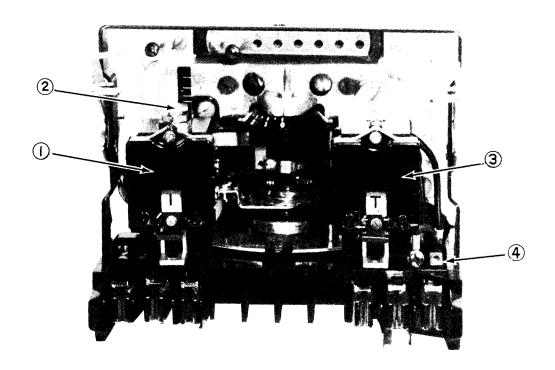



Fig. 1. Type CO Relay Without Case. 1-Indicating Instantaneous Trip (IIT). 2-IIT Adjusting Screw. 3-Indicating Contactor Switch (ICS). 4-Indicating Contactor Switch Tap Block.

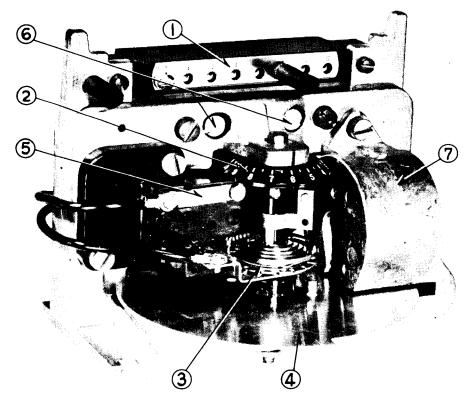



Fig. 2. Time Overcurrent Unit (Front View). 1-Tap Block. 2-Time Dial. 3-Control Spring Assembly. 4-Disc. 5-Stationary Contact Assembly. 6-Magnetic Plugs. 7-Permanent Magnet.

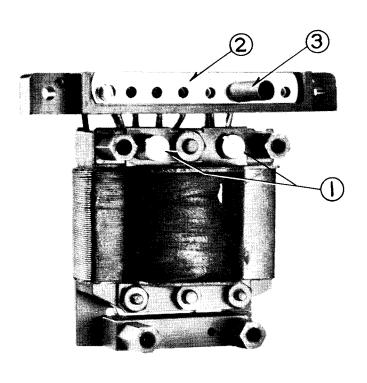



Fig. 3. "E" Type Electromagnet. 1-Magnet Plugs. 2-Tap Block. 3-Tap Screw.

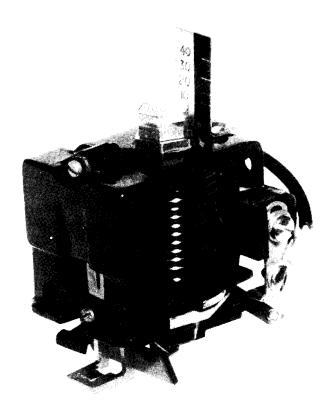



Fig. 4. Indicating Instantaneous Trip Unit (IIT).

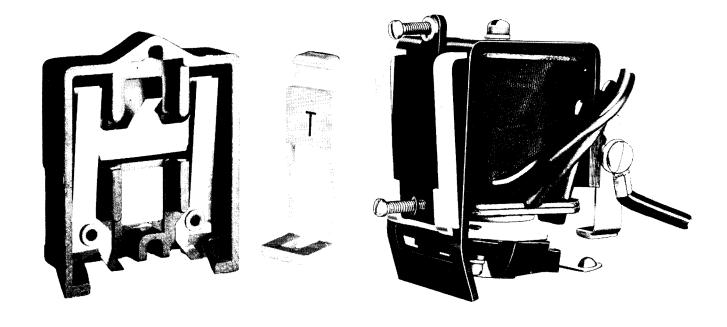



Fig. 5. Indicating Contactor Switch (ICS).

energization of the switch. When the switch closes the moving contacts bridge two stationary contacts, completing the trip circuit. Also during this operation two fingers on the armature deflect a spring located on the front of the switch, which allows the operation indicator target to drop.

The front spring, in addition to holding the target, provides restraint for the armature and thus controls the pickup value of the switch.

# INDICATING INSTANTANEOUS TRIP UNIT (IIT)

The instantaneous trip unit is a small ac operated clapper type device. A magnetic armature, to which leaf-spring mounted contacts are attached, is attracted to the magnetic core upon energization of the switch. When the switch closes, the moving contacts bridge two stationary contacts completing the trip circuit. Also, during the operation, two fingers on the armature deflect a spring located on the front of the switch which allows the operation indicator target to drop.

A core screw accessible from the top of the switch provides the adjustable pickup range.

#### **CHARACTERISTICS**

The relays are generally available in the following current ranges.

| Range         |        | Taps  |         |     |     |     |     |  |
|---------------|--------|-------|---------|-----|-----|-----|-----|--|
| † .15         | 0.1    | 0.12  | 0.16    | 0.2 | 0.3 | 0.4 | 0.5 |  |
| .5 - 2.5      | 0.5    | 0.6   | 0.8     | 1.0 | 1.5 | 2.0 | 2.5 |  |
| 2 - 6         | 2      | 2.5   | 3       | 3.5 | 4   | 5   | 6   |  |
| 4 - 12        | 4      | 5     | 6       | 7   | 8   | 10  | 12  |  |
| † Available f | or Typ | e CO- | 11 Rela | ıy. |     |     |     |  |

These relays may have either single or double circuit closing contacts for tripping either one or two circuit breakers.

The time vs. current characteristics are shown in Figs. 7 to 13. These characteristics give the contact closing time for the various time dial settings when the indicated multiples of tap value current are applied to the relay.

#### **TRIP CIRCUIT**

The main contacts will safely close 30 amperes at 250 volts dc and the seal-in contacts of the indicating contactor switch will safely carry this current long enough to trip a circuit breaker.

The indicating instantaneous trip contacts will safely close 30 amperes at 250 volts dc, and will carry this current long enough to trip a breaker.

The indicating contactor switch has two taps that provide a pickup setting of 0.2 to 2 amperes. To change taps requires connecting the lead located in front of the tap block to the desired setting by means of a screw connection.

#### TRIP CIRCUIT CONSTANTS

Contactor Switch -

- 0.2 ampere tap -6.5 ohms dc resistance
- 2.0 ampere tap -0.15 ohms dc resistance

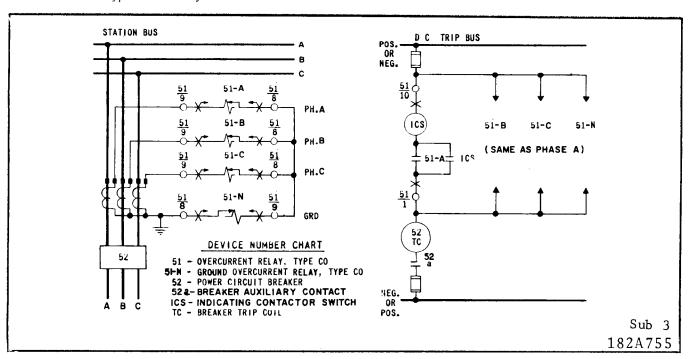



Fig. 6. External Schematic of the Circuit-Closing Type CO Relay for Phase and Ground Overcurrent Protection on a Three-Phase System.

