
MAINTENANCE

TRUCTIONS

DIRECT-CURRENT Life-Line H MOTORS AND GENERATORS TYPE SK-H, TEFC Industrial & Explosion Proof (Frame Diameters 250A Through 440A with Ball Bearings)

Type SK-H motors and generators in NEMA frame diameters 250A through 440A use a high temperature, epoxy based insulation system. These direct current machines are designed for rapid response for both variable and constant voltage applications.

Cooling of the TEFC machine is primarily accomplished by a heat exchanger. Air is drawn through screened openings in the rear bracket, swept circumferentially across the heat exchanger radiating fins, and discharged through openings between the bracket and frame. This discharged air flows axially over the frame for additional cooling.

Warranty. The Corporation in connection with apparatus sold agrees to correct any defect or defects in workmanship or material which may develop under proper or normal use during the period of one year from the date of shipment, by repair or by replacement f.o.b. factory of the defective part or parts, and such correction shall constitute a fulfillment of all the Corporation's liabilities in respect to said apparatus, unless otherwise stated in the quotation.

Any defects that may develop should be referred to the nearest Westinghouse Sales Office for complete servicing information.

RECEIVING

Unpack the machine and make certain that it was not damaged during shipment. Turn the shaft by hand to see that it turns freely.

Check to see that the nameplate data agrees with the voltage of the power supply provided for the machine.

The shaft extension is coated with a slushing compound to prevent rusting during shipment and storage. This slushing compound may be removed by wiping with any petroleum solvent, such as benzine, gasoline, turpentine, Stoddard solvent, etc. Wear neoprene gloves to prevent skin irritation when using petroleum solvents. See precautions under "Maintenance", page 3.

Mounting. If protecting shields or guards are used, they must not obstruct the free flow of air around the machine. The external air temperature should not exceed 40 degrees C or 104 degrees F.

Fasten to a rigid foundation using bolts or screws of the largest size permitted by the hole in the mounting feet. The machine must rest evenly on all mounting pads.

Method of Drive. Any of the following drive methods may be used depending on the particular application:

1. Flat Belt Drive. Mount the machine on the slide base, which allows for adjusting the belt tension.

Mount the pulley on the machine so that the inner face of the pulley is in line with the shoulder on the shaft extension.

Use a belt wide enough to carry the load without excessive tension. Wide, single ply belts are preferable to double ply belts due to the lower bearing pressures that result.

The smallest pulley should not be less in diameter than that recommended by the belt manufacturer for the belt used.

Align the pulleys so that the belt runs true, and tighten the belt just enough to prevent slippage. Where the pulleys are not of approximately the same diameter, the distance between shaft centers should be greater than twice the diameter of the larger pulley. For short center distances, an idler pulley or a V-belt drive should be employed.

2. *V-Belt Drive.* Mount the machine on the slide base, which allows for adjusting the belt tension.

Mount the sheave on the machine close to the bearing housing allowing sufficient clearance for armature end play.

The smallest sheave should not be less in diameter than that recommended by the belt manufacturer for the belt used.

Sheaves should be carefully aligned. Belt tension should be just sufficient to eliminate excessive sag in the slack of the belt. V-belts do not require as much tension as flat belts.

3. Chain Drive. Mount the machine on the slide base, which allows for adjusting the chain tension.

Mount the sprocket on the machine close to the bearing housing, allowing sufficient clearance for armature end play, and align the sprockets accurately.

4. Gear Drive. Mount the machine and driven unit so as to maintain accurate alignment. The gears must mesh accurately to prevent vibration.

Mount the gear on the machine close to the bearing housing to minimize the overhang, allowing sufficient clearance for armature end play.

Dowel the machine to the base.

5. Direct Drive. The machine shaft and the driven or driving shaft must be carefully aligned. Dowel the machine to the base.

"GENERAL NOTE"

Pulleys, pinions, or coupling halves should have a close sliding fit on the shaft extension and must be securely locked to avoid hammering out in operation. If it is necessary to drive the part into position, it is important, on ball bearing machines, that the end of the shaft opposite the extension be backed up so that the force of the blow is not taken in the bearing. Use a pinion puller for removing tight pulleys.

Electrical Connections. Connect the motor and starter by referring to the diagrams furnished with the starter. Refer to diagram No. 1 in these instructions. The starting resistance may be either in

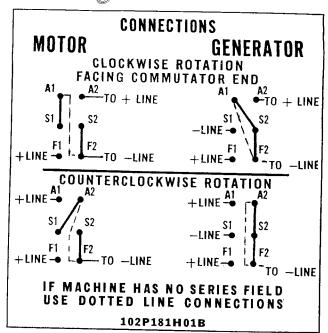


DIAGRAM NO. I

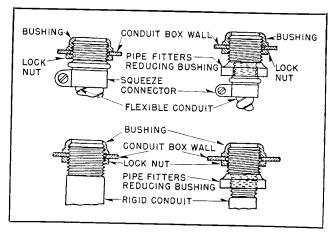


FIG. 1. Method of Connecting Conduit (TEFC Industrial)

the + or - side of the armature but be sure the shunt field is energized before starting.

