Westinghouse

A/200 Magnetic Control

A200 Non-Combination Starters 100 Hp., 600 Volts Maximum, 60 Hertz Ac

Application

A200 magnetic motor starters are designed for across-the-line control of squirrel cage motors or as the primary control for wound rotor motors. A200 starters can be furnished for non-reversing, reversing and two-speed applications.

Starter Types

A200 Non-Reversing A210 Reversing A900 Two Speed

Enclosures

NEMA 1: General Purpose NEMA 1B: General Purpose Flush Mounting

NEMA 3R: Raintight NEMA 4; Watertight

NEMA 7D: Class I, Group D Hazardous Locations

NEMA 9E, F, G: Class 11, Groups E, F, G

Hazardous Locations
NEMA 12: Dust Tight – Industrial Use

Typical Specification

A200 Non-Reversing Starters

Across-the-line magnetic starters for motors up to 100 Hp., 600 Volts, shall be West-inghouse Type A200 or approved equal. They shall be built and tested in accordance with the latest NEMA standards.

Starters shall be equipped with three overload relays. Overload shall have ±15% adjustment from nominal heater rating to compensate for ambient conditions, or to provide closer overload protection upon installation. Starter shall provide for field installation of up to 3 NO and 4 NC interlocks in addition to the hold-in interlock.

A210 Reversing Starters

Reversing magnetic starters for motors up to 100 Hp.. 600 Volts shall be Westinghouse type A210 or approved equal. They shall be built and tested in accordance with the latest NEMA standards.

Starters shall be equipped with three overload relays. Overload shall have ±15% adjustment from hominal heater rating to compensate for ambient conditions, or to provide closer overload protection upon installation. Starter shall provide for field installation of up to 4 NO and 4 NC interlocks in addition to the normal interlocks.

A900 Two Speed Starters

Two-speed magnetic starters for motors up to 100 Hp., 600 Volts shall be Westinghouse Type A900 or approved equal.

Starters shall be equipped with three overload relays. Overload shall have ±15% adjustment from nominal heater rating to compensate for ambient conditions, or to provide closer overload protection upon installation. Starter shall provide for field installation of up to 4 NO and 4 NC interlocks in addition to the normal interlocks.

Ratings

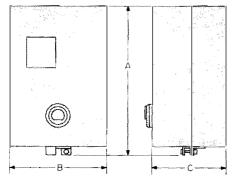
A200, A210 Starters

NEMA	Maximum Horsepower									
Size	120	208/220	240	480						
	Volts Ac	Velts Ac	Volts Ac	Volts Ac						
3 Phase,	3 Pole									
00		1 1 1/2	1½	2						
0		3	3	2 5						
1		7½	71/2	10						
0 1 2 3 4		15	15	25						
3		30	30	50						
4		50	50	100						
Single Pl	haco									
_										
00 0	1 %									
1			2 3 5							
1 1/2	2 3		5							
2	3	• • •	71/2							
-	, ,	• • •	1 / /2							

A900 Two Speed Starters

Maximum Horsepower Ratings, 3 Phase²

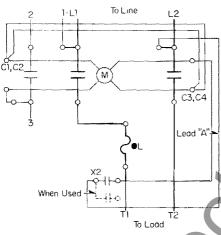
NEMA Size	Constant Variable T		Constant Horsepower				
		480/600	208/240	480/600			
	Volts Ac	Volts Ac	Volts Ac	Volts Ac			
0		c	2	2			
0 1	7 1/2	5 10	5	3 7½			
2	15	25	10	20			
3	30	50	25	40			
4	50	100	40	7 5			

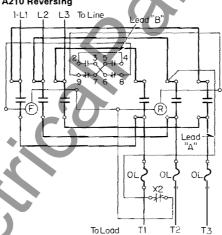

② Fer inching service, where operation exceeds 5 times per minute, decreased horsepower ratings in accordance with NEMA standards 1C 1-218.21 are recommended.

Westinghouse Electric Corpora A200 Across-the-Line Starters	tion
	The second secon
Gen. Ord. No	Item No.

