TOSHIBA 6F9E0092

RC820 (2E RELAY)

INSTRUCTION MANUAL

RELAY MODELS RC820-HP_Y RC820-AP_Y

AUXILIARY MODULES

RC-81A (GROUND FAULT)

RC-81 B (PHASE REVERSAL)

RC-81C (GROUND FAULT/PHASE REVERSAL)

TOSHIBA CORPORATION

C O N T E N T S

	Page
OUTLINE	2
INITIAL INSPECTION	2
APPLICATIONS	2
RATINGS AND PERFORMANCES	3
PRECAUTIONS [N APPLICATIONS	7
INSTALLATION	I. 0
CIRCUIT CONSTRUCTIONS	13
HOW TO SET	16
SELECTION AND ADJUSTMENTS	17
INSPECTION AND MAINTENANCE	19
TROUBLE-SHOOTING	20
INSTALLATION TEST PROCEDURE	22
GROUND FAULT TEST FORM	24

OUTLINE

The 2E Relay (static relay for three-phase induction motors) is widely used in various industrial fields to protect induction motors against overloads and other abnormal conditions (i.e., single phase, unbalanced phases).

Optional plug-in type modules can be installed which include the RC81A ground fault module, RC81B phase reversal module, and RC81C ground fault/phase reversal module.

INITIAL INSPECTION

- (1) Check that the 2E Relay and/or additional module is per ordering specifications.
- (2) Check the 21: Relay and/or additional module for damage incurred during shipment (breakage, loose parts).

APPLICATIONS

The 2E Relay and/or additional module is used to protect three phase induction motors and other three-phase loads, not only from overloads and single phase conditions but also from phase reversal and ground fault.

- 2

RATINGS AND PERFORMANCES

Table 1 lists the ratings and performance of the 2E Relatives

Table 1 Ratings and Performances of the 2E Relay

Table	I Ratings an	d Performances of the 2E Relay			
	Tuno Form	RC 820 -			
	Type -Form	HP1 HP2Y HP3Y			
Items		HP1 12 HP2Y12 HP3Y12 AP1 AP2Y AF3Y			
		AP1 AP2Y AF3Y			
		Wee-phase circuits rated up to 600V AC,			
Applicable ci	ircuit	50/60 HZ - Direct			
		(Also, applicable to high-voltage circuit:			
		by combining with high-voltage CTs)			
Protective fu	unctions	Dual functions (2F relay) Over load and			
		Single phase protection.			
Rated	Rated ampere-	7 AT 55AT 110AT			
Current	turns				
current	Setting range	75v150% of rated at [75+(5+10+20+40)%]			
	Ultimate opera-	105, 1050 of mount outsing			
Overload	ting current	105∿125% of current setting			
operating	Operating time	3∿40 Sec. for starting characteristics at			
characte-	setting range	600% of current setting			
ristics	seccing range	[3+(2+5+10+20)sec.1			
	Operating time				
	accuracy	+20% of tine setting			
Single-phase		85% of current setting under one-phase			
protection	Minimum operat-	completely loss state (When measured on			
operating	ing current				
character- istics operating time		either remaining phase.)			
		See Fig. 1			
		Less than 4 sec.			
Control	Rating	100∿120V/200∿240 V AC, 1ø , 50/60 HZ			
voltage	Tolerance	85% ∿ 110%			

		R C _8	3 2 0		
1	ype -Form	H P 1Y	HP2Y	HF3Y	
Items		HP 1Y 12	HP2Y12	HP3Y12	
1(cm3		AP1Y	AP2Y	AP3Y	
	Control power	,	VA		
Power	circuit		VA		
consumption	Detecting	0 3 WA/phage	at rated curren	1	
	circuit	0.5 VA/pilase	at lated curren		
***************************************	contact	1110 -	NC (SPDT/Form)C)	
Output	arrangement		INC (BIDITION		
contact	Contact	120V AC-5.OA (Resistive load)			
specifications	capacity	120V AC-3.0A (Inductive load, pf=0.40)			
	NEMA B300	125V DC-0.2F	A (I√R=7ms)		
		250V DC-0.1/	A(I√R=7ms)		
Fault in&cati	on	LED		_	
		RC820 → HPEIY Manual Reset Type			
Reset mode		RC820 - HPI:	Y12 Manual & Rem Y Auto Reset 1	ote Reset	
	Anbient			JPC	
Application	temperature	- 10	∿ +60°C		
conditions	Relative				
		45 ~ 85% at 20°C			
	humidity				

The additional modules are connected to the 2E relay with gold plated pins and their principal ratings are the same as that of 2E Relay. In Table 2 is listed its ratings range and parformances.