## **TYPE CO-2 RELAY**

| VOLT | AMPERES** |
|------|-----------|
|------|-----------|

| ap  | Continuous Rating (Amperes)                                        | One Second<br>Rating*<br>(Amperes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Power<br>Factor<br>Angle Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | At<br>Tap Value<br>Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | At 3 Times<br>Tap Value<br>Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | At 10 Times<br>Tap Value<br>Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | At 20 Times<br>Tap Value<br>Current             |
|-----|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|     |                                                                    | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 790                                             |
|     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 851                                             |
|     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1024                                            |
|     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1220                                            |
| 1.0 |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1740                                            |
|     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2280                                            |
| 2.0 |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2850                                            |
| 2.5 | 2.50                                                               | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 800                                             |
| 2.0 | 3.1                                                                | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
|     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 920                                             |
|     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1008                                            |
|     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1120                                            |
|     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1216                                            |
|     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1500                                            |
|     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1800                                            |
| 6.0 | 0.0                                                                | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 848                                             |
| 4.0 | 7.3                                                                | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1020                                            |
|     | 8.0                                                                | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1128                                            |
|     | 8.8                                                                | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1260                                            |
|     |                                                                    | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1408                                            |
|     |                                                                    | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
|     |                                                                    | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1720                                            |
|     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 62.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2064                                            |
| 1   | 1.5<br>2.0<br>2.5<br>2.0<br>2.5<br>3.0<br>3.5<br>4.0<br>5.0<br>6.0 | Apperes         (Amperes)           0.5         0.91           0.6         0.96           0.8         1.18           1.0         1.37           1.5         1.95           2.0         2.24           2.5         2.50           2.0         3.1           2.5         4.0           3.0         4.4           3.5         4.8           4.0         5.2           5.0         5.6           6.0         4.0           7.3         5.0           8.0         6.0           8.8         7.0           9.6         8.0           10.4         10.4           10.0         11.2 | Appendix         (Amperes)         (Amperes)           0.5         0.91         28           0.6         0.96         28           0.8         1.18         28           1.0         1.37         28           1.5         1.95         28           2.0         2.24         28           2.5         2.50         28           2.0         3.1         110           2.5         4.0         110           3.0         4.4         110           3.5         4.8         110           4.0         5.2         110           5.0         5.6         110           6.0         6.0         110           4.0         7.3         230           5.0         8.0         230           6.0         8.8         230           7.0         9.6         230           8.0         10.4         230           0.0         11.2         230 | ap         (Amperes)         (Amperes)         Angle f           0.5         0.91         28         58           0.6         0.96         28         57           0.8         1.18         28         53           1.0         1.37         28         50           1.5         1.95         28         40           2.0         2.24         28         36           2.5         2.50         28         29           2.0         3.1         110         59           2.5         4.0         110         55           3.0         4.4         110         51           3.5         4.8         110         47           4.0         5.2         110         45           5.0         5.6         110         41           4.0         7.3         230         64           5.0         8.0         230         50           6.0         8.8         230         47           7.0         9.6         230         46           8.0         10.4         230         43           0.0         11.2         230         37 </td <td>Apple (Amperes)         (Amperes)         Angle f         Current           0.5         0.91         28         58         4.8           0.6         0.96         28         57         4.9           0.8         1.18         28         53         5.0           1.0         1.37         28         50         5.3           1.5         1.95         28         40         6.2           2.0         2.24         28         36         7.2           2.5         2.50         28         29         7.9           2.0         3.1         110         59         5.04           2.5         4.0         110         55         5.13           3.0         4.4         110         51         5.37           3.5         4.8         110         47         5.53           4.0         5.2         110         45         5.72           5.0         5.6         110         41         5.90           6.0         6.0         110         37         6.54           4.0         7.3         230         64         4.92           5.0         8.0         <td< td=""><td>ap         (Amperes)         (Amperes)         Angle 6         Current         Current           0.5         0.91         28         58         4.8         39.6           0.6         0.96         28         57         4.9         39.8           0.8         1.18         28         53         5.0         42.7           1.0         1.37         28         50         5.3         45.4           1.5         1.95         28         40         6.2         54.4           2.0         2.24         28         36         7.2         65.4           2.5         2.50         28         29         7.9         73.6           2.0         3.1         110         59         5.04         38.7           2.5         2.50         28         29         7.9         73.6           2.0         3.1         110         55         5.13         39.8           2.0         3.1         110         55         5.13         39.8           3.0         4.4         110         51         5.37         42.8           3.5         4.8         110         47         5.53         42.8<!--</td--><td>  Amperes   Angle 6   Current   Current   Current    </td></td></td<></td> | Apple (Amperes)         (Amperes)         Angle f         Current           0.5         0.91         28         58         4.8           0.6         0.96         28         57         4.9           0.8         1.18         28         53         5.0           1.0         1.37         28         50         5.3           1.5         1.95         28         40         6.2           2.0         2.24         28         36         7.2           2.5         2.50         28         29         7.9           2.0         3.1         110         59         5.04           2.5         4.0         110         55         5.13           3.0         4.4         110         51         5.37           3.5         4.8         110         47         5.53           4.0         5.2         110         45         5.72           5.0         5.6         110         41         5.90           6.0         6.0         110         37         6.54           4.0         7.3         230         64         4.92           5.0         8.0 <td< td=""><td>ap         (Amperes)         (Amperes)         Angle 6         Current         Current           0.5         0.91         28         58         4.8         39.6           0.6         0.96         28         57         4.9         39.8           0.8         1.18         28         53         5.0         42.7           1.0         1.37         28         50         5.3         45.4           1.5         1.95         28         40         6.2         54.4           2.0         2.24         28         36         7.2         65.4           2.5         2.50         28         29         7.9         73.6           2.0         3.1         110         59         5.04         38.7           2.5         2.50         28         29         7.9         73.6           2.0         3.1         110         55         5.13         39.8           2.0         3.1         110         55         5.13         39.8           3.0         4.4         110         51         5.37         42.8           3.5         4.8         110         47         5.53         42.8<!--</td--><td>  Amperes   Angle 6   Current   Current   Current    </td></td></td<> | ap         (Amperes)         (Amperes)         Angle 6         Current         Current           0.5         0.91         28         58         4.8         39.6           0.6         0.96         28         57         4.9         39.8           0.8         1.18         28         53         5.0         42.7           1.0         1.37         28         50         5.3         45.4           1.5         1.95         28         40         6.2         54.4           2.0         2.24         28         36         7.2         65.4           2.5         2.50         28         29         7.9         73.6           2.0         3.1         110         59         5.04         38.7           2.5         2.50         28         29         7.9         73.6           2.0         3.1         110         55         5.13         39.8           2.0         3.1         110         55         5.13         39.8           3.0         4.4         110         51         5.37         42.8           3.5         4.8         110         47         5.53         42.8 </td <td>  Amperes   Angle 6   Current   Current   Current    </td> | Amperes   Angle 6   Current   Current   Current |