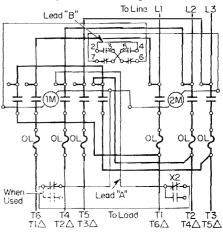
A/200 Magnetic Control

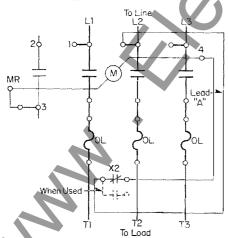
A200 Non-Combination Starters 100 Hp., 600 Volts Maximum, 60 Hertz Ac


Dimensions, Inches[®] Dimension certification for construction purposes for G. O. No...

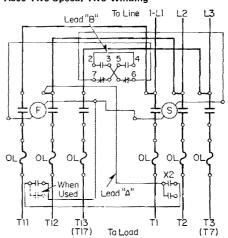

NEMA	Starter	A200 Starters							A210, A900 Starters			
Enclosure	Size	3 Phase		1 Phase								
		A	В	С	Α	В	C	A	В	С		
1	00, 0, 1 2 3 4	9 ²⁵ / ₃₂ 11 ²⁵ / ₃₂ 16 ¹⁹ / ₃₂ 18 ¹¹ / ₁₆	6¼ 6²⅓₂ 8¼ 9¼	5 ²¹ / ₃₂ 61/ ₁₆ 77/ ₄ 77/ ₈	11 ²⁵ / ₃₂ 11 ²⁵ / ₃₂	6 ²¹ / ₃₂ 6 ²¹ / ₃₂	6½6 6½6	9 ¹³ / ₁₆ 11 ²⁷ / ₃₂ 18 ¹¹ / ₁₆ 18 ¹¹ / ₁₆	10 ¹⁵ / ₁₆ 12¼ 16 17	6% 6% 8% 8%		
1B	00, 0, 1 2	10¾ 12 ¹³ ⁄16	8 ³¹ / ₃₂ 9 ²¹ / ₃₂	5 ⁵³ /64 6 ³ / ₁₆	12 ¹³ /16 12 ¹³ /16	9 ² 1/ ₀₂ 9 ² 1/ ₃₂	6¾s 6¾s		, .			
3R	00. 0, 1 2 3 4	10 ²³ % ₂ 12 ⁵ % ₂ 19 ⁵ % ₂ 19 ¹² % ₂	71/a2 7 ²³ /32 10 ¹⁵ /32 10 ¹⁵ /32	61/64 63/6 81/32 81/32	125/32 125/32	723/ ₉₂ 723/ ₃₂ 	6% 6%		* * * * * * * * * * * * * * * * * * * *			
4, 12②	00, 0, 1 2 3 4	10 ⁴ % ₄ 12¾ 20% 20%	7 7 ¹¹ /16 10% 10%	5 ¹⁵ / ₁₆ 6 ¹⁹ / ₆₄ 8 ¹³ / ₆₄	12¾ 12¾ 	7 ¹ / ₁₆ 7 ¹ / ₁₆	6 ¹⁹ / ₆₄ 6 ¹⁹ / ₆₄	10 ⁴⁵ / ₆₄ 12¾ 20% 20%	1 1 1 1 1/16 1 3 2 1/64 1 8 2 3/64 1 8 2 3/64	6% 6% 84% 84%		

- ② Separate enclosures with identical dimensions.
 ③ Dimensions shown are overall, including mounting feet, hubs, etc. Drawings not intended to show construction to the construction of the struction features.


Typical Wiring Diagrams A200 Single Phase


A210 Reversing

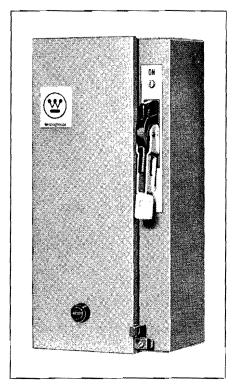
A900 Two Speed, One Winding



A200 Three Phase

Westinghouse Electric Corporation Control Products Division, Beaver, Pa. 15009 Printed in USA

A900 Two Speed, Two Winding



Westinghouse

A/200 Magnetic Control

A204, 206 Combination Starters 100 Hp., 600 Volts Maximum, 60 Hertz Ac

Application

A200 magnetic combination starters are designed for across-the-line control of squirrel cage motors or as primary control for wound rotor motors. In addition, they provide a means of line disconnect and short circuit protection. They can be furnished for non-reversing or reversing applications.