Table 2 Ratings and Performances of optional modules

Type-Form		RC81A	RC81B	RC81C
Items				
	Operating	/	90% of 2E relay	90% of 2E relay
Phase	current		current setting	currentsetting
reversal	Operating		Less than 0.5S	Less than 0.5S
characteristics	time			
	Fround fault	4A ∿ 12A		4A ∿ 12A
	current	ZCT		ZCT
	setting	Primary		Primary
	Maximum	0		
	ground			10.00
	fault	60A		60A
	current			
•	Ground fault time	0.ls∿l.0s		0.ls∿l.0s
	setting	0.13 1.03		0.12 vr. 102
Output signal		output contact	s of basic rela	y
ouchas and				
Trip indication		LED (manual reset)		
	-	12A:40mA		12A:40mA
X /		Connected		connected
3 C T		Impedance :		Impedance:
♦		3000		300 Ω

Overload operating characteristics

Ultimate operating current --- 105~125 of
current setting

Single phase protection operating characteristics
min. operating current --- 85% of current setting

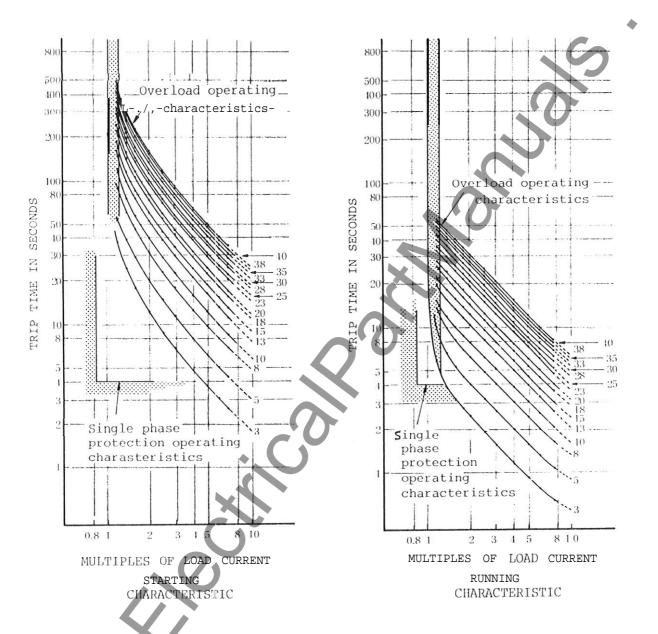


Fig. 3. Operating characteristic curve

PRECAUTIONS IN APPLICATIONS

When planning to use Toshiba Static 2E Relays, be sure to give full consideration to the following precautions:

- (1) (Control power source supply

 The power circuit must be arranged so that control

 power is always supplied to the 2E Relay before the

 main circuit is switched ON.
- (2) Limit the secondary burden when combining with external cT's. When the relay is used in a medium or high voltage circuit, an excessive CT secondary burden may cause secondary current waveform distortion.

Since large waveform distortion may be detected as unbalanced current, limit the external cT secondary burden according to the overcurrent constant while referring to Table 3.

Table 3 Limit of external CT secondary burden

CT Overcurrent Constant	Recommended Secondary Burden			
3	Not greater than 50% of rating			
5	Not greater than 85% of rating			
10 or above	Up to rated burden			

(3) Application on DC systems

See Fig. 2.

In DC control systems main current does not flow sinusoidaly even though the power system (voltage) may be AC, so the 2E Relay, and/or additional modules, are not applicable.