# CO-5 LONG TIME AND CO-6 DEFINITE MINIMUM TIME RELAYS

# **VOLT AMPERES\*\***

|                 |     |                                   |                                    |                            | VOLI AMPERES               |                                    |                                     |                                     |  |
|-----------------|-----|-----------------------------------|------------------------------------|----------------------------|----------------------------|------------------------------------|-------------------------------------|-------------------------------------|--|
| Ampere<br>Range | Тар | Continuous<br>Rating<br>(Amperes) | One Second<br>Rating*<br>(Amperes) | Power<br>Factor<br>Angle Ø | At<br>Tap Value<br>Current | At 3 Times<br>Tap Value<br>Current | At 10 Times<br>Tap Value<br>Current | At 20 Times<br>Tap Value<br>Current |  |
|                 |     | 2.7                               | 88                                 | 69                         | 3.92                       | 20.6                               | 103                                 | 270                                 |  |
|                 | 0.5 |                                   | 88                                 | 68                         | 3.96                       | 20.7                               | 106                                 | 288                                 |  |
|                 | 0.6 | 3.1                               | 88                                 | 67                         | 3.96                       | 21                                 | 114                                 | 325                                 |  |
|                 | 0.8 | 3.7                               | 88                                 | 66                         | 4.07                       | 21.4                               | 122                                 | 360                                 |  |
| 0.5/2.5         | 1.0 | 4.1                               | 88                                 | 62                         | 4.19                       | 23.2                               | 147                                 | 462                                 |  |
|                 | 1.5 | 5.7                               | 88                                 | 60                         | 4.30                       | 24.9                               | 168                                 | 548                                 |  |
|                 | 2.0 | 6.8                               | 88                                 | 58                         | 4.37                       | 26.2                               | 180                                 | 630                                 |  |
|                 | 2.5 | 7.7                               | 00                                 |                            |                            |                                    | 110                                 | 308                                 |  |
|                 | 2   | 8                                 | 230                                | 67                         | 3.88                       | 21                                 | 110                                 | 342                                 |  |
|                 | 2.5 | 8.8                               | 230                                | 66                         | 3.90                       | 21.6                               | 118                                 | 381                                 |  |
|                 | 3   | 9.7                               | 230                                | 64                         | 3.93                       | 22.1                               | 126                                 | 417                                 |  |
| 2/6             | 3.5 | 10.4                              | 230                                | 63                         | 4.09                       | 23.1                               | 136                                 | 448                                 |  |
| 2/0             | 4   | 11.2                              | 230                                | 62                         | 4.12                       | 23.5                               | 144                                 | 540                                 |  |
|                 | 5   | 12.5                              | 230                                | 59                         | 4.20                       | 24.8                               | 162                                 |                                     |  |
|                 | 6   | 13.7                              | 230                                | 57                         | 4.38                       | 26.5                               | 183                                 | 624                                 |  |
|                 |     |                                   | 460                                | 65                         | 4.00                       | 22.4                               | 126                                 | 376                                 |  |
|                 | 4   | 16                                | 460                                | 63                         | 4.15                       | 23.7                               | 143                                 | 450                                 |  |
|                 | 5   | 18.8                              | 460                                |                            | 4.32                       | 25.3                               | 162                                 | 531                                 |  |
|                 | 6   | 19.3                              | 460                                | 61                         | 4.35                       | 26.4                               | 183                                 | 611                                 |  |
| 4/12            | 7   | 20.8                              | 460                                | 59                         |                            | 27.8                               | 204                                 | 699                                 |  |
|                 | 8   | 22.5                              | 460                                | 56                         | 4.40                       | 30.1                               | 247                                 | 880                                 |  |
|                 | 10  | 25                                | 460                                | 53                         | 4.60                       |                                    | 288                                 | 1056                                |  |
|                 | 12  | 28                                | 460                                | 47                         | 4.92                       | 35.6                               | 200                                 | .000                                |  |
|                 |     |                                   |                                    |                            |                            |                                    |                                     |                                     |  |

<sup>\*</sup>Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

Degrees current lags voltage at tap value current.

<sup>\*\*</sup> Voltages taken with Rectox type voltmeter.

# **CO-7 MODERATELY INVERSE TIME RELAY**

| VOLT AMPERES |
|--------------|
|--------------|

| Ampere<br>Range | Тар    | Continuous<br>Rating<br>(Amperes) | One Second<br>Rating*<br>(Amperes) | Power<br>Factor<br>Angle Ø | At<br>Tap Value<br>Current | At 3 Times<br>Tap Value<br>Current | At 10 Times<br>Tap Value<br>Current | At 20 Times<br>Tap Value<br>Current |  |
|-----------------|--------|-----------------------------------|------------------------------------|----------------------------|----------------------------|------------------------------------|-------------------------------------|-------------------------------------|--|
|                 | 0.5    | 2.7                               | 88                                 | 68                         | 3.88                       | 20.7                               | 103                                 |                                     |  |
|                 | 0.6    | 3.1                               | 88                                 | 67                         | 3.93                       | 20.7                               | 103                                 | 278                                 |  |
| 0.5.10.5        | 0.8    | 3.7                               | 88                                 | 66                         | 3.93                       | 21.1                               | 114                                 | 288                                 |  |
| 0.5/2.5         | 1.0    | 4.1                               | 88                                 | 64                         | 4.00                       | 21.6                               | 122                                 | 320                                 |  |
|                 | 1.5    | 5.7                               | 88                                 | 61                         | 4.08                       | 22.9                               | 148                                 | 356                                 |  |
|                 | 2.0    | 6.8                               | 88                                 | 58                         | 4.24                       | 24.8                               | 174                                 | 459                                 |  |
|                 | 2.5    | 7.7                               | 88                                 | 56                         | 4.38                       | 25.9                               | 185                                 | 552                                 |  |
|                 | 2      | 8                                 | 230                                | 66                         |                            |                                    |                                     | 640                                 |  |
|                 | 2.5    | 8.8                               | 230                                | 63                         | 4.06                       | 21.3                               | 111                                 | 306                                 |  |
|                 | 3      | 9.7                               | 230                                | 63                         | 4.07                       | 21.8                               | 120                                 | 342                                 |  |
| 2/6             | 3.5    | 10.4                              | 230                                | 62                         | 4.14                       | 22.5                               | 129                                 | 366                                 |  |
| •               | 4      | 11.2                              | 230                                | 61                         | 4.34                       | 23.4                               | 141                                 | 413                                 |  |
|                 | 5      | 12.5                              | 230                                | 59                         | 4.34                       | 23.8                               | 149                                 | 448                                 |  |
|                 | 6      | 13.7                              | 230                                | 58                         | 4.40                       | 25.2                               | 163                                 | 530                                 |  |
|                 | 4      |                                   |                                    | 20                         | 4.62                       | 27                                 | 183                                 | 624                                 |  |
|                 | 4      | 16                                | 460                                | 64                         | 4.24                       | 22.8                               | 129                                 | 392                                 |  |
|                 | 5      | 18.8                              | 460                                | 61                         | 4.30                       | 24.2                               | 149                                 | 460                                 |  |
| 4/12            | 6      | 19.3                              | 460                                | 60                         | 4.62                       | 25.9                               | 168                                 | 540                                 |  |
| 4/12            | 7<br>8 | 20.8                              | 460                                | 58                         | 4.69                       | 27.3                               | 187                                 | 626                                 |  |
|                 |        | 22.5                              | 460                                | 55                         | 4.80                       | 29.8                               | 211                                 | 688                                 |  |
|                 | 10     | 25                                | 460                                | 51                         | 5.20                       | 33                                 | 260                                 | 860                                 |  |
|                 | 12     | 28                                | 460                                | 46                         | 5.40                       | 37.6                               | 308                                 | 1032                                |  |