Connect the generator and field rheostat by referring to diagram No. 1. The field rheostat should be connected between Fl and the + line.

Install all wiring and fusing in accordance with the National Electric Code, and local requirements.

For TEFC machines (except for explosion proof) the conduit box on the side of the machine is designed with three conduit knock-outs to suit various mounting conditions. Where it is desired to extend conduit from above or one side, remove the four mounting screws, and turn the conduit box 90 degrees or 180 degrees so that the knock-out

will be in the desired position. The recommended method of connecting the conduit is shown in Fig. 1 for industrial fan cooled machines.

When the machine is mounted on a slide base for belt adjustment, flexible metallic conduit should be used to protect the leads to the machine. In making this connection, a squeeze connector should be used for attaching the flexible conduit to the conduit box. Squeeze connectors may be straight, 45 degrees or 90 degrees.

Explosion proof machines. The explosion proof machines are supplied with an explosion proof type of conduit box which may be drilled and tapped for either Bureau of Mines type of packing gland; or for Underwriter's type conduit connection.

OPERATION

Motor. Run the motor without load to check the connections, and direction of rotation. To start or stop the motor, refer to the instructions furnished with the starter.

Generator.

Starting. Make certain that all instructions for installing have been complied with and that the connections have been properly made. Then observe the following instructions in the order named.

- 1. Start each generator with the circuit breaker or the line switch open and all the resistance of the field rheostat in the field circuit.
- 2. When the generator is up to full speed, adjust the voltage to the proper value by means of the field rheostat.
- **3.** Close the circuit breaker or switch connecting the generator to the switchboard, and then close any other switches necessary to apply the load.

When starting a generator for parallel operation, the voltage of the generator must be made to agree in direction and strength with that of the bus bars of the generator already in operation; then close the circuit breaker, the equalizer switch and the load switch. The equalizer switch and load switch are sometimes combined in a three pole switch; if single pole equalizer switches are used, the generator must not be connected in parallel until the equalizer circuit is complete. On closing the switch connecting the generator to the bus bars, adjust the field rheostat again until the generator takes up its share of the load, as shown by the ammeters.

Failure to generate full voltage may be due to: (1) slow speed; (2) open shunt field circuit, caused by faulty connections, or a burned out coil or rheo-

stat; (3) open armature or series field circuit; (4) incorrect brush setting; (5) reversed series or shunt coils; (6) poor brush contact due to dirty commutator or brushes sticking in holders; (7) loss of residual magnetism.

Stopping. Reduce the voltage (and consequently the load) of the generator by adjusting the field rheostat and when the load is small, open the circuit breaker and the generator switch, then stop the prime mover, or release clutch.

Important: Generators should be connected shunt wound when used to excite the fields of synchronous motors or generators. If the generator is compound wound, omit the series field winding from the circuit.

Further operating suggestions and construction details will be furnished on request by the nearest Westinghouse Sales Office.

MAINTENANCE

Inspection. Although Life-Line H machines require a minimum of attention in service, they should be inspected at regular intervals to guard against excessive (1) dirt, (2) moisture, (3) friction and (4) vibration, which account for 90 percent of all machine failures.

1. Guard Against Dirt. The insulation and mechanical parts of the machine should be kept clean. Dust that is free from oil or grease may be removed by wiping with a clean, dry cloth, or preferably, by suction. Dust may be blown from inaccessible parts with clean, dry air, using not more than 30 to 50 pounds pressure. Use care to prevent personal injury from the air hose; use goggles to avoid eye injury from flying particles.

When grease or oil is present, wipe with a cloth moistened (but not dripping) with a petroleum solvent of a "safety type", such as Stoddard solvent, or similar material available under various trade names. Wear suitable gloves to prevent skin irritation when using these petroleum solvents.

Petroleum solvents are flammable, but relatively nontoxic.

2. Guard Against Moisture. Machines should always be guarded against the accidental intrusion of water.

Stand-by units should be run at least once a week to guard against moisture condensation.

Before windings are blown out with air, make sure that water has not condensed in the air line.

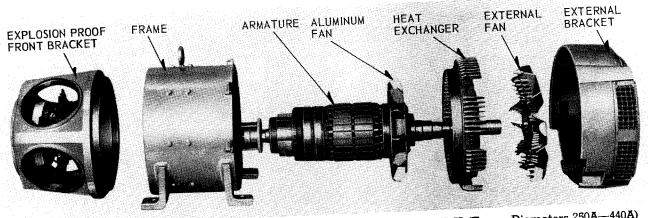


FIG. 2. Arrangement of Parts—Life-Line H Motors and Generators, Type SK-H (Frame Diameters 250A—440A)

- 3. Guard Against Friction. Excessive friction or overheating of bearings is usually traced to one of the following causes:
 - a. Excessive belt tension.
- b. Poor alignment causing excessive vibration or binding.
 - c. Bent shaft.
- d. Excessive end or side thrust due to gearing, flexible coupling, etc.
- 4. Guard Against Vibration. To avoid failures due to vibration, a few simple checks should be made regularly.