Three-phase AC power supply

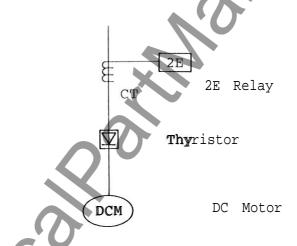


Fig. 2 Example of misapplication of the 2E Relay

(4) The 2E Relay has phase unbalance detecting characteristics. Figure 4 shows how the current's unbalanced trip point depends upon the relay's current setting and the unbalanced current rate.

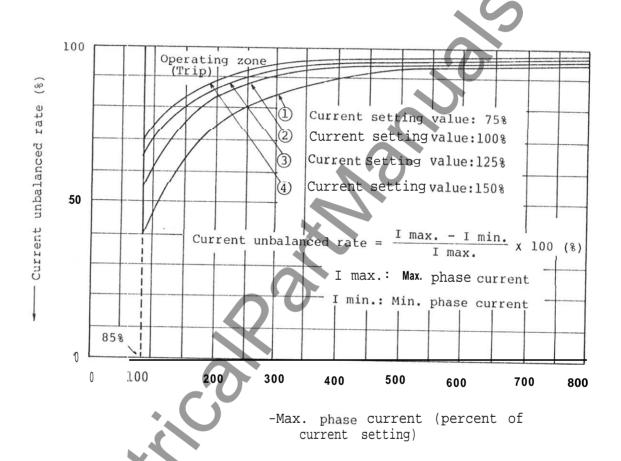


Fig. 3 Phase unbalance detecting characteristics

INSTALLATION

1. Surface Mounting

The 2E relay will be shipped with mounting feet loose. Before installation, attach the mounting feet to the relay as shown Fig. 4. The below shown mounting feet and hardware will be shipped together with the relay as standard accessory.

Do not use a screw-locking agent when tightening.

Mounting Feet Accessory

					Par	ts		Quantity	7		
				Мо	unting	Feet		2			
				M4	Screw	'S		4			
				М4	Sprin	g Washer	rs	4			
						•					5(0.20) Dia-4 Mounting
			40(1.58	3) -l			M 3.5			1.6(0.06)	Holes
	-					·. C		Termin	nal	Conductor	· · · · · · · · · · · · · · · · · · ·
			TOSHIB 2E Rela		Curre	nt			1	Through- out Holes	3
			ZE Kero		/setti	ng Switch	es			93)	
00.	.54)	(06.			Time Swite					49 (1.9)	. 54)
180 (7	9)99	50 (5			Trip	Indication	on.	(II) (II) (II) (II)		. 93)	9) 997
	Н					/Reset				1 1	
			1		Swite	cn	=	Commen			
	ل		ф	•				14045 50	(0.91	→ ''.	- - - - - - - - - - -
			60(2.3	6) 16 (0.63)	(0.20)	5	140 (5.50)	(0.91	12(0.47)	40

Fig. 4 Surface mount type 2E Relay

6(3.66)

2.' Flush Mounting

For flush mounting, flush mounting kit (order separately) is required.

Before installation, attach the flush mounting fee to the relay instead of surface mounting feet as shown Fig.5.

Flush	Mounting	Kit
-------	----------	-----

Parts	Quantity
Flush Mounting Feet	2
Flush Cover with Nylatch	1
M4 Screws	4
M4 Spring Washers	4

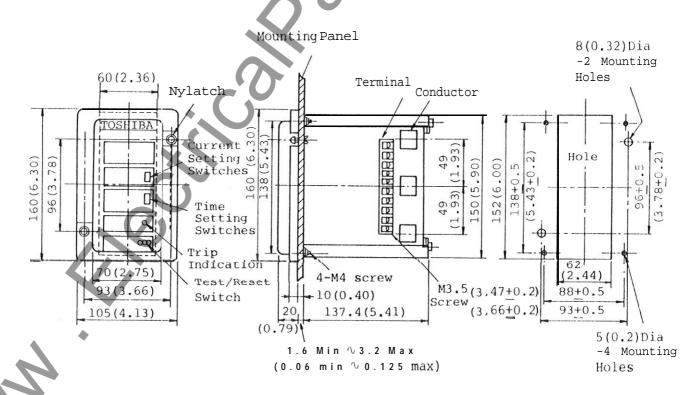


Fig. 5 Flush mount type 2E Relay

3. Optional Module Installation

Install module with two knurl screws (accessory of module) as shown Fig. 6 after the relay installation and wiring to the relay are completed.