# CO-8 INVERSE TIME AND CO-9 VERY INVERSE TIME RELAYS

#### **VOLT AMPERES\*\***

| Ampere<br>Range | Тар | Continuous<br>Rating<br>(Amperes) | One Second<br>Rating*<br>(Amperes) | Power<br>Factor<br>Angle ø |                            |                                    |                                     |                                     |
|-----------------|-----|-----------------------------------|------------------------------------|----------------------------|----------------------------|------------------------------------|-------------------------------------|-------------------------------------|
|                 |     |                                   |                                    |                            | At<br>Tap Value<br>Current | At 3 Times<br>Tap Value<br>Current | At 10 Times<br>Tap Value<br>Current | At 20 Times<br>Tap Value<br>Current |
| 0.5/2.5         | 0.5 | 2.7                               | 88                                 | 72                         | 2.38                       | 21                                 |                                     |                                     |
|                 | 0.6 | 3.1                               | 88                                 | 71                         | 2.38                       | 21                                 | 132<br>134                          | 350                                 |
|                 | 0.8 | 3.7                               | 88                                 | 69                         | 2.40                       | 21.1                               | 142                                 | 365                                 |
|                 | 1.0 | 4.1                               | 88                                 | 67                         | 2.42                       | 21.2                               | 150                                 | 400                                 |
|                 | 1.5 | 5.7                               | 88                                 | 62                         | 2.51                       | 22                                 | 170                                 | 440                                 |
|                 | 2.0 | 6.8                               | 88                                 | 57                         | 2.65                       | 23.5                               | 200                                 | 530                                 |
|                 | 2.5 | 7.7                               | 88                                 | 53                         | 2.74                       | 24.8                               | 228                                 | 675<br>800                          |
| 2/6             | 2   | 8                                 | 230                                | 70                         | 2.38                       | 21                                 |                                     |                                     |
|                 | 2.5 | 8.8                               | 230                                | 66                         | 2.40                       |                                    | 136                                 | 360                                 |
|                 | 3   | 9.7                               | 230                                | 64                         | 2.42                       | 21.1<br>21.5                       | 142                                 | 395                                 |
|                 | 3.5 | 10.4                              | 230                                | 62                         | 2.48                       | 21.3                               | 149                                 | 430                                 |
|                 | 4   | 11.2                              | 230                                | 60                         | 2.53                       |                                    | 157                                 | 470                                 |
|                 | 5   | 12.5                              | 230                                | 58                         | 2.64                       | 22.7                               | 164                                 | 500                                 |
|                 | 6   | 13.7                              | 230                                | 56                         | 2.75                       | 24                                 | 180                                 | 580                                 |
| 4/12            |     |                                   |                                    | 50                         | 2.73                       | 25.2                               | 198                                 | 660                                 |
|                 | 4   | 16                                | 460                                | 68                         | 2.38                       | 21.3                               | 146                                 | 420                                 |
|                 | 5   | 18.8                              | 460                                | 63                         | 2.46                       | 21.8                               | 158                                 | 480                                 |
|                 | 6   | 19.3                              | 460                                | 60                         | 2.54                       | 22.6                               | 172                                 | 550                                 |
|                 | 7   | 20.8                              | 460                                | 57                         | 2.62                       | 23.6                               | 190                                 |                                     |
|                 | 8   | 22.5                              | 460                                | 54                         | 2.73                       | 24.8                               | 207                                 | 620                                 |
|                 | 10  | 25                                | 460                                | 48                         | 3.00                       | 27.8                               | 248                                 | 700                                 |
|                 | 12  | 28                                | 460                                | 45                         | 3.46                       | 31.4                               | 292                                 | 850                                 |
|                 |     |                                   |                                    |                            |                            | 31.4                               | 272                                 | 1020                                |

<sup>\*</sup>Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

Degrees current lags voltage at tap value current.

<sup>\*\*</sup>Voltages taken with Rectox type voltmeter.

#### **TYPE CO-11 RELAY**

| Ampere<br>Range | Тар  | Continuous<br>Rating<br>(Amperes) | One Second<br>Rating*<br>(Amperes) | Power<br>Factor<br>Angle Ø | VOLT AMPERES**             |                                    |                                     |                                     |
|-----------------|------|-----------------------------------|------------------------------------|----------------------------|----------------------------|------------------------------------|-------------------------------------|-------------------------------------|
|                 |      |                                   |                                    |                            | At<br>Tap Value<br>Current | At 3 Times<br>Tap Value<br>Current | At 10 Times<br>Tap Value<br>Current | At 20 Times<br>Tap Value<br>Current |
| 0.1/0.5         | 0.1  | 0.4                               | 11.5                               | 34                         | 0.64                       | 6.5                                | 70.3                                | 240                                 |
|                 | 0.12 | 0.4                               | 11.5                               | 32                         | 0.67                       | 6.66                               | 75.4                                | 264                                 |
|                 | 0.16 | 0.4                               | 11.5                               | 30                         | 0.76                       | 7.3                                | 82.4                                | 297                                 |
|                 | 0.20 | 0.4                               | 11.5                               | 26                         | 0.83                       | 8.3                                | 87.8                                | 336                                 |
|                 | 0.30 | 0.4                               | 11.5                               | 22                         | 1.01                       | 10.3                               | 117.6                               | 420                                 |
|                 | 0.40 | 0.4                               | 11.5                               | 18                         | 1.21                       | 11.22                              | 140.0                               | 520                                 |
|                 | 0.50 | 0.4                               | 11.5                               | 16                         | 1.38                       | 13.8                               | 168.0                               | 630                                 |
|                 | 0.5  | 1.7                               | 56                                 | 36                         | 0.72                       | 6.54                               | 71.8                                | 250                                 |
|                 | 0.6  | 1.9                               | 56                                 | 34                         | 0.75                       | 6.80                               | 75.0                                | 267                                 |
|                 | 0.8  | 2.2                               | 56                                 | 30                         | 0.81                       | 7.46                               | 84.0                                | 298                                 |
| 0.5/2.5         | 1.0  | 2.5                               | 56                                 | 27                         | 0.89                       | 8.30                               | 93.1                                | 330                                 |
| VII.9 211       | 1.5  | 3.0                               | 56                                 | 22                         | 1.13                       | 10.04                              | 115.5                               | 411                                 |
|                 | 2.0  | 3.5                               | 56                                 | 17                         | 1.30                       | 11.95                              | 136.3                               | 502                                 |
|                 | 2.5  | 3.8                               | 56                                 | 16                         | 1.48                       | 13.95                              | 160.0                               | 610                                 |
|                 | 2.0  | 7.0                               | 230                                | 32                         | 0.73                       | 6.30                               | 74.0                                | 264                                 |
|                 | 2.5  | 7.8                               | 230                                | 30                         | 0.78                       | 7.00                               | 78.5                                | 285                                 |
|                 | 3.0  | 8.3                               | 230                                | 27                         | 0.83                       | 7.74                               | 84.0                                | 309                                 |
| 2/6             | 3.5  | 9.0                               | 230                                | 24                         | 0.88                       | 8.20                               | 89.0                                | 340                                 |
| -/0             | 4.0  | 10.0                              | 230                                | 23                         | 0.96                       | 9.12                               | 102.0                               | 372                                 |
|                 | 5.0  | 11.0                              | 230                                | 20                         | 1.07                       | 9.80                               | 109.0                               | 430                                 |
|                 | 6.0  | 12.0                              | 230                                | 20                         | 1.23                       | 11.34                              | 129.0                               | 504                                 |
| 4/12            | 4.0  | 14                                | 460                                | 29                         | 0.79                       | 7.08                               | 78.4                                | 296                                 |
|                 | 5.0  | 16                                | 460                                | 25                         | 0.89                       | 8.00                               | 90.0                                | 340                                 |
|                 | 6.0  | 17                                | 460                                | 22                         | 1.02                       | 9.18                               | 101.4                               | 378                                 |
|                 | 7.0  | 18                                | 460                                | 20                         | 1.10                       | 10.00                              | 110.0                               | 454                                 |
|                 | 8.0  | 20                                | 460                                | 18                         | 1.23                       | 11.1                               | 124.8                               | 480                                 |
|                 | 10.0 | 22                                | 460                                | 17                         | 1.32                       | 14.9                               | 131.6                               | 600                                 |
|                 | 12.0 | 26                                | 460                                | 16                         | 1.8                        | 16.3                               | 180.0                               | 720                                 |

<sup>\*</sup>Thermal capacities for short times other than one second may be calculated on the basis of time being inversely proportional to the square of the current.

## O INSTANTANEOUS TRIP UNIT (IIT)

| RANGE IN | BURDEN IN VOLT-AMPS. AT |                 |  |  |  |
|----------|-------------------------|-----------------|--|--|--|
| AMPERES  | MINIMUM SETTING         | MAXIMUM SETTING |  |  |  |
| 2 - 8    | 4.5                     | 32              |  |  |  |
| 4 - 16   | 4.5                     | 32              |  |  |  |
| 10 - 40  | 4.5                     | 40              |  |  |  |
| 20 - 80  | 6.5                     | 70              |  |  |  |
| 40 - 160 | 9.0                     | 144             |  |  |  |

Degrees current lags voltage at tap value current.

<sup>\*\*</sup>Voltages taken with Rectox type voltmeter.