Starter Types Non-Reversing

A204 Fusible Switch A206 Circuit Breaker (MCP

Reversing

A214 Fusible Switch A216 Circuit Breaker (MCP)

Enclosures

NEMA 1: General Purpose NEMA 3R: Raintight

NEMA 4: Watertight
NEMA 7D: Class I, Group D Hazardous

Locations

NEMA 9E, F, G: Class II, Groups E, F, G

Hazardous Locations

NEMA 12: Dust Tight – Industrial Use

Typical Specification

Non-Reversing Starters

Across-the-line Combination starters for motors up to 100 Hp., 600 volts shall be Westinghouse A/204 (fusible disconnect switch) or A206 (circuit breaker) or approved equal. They shall be built in accordance with the latest NEMA standards.

Starters shall be equipped with three over load relays. Overload shall have ±15% adjustment from nominal heater rating to compensate for ambient conditions, or to provide closer overload protection upon installation. Starter shall provide for field installation of up to 3 NO and 4 NC interlocks in addition to the hold-in interlock.

Operating handle shall always remain connected to the breaker or switch. The operating handle shall not be mounted in the door of the enclosure, but to the side of the door for safe "stand-aside" operation. Position of operating handle will indicate On, Off or Tripped condition of switch or circuit breaker.

Interlock provisions shall prevent unauthorized opening or closing of the starter door with the disconnect in the On position.

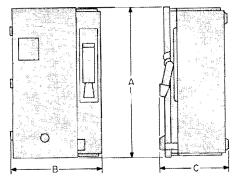
Reversing Starters

Reversing combination starters for motors up to 100 Hp., 600 Volts shall be Westinghouse A214 (fusible disconnect switch) or A216 (circuit breaker) or approved equal. They shall be built in accordance with the latest NEMA standards.

Starters shall be equipped with three overload relays. Overload shall have ±15% adjustment from nominal heater rating to compensate for ambient conditions, or to provide closer overload protection upon installation. Starter shall provide for field installation of up to 4 NO and 4 NC interlocks in addition to the normal interlocks.

Operating handle shall always remain connected to the breaker or switch. The operating handle shall not be mounted in the door of the enclosure, but to the side of the door for safe "stand-aside" operation. Position of operating handle will indicate On, Off, or Tripped condition of switch or circuit breaker.

Interlock provisions shall prevent unauthorized opening or closing of the starter door with the disconnect in the On position.

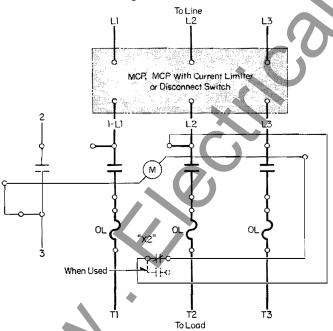

Ratings

""utiligs	,							
NEMA	Maximum	Horsepower	480 Volts Ac 5 10					
Size	208/220	240	480					
	Volts Ac	Volts Ac	Volts Ac					
A204, A21	4 Fusible Switch	:h						
0	3	3	5					
1 2 3 4	7½	7½	10					
2	15	15	25					
3	30	30	50					
4	50	50	100					
A206, A21	6 Circuit Break	er						
0	3	3	5					
1	71/2	71/2	10					
2	15	15	25					
	30	30	50					
4	50	50	100					

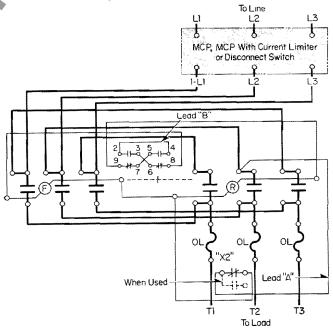
/200 Combination Starters		

A/200 Magnetic Control

A204, A206 Combination Starters 100 Hp., 600 Volts Maximum, 60 Hertz Ac Dimensions, Inches® Dimension certification for construction purposes for G. O. No.-