For: module installation, peel off the side label on the relay to open the holes for connection pins.

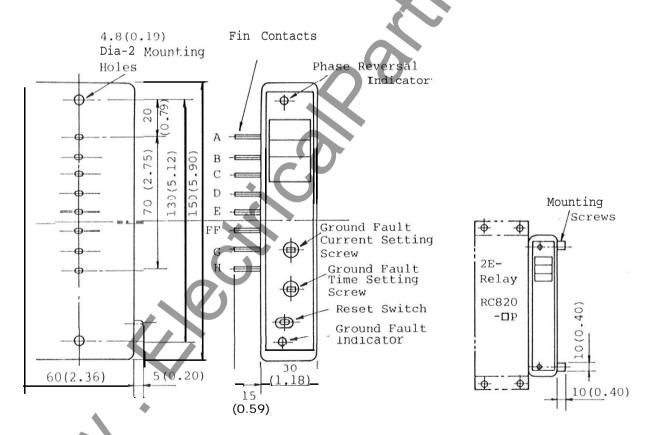


Fig. 6A Additional module

Fig. 6B Combination of 2E relay and additional module

CIRCUIT CONSTRUCTIONS

When wiring primary wires through the CT windows, see Fig. 9, take care of the following:

- 1) Primary wires must go through the correct CT windows.
- 2) Primary wires must go through in the same direction.
- 3) Primary wires must have the same **number** of turns through the CT windows.

Before applying the 2E Relay and/or additional module for low voltage induction motor protection, see Fig. 8, which illustrates the typical wiring connections.

Applying the 2E Relay for high voltage, or low voltage large capacity systems, see Fig. 9. It is necessary to balance the CT secondary load, that is, cT secondary wire length.

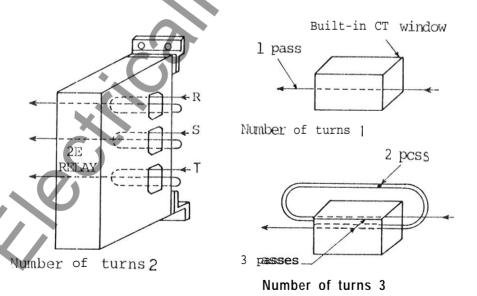
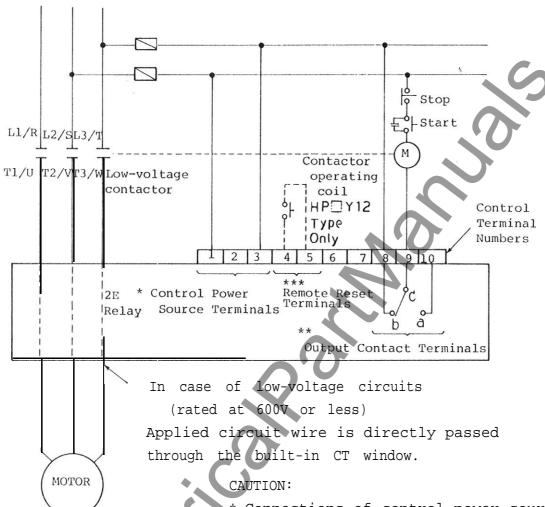



Fig. 7 Installation of wires passing through the built-in CT's

Low-voltage power supply $200V \sim 240V AC$

Tow-voltage induction motor

- * Connections of control power source AC 100-120V --- Terminals 1-2
 - AC 200-240V --- Terminals 1-3
- ** Connections of output contacts
 NC-contact (opened when the 2E
 Relay operated) --- Terminals 8-9
 NO-contact (closed when the 2E
 Relay operated) --- Terminals 9-10
- *** Connections of Remote reset switch

 Remote reset --- Terminals 4-5

 Special spec: RC820-HP []Y I 2\

 Wiring length, from 2E to reset switch

 must he less than 5 M.