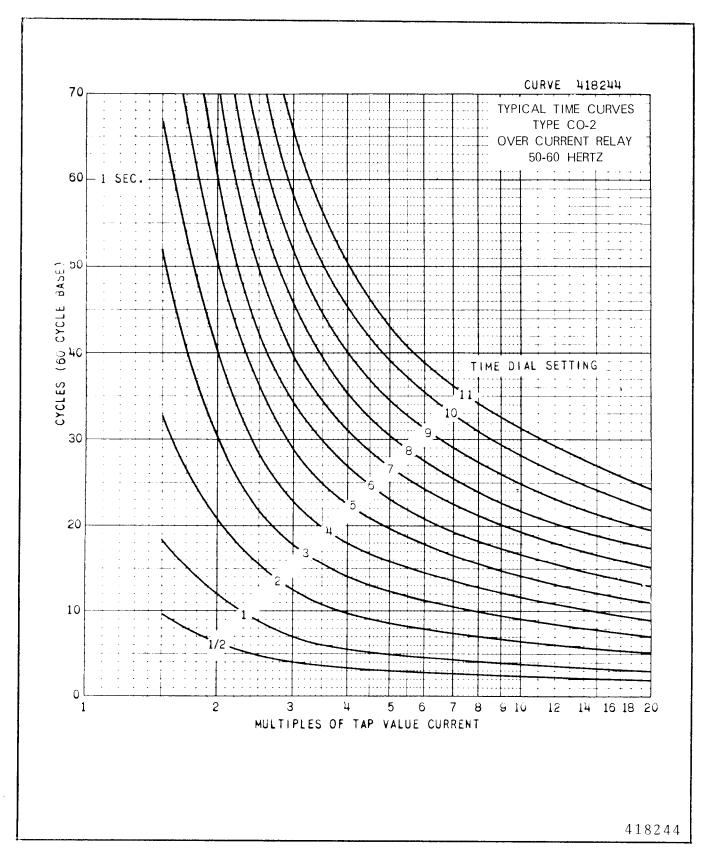



Fig. 7. Typical Time Curves of the Type CO-2 Relay.

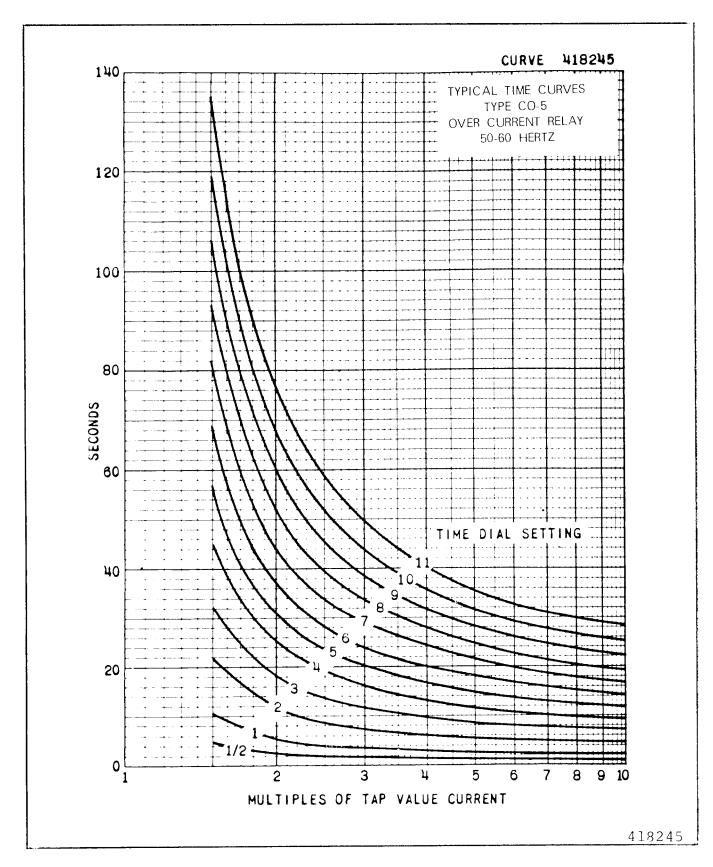



Fig. 8. Typical Time Curves of the Type CO-5 Relay.

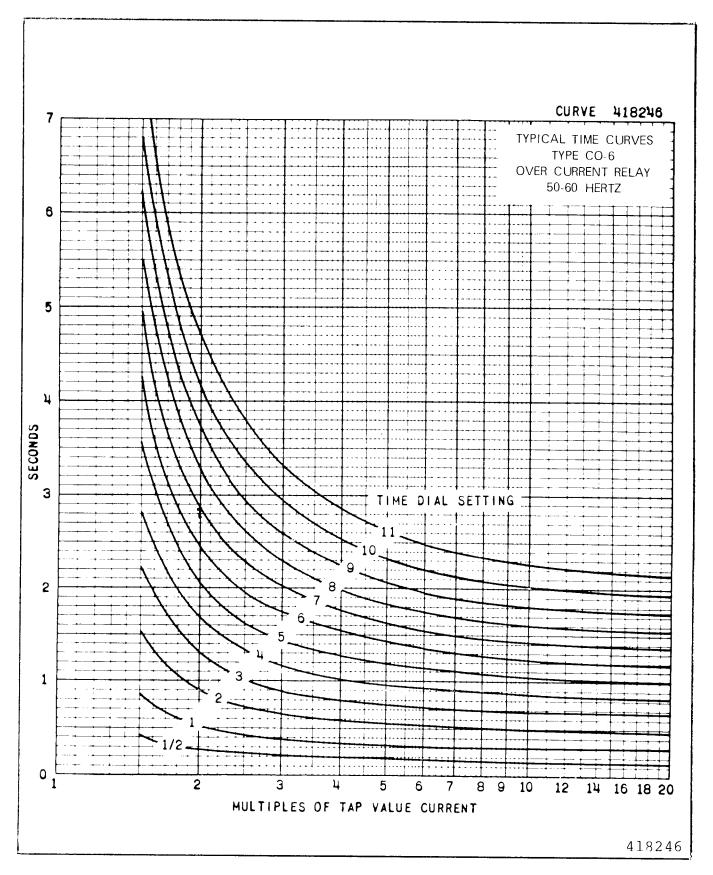



Fig. 9. Typical Time Curves of the Type CO-6 Relay.

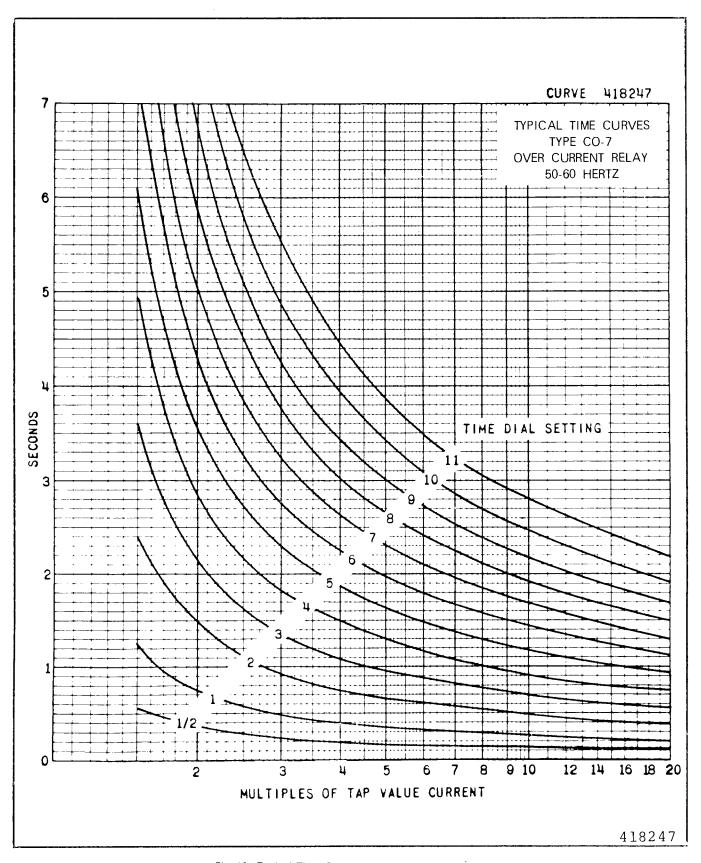



Fig. 10. Typical Time Curves of the Type CO-7 Relay.