Check for misalignment such as may be caused by foundation settling or heavy floor loading. These may be causing vibration through misalignment.

Check to see if vibration from the driven machine is being transmitted to the motor.

Check for excessive belt or chain tension or the push-apart effect inherent in spur gears.

Check mounting bolts and bracket bolts to be sure they are tight.

5. Aluminum Parts. Use" Molykote" lubricant Westinghouse Spec. * M 8565-5 or Johnson Redraw Wax *700 on all aluminum fits when re-assembling machine. See Fig. 4

Coils. Revarnishing the windings when machines are overhauled will lengthen their life. Suitable varnish may be obtained from the nearest Westinghouse Sales Office.

Brushes. The correct brush position is the same for both directions of rotation. The neutral position of the brushes is indicated by a chiseled mark in the front bracket. This mark registers with a notch molded in the rocker ring. The brushes should not require further adjustment.

Use only the brushes recommended by Westinghouse. These brushes are recommended on the basis

of extensive tests which have proved their reliability for this service. Brushes should have only sufficient clearance in the box to slide easily.

Brushholders. These machines are fitted with the "UNIFORCE" brushholder. The "UNIFORCE" brushholder maintains essentially constant pressure during the life of the brush. It requires no adjustment to compensate for brush wear. (See Fig. 3).

Provision is made for considerable increased pressures where severe operating conditions are encountered. These special conditions are such as severe vibration, high surges of load, line starting,

Care of Commutator and Brushes. Keep the commutator clean, wiping it at frequent intervals with a clean canvas cloth free from all lint. The brushes should fit the commutator, making contact over the entire surface.

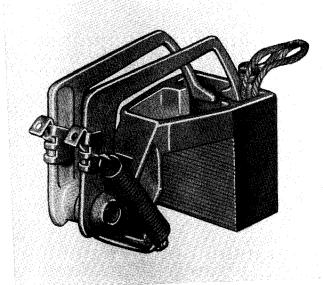


FIG. 3. "UNIFORCE" Brushholder

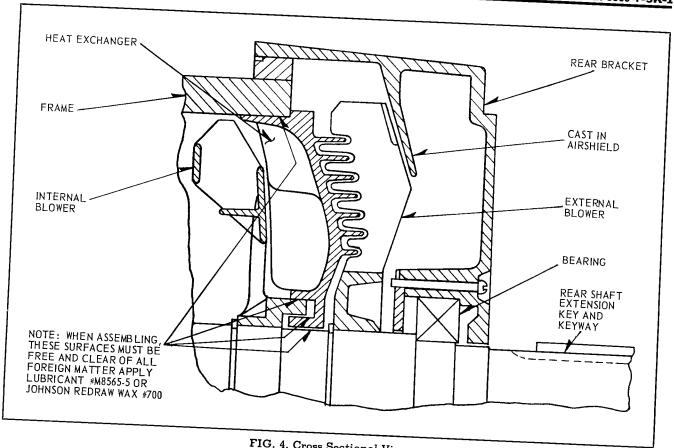


FIG. 4. Cross Sectional View

A commutator that is taking on a polish and show no signs of wear requires no other attention; but a rough, raw, copper-colored commutator should be smoothed with a piece of sandpaper or sandstone ground to fit and then polished with No. 00 sandpaper. Always lift brushes when polishing commutator and do not replace them until all grit has been removed. Never use emery cloth or emery paper on the commutator.

Bearings. All bearings are of the double shielded type. Front inner bearing caps on frames 365A and larger and rotating seals on frames 326A and smaller keeps grease from entering the machine for TEFC (Industrial). The explosion proof motors have front inner bearing caps on frames 256A and larger. The industrial and explosion proof motors have rear inner bearing caps on frames 256A and larger.

All bearings are packed at the factory with a proper amount of lubricant and will require no

additional grease for many years of operation under most conditions. However, greasing and drain ports are provided on all machines for use if service lubrication is desired. When regreasing, stop motor, remove drain plug, add Westinghouse grease (with hand operated gun only) until grease appears at drain hole. Run motor for approximately ten minutes before replacing drain plug. It is recommended for easy applications no lubricant be added, for average applications motor be lubricated every three to six years, and for severe applications, greasing be done on the basis of experience.

RENEWAL PARTS

Renewal Parts information may be obtained from the nearest Westinghouse Sales Office. Be sure to give the complete nameplate reading on the machine for positive identification.

WESTINGHOUSE **ELECTRIC CORPORATION** BUFFALO DIVISION • MOTOR AND GEARING DEPT. • BUFFALO 5, N.Y.

printed in U.S.A.