Fig. 8 Typical application trlow-voltage induction motor circuit

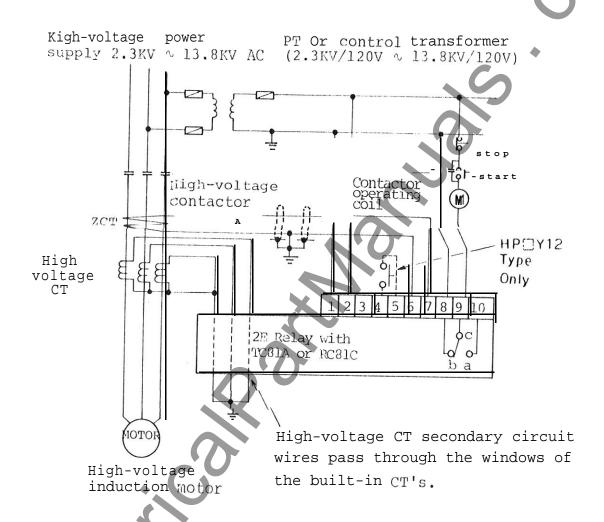


Fig. 9 Typical application to high-voltage induction motor circuit with ground fault protection

HOW TO SET

The 2E relay is offered in three models,

Model	Ampere-Turn	Rating
RC820-{:P1Y	7A	Т
RC820-[]P2Y	55A'	Γ
RC820-[]P3Y	110A	\mathbf{T}

with each having an adjustable (Ampere-Turn) range of $75 \sim 150 \%$. Each model has direct wiring capability through the three current transformer's windows. This is limited to 165 amperes (RC820-[]P3Y). For larger currents, or voltages above 600V, the use of external current transformers is required.

Selection of the suitable model may require some preliminary calculations. See "Current Setting Adjustments" to determine if the calculated "% Dial Setting" can be obtained with the selected model given the motor's full load current (FLA). Model Selection can also be influenced by wire size limiting the number of turns that can be passed through the CT windows (0.75 in. by 0.75 in.).

SELECTION AND ADJUSTMENTS

(1) Current Setting Adjustment

N(T)=<u>2E Amp-Turn Rating x External CT Ratio*</u>
Motor FLA

N(T): Number of turns through the 2E's built-in CT's rounded off to nearest integer (CT wraps are additive).

Current Setting %

- = Motor FLA x N(T) x 100%

 2E Amp-Turn RAting x External CT Ratio*
- * External CT Ratio: Ex. 500A/5A CT's = 100:1

 If no external CT's are used, substitute with "1.0".
- ** For 1.15 Service Factor Motors. If the motor has a 1.0 S. F., multiply the calculated Current Setting %" by 0.93.
- NOTE: Select the external cT's ratio so that the current setting % is as close to 100% as possible.
- Example #1: 50HP, 4GOV 65A Full Load, 1.15 S.F.

 Across-the-line start.

 Since the full load falls within the range of the

 55 AT (75 150%) 2E Relay's CT's, and no external

 CT's are required,

The 8 Dial Setting = $\frac{65x1x100\%}{55}$ = 118% = 115% or 120%

Example X2: 200HP, 460V, 240A Full Load, 1.15 S.F.

Across-the-line start.

240 Amps exceeds the highest rated 2E Relay,
therefore, external CT's must be used, and the
HPlY , 7 AT rated 2E, will be chosen as the
standard model when the current exceeds the HP3Y's
rating. If 300/5 CT's are used,

the Current Setting 8 = $\frac{240 \times N(T) \times 100\%}{7 \times (300)}$

 $= N(T) \times 57.14\%$.

And if 2 turns through the 2E Relay's CT windows (from the external cT's) are used, the % Dial Setting = $2 \times 57.14 = 114\% = 110\%$ or 115%

(2) Time setting

Determine the protection curve from 2E Relay operating curves shown in Fig. 1, and read the operating time at 600% of setting current. 'Adjust the time setting dip switch to the nearest setting above the operating time. When using the RC81A or RC81C with the 2E Relay, determine the settings with the same manner mentioned above.