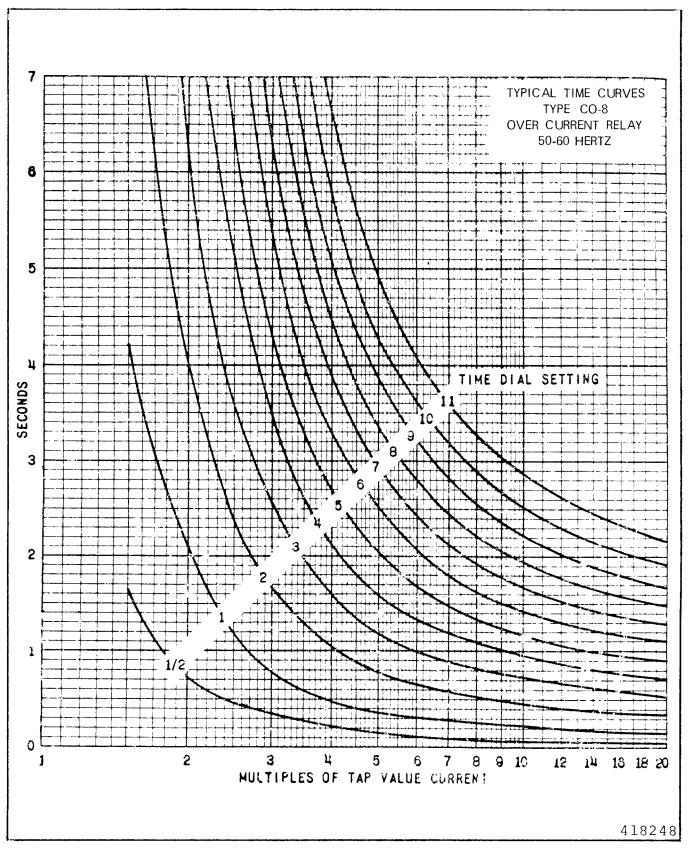



Fig. 11. Typical Time Curves of the Type CO-8 Relay.

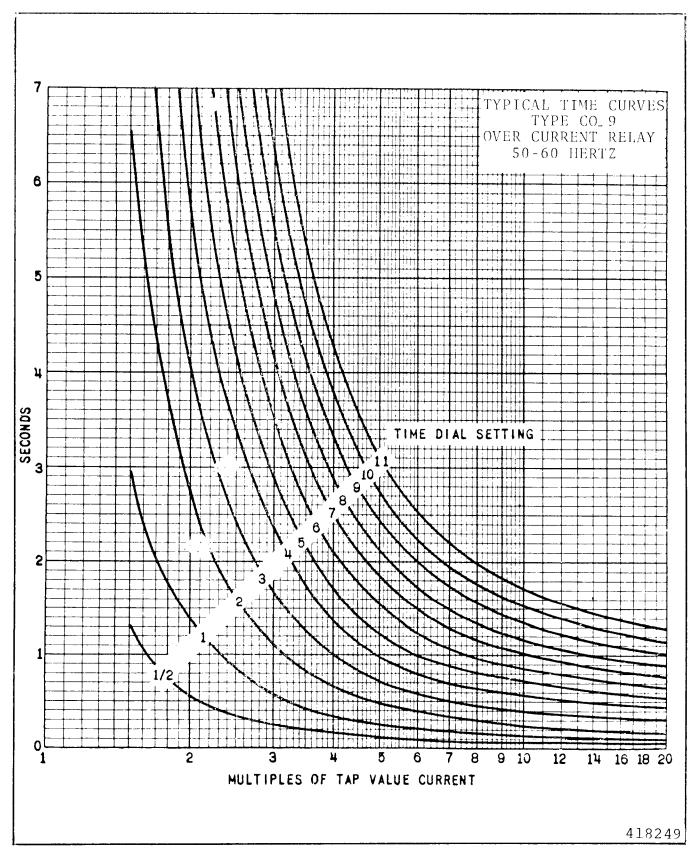



Fig. 12. Typical Time Curves of the Type CO-9 Relay.

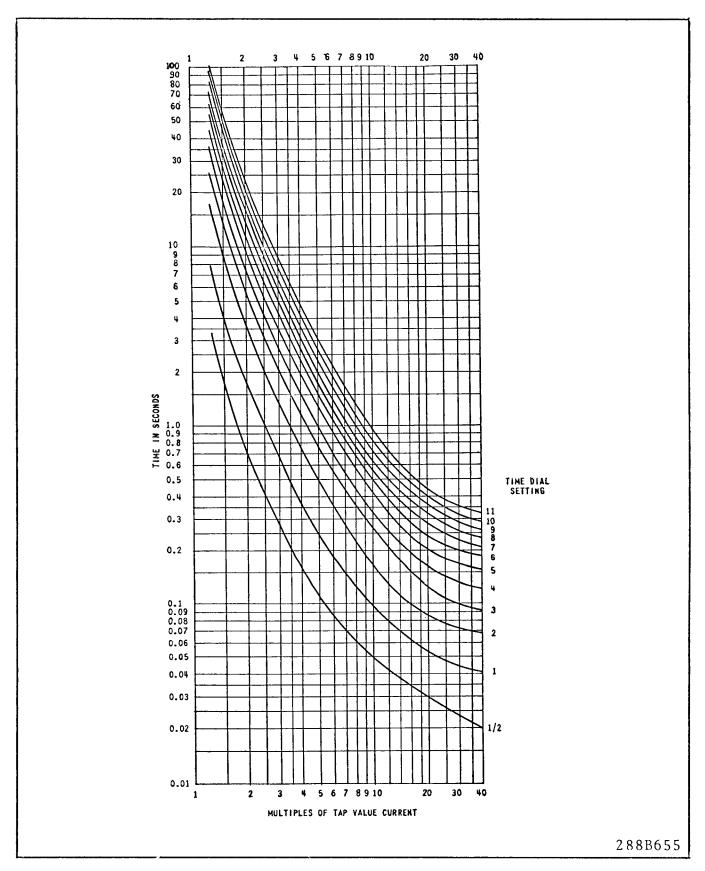



Fig. 13. Typical Time Curves of the Type CO-11 Relay.

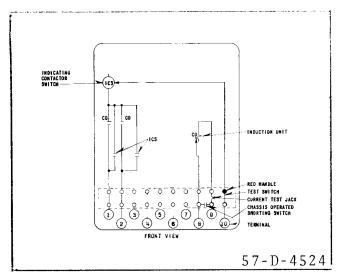



Fig. 14. Internal Schematic of the Double Trip Circuit Closing Relay. For the Single Trip Relay the Circuits Associated with Terminal 2 are Omitted. Dwg. 57-D-4523.

#### **SETTINGS**

#### **COUNIT**

The overcurrent unit settings can be defined either by tap setting and time dial position or by tap setting and a specific time of operation at some current mutliple of the tap setting (e.g. 4 tap setting, 2 time dial position or 4 tap setting, 0.6 seconds at 6 times tap value current)

To provide selective circuit breaker operation, a minimum coordinating time of 0.3 seconds plus circuit breaker time is recommended between the relay being set and the relays with which coordination is to be effected.

The connector screw on the terminal plate above the time dial makes connections to various turns on the operating coil. By placing this screw in the various terminal plate holes, the relay will respond to multiples of tap value currents in accordance with the various typical time-current curves.

#### CAUTION

Since the tap block connector screw carries operating current, be sure that the screw is turned tight. In order to avoid opening the current transformer circuits when changing taps under load, connect the spare connector screw in the desired tap position before removing the other tap screw from the original tap position.