NEMA		Starter	Types										
Enclo-	Size	A204			A206			A214			A216		
sure		Α	В	С	А	В	С	А	В	C	Α	В	С
1	0. 1, 2 0. 1, 2② 2③ 3 3, 4②	22 ¹⁷ / ₃₂ 24 ²⁵ / ₃₂ 17 ⁷ / ₃₂ 39 ³¹ / ₆₄	8 ⁴⁷ / ₆₄ 8 ²⁵ / ₃₂ 19 ¹⁵ / ₃₃	6 ⁵⁷ /64 6 ⁵⁹ /64 6 ⁵⁹ /64	18 ⁵⁵ / ₆₄ 22 ¹⁷ / ₃₂ 24 ¹⁹ / ₃₂ 30 ⁶³ / ₆₄	8 ⁴⁷ / ₆₄ 8 ⁴⁷ / ₆₄ 8 ²⁹ / ₃₂ 12 ²⁹ / ₃₂	6 ⁶⁷ / ₆₄ 6 ⁵⁷ / ₆₄ 	17%32 256%4	19 ¹ %2 25 ¹³ %2	6 ⁵⁹ /64	17 ¹ / ₃₂ 25 ⁶³ / ₆₄	19 ¹⁵ / ₃₂ 25 ¹⁸ / ₃₂	6 ⁵⁹ / ₆₄
3R	1 2 3 4	12% 13% 15 ¹⁵ / ₁₆ 17%	31 % 31 % 35 ²⁷ / ₃₂ 401/ ₁₆	8 ¹ / ₃₂ 8 ¹ / ₃₂ 10 ¹ / ₄	121/9 13%/4 15 ¹⁵ /16 171/16	31 % 31 % 35 ²⁷ /s2 40½6	85/32 85/32 101/4 101/9						
4	0, 1, 2 0, 1, 2② 2③ 3 3, 4②	23°1/64 27°1/64 18°3/64 41°1/16	8 ⁴⁷ / ₆₄ 8 ²⁵ / ₃₂ 19 ¹⁵ / ₃₂ 12 ²⁹ / ₃₂	6 ⁵³ / ₆₄ 6 ⁵⁵ / ₆₄ 6 ⁵⁵ / ₆₄	20 ¹ %4 23 ⁶ 1%4 26 ¹³ /16 33%6	8 ⁴⁷ / ₆₄ 8 ⁴⁷ / ₆₄ , 8 ²⁹ / ₃₂ 12 ²⁹ / ₃₂	6 ⁵³ /64 6 ⁵³ /64 7 ²³ / ₉₂ 8 ⁵¹ /64	183%4	19 ¹⁵ / ₉₂ 25 ¹³ / ₃₂	6 ⁵⁵ /64	18 ³ / ₆₄	19 ¹⁵ / ₃₂ 25 ¹³ / ₃₂	6 ⁵⁵ / ₆₄
12	0, 1, 2② 2 3, 4②	27 ¹ / ₆₄ 18 ³⁷ / ₆₄ 41 ¹¹ / ₁₈	8 ²⁵ / ₃₂ 19 ¹⁵ / ₃₂ 12 ²⁹ / ₃₂	7 ²⁵ /64 7 ²⁵ /64 9%	235%4	8 ⁴⁷ / ₆₄	7 ²³ / ₆₄ 9 7/ ₈	18 ³⁷ /64 28 ³ / ₁₆	19 ¹⁵ / ₃₂ 25 ¹³ / ₃₂	7 ²⁵ / ₆₄ 9 ½	18 ³⁷ /64 28 ³ /16	19 ¹⁵ / ₃₂ 25 ¹³ / ₃₂	7 ²⁵ / ₆₄ 9 %


- Space available for control transformer.
 200 amperes, maximum fuse clip rating.
 Dimensions shown are over-all, including mounting feet, hubs, etc. Drawings not intended to show construction features.

Typical Wiring Diagrams

Three Phase Non-Reversing Starter

Three Phase Reversing Starter