(3) Fault Indication and Reset

The LED on the 2E relay is illuminated by any trip condition.

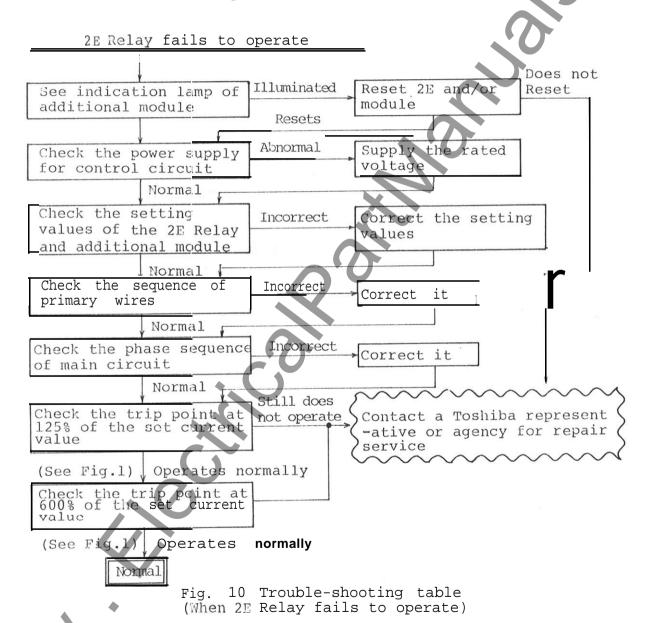
The optional module's have individual indicators (LED's). When the 2E Relay detects an overload, single phase or phase unbalance condition, and the LED indicator lights, throw the reset toggle switch to reset the relay. When the 2E relay equiped with an optional module detects a phase reversal or ground fault reset the toggle switch of the 2E relay and optional module to turn off both LED'S.

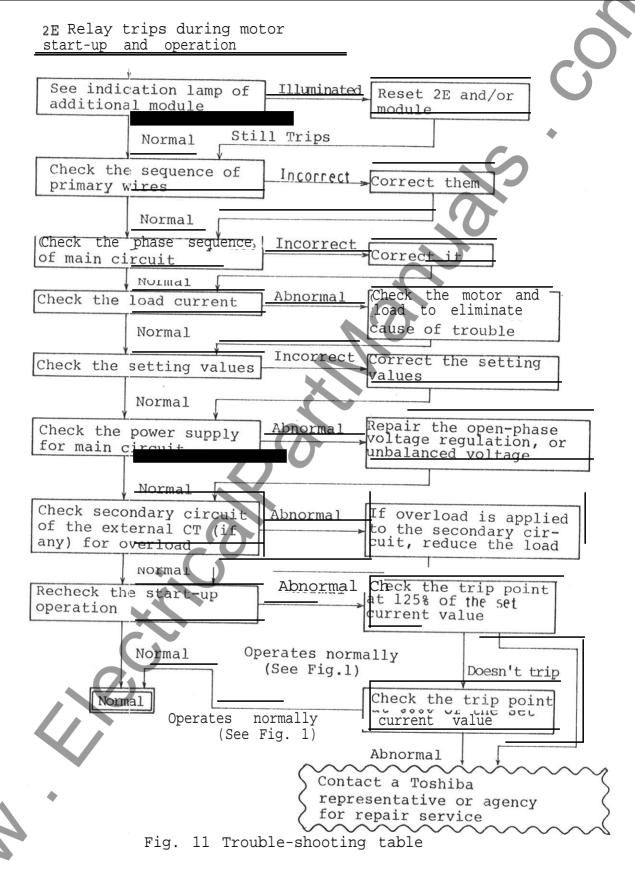
INSPECTION AND MAINTENANCE

Before inspection and maintenance, read the following items to determine the maintenance period.