#### **INSTANTANEOUS RECLOSING**

The factory adjustment of the CO unit contacts provides a contact follow. Where circuit breaker reclosing will be initiated immediately after a trip by the CO contact, the time of the opening of the contacts should be a minimum. This condition is obtained by loosening the stationary contact mounting screw, removing the contact plate and then replacing the plate with the bent end resting against the contact spring.

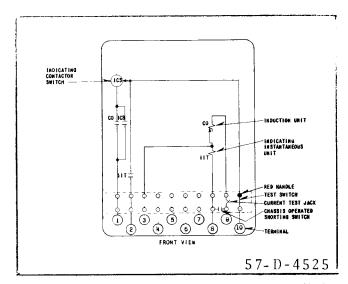



Fig. 15. Internal Schematic of the Single Trip Circuit-Closing Relay with Indicating Instantaneous Taip Unit.

For double trip relays, the upper stationary contact is adjusted such that the contact spring rests solidly against the back stop. The lower stationary contact is then adjusted such that both stationary contacts make contact simultaneously with their respective moving contact.

#### INDICATING CONTACTOR SWITCH (ICS)

The only setting required on the ICS unit is the selection of the 0.2 or 2.0 ampere setting. This selection is made by connecting the lead located in front of the tap block to the desired setting by means of the connecting screw.

#### **INDICATING INSTANTANEOUS TRIP (IIT)**

The core screw must be adjusted to the value of pick-up current desired.

The nameplate data will furnish the actual current range that may be obtained from the HT unit.

#### O INSTALLATION

The relays should be mounted on switchboard panels or their equivalent in a location free from dirt, moisture, excessive vibration and heat. Mount the relay vertically by means of the rear mounting stud or studs for the type FT projection case or by means of the four mounting holes on the flange for the semi-flush type FT case. Either the stud or the mounting screws may be utilized for grounding the relay. External toothed washers are provided for use in the locations shown on the outline and drilling plan to facilitate making a good electrical connection between the relay case, its mounting screws or studs, and the relay panel. Ground Wires are affixed to the mounting screws or studs as required for poorly grounded or insulating panels. Other electrical connections

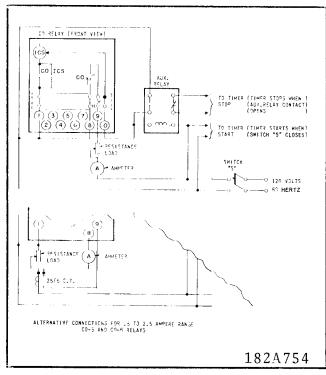



Fig. 16. Diagram of Test Connections for the Circuit-Closing Type CO Relay.

may be made directly to the terminals by means of screws for steel panel mounting or to the terminal stud furnished with the relay for thick panel mounting. The terminal stud may be easily removed or inserted by locking two nuts on the stud and then turning the proper nut with a wrench.

For detail information on the FT case refer to I.L. 41-076.

#### ADJUSTMENTS AND MAINTENANCE

The proper adjustments to insure correct operation of this relay have been made at the factory. Upon receipt of the relay no customer adjustments, other than those covered under "SETTINGS" should be required.

For relays which include an indicating instantaneous trip unit (ITT), the junction of the induction and indicating instantaneous trip coils is brought out to switch jaw #3. With this arrangement the overcurrent units can be tested separately.

#### **ACCEPTANCE CHECK**

The following check is recommended to insure that the relay is in proper working order:

#### 1. Contact

 a) By turning the time dial, move the moving contacts until they deflect the stationary contact to a position where the stationary contact is resting against its backstop. The index mark located on the movement frame should coincide with the "O" mark on the time dial. For double trip relays, the follow on the stationary contacts should be approximately 1/64".

- b) For relays identified with a "T", located at lower left of stationary contact block, the index mark on the movement frame will coincide with the "O" mark on the time dial when the stationary contact has moved through approximately one-half of its normal deflection. Therefore, with the stationary contact resting against the backstop, the index mark is offset to the right of the "O" mark by approximately .020". The placement of the various time dial positions in line with the index mark will give operating times as shown on the respective time-current curves. For double trip relays, the follow on the stationary contacts should be approximately 1/32".
- 2. Minimum Trip Current Set the time dial to position 6 using the lowest tap setting, alternately apply tap value current plus 3% and tap value current minus 3%. The moving contact should leave the backstop at tap value current plus 3% and should return to the backstop at tap value current minus 3%.
- 3. Time Curve For type CO-11 relay only, the 1.30 times tap value operating time from the number 6 time dial position is  $54.9 \pm 5\%$  seconds and should be checked first. It is important that the 1.30 times tap value current be maintained accurately. The maintaining of this current accurately is necessary because of the steepness of the slope of the time-current characteristic (Figure 13). A 1% variation in the 1.30 times tap value current (including measuring instrument deviation) will change the nominal operating time by approximately 4%.

Table I shows the time curve calibration points for the various types of relays. With the time dial set to the indicated position and the relay set on the lowest tap setting, apply the currents specified by Table I, (e.g. for the CO-2, 3 and 20 times tap value current) and measure the operating time of the relay. The operating times should equal those of Table I plus or minus 5% (Use .5 tap for .1 to .5 range).

4. Indicating Instantaneous Trip Unit (IIT) — The core screw which is adjustable from the top of the trip unit determines the pickup value. The trip unit has a nominal ratio of adjustment of 1 to 4 and an accuracy within the limits of 10%.

The making of the contacts and target indication should occur at approximately the same instant. Position the stationary contact for a minimum of 1/32" wipe. The bridg-

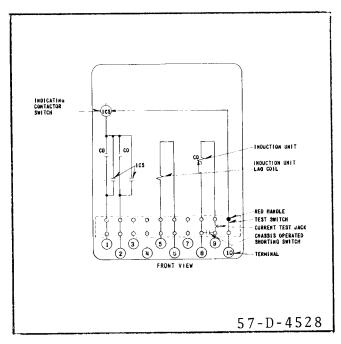



Fig. 17. Internal Schematic of the Double Trip Circuit Closing Relay with Torque Control Terminals. For the Single Trip Relay, the Circuits Associated with Terminal 2 are Omitted. Dwg. 57-D-4527.

ing moving contact should touch both stationary contacts simultaneously.

Apply sufficient current to operate the IIT. The operation indicator target should drop freely.

5. Indicating Contactor Switch (ICS) — Close the main relay contacts and pass sufficient dc current through the trip circuit to close the contacts of the ICS. This value of current should be not greater than the particular ICS tap setting being used. The operation indicator target should drop freely.

The contact gap should be approximately .047" between the bridging moving contact and the adjustable stationary contacts. The bridging moving contact should touch both stationary contacts simultaneously.

#### **ROUTINE MAINTENANCE**

All relays should be inspected and checked periodically to assure proper operation. Generally a visual inspection should call attention to any noticeable changes. A minimum suggested check on the relay system is to close the contacts manually to assure that the breaker trips and the target drops. Then release the contacts and observe that the reset is smooth and positive.

If an additional time check is desired, pass secondary current through the relay and check the time of operation. It

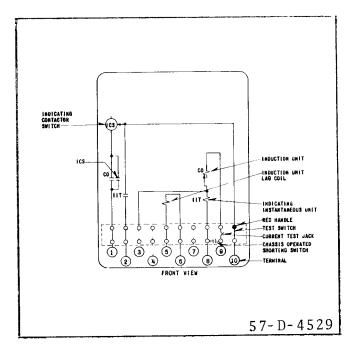



Fig. 18. Internal Schematic of the Single Trip Circuit Closing Relay with Torque Control Terminals and Indicating Instantaneous Trip Unit.

is preferable to make this at several times pick-up current at an expected operating point for the particular application. For the .5 to 2.5 ampere range CO-5 and CO-6 induction unit use the alternative test circuit in Fig. 16 as these relays are affected by a distorted wave form. With this connection the 25/5 ampere current transformers should be worked well below the knee of the saturation (i.e. use 10L50 or better).

All contacts should be periodically cleaned. A contact burnisher #182A836H01 is recommended for this purpose. The use of abrasive material for cleaning contacts is not recommended, because of the danger of embedding small particles in the face of the soft silver and thus impairing the contact.

#### **CALIBRATION**

Use the following procedure for calibrating the relay if the relay has been taken apart for repairs or the adjustments disturbed. This procedure should not be used until it is apparent that the relay is not in proper working order. (See "Acceptance Check")

#### **COUNIT**

#### 1. Contact

a) By turning the time dial, move the moving contacts until they deflect the stationary contact to a posi-

tion where the stationary contact is resting against its backstop. The index mark located on the movement frame should coincide with the "O" mark on the time dial. For double trip relays, the follow on the stationary contacts should be approximately 1/64".

- b) For relays identified with a "T", located at lower left of stationary contact block, the index mark on the movement frame will coincide with the "O" mark on the time dial when the stationary contact has moved through approximately one-half of its normal deflection. Therefore, with the stationary contact resting against the backstop, the index mark is offset to the right of the "O" mark by approximately .020". The placement of the various time dial positions in line with the index mark will give operating times as shown on the respective time-current curves. For double trip relays, the follow on the stationary contacts should be approximately 1/32".
- 2. **Minimum Trip Current** The adjustment of the spring tension in setting the minimum trip current value of the relay is most conveniently made with the damping magnet removed.

With the time dial set on "O", wind up the spiral spring by means of the spring adjuster until approximately 6-3/4 convolutions show.

Set the relay on the minimum tap setting, the time dial to position 6.

Adjust the control spring tension so that the moving contact will leave the backstop at tap value current  $\pm 1.0\%$  and will return to the backstop at tap value current  $\pm 1.0\%$ .

3. Time Curve Calibration – Install the permanent magnet.

Apply the indicated current per Table I for permanent magnet adjustment (e.g. CO-8, 2 times tap value) and measure the operating time. Adjust the permanent magnet keeper until the operating time corresponds to the value of Table I.

For type CO-11 relay only, the 1.30 times tap value operating time from the number 6 time dial position is 54.9  $\pm 5\%$  seconds. It is important that the 1.30 times tap value

current be maintained accurately. The maintaining of this current accurately is necessary because of the steepness of the slope of the time-current characteristic (Figure 13). A 1% variation in the 1.30 times tap value current (including measuring instrument deviation) will change the nominal operating time by approximately 4%. If the operating time at 1.3 times tap value is not within these limits, a minor adjustment of the control spring will give the correct operating time without any undue effect on the minimum pick-up of the relay. This check is to be made after the 2 times tap value adjustment has been completed.

Apply the indicated current per Table I for the electromagnet plug adjustment (e.g. CO-8, 20 times tap value) and measure the operating time. Adjust the proper plug until the operating time corresponds to the value in Table I. (Withdrawing the left hand plug, front view, increases the operating time and withdrawing the right hand plug, front view, decreases the time.) In adjusting the plugs, one plug should be screwed in completely and the other plug run in or out until the proper operating time has been obtained.

Recheck the permanent magnet adjustment. If the operating time for this calibration point has changed, readjust the permanent magnet and then recheck the electromagnet plug adjustment.

4. Indicating Contactor Switch (ICS) — Close the main relay contacts and pass sufficient dc current through the trip circuit to close the contacts of the ICS. This value of current should be not greater than the particular ICS tap setting being used. The operation indicator target should drop freely.

## 5. Indicating Instantaneous Trip Unit (IIT)

The core screw must be adjusted to the value of pick-up current desired.

The nameplate data will furnish the actual current range that may be obtained from the IIT unit.

#### **RENEWAL PARTS**

Repair work can be done most satisfactorily at the factory. However, interchangeable parts can be furnished to the customers who are equipped for doing repair work. When ordering parts, always give the complete nameplate data.

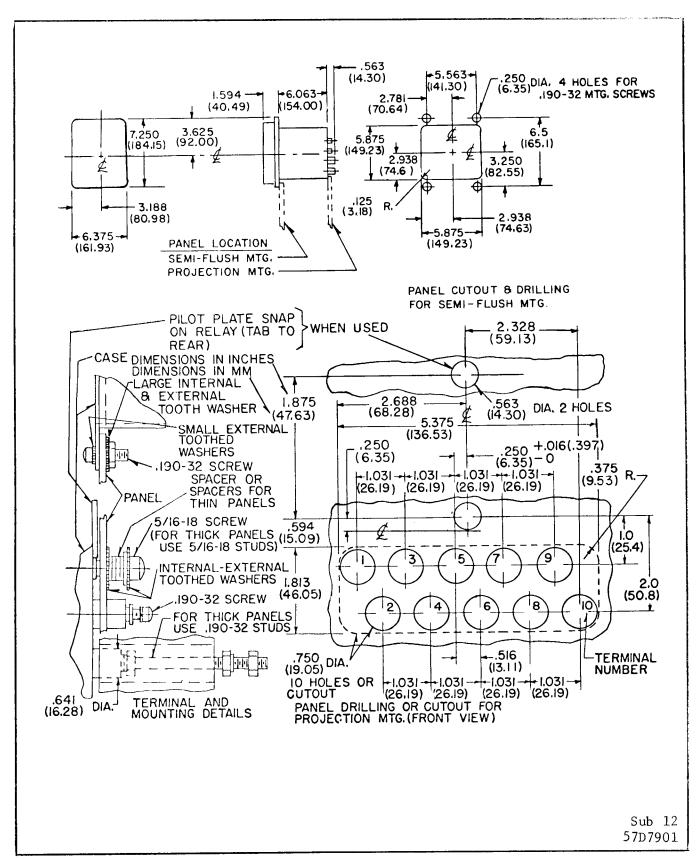



Fig. 19. Outline and Drilling Plan for the Type CO Relay.

**TABLE 1 TIME CURVE CALIBRATION DATA - 50 & 60 HERTZ** 

#### PERMANENT MAGNET ADJUSTMENT **ELECTROMAGNET PLUGS** TIME **CURRENT OPERATING CURRENT OPERATING** RELAY DIAL (MULTIPLES OF TIME (MULTIPLES OF TIME **TYPE POSITION** TAP VALUE) **SECONDS** TAP VALUE) **SECONDS** CO-2 3 0.57 20 0.22 CO-5 37.80 10 14.30 CO-6 2.46 20 1.19 CO-7 4.27 20 1.11 CO-8 13.35 20 1.11 CO-9 8.87 20 0.65 CO-11 11.27

 $\bullet$  AFor 50 hertz CO-11 relay 20 times operating time limits are 0.24 + 10%, -5%.

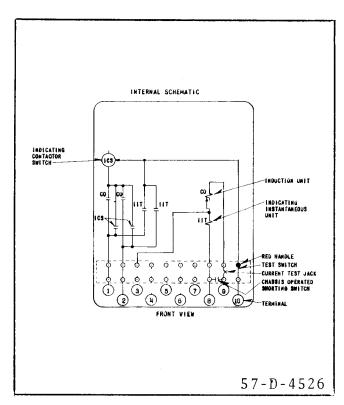
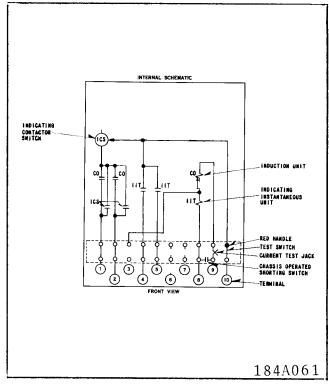




Fig. 20. Internal Schematic of the Double Trip Circuit Closing Relay with Indicating Instantaneous Trip Unit.



20

 $0.24\,\Delta$ 

Fig. 21. Internal Schematic of the Double Trip Circuit Closing Relay with Indicating Instantaneous Trip Unit to Separate Terminals.