Intervals of inspection

- (1) When the 2E Relay and/or additional module in an ordinary electric control room is operated under relatively good environmental conditions Approx. annually
- (2) When the 2E Relay and/or additional module is operated under adverse environmental conditions Approx. semi-annually


Items to be inspected


- (1) Dust accumulation When dust accumulation or contamination is observed near the current-conducting components, wipe them clean with a soft, dry cloth. Do NOT use gasoline, bengine, or other organic solvents.
- (2) Loose scress
- (3) Preset points of the current-setting and time-setting switches
- (4) Operation of the test switch, if necessary
- (5) Operating characteristics, if necessary
- (6) Damage or other defects

TROUBLE-SHOOTING

In case of trouble, determine the cause of the trouble in accordance with the sequence shown in Fig. 10 or Fig. 11.

After clarifying the cause, take the actions shown in the chart to correct the problem.

(When 2E Relay operates during motor start-up and operating)

INSTALLATION TEST PROCEDURE

It is not necessary to schedule periodic maintenance and testing of the ground fault protection. However, if tests are desired to confirm the proper operation of the system, one of the following procedures can be used.

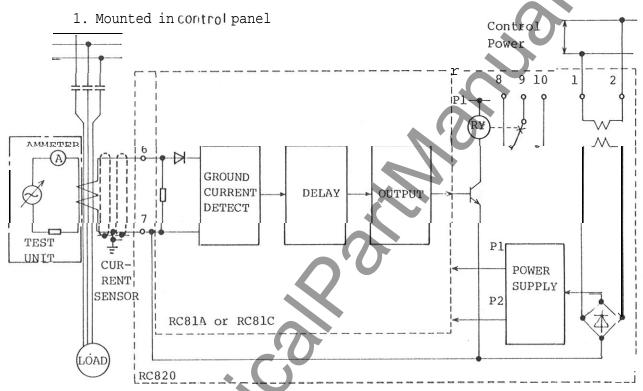


Fig. 12 Test circuit

Note.

The above figure shows the relay reset. (not tripped). The resistor in the test unit is for current limiting.

- 1. When testing the ground fault module, keep the main circuit de-energized.
- Set the ground current knob at a proper value of IGS. 2. (ground fault trip point)
- Connect the test wire through the ZCT window as show in 3. Fig. 12.
- 4. Apply control power to the 2E and interrupting device.
- Apply 1.25xIGS with the test circuit and interrupt the
- current when the relay operates.
 Check the operation of the relay with test switch on the 2E and check that the LED indicator lights.
- If the relay does not operate at the set time, interrupt the test current., cheek the current setting and the repeat test.

2. Bench Test

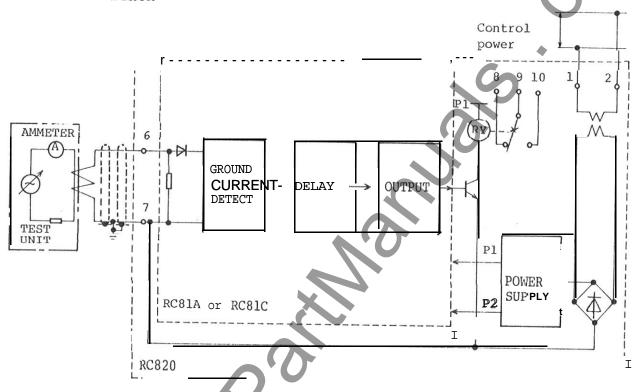


Fig. 13 Test circuit

Note.

The above figure shows the relay reset.(not tripped). The resistor in the test unit is for current limiting.

- 1. Connect the sensor and relay as shown in FIG. 13.
- 2. Set the ground current knob at a proper value of IGS (ground fault trip point).
- fault trip point).

 Apply 1.25xIGS with the test circuit and interrupt the current when the relay operates.
- 4. Check the operation of the relay with the test switch on the 2E and check that the LED indicator lights.
- 5. If relay does not operate at the set time, interrupt the test current, check the current setting and repeat the test.

GROUND FLULT THE FOR.

No.	Date	Setting	Test current	Result	Not:e
1				25	
2					
3		Service with the desirable of the desira			
			0		
4					
5					